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Abstract The 0–1 mixed integer programming problem is used for modeling many
combinatorial problems, ranging from logical design to scheduling and routing as well
as encompassing graph theory models for resource allocation and financial planning.
This paper provides a survey of heuristics based on mathematical programming for
solving 0–1 mixed integer programs (MIP). More precisely, we focus on the stand-
alone heuristics for 0–1 MIP as well as those heuristics that use linear programming
techniques or solve a series of linear programming models or reduced problems,
deduced from the initial one, in order to produce a high quality solution of a consid-
ered problem. Our emphasis will be on how mathematical programming techniques
can be used for approximate problem solving, rather than on comparing performances
of heuristics.

Keywords Mathematical programming · Heuristics · Metaheuristics · 0–1 Mixed
integer program

1 Introduction

The 0–1 mixed integer programming problem is used for modeling many combina-
torial problems, ranging from logical design to scheduling and routing as well as
encompassing graph theory models for resource allocation and financial planning. A
0–1 mixed integer program (MIP) may be written in the following form:
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racatodosijevic@gmail.com

1 LAMIH UMR CNRS 8201 - Université de Valenciennes, 59313 Valenciennes Cedex 9, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-017-9336-y&domain=pdf


166 S. Hanafi, R. Todosijević

(MI P)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

maximize v = cx

s.t. Ax ≤ b

0 ≤ x j ≤ Uj , j ∈ N = {1, . . . , n}
x j ∈ {0, 1}, j ∈ I ⊆ N

(1)

where A is am×n constantmatrix, b is a constant vector, the set N denotes the index set
of variables, while the set I contains indices of binary variables. Each variable x j has
an upper bound denoted byUj (which equals 1 if x j is binary variable, and otherwise
may be infinite). The integer problem defined in this manner will be denoted simply
by MI P while the relaxation of MI P obtained by excluding integrality constraints
will be denoted by LP . A feasible solution of MI P(LP) will be called MI P(LP)

feasible. An optimal solution of the LP problem will be denoted by x . The set of all
MIP feasible solutions will be denoted by X , i.e., X = {x ∈ R

n : Ax ≤ b; 0 ≤ x j ≤
Uj , j ∈ N ; x j ∈ {0, 1}, j ∈ I}. An optimal solution or the best found solution
obtained in an attempt to solve the MIP problem will be denoted by x∗, while its
objective value will be denoted by v∗.

Since 0–1 MIP problems are NP-hard, exact methods (e.g., Branch-and-Bound,
Branch-and-Cut, Branch-and-Price and so on) are not suitable for solving large scale
problems. Namely, obtaining exact solutions for majority of 0–1 MIP problems is
not possible in a realistic or justifiable amount of time. More precisely, very often
exact methods succeed in finding near-optimal solution quickly but need a lot of time
to reach an optimal one. Additionally, even if they succeed in reaching an optimal
solution quickly they sometimes consume a significant portion of the total solution
time to prove its optimality. For these reasons, in many practical settings, exact meth-
ods are used as heuristics, stopping them before getting proof of optimality (e.g.,
imposing CPU time limit, maximum number of iterations to be performed, node limit
etc.).

These drawbacks of exact methods have attracted researchers to develop many
heuristic methods to tackle hard 0–1 MIP problems. The advantage of well-designed
and carefully conceived heuristics is not only their ability to produce high-quality
solutions in a short time, but also the fact that they can be easily combined with exact
methods to speed them up. The early incumbent solutions produced by a heuristic
can help a Branch-and-Bound algorithm to reduce the amount of memory needed
to store the branch-and-bound tree as well as to accelerate the exploration of the
tree. Consequently, this survey focuses on general heuristics based on mathematical
programming techniques for 0–1 MIP problems, as opposed to those that exploit
problem structure (e.g., Lagrangian based heuristics (as in Beasley 1993; Toledo and
Armentano 2006; Holmberg and Yuan 2000; Jena et al. 2014; Imai et al. 2007), or
heuristics proposed for various special combinatorial structures, like scheduling and
location problems, the traveling salesman problem etc. (see e.g., Rego et al. 2011;
Farahani et al. 2013; Vidal et al. 2013; Mönch et al. 2011; Ball 2011). Additionally,
we do not review general heuristics for solving classes of problems that include 0–1
MIP problems as a special case such as heuristics for general MIP, convex integer
programming, mixed integer non-linear programming and so on (for surveys of such
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heuristics we refer reader to Bonami et al. 2012; Burer and Letchford 2012; Lee and
Leyffer 2011; Berthold 2014; Fischetti and Lodi 2011 and references therein). More
precisely, we strictly focus on the stand-alone heuristics for 0–1 MIP as well as those
heuristics that use linear programming techniques or solve series of liner programming
models or reduced problems, deduced from the initial one, in order to produce a high
quality solution. Our emphasis is on how mathematical programming techniques (LP
relaxation, MIP relaxation, simplex pivot, branch-and-bound, convexity cut, pseudo
cut, decomposition, etc.) can be used for approximate problem solving, rather than on
comparing the performance of heuristics. To the best of our knowledge there is not a
recent survey on the heuristics for 0–1 MIP.

The rest of the paper is organized as follows. In Sect. 2, we review heuristics that
use pivot moves within the search for an optimal solution of the MIP in order to move
from one extreme point to another. Section 3 contains the description of heuristics that
use pseudo-cuts in order to cut-off portions of a solution space already examined in
the previous solution process. Section 4 is devoted to so-called pump heuristics which
purpose is to create a first feasible solution of the considered MIP. Section 5 provides
overview of so-called proximity heuristics that seek aMIP feasible solution of a better
quality in the proximity of the current incumbent solution. The next section entitled
Advanced heuristics is devoted to heuristics that may be considered as frameworks for
building newheuristics for 0–1MIP. Section 7provides a classification and summaryof
main components of MIP heuristics. Finally, Sect. 8 concludes the paper and indicates
possible directions for future work.

