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Abstract Finding the shortest addition chain for a given exponent is a significant
problem in cryptography. In this work, we present a genetic algorithm with a novel
encoding of solutions and new crossover and mutation operators to minimize the
length of the addition chains corresponding to a given exponent. We also develop a
repair strategy that significantly enhances the performance of our approach. The results
are compared with respect to those generated by other metaheuristics for exponents
of moderate size, but we also investigate values up to 2255 − 21. For numbers of
such size, we were unable to find any results produced by other metaheuristics which
could be used for comparison purposes. Therefore, we decided to add three additional
strategies to serve as benchmarks. Our results indicate that the proposed approach is a
very promising alternative to deal with this problem.We also consider a more practical
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perspective by taking into account the implementation cost of the chains: we optimize
the addition chains with regards to the type of operations as well as the number of
instructions required for the implementation.

Keywords Addition chains · Genetic algorithms · Cryptography · Optimization ·
Implementation

1 Introduction

Field or modular exponentiation has several important applications in error-correcting
codes and cryptography. Well-known public-key cryptosystems such as Rivest–
Shamir–Adleman (RSA) (Rivest et al. 1978) adopt modular exponentiation. However,
those operations are often the most expensive ones in cryptosystems and naturally one
aims tomake them as efficient as possible. In a simplifiedway,modular exponentiation
can be defined as the problem of finding the (unique) integer B ∈ [1, . . . , p − 1] that
satisfies:

B = Ac mod p, (1)

where A is an integer in the range [1, . . . , p − 1], c is an arbitrary positive integer,
and p is a large prime number. One possible way of reducing the computational load
of Eq. (1) is to minimize the total number of multiplications required to compute the
exponentiation.

Since the exponent in Eq. (1) is additive, the problem of computing powers of the
base element A can also be formulated as an addition calculation, for which so-called
addition chains are used. Informally speaking, an addition chain for the exponent c
of length l is a sequence V of positive integers v0 = 1, . . . , vl = c, such that for each
i > 1, vi = v j +vk for some j and k with 0 ≤ j ≤ k < i . An addition chain provides
the correct sequence of multiplications required for performing an exponentiation.
Thus, given an addition chain V that computes the exponent c as indicated before, we
can find B = Ac by successively computing: A, Av1 , . . . , Avl−1 , Ac.

As an example, consider A60, where the naive procedure would require 59 (c − 1)
multiplications. One simple algorithm that can be used (although, it will often be the
case that it does not give optimal results) works in the following way. First, write
the exponent in its binary representation. Then, replace each occurrence of the digit
1 with the letters “DA” and each occurrence of the digit 0 with the letter “D”. After
all digits are replaced, remove the first “DA” that appears on the left. What remains
represents a rule to calculate the exponent, since the letter “A” stands for addition
(multiplication) and the letter “D” for doubling (squaring). If we consider again the
example A60, the exponent 60 in binary representation equals “111100”. After the
replacement and the removal of “DA”at the left, the “DADADADD”sequence remains.
Thus, the rule is: square, multiply, square, multiply, square, multiply, square, square
(1 → 2 → 3 → 6 → 7 → 14 → 15 → 30 → 60).

This simple example describes the so-called binary or square-and-multiplymethod.
However, this method does not always result in the shortest chain (cf. with the chain
given in Eq. (2). In fact, even for the value 15, the binary method will not produce
the shortest chain (Knuth 1997). Still, it can be generalized to some more powerful
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methods such as those presented in Sect. 2. Another option is to use the addition chain
[1 → 2 → 4 → 6 → 12 → 24 → 30 → 60], for which we see that only seven
multiplications are required:

A1; A2 = A1A1; A4 = A2A2; A6 = A4A2; A12 = A6A6;
A24 = A12A12; A30 = A24A6; A60 = A30A30. (2)

Thus, the length of the addition chain defines the number ofmultiplications required
for computing the exponentiation. The aim is to find the shortest addition chain for a
given exponent c (many addition chains can be produced for the same exponent and a
number of them can have the same length). Naturally, as the exponent value grows, it
becomes more difficult to find a chain that forms the exponent in a minimal number of
steps. Moreover, there exists an argument that finding the shortest addition chain is an
NP-complete problem (Knuth 1997). One possible way of tackling difficult problems
is to use metaheuristics. To that end, we propose a genetic algorithm to find short
addition chains for a given exponent.

This work is based on the paper “Evolutionary Algorithms for Finding Short Addi-
tion Chains: Going the Distance” (Picek et al. 2016). We optimize the algorithm
introduced in (Picek et al. 2016) in order to be able to handle even larger exponent
values. The source code of the evolutionary algorithms is available as a part of the ECF
framework Jakobovic (2016). In this paper we present new results for a number of ran-
domvalues in order to test our algorithm in the casewhen there is no perceived structure
in the exponent value. We also conduct tests for values that consist of a relatively large
number of small stepswhich constitutes themasdifficult values tofind shortest addition
chains. Besides the experiments for the 2127−3 value, we add an additional real-world
case, namely the value 2255 − 21, on which we run extensive experiments. Finally,
we also consider the implementation perspective by evolving addition chains with a
minimal runtime on embedded software or hardware platforms as an optimization goal.

The remainder of this paper is organized as follows. Section 2 provides some back-
ground information on addition chains, as well as on possible chain elements, and
different types of chains. Furthermore, we discuss several techniques for exponentia-
tion, relevant from a cryptographic perspective. In Sect. 3, we provide an overview of
related work in which heuristics have been used to find short chains. Section 4 presents
our design goals as well as the algorithm that we propose. In Sect. 5, we report exten-
sive results for various test cases and exponent sizes. Following that, in Sect. 6, we
present two important modifications of the problem where we do not only consider
finding the shortest chains, but also finding chains that are “cheap” for embedded soft-
ware or hardware implementations. In Sect. 7, we give a discussion about the results
we obtained as well as some possible future research directions. Finally, in Sect. 8,
we conclude the paper. An example of the code listing all necessary instructions for a
chain of interest is given in Appendix A.