Here we describe notation used throughout the paper. Let α be a real number
from the interval [0, 1], and let near(α) refer to the nearest integer value of a real
value α ∈ [0, 1] i.e., near(α) = �α + 0.5�, where �α + 0.5� represents the integer
part of the number α + 0.5 (i.e., the greatest integer ≤ α + 0.5). Furthermore, let
x be a vector such that x j ∈ [0, 1], j ∈ I . Then, near(x) will represent the near-
est integer (binary) vector relative to the vector x , by defining each component as
near(x) j = near(x j ) = �x j + 0.5�. We first define a measure u(α) of integer infea-
sibility for a assigning a value α to a variable by the rule ur (α) = |α − near(α)|r ,
where the exponent r is a non negative number (e.g., between 0.5 to 2). Note that
|α − near(α)| = min{α − �α� , �α	 − α}. Obviously, such a function takes the value
0 if α is an integer, while otherwise it is strictly positive. Starting from the previous
definition, we may define a partial integer feasibility of a vector x relative to the sub-
set J ⊂ I as ur (x, J ) = ∑

j∈J ur (x j ). The complement of the vector x , such that

x j ∈ {0, 1}, j ∈ I, relative to the subset J ⊂ I is the vector x ′ = x(J ) whose
components are given as x ′

j = 1 − x j for j ∈ J and x ′
j = x j for j /∈ J . The

Hamming distance between two solutions x and x ′ such that x j , x ′
j ∈ {0, 1}, j ∈ I

is defined by δ(x, x ′) = ∑
j∈I |x j − x ′

j | = ∑
j∈I x j (1 − x ′

j ) + x ′
j (1 − x j ). The

partial Hamming distance between x ′ and x ′, relative to the subset J ⊂ I, is
defined as δ(J, x, y) = ∑

j∈J | x j − x ′
j | (hence, δ(I, x, x ′) = δ(x, x ′)). We denote

by e the vector of all ones with appropriate dimension and by e j the binary vec-
tor whose component j equals to 1, while all the other components are set to
0.
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2 Pivoting heuristics

In this section we review heuristics that make use of pivot moves in order to solve a
MIP problem at hand. By applying a pivot move such heuristics actually move from an
extreme point to an adjacent one. Such heuristics are inspired by the observation that
any 0–1 programmay be considered as a linear programwith the additional stipulation
that all slack variables other than those in the upper bounding constraintsmust be basic.
Namely, it is well known that an optimal solution for the 0–1 MIP problem may be
found at an extreme point of the LP feasible set, and special approaches integrating
both cutting plane and search processes have been proposed to exploit this fact (Cabot
and Hurter 1968; Glover 1968).

The bounded simplex method proposed by Dantzig (1948, 1963) is an efficient
method to solve the LP- relaxation of the MIP problem by systematically exploring
extreme points of the solution space. The search for an optimal extreme point is
performed by pivot operations, each of which moves from one extreme point to an
adjacent extreme point by removing one variable from the current basis and bringing
another variable (which is not in the current basis) into the basis. For our purposes, the
procedure can be depicted in the following way. Suppose that the method is currently
at some extreme point x0 with corresponding basis B. The set of indices of all other
variables (nonbasic variables) will be designated with B = N−B. The extreme points
adjacent to x0 have the form

x j = x0 − θ j D j for j ∈ B (2)

where Dj is a vector associated with the nonbasic variable x j , and θ j is the change in
the value of x j that moves the current solution from x0 to x j along their connecting
edge. The LP basis representation identifies the components Dkj of Dj , as follows

Dkj =

⎧
⎪⎪⎨

⎪⎪⎩

((AB)−1A)k j if k ∈ B

ξ if k = j

0 if k ∈ B − { j}
(3)

where AB represents the matrix obtained from the matrix A by selecting columns that
correspond to the basic variables and ξ ∈ {−1, 1}. We choose the sign convention for
entries of Dj that yields a coefficient for x j of Dj j = 1 if x j is currently at its lower
bound at the vertex x0, and of Dj j = −1 if x j is currently at its upper bound at x0. In
what follows, the set of extreme points adjacent to an extreme point x0 will be denoted
by

N0(x
0) = {x ′ = Pivot (x0, p, q) : p ∈ B, q ∈ B}.

The heuristics which will be reviewed in this section are: Pivot and Complement
(Balas andMartin 1980), Enhanced Pivot and Complement (Aboudi et al. 1989), Pivot
and Shift (Balas et al. 2004), Pivot and Tabu (Lokketangen andGlover 1998), and Pivot
Cut and Dive (Eckstein and Nediak 2007) heuristics.

123



Mathematical programming based heuristics for the 0–1 MIP 169

2.1 Pivot and complement heuristic

Balas andMartin (1980) proposed a Pivot and Complement (P&C) heuristic for a pure
0–1 MIP (i.e., I = N ). The P&C heuristic starts by solving the LP relaxation of the
initial problem and then performs a sequence of pivots trying to put all slack variables
into the basis while minimizing the objective function. Once a feasible solution is
found, a local search is launched to improve it by complementing certain sets of 0–1
variables.

If solving LP relaxation of the initial problem does not yield a feasible 0–1 solution,
in order to find a first MIP feasible solution, the P&C heuristic performs pivoting,
complementing as well as rounding and truncating in the way presented in Algorithm
1.More precisely, the P&C heuristic uses four types of neighborhood structures. Three
neighborhood structures are based on pivot moves and one is based on complement
moves:

– Neighborhood N1 is based on pivot moves that maintain primal feasibility of
the LP relaxation while exchanging a nonbasic slack for a basic binary variable.
Let S be the set of slack variables, the pivot occurs on nonbasic slack column
q ∈ (B ∩ S) \ I and a row p ∈ B ∩ I for a basic binary variable such that

N1(x) = {x ′ = Pivot (x, p, q) : q ∈ (B ∩ S) \ I, p ∈ B∩I}.
– NeighborhoodN2 is based on pivot moves that also maintain primal feasibility of
the LP relaxation, but the number of basic binary variables remains unchanged:

N2(x) = {x ′ = Pivot (x, p, q) : (p, q) ∈ B × B, p, q ∈ S or p, q ∈ I
such that ur (x

′, I) < ur (x, I)}.
More precisely, the pivots of this type exchange slack for a slack or a binary
variable for a binary variable while reducing the sum of the integer infeasibilities.

– Neighborhood N3 is based on pivot moves that exchange a nonbasic slack for
a basic binary variable violating primal feasibility. It is required that the slack
variable must enter the basis with a positive value:

N3(x) = {x ′ = Pivot (x, p, q) : (p, q) ∈ B × (B ∩ S)}.
– Neighborhood N k

4 is based on complement moves. Complementing of binary
variables used in the first phase consists of flipping one or two variables at once.
Complementing is preformed in order to reduce the infeasibility measured for a
solution x as

μ(x) =
∑

i∈B∩I
max{0,−xi } +

∑

i∈B∩I
max{0, xi − 1}.