2 On addition chains

We start this section with some basic notions about addition chains. Afterwards, we
give several important results that we use when designing our evolutionary algorithm.
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Next, we briefly discuss algorithms that are commonly used to compute exponentia-
tions. In this work, we follow the notation and theoretical results presented in “The
Art of Computer Programming, Volume 2: Seminumerical Algorithms” (Knuth 1997).
For more detailed information about addition chains, we refer the readers to Chapter
4.6.3. “Evaluation of Powers” (Knuth 1997).

Let n be the exponent value and ν(n) be the number of ones in the binary repre-
sentation of that exponent, i.e., ν(n) represents the Hamming weight of a number n.
The number of bits necessary to represent the exponent (integer) value n is denoted
as λ(n) + 1, where λ(n) = �log2(n)�.

2.1 Theoretical background

Definition 1 An addition chain is a sequence a0 = 1, a1, . . . , ar = n with

ai = a j + ak, for some k ≤ j < i. (3)

Definition 2 An addition chain is called ascending if

1 = a0 < a1 < a2 < · · · < ar = n. (4)

In this work, we focus only on ascending chains. From this point on, when we talk
about addition chains, we consider ascending addition chains. The shortest length of
any valid addition chain for a value n is denoted as l(n). In the length of a chain, the
initial step that has the value one is not counted.

Next, it is possible to define different types of steps in the addition chain based on
Eq. (3):

– Doubling step when j = k = i − 1. This step always gives the maximal possible
value at the position i .

– Star step when j but not necessarily k equals i − 1.
– Small step when λ(ai ) = λ(ai−1).
– Standard step when ai = a j + ak where i > j > k.

On the basis of the aforementioned steps, it is easy to infer the following conclu-
sions (Knuth 1997):

– The first step is always a doubling step.
– A doubling step is always a star step and never a small step.
– A doubling step must be followed by a star step.
– If step i is not a small step, then step i + 1 is either a small step or a star step, or
both.

Now, we focus on the shortest addition chains. Trivially, the shortest chain for any
number n must have at least log2(n) steps. To be more precise, any chain length is
equal to log2(n) plus the number of small steps (Knuth 1997).

When ν(n) ≥ 9, there are at least four small steps in any chain for exponent
length n (Thurber 1973b). That statement can be also generalized with the following
definition (Thurber 1973b):
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Definition 3 If ν(n) ≥ 24·m−1 + 1, then l(n) ≥ log2(n) + m + 3 where m is a
nonnegative value.

A star chain is a chain that involves only star operations. The minimal length of a
star chain is denoted as l∗(n) and the following holds (Knuth 1997):

l(n) ≤ l∗(n). (5)

Although it seems intuitive that the shortest addition chain is also a star chain,
in 1958, Walter Hansen proved that for certain large exponents n, the value of l(n)

is smaller than l∗(n) (Knuth 1997). The smallest of such exponent values n equals
12509.

Albeit counterintuitive, there also exist values of n for which l(n) = l(2n) with
the smallest example being n = 191. Here, both n and 2n have length l equal to 11.
Furthermore, there exist values of n for which l(n) > l(2n) (Clift 2011). The smallest
of such values of n is 375494703 (Flammenkamp 2016).

Finally, the length seems to be difficult to compute for a specific class of numbers:
let c(r) be the smallest value of n such that l(n) = r (Knuth 1997). Therefore, c(r) is
the first integer value requiring r steps in the shortest addition chain (Thurber 1973a).
To obtain such shortest addition chains is regarded more difficult than to obtain the
shortest addition chain for some other greater value.

2.2 Techniques for exponentiation

A number of techniques that are useful for cryptography, and that apply to both
exponentiation in a multiplicative group and elliptic curve point multiplication, are
explained in Menezes et al. (1996) and Gordon (1998) and can be divided into three
categories:

1. techniques for general exponentiation,
2. techniques for fixed-base exponentiation, and
3. techniques for fixed-exponent exponentiation.

In the following paragraphs, we use the term exponentiation, but all principles hold
for both exponentiation and elliptic curve point multiplication. In the first category, the
most straightforward ways to perform an exponentiation or a point multiplication, are
the left-to-right and right-to-left binarymethods.With the aforementionedmethod, the
length of a chain n is upper bounded by ν(n)+λ(n)−1. In the worst case scenario, the
binary method needs 2λ(n) multiplications and 3λ(n)/2 on average Gordon (1998).

An option for speeding up these algorithms consists of evaluating more than one
bit of the exponent at a time after precomputing a number of multiples of the base.
An example is the window or m-ary method that evaluates m bits of the exponent at a
time. The precomputation of base multiples maximizes the speed by minimizing the
number of multiplications. However, the optimizations require a larger memory usage
for the storage of the precomputed values. When the base is fixed, the precomputed
multiples of the base can be prestored.
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The m-ary method can be further generalized into sliding window methods and
adaptive methods (Knuth 1997). Another way of minimizing the number of multipli-
cations without storing precomputed multiples of the base is by exponent recoding,
which uses a representation of the exponent that is different from the binary repre-
sentation. The recoding of the exponent requires additional resources on a chip (logic
gates) or a microprocessor (program memory).

For elliptic curve cryptography, further speed optimizations are possible by con-
sidering elliptic curves with special properties, like the Gallant–Lambert–Vanstone
(GLV) curve (Gallant et al. 2001), the Galbraith–Lin–Scott (GLS) curve (Galbraith
et al. 2011) or the FourQ curve (Costello and Longa 2015). In Faz-Hernández et al.
(2014), side-channel security is taken into account in the derivation of efficient algo-
rithms for scalar multiplication on GLS–GLV curves.

In this paper, we focus on addition chains for fixed-exponent exponentiations or
fixed-scalar point multiplication without taking into account optimizations using spe-
cific fields or curves. We do not consider side-channel analysis, but we believe this
does not undermine our results, since a number of side-channel countermeasures can
be applied on top of the proposed addition chains. Examples are point blinding or
randomized projective coordinates (Coron 1999).

3 Related work

In 1990, Bos and Coster presented the Makesequence algorithm that produces an
addition sequence of a set of numbers (Bos and Coster 1990). The proposed method
is able to find chains of large dimensions, and the authors conclude that their method
is relatively more effective than the binary method. The heuristics in the algorithm
choose, on the basis of a weight function, which method will be used to produce the
sequence (the authors experimented with four methods). However, the authors report
that their current weight function does not give satisfactory results and they decided
to experiment with simulated annealing, but without success.

Nedjah and de Macedo Mourelle experimented with a genetic algorithm (GA) in
order to find minimal addition chains (Nedjah and de Macedo Mourelle 2002a). They
used binary encoding where value 1 means that the entry number is in the chain, and
0 means the opposite. This representation is not suitable for large numbers and the
authors experimented with values of only up to 250. We note that the chromosome is
of length 250 for that value, and for any value of practical interest the chromosome
would amount to more than the memory of all computers in the world. The same
authors focused on optimizing addition-subtraction chains with GAs (Nedjah and de
Macedo Mourelle 2002b). They used the same representation and exponent values as
in Nedjah and de Macedo Mourelle (2002a), which makes their work also far from
applicable to real-world use cases. They also experimented with addition-subtraction
chains with a maximal value of 343 (Nedjah and de Macedo Mourelle 2003).

Nedjah and de Macedo Mourelle used Ant Colony Optimization to find minimal
addition chains working with exponent sizes of up to 128 bits (Nedjah and de Macedo
Mourelle 2004). However, since they do not provide the numbers themselves, but
only their sizes, it is impossible to assess the quality of this approach besides the
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fact that they report that it is better than the binary, quaternary, and octal method.
The same authors extended their work for exponent sizes up to 1024 bits resulting in
better results for the Ant Colony Optimization algorithm than in cases when binary,
quaternary, octal, and GA methods are used (Nedjah and Macedo Mourelle 2006).

Cortés et al. proposed a genetic algorithm approach for which the encoding is the
chain itself (Cruz-Cortés et al. 2005). Besides that, the authors also proposed dedicated
mutation and crossover operators. Using this approach, they report to successfully find
minimal addition chains for numbers up to 14143037.

Cortés, Rodríguez-Henríquez, and Coello presented an Artificial Immune System
for generating short addition chains of sizes up to 14143037 (Cruz-Corteés et al.
2008). With that approach, the authors were successful in finding almost all optimal
addition chains for exponents e < 4 096.

Osorio-Hern et al. (2009) proposed a genetic algorithm coupled with a local search
algorithm and repair mechanism in order to find minimal short addition chains. This
work is of high relevance since it clearly discusses the need for a repair mechanism
when using heuristics for the addition chains problem.

León-Javier et al. (2009) experimented with the Particle Swarm Optimization algo-
rithm in order to find optimal short addition chains.

Nedjah and Macedo Mourelle (2011) implemented the Ant Colony Optimization
algorithm on a SoC in order to speed up the modular exponentiation in cryptographic
applications.

Sarkar and Mandal (2012) used Particle Swarm Optimization to obtain faster mod-
ular multiplication in cryptographic applications for wireless communications.

Rodriguez-Cristerna and Torres-Jimenez (2013) used a GA to find minimal Brauer
chains, where a Brauer chain is an addition chain in which each member uses the
previous member as a summand.

Domínguez-Isidro et al. (2011, 2015) investigated the usage of evolutionary pro-
gramming for minimizing the length of addition chains.

Finally, Picek et al. used genetic algorithms with customized operators to evolve
short addition chains for values up to 2127 − 3. This work also discusses several
drawbacks appearing in related work as well as some of their possible solutions (Picek
et al. 2016).

4 The design of the proposed algorithm

Before discussing the choice of the algorithm, we briefly enumerate some basic rules
our chains need to fulfill:

1. Every chain (solution) needs to be an ascending chain.
2. Every chain needs to be non-redundant, i.e., there should not be two identical

numbers in a chain.
3. Every chain needs to be valid, i.e., every number in a chain needs to be the sum

of two previously appearing numbers.
4. Every chain needs to start with the value one and finish with the desired exponent

value.
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When choosing the appropriate algorithm for the evolution of chains, we start with
the considerations about the representation. If we disregard the approach where one
encodes individuals in a binary way (i.e., for each possible value, we use either 0 if
it is not a part of the chain, or 1 when it is a part of the chain), up to now there is
not much of a choice. Indeed, encoding solutions as integer values where each value
represents the number that occurs in the chain seems rather natural. Accordingly, we
also use that representation, which we denote as encoding with chain values.

However, internally, our algorithm works with one more representation where we
represent each value n as a pair of positions i1 and i2 that hold the previous values n1
and n2 forming the value n, which is denoted as encoding with summand positions.

Although such position-based encoding gives longer chromosomes, for large expo-
nents the encoded values are much smaller and the memory requirements for storing
an individual are consequently smaller. Furthermore, it is possible to use operators
that work on the positions and to give an algorithm more options to combine solutions
(since we have two positions for every number, the length of a chain encoded with
positions is always twice as long as the one encoded with chain values).

For both representations, a GA seems a natural choice, but there is one important
difference in both approaches. When using the representation based on chain values
for large numbers, the chromosome encoding needs to support large numbers, while in
the representation based on summand positions we only need to support large numbers
for calculating the chain elements, but not for storing them.

However, one cannot aim to fulfill the aforementioned rules and use a standard
GA. Therefore, we need to design a custom initialization procedure, mutation, and
crossover operators. In fact, only the selection algorithm can be used as in the standard
GA. In all our experiments, weworkwith k-tournament selectionwhere k = 3. In each
tournament, theworst of k randomly selected individuals is replaced by the offspring of
the best two from the same tournament. This selection scheme not only eliminates the
need for crossover probability, but has produced good results in different applications,
in our experience.

Since initialization and variation operators are expected to produce many invalid
solutions (in fact, for larger chains our experiments showed that it is highly unlikely
that genetic operators will produce valid solutions) we also need to design a repair
strategy. The repair strategy can be incorporated in each of the previous parts or to be
considered as a special kind of operator, which is the approach we opted to follow.
Next, we present the operators we use in our GA.

4.1 Initialization algorithm

We designed the initialization algorithm aiming to maintain as much diversity as
possible. We accomplished this by analyzing a number of known optimal chains (both
star and standard chains) and checking the necessary steps to obtain them. Here, we
note that if the initialization can produce only star chains and themutation can generate
only star steps, the whole algorithmwill be able to produce only star chains. Naturally,
one could circumvent this by adding additional steps in the repair mechanism. In
that case, the model would not follow the intuition, since one expects that the repair
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mechanism only repairs the chains and it should not possess additional mechanisms
for the generation of new values.