Aset J of nonbasic variables of size k is candidate for complementing if itminimize
the infeasibility

N k
4 (x) = {x(J ) : J ⊂ B ∩ I, |J | = k, Ax(J ) ≤ b, μ(x) − μ(x(J )) > 0}.
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Algorithm 1: Finding a feasible solution FS()

Function FS();
1 Solve LP relaxation to obtain an optimal LP basic solution x ;
2 if x ∈ {0, 1}n then

Stop = True; // it is optimal;
else

3 Set x = x ;Stop = False;
end

4 while Stop = False do
5 while N1(x) ∪ N2(x) �= ∅ and x /∈ {0, 1}n do
6 if N1(x) �= ∅ then

select x ′ = argmax{cx : x ∈ N1(x)};
else

7 if N2(x) �= ∅ then
select x ′ ∈ N2(x);

end
end

8 set x = x ′;
end

9 if {x, near(x), �x�} ∩ X �= ∅ then
Stop = True; Break;

end
10 select x ′ = argmin{μ(y) : y ∈ N3(x)}; set x = x ′;
11 while N 1

4 (x) ∪ N 2
4 (x) �= ∅ and x infeasible do

12 if N 1
4 (x) �= ∅ then
select x ′ = argmin{μ(y) : y ∈ N 1

4 (x)}
else

if N 2
4 (x) �= ∅ then
select x ′ ∈ N 2

4 (x)
end

end
13 set x = x ′;

end
14 if x infeasible then

Stop = Fail;
else

15 if {x, near(x), �x�} ∩ X �= ∅ then
Stop = True;

end
end

end

If Pivot and Complement heuristic succeeds in finding a MIP feasible solution,
an improvement phase is launched to possibly improve the obtained solution. The
improvement phase Algorithm 2 used inside the Pivot and Complement heuristic is
based on variable fixing and complementing. Note that the improvement phase may be
seen as a variable neighborhood descent approach (Hansen et al. 2010). The Improve-
ment Phase firstly attempts to fix as many binary variables at their optimal values as
possible. The choice of variables to be fixed is made according to the following rule. If
the reduced cost of a nonbasic binary variable equals or exceeds the gap between the
current lower and upper bounds on the objective function value, then its current value
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is optimal and thus the variable is fixed. The complementing step in the improvement
phase consists of complementing one, two or three variables at once. The set of vari-
ables to be flipped is determined in order to improve the current objective function
value as follows. Let x be a current solution, then a set of variables J ⊂ I is a candidate
for complementing if ∑

j∈J

(1 − 2x j )c j ≥ 1 (4)

and ∑

j∈J

(1 − 2x j )ai j ≤ bi −
∑

j /∈J

x j ai j ,∀i ∈ {1, . . .m}. (5)

In other words, in the improvement phase, the neighborhood structures

N ′k
4(x) = {x(J ) : J ⊂ I, |J | = k, Ax(J ) ≤ b and J satisfy (4) and (5)}

are explored.

Algorithm 2: Improving a feasible solution x
Function LS(x);

1 Stop = False;
2 while Stop = False do
3 Fix all 0–1 values in x that can be fixed;

4 if N ′1
4(x) �= ∅ then

select x ′ = argmax{cx : x ∈ N ′1
4(x)};

set x = x ′;
continue;

end

5 if N ′2
4(x) �= ∅ then

select x ′ ∈ N ′2
4(x);

set x = x ′;
continue;

end

6 if N ′3
4(x) �= ∅ then

select x ′ ∈ N ′3
4(x);

set x = x ′;
continue;

end
Stop = True;

end

Aboudi et al. (1989) proposed an enhancement of the Pivot andComplement heuris-
tic by adding a objective function value constraint. In that way they obtained a new
heuristic able to provide better solutions in shorter time than a basic Pivot and Com-
plement heuristic.

Balas et al. (2004) proposed an extension of the Pivot and Complement heuristic
called Pivot and Shift for mixed integer programs. The Pivot and Shift heuristic con-
sists of two phases: a search phase that aims to find an integer feasible solution and
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an improvement phase that attempts to improve the solution returned by the search
phase. The search phase attempts to construct a feasible solution by examining three
neighborhood structures based on the pivot moves and a procedure inspired by local
branching. If no replacement occurs as a result of searching one of the neighborhoods,
the search for a feasible solution resumes by exploring a specially defined small neigh-
borhood of the current solution. The small neighborhood is created around the partial
solution defined by those variables whose values are close to an integer. Specifically,
let x be the current LP feasible solution. Then the search is done by using aMIP solver
in the neighborhood defined as follows:

N5(x) =
⎧
⎨

⎩
x ′ ∈ X :

∣
∣
∣
∣
∣
∣

∑

j∈J

(x ′
j − near(x j ))

∣
∣
∣
∣
∣
∣
≤ 1

⎫
⎬

⎭

where J = { j ∈ B ∩I : u1(x j ) ≤ β} with β chosen to be a small positive value, e.g.,
0.1.

If the search phase returns a MIP feasible solution, this solution is improved fur-
ther in the improvement phase. The procedure tries to improve the current solution
value by shifting some of the nonbasic integer-constrained variables up or down. Note
that shifting the binary nonbasic variables actually represents their complementing.
Besides shifting one nonbasic variable, the procedure examines simultaneous shifting
of two or three nonbasic variables. The variable or the set of variables to be shifted is
determined as one that improves the objective function value while keeping the solu-
tion feasible. As soon as an improving shift is detected it is executed and the search
is continued. The whole process is repeated as long as there is an improving shift. In
other words, at each stage of shifting phase a neighborhood structure defined as:

N k
6 (x) = {

x ′ ∈ X : J ⊆ B ∩ I, |J | = k, δ(J, x, x ′) = k, cx ′ > cx
}

is explored. As soon as shifting of variables is finished obtaining some solution x , that
solution is further improved executing a large neighborhood search. A large neighbor-
hood search consists of the exploration of neighborhood structure defined as

N7(x) =
⎧
⎨

⎩
x ′ ∈ X :

∣
∣
∣
∣
∣
∣

∑

j∈I
(x ′

j − x j )

∣
∣
∣
∣
∣
∣
≤ k

⎫
⎬

⎭

where k is a parameter, using the MIP solver. After, exhaustive testing the authors
detected that the most suitable value for the parameter k is five.

2.2 Pivot and tabu heuristic

Tabu search (TS) (Glover 1986) is a metaheuristic for solving optimization problems.
It has its origins in heuristics based on surrogate constraint methods and cutting plane
approaches that systematically violate feasibility conditions (Glover 1977a) . Aboudi
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and Jörnsten (1994) proposed a tabu search where the P&C heuristic is used as sub-
routine and the tabu conditions are implemented by serially adding constraints that
eliminates the current local optimum. Løkketangen et al. (1994) embeded TS frame-
work within the Pivot and Complement heuristic.