The initial population is generated via a set of hardcoded values that are positioned
at the beginning of the chain together with randomly generated chain sequences as
presented below. The probability values are selected on the basis of a set of tuning
experiments.

– Set the zeroth element to one and the first element to two.
– Uniformly at random select between all minimal subchains consisting of three
elements (i.e., the second, third, and fourth positions in the chain) and a random
choice of the second element (according to the rules, either the value three or four).

– With a probability equal to 3/5, double the elements until they reach half of the
exponent size.

– Check whether the current element and any previous element sum up to the expo-
nent value.

– Uniformly at random, choose from among the following mechanisms to obtain
the next value in the chain, under the constraint that it needs to be smaller than the
exponent value:
1. Sum two preceding elements of the chain.
2. Sum the previous element and a random element.
3. Sum two random elements. One random element is chosen between the zeroth

position and the element in themiddle of the chain and the second one is chosen
between the middle element and the final (exponent) value.

4. Loop from the element on the position i − 1 until the largest element that can
be summed up with the last element is found.

4.2 Variation operators

Next, we present the mutation and crossover operators we use. They are very similar to
the operators provided, for instance, in Cruz-Cortés et al. (2005), Cruz-Corteés et al.
(2008). For such a specific problem as the one we study here, the task of devising new
operators is difficult. Furthermore, many operators reduce to the ones described here.
For instance, we present here something that is analogous to a single-point mutation,
but since the change in a single position will invalidate the chain, after the repair
mechanism, the mutation can also be regarded as a mixed mutation. Therefore, the
number of mutation points is irrelevant since a single point change brings changes in
every position until the end of the chain.

Since we have several branches in the mutation operator, one can say that those
branches could be separated into different mutation operators. We note that there are
more possibilities on how to combine two values to form a new value in a sequence
and there could be possibilities for additional mutation operators. On the other hand,
we implemented two crossover operators and we consider advantageous to use both
of them, since this promotes diversity. However, identifying which of them is better
than the other is hard, since this depends on the exponent value that we aim to reach.
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4.2.1 Crossover

We implemented two versions of the crossover operator: one-point crossover and two-
point crossover. We provide the pseudocode for one-point crossover in Algorithm 1
and the two-point version is analogous. The selection of which crossover is used is
done uniformly at random for each call of the crossover operator. Here, the function
FindLowest Pair(P, i, pair1, pair2) determines the pair of elements with lowest
indexes (pair1, pair2) which give the target element i in a chain P . The dominant
difference between the mutation operator and the crossover operator lies in the fact
that in the crossover, we have defined the rules on how to build elements while in the
mutation we do not have such strict rules. However, since both require the usage of
the repair mechanism, that difference can become rather blurred.

Algorithm 1 Crossover operator.
Require: Exponent exp > 0, Parent addition chains P1, P2
rand = random(3, exp − 1)
for all i such that 0 ≤ i ≤ rand do
ei = P1i

end for
for all i such that rand ≤ i + 1 ≤ n do

FindLowest Pair(P2, i, pair1, pair2)
ei = epair1 + epair2

end for
RepairChain(e, exp)
return e = e0, e1, ..., en

4.2.2 Mutation

The mutation operator is again similar to those presented in the related literature, but
we allow more diversity in the generation process as presented in Algorithm 2. As
already stated, since the mutation invalidates the chain, it is impossible to expect small
changes (except when the mutation point is at the end of the chain) and therefore, this
is actually a macromutation operator.

Algorithm 2Mutation operator.
Require: Exponent exp > 0, e = e0, e1, ..., en
rand = random(2, exp − 1)
rand2 = random(0, 1)
if rand2 == 1 then
erand = erand−1 + erand−2

else
rand3 = random(2, rand − 1)
erand = erand−1 + erand3

end if
RepairChain(e, exp)
return e = e0, e1, ..., en
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4.3 The repair algorithm

Function RepairChain(e, exp) takes the chain e and repairs it in the following way:

1. Delete duplicate elements in the chain.
2. Delete elements greater than the exp value.
3. Check that all elements are in ascending order, if not, sort them.
4. Ensure that the chain finishes with the exp value by repeating operations in the

following order:
(a) Try to find two elements in the chain that result in exp.
(b) Uniformly at random apply:

i. Double the last element of the chain while it is smaller than exp.
ii. Add the last element and a random element.
iii. Add two random elements.

This function is in many ways similar to the Initialization procedure, but in this
case, the primary goal is removing redundant chain elements, rather than maximizing
diversity as is the case in the Initialization.

There are several places in our algorithm where we choose what branch to enter
based on random values.We decided to use uniform random values where each branch
has the same probability to be chosen. We believe this mechanism can be further
improved. One trivial modification would be with regards to whether one wants to
obtain a star chain or not. In the case when only star chains are wanted, then the
branches that cannot result in a star step can be set either to a zero or some small
value, analogous for the case when we want to have a larger number of standard steps.

The number of independent runs for each experiment is 50. For the stopping crite-
rion we use stagnation, which we set to 100 generations without improvement. We set
the total number of generations to 1500. The population size is set to 300 in all exper-
iments. We note that larger population sizes perform even better thanks to increased
diversity from the initializationmechanism, but for large exponent values the evolution
takes a long time. With the current setting, even for relatively large exponent size, one
evolutionary run finishes in less than one hour. We note that all listed parameters are
selected based on a tuning phase, whose results we do not give here due to the lack
of space. For all the experiments, we use the Evolutionary Computation Framework
(ECF) (Jakobovic 2016).

5 Finding short addition chains

In this section, we concentrate on a number of scenarios where the goal is to find the
shortest addition chains.

5.1 The fitness function

In all the experiments in this section, we use a simple fitness function where the goal is
minimization. The number of elements in the chain (i.e., the length len of an addition
chain chain for an exponent value n) is minimized as given by the equation:
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fitness(chain) = len(chain). (6)

5.2 Tests based on a comparison with previous work

For the first category, we use a set of exponent values that are also used in previous
work.Namely, those are the exponents belonging to the class that is difficult to calculate
according to Knuth (1997). Recall, those values are the minimal integers that form an
addition chain of a certain length i . Up to now, experiments had been done for values
of i up to 30 (Cruz-Cortés et al. 2005; Cruz-Corteés et al. 2008). However, in an effort
to evaluate the performance of our algorithmwith even higher values we experimented
with values up to i = 40. Furthermore, for each of those values we give statistical
indicators in order to understand better the performance of our algorithm as well as to
serve as a reference for future work.

We note that any comparison with previous work is difficult since other authors
only report the value (and the chain) that presents the best obtained solution. From the
reproducibility and the efficiency side, we find those approaches somewhat incomplete
since it makes a big difference if the algorithm found the best possible value in one
instance out of 100 runs or in 90 instances out of 100 runs.

We note that for exponent values n < 227 one can find optimal chains online Flam-
menkamp (2016), while values up to n = 231 can be downloaded from the same
web page. Besides our algorithm, we implemented the binary algorithm as well as
two variants of the window method. In the first m-window method (called Window
method in tables), we set the value of k to four in the expression m = 2k . It has been
shown (Thurber 1973a) that with this method the length of the chain is:

l(n) ≤ log2(n) + 2k−1 − (k − 1) + �log2(n)/k�, ∀k. (7)

The second version of the window method (called Opt. window method in tables)
tries to optimize Eq. (7) by choosing the value k that minimizes 2k−1 − (k − 1) +
�log2(n)/k�. We emphasize that none of the aforementioned methods should be
regarded as the state-of-the-art, but only as methods that give good results and should
serve as the baseline cases.

The results are given in Table 1 where it is easy to observe that the GA performs
better than the binary, window, and optimized windowmethods. In Figure 1 we depict
a comparison between the GA and the Optimized window method for c(r) values.

5.3 Testing random values

Up to now, we investigated a number of values of various sizes where we observe
that the GA approach performs very well. However, the investigated values have a
certain structure, i.e., they are not randomly chosen. Our goal in this set of experi-
ments is to check how the GA performs when we look for the shortest addition chains
for random values of various sizes. In order to obtain such values, we use the infras-
tructure from RANDOM.ORG (2016) where the only constraint we enforce is to use
odd values. Furthermore, we experiment with values between 220 and 231 in order to
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Table 1 c(r) family of the exponent values

r c(r) Binary Window Opt. window GA
Min Avg Stdev

30 14,143,037 38 40 34 30 30.92 0.60

31 25,450,463 38 42 35 31 32.62 0.66

32 46,444,543 42 43 36 32 33.50 0.54

33 89,209,343 42 44 38 33 34.46 0.81

34 155,691,199 42 45 39 34 35.44 1.03

35 298,695,487 46 47 41 35 35.67 0.74

36 550,040,063 45 47 41 36 37.96 0.83

37 994,660,991 46 48 42 37 38.76 1.47

38 1,886,023,151 48 48 42 38 40.28 1.21

39 3,502,562,143 48 49 43 39 41.36 1.19

40 6,490,123,999 52 52 45 41 41.77 0.63

Fig. 1 Efficiency comparison, GA and Optimized window approach, c(r) values

be able to compare with the experimentally validated shortest addition chains (Flam-
menkamp 2016). The results are given in Table 2 while in Figure 2 we display the
comparison between the GA and the Optimized window approaches. Note that for the
last three values we write N/A in the l(n) column since those values are too large to
be obtained from RANDOM.ORG (2016). As in the previous scenario, we see that
the GA approach is by far the best out of those tested here.
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Table 2 Testing random values

n l(n) Binary Window Opt. window GA
Min Avg Stdev

488,705 23 26 33 27 23 23.53 0.51

1,273,909 25 29 36 30 25 25.87 0.63

3,399,779 25 31 37 31 25 26.87 0.87

5,425,679 27 32 38 32 28 28.23 0.50

9,264,263 28 34 40 34 28 29.63 0.67

20,279,147 29 39 42 36 30 31.07 0.52

51,950,083 30 34 42 36 30 31.20 0.55

115,216,741 31 39 44 38 32 33.60 1.01

159,963,579 N/A 41 45 39 34 35.20 0.85

310,469,637 N/A 36 46 39 34 34.23 0.43

1,073,740,801 N/A 49 47 41 35 35.26 0.45

Fig. 2 Efficiency comparison, GA and Optimized window approach, random values

5.4 Testing “difficult” values

In this section, we test several values that can be regarded as difficult. That difficulty
stems from the fact that all experiments done up to now indicate those numbers have
a small number of optimal addition chains (i.e., there are only a few options on how
to build optimal addition chains). Furthermore, those numbers have a relatively large
number of small steps (cf. with the value n = 2k that has only one optimal addition
chain but is simple due to the lack of small steps). The results are given in Table 3
and Fig. 3. The values in the table are experimentally shown to have 7 small steps
and in total a length of 41 steps. Note that although the GA outperforms the other
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Table 3 “Difficult” values

n Binary Window Opt. window GA
Min Avg Stdev

17,180,843,711 50 51 45 42 43.93 0.96

17,181,535,967 49 52 46 42 45.16 1.45

17,181,824,999 50 52 46 42 44.40 1.08

17,181,857,663 50 52 46 41 44.46 1.24

17,181,878,143 50 52 46 42 44.45 1.07

17,181,921,023 51 52 46 42 44.16 1.27

17,181,425,531 51 52 46 43 44.06 0.78

17,181,433,703 50 52 46 42 43.80 0.69

17,181,750,911 49 52 46 42 44.35 1.27

17,181,793,151 50 52 46 42 44.96 1.21

17,181,963,167 51 52 46 42 43.99 1.02

17,182,209,983 50 52 46 42 44.83 1.36

17,182,210,751 49 52 46 42 44.65 1.07

17,182,215,157 48 52 46 42 44.48 1.14

17,182,219,767 50 52 46 43 44.55 1.03

17,182,226,303 51 52 46 42 44.49 1.01

17,182,318,319 49 52 46 42 44.77 1.20

Fig. 3 Efficiency comparison, GA and Optimized window approach, “difficult” values

tested methods, it is still not able to reach optimal addition chains (except in one case).
Furthermore, here we can observe a relatively small difference in the performance
between the GA and the Optimized window method.