Since an optimal solution for the 0–1 MIP problem may be found at an extreme
point of the LP feasible set, Lokketangen and Glover (1998) proposed a Tabu Search
based heuristic (Algorithm3) for solving 0–1MIP that exploits this fact. The procedure
iteratively moves from one extreme point to an adjacent extreme point by executing
a pivot move. Each pivot move is assigned a tabu status and a merit figure expressed
as a function of the integer infeasibility and the objective function value. The move
to be executed is then chosen as one that has the highest evaluation from those in the
candidate set. During the search for a pivot move to be preformed the current best
integer solution x∗ is updated as soon as some better solution is encountered.

Algorithm 3: Tabu search for 0–1 MIP
Function TS();

1 Solve the LP relaxation to obtain an optimal LP basic solution x ;
2 if x MIP feasible then

return x ;
end

3 Set x = x ;
4 v∗ = −∞;

while Stopping criterion is not satisfied do
5 Consider the neighborhood of x that contains feasible pivot moves that lead to adjacent basic LP

feasible solutions;
6 If a candidate move would lead to an 0–1 MIP feasible solution x ′ such that cx ′ > v∗, record x

as the new x∗ and set v∗ = cx ′ ;
7 Select the pivot move with the highest move evaluation, applying tabu restrictions and aspiration

criteria;
8 Execute the selected pivot, updating the associated tabu search memory and guidance structures;

end

Note that the method may not necessarily visit the best MIP feasible neighbor of
the current solution, since the move evaluation of Step 2 depends on other factors in
addition to the objective function value (see below).

Obviously, three elements are required to implement the Tabu Search procedure for
solving 0–1 MIP:

1. neighborhood structure (the candidate list of moves) to examine;
2. the function for evaluating the moves;
3. the determination of rules (and associated memory structures) that define tabu

status.

– Neighborhood structure Let x0 denote the current extreme point with the set of
basic variables B. The neighborhood structure explored by Tabu search which
contains extreme points adjacent to the given extreme point x0, is defined as:
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N0(x0) = {x ′ = Pivot (x0, p, q) : q ∈ B, p ∈ B}
= {xh = x0 − Dhθh for h ∈ B}

where Dh is a vector associated with the nonbasic variable xh , and θh is the
change in the value of xh that moves the current solution from x0 to xh along their
connecting edge. We thus start the search from an integer infeasible point, and
may also spend large parts of the search visiting integer infeasible solution states.
However, for large problems, examination of entire neighborhood is not possible
in a reasonable amount of time. Therefore, the strategies described in Glover et al.
(1993) and in Glover (1995b) are used in order to reduce neighborhood size.

– Move evaluation The move evaluation function is composite, based on two inde-
pendentmeasures. The firstmeasure is the change in objective function valuewhen
going from x0 to xh ∈ N0(x0), and the second measure is the change in integer
infeasibility. Restricting consideration to h ∈ B̄, we define

Δv(h) = cxh − cx0

Δu(h) = ur (x
0, I) − ur (x

h, I).

Note that it is not necessary to execute a pivot to identify xh or the values of
ur (xh, I) and cxh , since only the vector Dh , the scalar θh , and the current solution
x0 are required to make this determination.
The overall procedure for determining the best solution works in the following
way. Firstly, all solutions are classified in four groups according to the sign of the
change in the objective value Δv(h) and the change in the integer infeasibility
Δu(h) that would occur when replacing the current solution by one neighboring.
After that the best solution is determined using the following tests:

– Weighted sum To each solution xh , the value Δ(h) = Δv(h) + Δu(h) is
assigned. After that the first non tabu solution with the highest value of Δ(h)

is accepted.
– Ratio test For each solution (of 4 types previously mentioned) ratio of Δv(h)

andΔu(h) is calculated. After that the best solution of each type is determined,
and finally the best one among them is accepted.

– Weighted sum solution evaluation, sorted by solution type The solutions are
evaluated as a weighted sum (i.e.,Δ(h) = αΔv(h)+βΔu(h)), but first sorted
according to solution type, and then according to the solution evaluation within
each solution type group. To determine the best solution to accept the same
rule as for the ratio test is used.

– Ratio test favoring integer feasibility This test is intended to drive the search
more strongly to achieve integer feasibility than the basic ratio test. Therefore
it gives priority to solutions that reduce the integer infeasibility.

– Tabu status The tabu status is created according to two tabu records, Recency( j)
and Frequency( j) for each variable x j , j ∈ N . Recency( j) is used to record
recency information, while Frequency( j) to measure the number of iterations
that x j has been basic. At the beginning Recency( j) is set to a large negative
number and then, whenever x j becomes nonbasic, the value of Recency( j) is
set to the number of iteration at which that change occurs. If at some iteration
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Tabu( j) value is changed the status of variable x j is set to Tabu for a predefined
number of iterations. Similarly, a nonbasic variable x j is penalized in order not
to be chosen to become basic according to the value either of Frequency( j) or
Frequency( j)/Current_I teration.

2.3 Pivot cut and dive heuristic

Eckstein and Nediak (2007) presented a four layered heuristic called Pivot Cut and
Dive (Algorithm 4) for pure 0–1 MIP programming problems. In the first layer
gradient-based pivoting is applied, built around a concave merit function that is zero
at integer-feasible points and positive elsewhere in the unit cube (noting x j ∈ {0, 1} is
equivalent to x j (1−x j ) = 0). The general form of such amerit function is given in the
following way. Consider a collection of continuously differentiable concave functions
φi : R → R, i ∈ I, such that φi (0) = φi (1) = 0 and φi (x) > 0 for all x ∈]0, 1[.
Then a concave merit function has a form ψ(x) = ∑

i∈I φi (xi ).
Let the reduced costs for any cost vector t be denoted by z(t). Then for the previously

defined merit function the following statements holds:

Property 1 For a given LP basic solution x0 and feasible direction D j , j ∈ B̄ from
x0 holds z(∇ψ(x0)) = ∇ψ(x0)Dj . Additionally, from the concavity of ψ(·) and its
differentiability at x0, we have ψ(xh) ≤ ψ(x0) + θhzh(∇ψ(x0)), h ∈ B. Moreover,
for linear ψ , the last relation holds with equality and therefore for a fixed vector
f ∈ R

n with f D j �= 0,we have

ψ(x j ) − ψ(x0)

f x j − f x0
≤ z j (∇ψ(x0))

z j ( f )
.

Based on this proposition, the procedure attempts to round a fractional solution (LP
solution) via primal simplex pivots deteriorating its objective function value as less as
possible. In order to achieve that three types of pivots are applied in a sequence after
exhausting pivots of the previous type:

– Pivot 1 Pivots that decrease the merit function but do not decrease the objective
function value. These pivots define the following neighborhood structure:

N ′′
1(x) = {x ′ = Pivot (x, p, q) : q ∈ B, p ∈ B, ψ(x ′) < ψ(x), cx ′ ≥ cx}.

– Pivot 2 Pivots that locally improve the merit function, at the least possible cost
in terms of the objective function. Using these pivots the following neighborhood
structure is explored:

N ′′
2(x) = {x ′ = Pivot (x, p, q) : q ∈ B, p ∈ B, zq(∇ψ(x0)) < 0}.

– Pivot 3 (probing layer) In the probing phase possible pivots are explicitly tested
until a satisfactory improving pivot is found or the list of possible entering variables
is exhausted. In order not to spend a lot of time, inspecting is performed according
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to the list that gives priority to the candidate entering variables x j that have low
values of z j (∇ψ(x0)) and z j (c). Before accepting some pivot move, the new
iterate x that would result is computed and the checking whether isψ(x) < ψ(x0)
or not is performed. Ifψ(x) ≥ ψ(x0)we abandon the pivot and proceed to the next
in the list. On the other hand, if the pivot passes this test, the objective sacrifice
rate is calculated as :

cx − cx0

ψ(x0) − ψ(x)
.

If this sacrifice rate is acceptable in relation to the prior history then x is accepted
as the next iterate and no further pivots are probed. Otherwise, probing continues.
If none of the pivots was accepted, the rounding process fails. Note that if pivot 3
is executed the resulting solution will belong to the neighborhood

N ′′
3(x) = {x ′ = Pivot (x, p, q) : q ∈ B, p ∈ B, ψ(x ′) < ψ(x)}.

In the case of the failure of the probing layer a convexity cut violated by the current
vertex and all adjacent vertices is generated (third layer). If the problem obtained by
adding a previous cut is feasible, the rounding procedure is repeated. However, if the
probing fails, and the resulting convexity cut appears excessively shallow, the final
layer of the heuristic is executed: a recursive, depth-first diving operation that seeks
to recover feasibility. If feasibility is successfully repaired the rounding procedure is
repeated, while otherwise, the procedure fails (no feasible solution of the (sub)problem
is found).

2.4 Summary

The Pivot and Complement heuristic is implemented as a general heuristic in the
XMP/ZOOM software (Marsten 1987). The major drawback of both Pivot and Com-
plement and Pivot and Shift heuristics is that they do not guarantee to produce a
feasible solution. As shown in Balas et al. (2004), Pivot and Shift heuristic is able to
enhance the performance of a MIP solver if the MIP solver is joined with Pivot and
Shift heuristic. Namely, in Balas et al. (2004) Pivot and Shift were joined to XPRESS
MIP solver, and in that way better results in shorter time were obtained comparing
to the case when XPRESS MIP solver is used alone. Since above heuristics had not
been tested on the same set of test instances, it is hard to say which one is the best
(For example, tabu search algorithms are tested only on instances of multidimensional
knapsack problem, while Pivot, Cut and Dive heuristic is tested only on 49 MIPLIB
3.0 instances without any comparison with existing methods). However, Lokketangen
and Glover (1998) showed that the proposed tabu search performed better than Pivot
and Complement, but the computational results are limited to relatively small mul-
tidimensional knapsack problems. In addition, it is evident that Enhanced Pivot and
Complement heuristic outperforms the classical one as already pointed out. Among the
considered heuristics, only Pivot and Shift heuristic may be used for solving general
mixed integer programming problems.
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Algorithm 4: Pivot, cut and dive heuristic for 0–1 MIP
Function Pivot&cut&dive(P);

1 Solve the LP relaxation of P to obtain an optimal LP basic solution x ;
2 Stop = False;
3 I nteger = False;
4 Set x = x ;
5 while Stop=False and Integer = False do
6 if x MIP feasible then

I nteger = True;
end

7 if N ′′
1(x) �= ∅ then

8 select best x ′ ∈ N ′′
1(x) according to imposed rule;

9 set x = x ′;
10 continue;

end
11 if N ′′

2(x) �= ∅ then
12 select best x ′ ∈ N ′′

2(x) according to imposed rule;
13 set x = x ′;
14 continue;

end
15 if N ′′

3(x) �= ∅ then
16 select first x ′ ∈ N ′′

3(x) according to imposed rule;
17 set x = x ′;
18 continue;

end
19 Stop = True;

end
20 if Integer=False then
21 Q = (P| convexity cut);
22 if Q is feasible then
23 Pivot&cut&dive(Q);

else
24 Try to repair feasibility of Q ;
25 if Feasibility repaired then
26 Pivot&cut&dive(Q);

else
27 Report failure;

end
end

end

3 Pseudo-cut based heuristics

In this section we review heuristics that use pseudo-cuts in order to cut-off portions
of a solution space already examined in the previous solution process. A pseudo-cut
consists of a linear inequality that excludes certain solutions from being feasible as
solutions of the considered problem and itmay not be valid in the sense of guaranteeing
that at least one globally optimal solution will be retained in the feasible set (Glover
2005). In addition, the heuristics reviewed in this section are based on solving series of
reduced problems deduced from the original one. The idea is that the reducedMIP can
be solved more quickly and if it is defined appropriately, the resulting solution will be
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a high-quality solution to the original MIP. Some earliest approaches for generating
and exploiting small sub-problems are proposed in Glover and Laguna (1997), Glover
(1977b), Soyster et al. (1978).

TheMIP relaxation of the 0–1MIP problem relative to a subset J ⊂ I is expressed
as:

(MI P(J ))

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

maximize v = cx

s.t. Ax ≤ b

0 ≤ x j ≤ Uj , j ∈ N

x j ∈ [0, 1], j ∈ (I − J )

x j ∈ {0, 1}, j ∈ J

(6)

The problem reduced from the original problem P and associated with x0 and a
subset J ⊆ I such that x0j ∈ {0, 1} for all j ∈ J , is defined as:

P(x0, J ) max{cx : x ∈ X, x j = x0j for j ∈ J }. (7)

In the case that J = I, the reduced problem will be denoted by P(x0).
Similarly, given a MIP problem P and a solution x̃ such that x̃ j ∈ {0, 1}, j ∈ I.