123



472 S. Picek et al.

5.5 Real-world benchmark tests

Finally, as a real-world benchmark, we investigate two values that are used in practice:
2127 − 3 and 2255 − 21. The first value has applications in certain high-speed Diffie-
Hellman implementations (Bernstein et al. 2014) while the latter one is used in the
inversion part in the 25519 curve (Bernstein 2006). To provide additional experiments
for a comparison, we start with much smaller values and we gradually progress by
increasing the exponent in steps of ten, i.e., the value following 237−3 equals 247−3.
We finish the experiments with the exponent values 2127−3 and 2255−21. The results
are given in Tables 4 and 5. Similarly as in the previous cases, the GA approach is
again superior while the differences between the results are even more striking than

Table 4 Exponents up to 2127 − 3

Exponent Binary Window Opt. window GA

Min Avg Stdev

237 − 3 71 57 51 43 45.32 0.99

247 − 3 91 69 63 54 56.25 1.11

257 − 3 111 82 76 64 64.90 0.87

267 − 3 131 94 88 73 73.22 0.43

277 − 3 151 107 101 85 85.44 0.51

287 − 3 171 119 113 97 104.36 3.56

297 − 3 191 132 126 106 107.27 0.91

2107 − 3 211 144 138 115 115.71 0.75

2117 − 3 231 157 151 126 126.68 0.89

2127 − 3 251 169 163 136 136.83 0.83

Table 5 Exponents up to 2255 − 21

Exponent Binary Window Opt. window GA

Min Avg Stdev

2165 − 21 326 217 211 176 178.21 1.81

2175 − 21 346 229 223 187 191.28 2.97

2185 − 21 366 242 236 198 198.90 0.88

2195 − 21 386 254 248 210 211.94 1.85

2205 − 21 406 267 261 217 219.84 1.87

2215 − 21 426 279 273 228 231.72 2.54

2225 − 21 446 292 286 239 242.03 2.67

2235 − 21 466 304 298 250 253.52 2.27

2245 − 21 486 317 311 258 261.55 2.41

2255 − 21 506 329 323 269 273.81 2.57
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Fig. 4 Efficiency comparison, GA and the Optimized window approaches. a Values up to 2127 − 3. b
Values up to 2255 − 21

before. We note that for the 2127 − 3 value, the GA found a chain of the same length
as the currently shortest known. On the other hand, for the value 2255 − 21 our best
results equals 269 steps while the best known result is only 265 steps. In Fig. 4a and b
we give a comparison between the GA and the Optimized window approaches for
values from Tables 4 and 5, respectively.

6 On the implementation perspective

Up to now, our experiments investigated only the evolution of the shortest addition
chains. However, in realistic scenarios, addition chains also have an important per-
spective that concerns implementation details. Accordingly, here we concentrate on
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two such implementation scenarios where we start with the motivation for each prob-
lem and then we present the obtained results. Note that we disregard certain aspects
of the problem and we concentrate only on the addition chains perspective.

6.1 Adding the weights of operations

As already said, finding the shortest addition chains can be an extremely difficult
problem. However, one can also consider how many shortest addition chains are there
for a certain value and whether all those chains are equivalent. The number of the
shortest chains for a given value depends on the specific value. From the theoretical
perspective all chains of the same size are equally good/optimal. However, since those
chains often need to be implemented in hardware or embedded software, we need to
consider the implementation cost where themultiplication operation ismore expensive
than the squaring operation.

To elaborate on this further, we start with a small example, namely the value 511. By
checking the online repository of the shortest addition chains (Flammenkamp 2016)
we see that the length of that addition chain equals 12. Furthermore, we run GA for
30 times, resulting in 30 optimal chains of length 12. However, when inspecting those
solutions we see that there are 20 unique solutions, all of them reaching the value 511
in 12 steps. Out of those 20 solutions, we obtain 3 solutions with 4 multiplications,
12 solutions with 5 multiplications, and 5 solutions with 6 multiplications. Next, we
give examples of each of the categories discussed:

1 → 2 → 3 → 6 → 12 → 15 → 30 → 60 → 120 → 240 → 480 → 510 → 511.

1 → 2 → 4 → 6 → 10 → 20 → 30 → 60 → 120 → 240 → 480 → 510 → 511.

1 → 2 → 3 → 6 → 12 → 18 → 30 → 31 → 60 → 120 → 240 → 480 → 511.

All three previous solutions represent the shortest addition chains for a value 511,
but from the implementation perspective, the first solution is the cheapest, while the
last one is the most expensive. In this section, our goal is to find the shortest addition
chains, but also the chains that are as “cheap” as possible for the value 2127−3. In order
to do so, we first need to determine how much more expensive the multiplication is
comparedwith the squaring. In general, themultiplication operation is more expensive
than the squaring operation where the exact cost ratio depends on several factors. For
instance, in Bernstein (2006), the author writes that general multiplication costs 243
floating-point operations and squaring costs 162 floating point operations, which gives
a ratio of 0.67. On the other hand, L. Duc-Phong estimates that the squaring costs 0.8
multiplications on a software platform (Le 2011). In this set of experiments, we follow
the latter estimate, but our approach can be applied to any implementation platform,
as long as the cost ratio of multiplications and squarings is known.
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6.1.1 The fitness function

In this set of experiments, our fitness function aims to minimize the total cost of
instructions:

fitness(chain) = a ×
∑

squaring + b ×
∑

multiplication, (8)

where a = 0.8 and b = 1.
We note that instead of immediately trying to find chains that are as short as possible

and having as small number of multiplications as possible, we could had first aimed
to find the shortest chains and then try to improve on the type of operations while
maintaining the chain length. However, we considered this option to be much harder
for that GA so we did not pursue it further.

6.1.2 Results

Due to the size of the obtained solutions, we do not list the whole addition chains here,
but instead, we discuss their lengths and the number of the each type of operations.
We obtained 12 different chains with the total length of 136 steps (therefore, with
the shortest known length). Out of those 12 chains, 10 chains consist of 125 squaring
operations and 11 multiplication operations while 2 chains consist of 126 squaring
operations and only 10 multiplications. Therefore, we succeeded in obtaining two
chains that are faster on embedded software platforms compared to other evolved
chains of length 136. Finally, we note that we did not find any chain of length 136 that
has more than 11 multiplications.

6.2 Extending the operations set

In the second implementation scenario, we consider the case when a certain
addition chain is to be implemented. We use here the example of inversion in
GF(2127) (Bernstein 2006). The optimal chain for the value 127 is trivial to find
and it equals (Flammenkamp 2016):

1 → 2 → 3 → 6 → 12 → 15 → 30 → 60 → 63 → 126 → 127.

Let us consider how such a chain would be implemented with an example from
Sage (Stein et al. 2013):

def Inversion (din): r0 = r1*r0 r0 = r1*r0
r0 = din r1 = r0ˆ(2ˆ6) r1 = r0ˆ(2ˆ3)
r1 = r0ˆ(2ˆ1) r0 = r1*r0 r0 = r1*r3
r0 = r1*r0 r1 = r0ˆ(2ˆ3) r1 = r0ˆ(2ˆ63)
r1 = r0ˆ(2ˆ1) r0 = r1*r3 r0 = r1*r0
r0 = r1*din r1 = r0ˆ(2ˆ15) r0 = r0ˆ(2ˆ1)
r3 = r0 r0 = r1*r0 return r0
r1 = r0ˆ(2ˆ3) r1 = r0ˆ(2ˆ30)
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We see there are in total 9 multiplications and 10 squaring operations. However,
for instance to calculate r1 = r2

126

0 it would require that we either have the value

r1 = r2
63

0 stored in the memory or to find it on-the-fly. An obvious technique to
circumvent this problem is to use a number of operations that can reach the desired
value faster than the multiplication or squaring operations. Here, we concentrate on
an example where such operations are implemented in an FPGA core. As already
said, besides the multiplication and squaring operations we can implement also a
small number of additional operations. Since squaring operations are much cheaper
(the exact ratio depends on the implementation) than the multiplications, we ideally
want those additional operations to be the powers of the squaring operation, i.e., the
squaring equals x2

1
and additional operations are of the form x2

2
, x2

3
, x2

4
, . . . , x2

z
,

where z cannot be too large, so we limit it to values smaller than 10. Note that besides
the constraint that z cannot be too large, we also need to limit the number of additional
operations we have at our disposal due to implementation constraints. In accordance
with that, we select our squaring operations set size to the maximal value of 4 (note
that x2

1
must be used which means we have only up to three more possible squaring

operations to choose). One rather standard choice for the squaring operations is to use
powers of two, i.e., x2

1
, x2

2
, x2

4
, x2

8
. Now, we consider how to calculate r1 = r02

63

with the aforesaid operations:

r1 = r0ˆ(2ˆ8) r1 = r1ˆ(2ˆ8) r1 = r1ˆ(2ˆ2)
r1 = r1ˆ(2ˆ8) r1 = r1ˆ(2ˆ8) r1 = r1ˆ(2ˆ1)
r1 = r1ˆ(2ˆ8) r1 = r1ˆ(2ˆ8)
r1 = r1ˆ(2ˆ8) r1 = r1ˆ(2ˆ4)

Note that we need 10 instructions to calculate the value r1 = r2
63

0 and, in total,
we need 30 instructions to calculate all squaring operations in the I nversion func-
tion given above. Besides that, it becomes evident from the above example that we
additionally require 9 multiplications to calculate the chain. As already said, squaring
operations are cheaper than multiplication operations but the exact ratio depends on
the implementation scenario. We work here with the assumption that the multiplica-
tion has a cost which is the double of the squaring cost. Therefore, if we set the cost
of squaring to 1 and multiplication to 2, it means that the above chain has a total cost
of 48 instructions. We formulate the problem in two possible scenarios:

– Find a different addition chain that uses operations x2
1
, x2

2
, x2

4
, x2

8
and results

in a smaller number of operations.
– Use the default addition chain but select different squaring operations that will
result in a smaller number of instructions.

6.2.1 Finding different addition chains

When finding different addition chains that use the predefined set of squaring opera-
tions, we can use a fitness function thatminimizes the number of instructions necessary
to build a chain:

fitness(chain) =
∑

instructions_in_squaring + 2 ×
∑

multiplication. (9)
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Note that we multiply the multiplication instructions by 2 since we said they are
twice as expensive as the squaring instructions. To test which number of operations is
necessary for each squaring value, we simply run repeated division processes with all
the values in the operations set (from the largest to the smallest, i.e., 8, 4, 2, 1) while
the squaring value is larger than 0.

With this approachwe are able to find a number of chains that require 20 instructions
for all squaring values. However, all those chains require 2 multiplications more than
the original chain. We give an example of such an evolved chain: 1 → 2 → 4 →
8 → 16 → 32 → 64 → 88 → 120 → 124 → 126 → 127.

Note that although the number of multiplications is larger and the chain is longer
than the shortest chain possible, still this chain requires less operations to implement
– 11 multiplication operations and 20 squaring operations, which equals in total 42
instructions. Note that this chain requires a smaller number of operations than the
default chain even if the multiplication operation is 4 times more expensive than the
squaring operation. We believe this scenario represents an interesting example on how
sometimes even larger chains can be optimal from the implementation perspective
when compared to the shortest addition chains.

6.2.2 Finding different squaring operations

In this scenario, we use the default (i.e., the shortest) addition chain and we investigate
which squaring operations are to be used to minimize the cost of the whole chain when
considering the number of instructions. Recall that we limit the number of squaring
operations to 4 and the power of the largest squaring operation to 9. However, this
represents only one practical example and we note that further investigation with a
different number of squaring operations and their dimensions would constitute an
interesting research direction.