Then, MI P(P, x̃) will denote a minimization problem, obtained from MIP problem
P by replacing the original objective function with δ(x, x̃):

MI P(P, x̃) min{δ(x̃, x) : x ∈ X}. (8)

The LP relaxation of such a MIP problem MI P(P, x̃) will be denoted by LP(P, x̃).
If C is a set of constraints, we will denote by (P | C) the problem obtained by

adding all constraints in C to the problem P . The set C in this section will represent
the set of pseudo-cuts.

3.1 Local branching heuristics

Fischetti and Lodi (2003) proposed a Local Branching (LB) heuristic for 0–1 MIP
based on soft variable fixing and the observation that the neighborhood of a feasible
MIP–solution often contains solutions of possibly better quality. They introduced a
so-called branching constraint in order to define a neighborhood of a given feasible
solution and a branching criterion within an enumerative scheme. Although the Local
Branching heuristic had been conceived as an improvement heuristic for 0–1 MIP, the
same authors showed in Fischetti and Lodi (2008) that it could be used as a heuristic
for building a first feasible solution.

The Local Branching heuristic performs soft fixing which requires that a certain
number of variables take the same values as in the incumbent solution, without fixing
any of those variables.More precisely, LB adds a single linear constraint to the original
problem. The added constraint δ(x, x̃) ≤ k defines so-called k − opt neighborhood
of the incumbent solution x̃ that is stated as:
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N k(x̃) = {x ∈ X : δ(x, x̃) ≤ k}.

Additionally, this constraint may be used within branching strategy. In that case
the branching rule would be δ(x, x̃) ≤ k or δ(x, x̃) > k. With this branching rule the
solution space will be divided into two parts. The part defined δ(x, x̃) ≤ k may be
relatively small with appropriately chosen k.

The LB algorithm (Algorithm 5) starts with the original formulation, and CPLEX is
used to get a feasible solution, i.e., an initial solution x̃ . Then the k-opt neighborhood
of that solution is explored using CPLEX respecting the predefined time limit. If a
better solution x̃ ′ is found, branching is performed. A new problem is generated by
reversing the constraint that defines the k-opt neighborhood of x̃ (i.e., explored part
of the solution space is excluded) and adding a new branching constraint centered
around the new incumbent x̃ ′ that defines its k-opt neighborhood. This branching
procedure is iterated until there is no improvement in the objective function value.
Additionally, the LB heuristic includes an intensification and a diversification phase.
In the intensification phase if the solution is not improved by CPLEX within the
imposed time limit, the size of neighborhood is reduced (for example, halved) and
CPLEX is called again. On the other hand, in the diversification phase a new solution
is generated for the next branching step. This solution is obtained as a feasible solution
of the programobtained increasing the right-hand side value of the last addedbranching
constraint (for example for k/2), adding the new constraint δ(x, x̃) ≥ 1 and deleting all
other branching constraints. This step is invoked either if CPLEX proves infeasibility
or it does not find any feasible solution.

Algorithm 5: Local Branching for 0–1 MIP
Function LB(k0);

1 Find an initial solution x̃ by CPLEX;
2 Set k = k0;
3 Set Y = X ;
4 repeat
5 if CPLEX finds x̃ ′ ∈ Y ∩ N k (x̃) better than x̃ then
6 Y = Y − N k (x̃);
7 set x̃ = x̃ ′;

else
8 if Y ∩ N k (x̃) �= ∅ then
9 k = �k/2�;

else
10 Set k = k + �k/2�;
11 Y = {x ∈ X : δ(x, x̃) ≥ 1};

end
end

until Stopping criterion is satisfied;
return x̃ ;

Hansen et al. (2006) proposed a variable neighborhood search (VNS) heuristic
combined with LB, called Variable Neighborhood Branching, for solving mixed-
integer programs which may be seen as a generalization of Local Branching. The
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main advantage of the proposed VNS compared to the LB heuristic is the fact that it
performs more systematic neighborhood exploration than Local Branching.

3.2 Iterative heuristics based on relaxations and pseudo-cuts

Hanafi and Wilbaut (2011) and Wilbaut and Hanafi (2009), proposed several conver-
gent heuristics for 0–1MIP problems, consisting of generating two sequences of upper
and lower bounds by solving LP or MIP relaxations and sub-problems (see Algorithm
6). The process continues until the established bounds guarantee that no better solu-
tion can be found. Unfortunately, in practice all of these heuristics turned out to be
very slow and therefore the authors used them as heuristics by limiting the number of
iterations permitted for their execution.

Algorithm 6: Framework for convergent heuristics for 0–1 MIP problems
Function Convergent_heuristic(P);

1 Set Q = P;
2 Choose a relaxation R of Q;
3 repeat
4 Solve the relaxation R of Q to obtain an optimal solution x̄ ; //Lower bound

5 Generate a solution x0, solving the reduced problem of Q associated with the solution x̄ ; //Upper
bound

6 if x0 better than x∗ then
7 Set x∗ = x0;

end
8 Add pseudo cut(s) to Q in order to exclude already generated solution x0;

until optimality is proven or Stopping criterion is satisfied;
return x∗;

Hanafi andWilbaut proposed several variants of a convergent heuristic (Hanafi and
Wilbaut 2011; Wilbaut and Hanafi 2009):

– Linear programming-based algorithm (LPA). At each iteration, the LPA algorithm
solves the LP-relaxation of the current problem Q to generate an optimal solution
x̄ . After that the reduced problem P(x̄) is generated from the initial problem P
by setting the 0–1 variables to their values in the solution x̄ if these variables are
integers. Then the associated reduced problem P(x̄) is solved exactly to generate
a feasible solution x0 for the original problem P . If the current best feasible
solution x∗ is not optimal, the current problem Q is enriched by a pseudo-cut
to avoid generating the optimal basis of the LP-relaxation more than once. The
process stops if the difference between the upper and the lower bounds is less than
1, i.e., if the condition cx̄ − cx∗ < 1 is satisfied.

– Mixed integer programming-based algorithm (MIPA). This algorithm is derived
from the LPA algorithm by solving a MIP relaxation of the current problem Q,
instead of solving its LP relaxation. In the first iteration of the algorithm, the
mixed integer programming relaxation is defined from an optimal solution of the
LP-relaxation forcing the fractional variables of the solution of the LP relaxation
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to be integers in the next iteration. Then the fractional variables in an optimal
solution of the current MIP-relaxation are constrained to be integers in the next
iteration.