Since here we already have an addition chain that we need to use andwe are looking
for a set of values representing power operations, we do not use our custom-made GA.
Instead, we use a standard GA that has a permutations encoding, and we limit the
number of operations that can be used to 4 out of 9 possible. To state it differently, our
encoding will contain 4 values that represent the optimal choice of the power values.
All the other GA parameters are kept the same as in the previous experiments. The
fitness function aims to minimize the number of instructions necessary to build all
squaring operations. Here, we can disregard the multiplication part since it is fixed
(i.e., our chain consists of 9 multiplications):

fitness(chain) =
∑

instructions_in_squaring. (10)

The results show that the optimal set of operations is x2
1
, x2

3
, x2

6
, x2

9
,which results

in a total of 20 squaring instructions and 9 multiplications. Therefore, our chain built
with those instructions requires in total 38 instructions.
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7 Discussion

In this paper, we conduct an extensive analysis on the efficiency of the GA approach
when finding shortest addition chains or addition chains that lead to fast imple-
mentations. When comparing our approach with previous work as well as several
deterministic algorithms,we see that theGAperforms extremelywell. From the results
obtained we see that the c(r) family of numbers, although usually perceived as very
difficult to calculate, does not provide much difficulty for the GA. The motivation
behind Random Values testing stems from the fact that we want to check whether our
approach favors some structure (regardless of how complex that structure may be),
and whether it has difficulties with random values that presumably do not possess
any specific structure. Our experiments show that yet again the GA is easily able to
reach optimal solutions. Finally, we tested a new set of numbers for which it should
be difficult to find shortest chains because it is believed that those numbers have only
a few optimal chains as well as that they have relatively many small steps. This is the
first test suite where our approach could not find optimal solutions, but was usually off
by one step. Therefore, we believe these numbers should represent the future reference
point when investigating the performance of metaheuristic techniques in the evolution
of shortest addition chains.

We notice that the real-world numbers (2127 − 3 and 2255 − 21) are much longer
than those usually tested with metaheuristics. Our experiments show that despite the
(extreme) size of the numbers, the GA is again performing very well compared to
deterministic algorithms. For the value 2127 − 3, the shortest known chain has 136
elements, which is the same value our algorithm reached. The question is whether this
should be regarded as a success or a failure. In a sense, it depends on the perspective;
if one knows that the value 136 was obtained (somewhat surprising) by a pen-and-
paper approach in a matter of a few hours by an expert, then our result does not
seem impressive. However, recall Definition 3 which states it is easy to calculate that
n = (2127 − 3) has a chain of a length at least equal to 130 since the exponent has 125
ones in its binary representation. This means that even if our solution does not have
the optimal length, it is quite close to that value. For the value 2255 − 21, our shortest
chain has length 269, which is a huge improvement over all three tested deterministic
methods. However, again, the shortest obtained chain by a pen-and-paper method for
that value has length of 265. Therefore, our algorithm for this test case obviously
cannot compete with the knowledge of an expert. Still, we note that our results are
competitive due to the relatively high speed of the evolution process as well as the fact
that we are able to obtain multiple chains of size 269. Furthermore, we note that the
chains obtained by pen and paper utilize expert knowledge of the numbers’ structure;
we do not use this knowledge in our black-box optimization.

As the main future research challenge, we see the need to increase the speed of
the evolution process in order to be able to offer our GA as an on-the-fly generation
mechanism. One option would be to write a custom implementation of large number
arithmetic that could utilize full support of modern processors. The second option
would be to use some faster evolutionary algorithm like Evolution Strategy (ES). Our
preliminary experiments with ES show potential since this algorithm is able to reach
optimal values for many of the tested numbers. Finally, it should be possible to use a
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smarter seeding technique where the initial population would be obtained by various
deterministic methods and possibly small mutations in order to increase the diversity.

Besides the experiments dealing with the evolution of the shortest addition chains,
we introduced here a scenario where we try to optimize the chain from the imple-
mentation perspective. We experimented with two scenarios where in the first one we
fixed the addition chain and tried to find a set of additional instructions to make the
implementation faster. On the other hand, in the second scenario we fixed a small set
of additional operations and then tried to find a chain that has a smaller number of
instructions. Both scenarios yielded good results which constitutes heuristics a good
choice for realistic settings. We especially note the interesting case in which we man-
aged to find an addition chain consisting of more elements than the shortest addition
chain, but featuring a smaller number of operations than the shortest addition chain.

8 Conclusions

In this work, we showed that GAs can be used to find the shortest addition chains for
a wide set of exponent sizes. However, we note this problem is not as easy as could
be perceived from a number of related publications. Indeed, the first step is the design
of a custom Genetic Algorithm and then one needs to carefully tune the parameters.
We managed to find chains that are either optimal (where it was possible to confirm
based on related work) or as short as possible for a number of values.

From that perspective, we also see this work as a reference work against which new
heuristics should be tested, since it is undoubtedly possible to compare the results.
Furthermore, we present a set of numbers that seem to be especially difficult for
heuristic search techniques, whichwill make an interesting future benchmark suite. As
far asweknow,we are thefirst to investigate these kindof heuristics for exponent values
that have a real-world usage. Besides the evolution of the shortest addition chains, we
were also able to find addition chains that have extremely fast implementations, which
opens a complete new research perspective for metaheuristics and addition chains.
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A Sage example with the optimal set of squaring instructions

Here we give an example of the inversion built with x2
1
, x2

3
, x2

6
, x2

9
instructions

that has in total 9 multiplications operations (18 multiplication instructions) and 20
squaring instructions. The lines beginning with # denote comments.

def Inversion (din): r0 = r1*r3 r0 = r1*r3
r0 = din # r1 = r0ˆ(2ˆ15) # r1 = r0ˆ(2ˆ63)
r1 = r0ˆ(2ˆ1) r1 = r0ˆ(2ˆ9) r1 = r0ˆ(2ˆ9)
r0 = r1*r0 r1 = r1ˆ(2ˆ6) r1 = r0ˆ(2ˆ9)
r1 = r0ˆ(2ˆ1) r0 = r1*r0 r1 = r0ˆ(2ˆ9)
r0 = r1*din # r1 = r0ˆ(2ˆ30) r1 = r0ˆ(2ˆ9)
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r3 = r0 r1 = r0ˆ(2ˆ9) r1 = r0ˆ(2ˆ9)
r1 = r0ˆ(2ˆ3) r1 = r0ˆ(2ˆ9) r1 = r0ˆ(2ˆ9)
r0 = r1*r0 r1 = r0ˆ(2ˆ9) r1 = r0ˆ(2ˆ9)
r1 = r0ˆ(2ˆ6) r1 = r0ˆ(2ˆ3) r0 = r1*r0
r0 = r1*r0 r0 = r1*r0 r0 = r0ˆ(2ˆ1)
r1 = r0ˆ(2ˆ3) r1 = r0ˆ(2ˆ3) return r0
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