– Iterative relaxation-based heuristic (IRH). At each iteration the IRH heuristic
solves LP relaxations of the current problem Q and obtains an optimal solution x̄ .
After that it finds an optimal solution, x̃ of a MIP relaxation based on the solution
x̄ . In the next step, two reduced problems P(x̄) and P(x̃) are solved and therefore
two pseudo-cuts are added to the problem Q. The whole process is repeated for a
predefined number of iterations or until proving the optimality of the current best
feasible solution.

– Iterative Independent relaxation-based heuristic (IIRH). IIRH requires an initial
phase in order to define the first MIP-relaxation as in the MIPA. After this initial
phase, the LPA and theMIPA are applied simultaneously. The best lower and upper
bounds generated during the process are then memorized.

3.3 Hybrid Variable Neighborhood decomposition search heuristics

Lazić et al. (2010) proposed a hybrid heuristic for solving 0–1 mixed integer pro-
grams which combines variable neighborhood decomposition search (VNDS) with
the CPLEX MIP solver (see Algorithm 8). The algorithm starts by solving the LP-
relaxation of the original problem to obtain an optimal solution x̄ . If the optimal
solution x̄ is integer feasible the procedure returns x̄ as an optimal solution of the
initial problem. Otherwise, an initial feasible solution x is generated. At each iteration
of the VNDS procedure, the distances δ j = |x j − x̄ j | between the current incumbent
solution values and corresponding LP-relaxation solution values are computed. These
distance values serve as criteria for choosing variables that will be fixed. Namely, at
each iteration k variables whose indices correspond to the indices of k smallest δ j
values are fixed at their values in the current incumbent solution x . After that the
resulting problem is solved using the CPLEX MIP solver. If an improvement of the
current solution is achieved, a Variable Neighborhood Descent branching (see Algo-
rithm 7) is launched to conduct a local search in the whole solution space and the
process is repeated. If not, the number of fixed variables in the current subproblem is
decreased. The pseudo-code is given in Algorithm 8.

The input parameters for the VNDS algorithm are: the MIP problem P; the param-
eter d, which controls the change of neighbourhood size during the search process;
parameters tmax , tsub, tvnd , tmip, rmax which represent the maximum running time
allowed for VNDS, time allowed for solving subproblems, time allowed for call to the
VND-MIP procedure, time allowed for call to the MIP solver within the VND-MIP
procedure, respectively. Finally, the parameter rmax representsmaximumsize of neigh-
bourhood to be explored within the VND-MIP procedure. In the pseudo-code the
statement of the form y = FindFirstFeasible(P) denotes a call to a generic
MIP solver, an attempt to find a first feasible solution of an input problem P . Further,
the statement of the form y = MIPsolve(P, t, x∗) denotes a call to a generic MIP
solver to solve input problem P within a given time limit t starting from the best
solution found x∗.
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Algorithm 7: Variable Neighborhood Descent branching
Function VNDS(P, tvnd , tmip, rmax , x ′);

1 Set r = 1, tstart = CpuT ime(), t = 0;
2 Set Q = P;
3 while t < tvnd and r ≤ rmax do
4 set time_limit = min{tmip, tvnd − t};
5 Q = (Q|{δ(x ′, x) ≤ r});
6 x ′′ = MIPsolve(Q, time_limit, x ′);
7 switch solution status do
8 case OptSolFound:
9 Reverse last pseudo-cut into δ(x ′, x) > r + 1;

10 x ′ = x ′′, r = 1;
11 case feasibleSolFound:
12 Replace last pseudo-cut with δ(x ′, x) ≥ 1;
13 x ′ = x ′′, r = 1;
14 case ProvenInfeasible:
15 Reverse last pseudo-cut into δ(x ′, x) > r + 1;
16 r = r + 1;
17 case nofeasiblesolfound:
18 return x ′′;

endsw
19 set tend = CpuT ime(), t = tend − tbegin ;

end
20 return x ′′;

Hanafi et al. (2010) proposed a hybrid variable neighborhood decomposition search
heuristic that constitutes an improved version of the variable neighborhood decompo-
sition search heuristic proposed in Lazić et al. (2010). The enhancement is achieved by
restricting the search space by adding pseudo cuts, in order to avoid multiple explo-
rations of the same areas. A sequence of lower and upper bounds on the problem
objective is produced by adding pseudo-cuts, thereby reducing the integrality gap.

3.4 Summary

From the description of heuristics presented in this section we may conclude that their
common features are: solve a reduced problem and add a pseudo-cut at each iteration
of the solution process. In addition, all of them use a MIP solver to solve a reduced
problem.However, the difference among them comesmainly from theway the reduced
problem is defined. Local branching heuristics use the branching constraint to define
the reduced problem while Iterative Heuristics Based on Relaxations and Pseudo
Cuts as well as Variable Neighborhood Decomposition Search based heuristics define
the reduced problem fixing some variables. In particular, Local branching heuristics
use soft variable fixing to define the reduced problem, while the others are based
on hard variable fixing. The hard variable fixing in Iterative Heuristics Based on
Relaxations andPseudoCuts andVariableNeighborhoodDecompositionSearch based
heuristics is accomplished choosing variables to be fixed according to the values they
receive in the solution of a relaxed problem. As shown in Wilbaut et al. (2009),
Iterative Heuristics Based on Relaxations and Pseudo Cuts turned out to be very
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Algorithm 8: Variable neighborhood decomposition search based heuristic
Function VNDS(P, d, tmax , tsub, tvnd , tmip, rmax );

1 Solve the LP relaxation of P to obtain an optimal LP basic solution x ;
2 if x MIP feasible then return x ;
3 x∗ = FindFirstFeasible(P);
4 set tstart = CpuT ime(); t = 0;
5 while t < tmax do
6 δ j =| x j − x j |; index x j so that δ j ≤ δ j+1, j = 1, . . . , |I| − 1;
7 set q =| { j ∈ I : δ j �= 0} |;
8 set kstep = near(q/d), k = p − kstep ;
9 while t < tmax and k > 0 do

10 x ′ = MIPsolve(P(x̃, {1, . . . , k}), tsub, x∗) ;
11 if cx ′ > cx∗ then
12 x = VND-MIP(P, tvnd , tmip, rmax , x ′);
13 break;

else
14 if k − kstep > p − q then kstep = max{near(k/2), 1};
15 set k = k − kstep ;
16 set tend = CpuT ime(), t = tend − tbegin ;

end
end

end
17 return x∗;

efficient in solving the 0–1 multidimensional knapsack problem. Among them the
worst performancewas exhibited byMIPAheuristic, while the best one turned out to be
IRH heuristic. According to results reported in Lazić et al. (2010), Hanafi et al. (2010)
on instances from MIP library, it turns out that variable neighborhood decomposition
search basedheuristics outperformLocal branchingheuristics presented in this section,
as well as relaxation induced neighbourhood search heuristic which will be described
in Sect. 5. So, it appears that variable neighborhood decomposition approaches are very
powerful and their application to other classes of problems may represent promising
future research direction. Note that Local branching heuristic is available in SCIP
non-commercial solver (Achterberg 2009) and CPLEX. All heuristics presented in
this section can be applied in solving general MIP problems.

4 Pump and diving heuristics

This section is devoted to heuristics whose main purpose is to provide a first feasible
solution for a MIP problem at hand. Here, they will be presented in the context of
0–1 MIP problems, although with small modifications they may be used to find a first
feasible solution for a general MIP.

4.1 Feasibility pump

The Feasibility Pump (FP) heuristic (Algorithm 9) was proposed by Fischetti et al.
(2005) which turned out to be very efficient in finding a feasible solution to 0–1 MIP.
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The work of the FP heuristic may be outlined as follows. Starting from an optimal
solution of the LP-relaxation, the FP heuristic generates two sequences of solutions
x and x̃ , which satisfy LP-feasibility and integrality feasibility, respectively. These
sequences are built iteratively. At each iteration, a new binary solution x̃ is obtained
from the fractional x by simply rounding its integer-constrained components to the
nearest integer, i.e., x̃ = near(x), while a new fractional solution x is defined as an
optimal solution of the LP(MI P, x̃) problem, i.e.,:

min{δ(x, x̃) : Ax ≤ b, 0 ≤ x j ≤ Uj , j ∈ N }. (9)

Thus, a new fractional solution x is generated as the closest feasible LP solution
with respect to the solution x̃ . However, after a certain number of iterations the FP
procedure may start to cycle, i.e., a particular sequence of points x and x̃ is visited
again and again. That issue is resolved applying a random perturbation move to the
current solution x̃ as soon as a cycle is detected. In the original implementation, this
is performed by flipping a random number t ∈ [T/2, 3T/2] entries x̃ j , j ∈ I with
the highest value |x j − x̃ j |, where T is predefined parameter. The procedure finishes
its work as soon as a feasible solution is detected, or selected stopping criteria are
fulfilled. The stopping criteria usually contain a running time limit and/or the total
number of iterations.

Algorithm 9: Feasibility Pump for 0–1 MIP
Function FP(P, T );

1 Solve the LP relaxation of P to obtain an optimal LP basic solution x ;
2 repeat
3 x̃ = near(x);
4 Solve the LP(P, x̃) problem to obtain an optimal solution x ;
5 if cycle detected then
6 choose a random number t ∈ [T/2, 3T/2];
7 flip values of t variables with the highest values |x j − x̃ j | ;

end
until x is MIP feasible or stopping criterion is satisfied;
return x ;

This basic Feasibility Pump approach was extended to the general feasibility pump,
a heuristic for general mixed-integer problems (Bertacco et al. 2007). On the one hand,
the general feasibility pump employs the distance function inwhich the general integer
variables also contribute to the distance. On the other hand, in order to enhance FP
so that it returns a good-quality initial solution, the so called Objective feasibility
pump was proposed in Achterberg and Berthold (2007). The idea of the objective FP
is to include the original objective function as a part of the objective function of the
problem considered at a certain pumping cycle of FP.At each pumping cycle, the actual
objective function is computed as a linear combination of the feasibility measure and
the original objective function. Results reported in Achterberg and Berthold (2007)
indicate that this approach usually yields considerably higher-quality solutions than
the basic FP. However, it generally requires much longer computational time.
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4.2 Variable neighborhood pump

Hanafi et al. (2010) proposed a new method for finding an initial feasible solution
for Mixed integer programs called Variable Neighborhood Pump (VNP) (Algorithm
10), that combines Variable neighborhood branching (VNB) (Hansen et al. 2006) and
Feasibility pump heuristics (Fischetti et al. 2005). The VNP works in the following
way. Firstly, an optimal solution x of the LP-relaxation of the initial 0–1 MIP problem
is determined. After that, the obtained solution is rounded and one iteration of the FP
pumping cycle is executed in order to obtain a near-feasible vector x̃ . Then, a variable
neighbourhood branching, adapted for 0–1 MIP feasibility (Hanafi et al. 2010), is
applied on the solution x̃ , in an attempt to locate a feasible solution of the original
problem. If VNB does not return a feasible solution a pseudo-cut is added to the
current subproblem in order to change the linear relaxation solution, and the process
is iterated. VNB returns either a feasible solution or reports failure and returns the last
integer (infeasible) solution.

Algorithm 10: Variable Neighborhood Pump for 0–1 MIP
Function VNP(P);

1 Set proceed1 = true;
2 while proceed1 do
3 Solve the LP relaxation of P to obtain an optimal LP basic solution x ;
4 Set x̃ = near(x);
5 Set proceed2 = true;
6 while proceed2 do
7 if x is integer then return x ;
8 Solve the LP(P, x̃) problem to obtain an optimal solution x ;
9 if x̃ �= near(x) then

x̃ = near(x);
else

10 Set proceed2 = false;
end

end
11 kmin = �δ(x̃, x)�; kmax = �(|I| − kmin)/2�; kstep = (kmax − kmin)/5;
12 x ′ = VNB(P, x̃, kmin , kstep, kmax );
13 if x ′ = x̃ then
14 P = (P | δ(x, x) ≥ kmin ); Update proceed1;

else
15 return x ′;

end
end

16 Output message: “No feasible solution found”; return x̃ ;

4.3 Diving heuristics

Lazić et al. (2014) proposed two diving heuristics for obtaining a first MIP feasible
solution. Diving heuristics are based on the systematic hard variable fixing (diving)
process, according to information obtained from the linear relaxation solution of the
problem. They rely on the observation that a general-purpose MIP solver can be used
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not only for finding (near) optimal solutions of a given input problem, but also for
finding the initial feasible solution.

The variable neighbourhood (VN) diving algorithm begins by obtaining the LP-
relaxation solution x of the original problem P and generating an initial integer (not
necessarily feasible) solution x̃ = near(x) by rounding the LP-solution x . If the opti-
mal solution x is integer feasible for P , VNdiving stops and returns x . At each iteration
of the VN diving procedure, the distances δ j =| x̃ j − x j | from the current integer
solution values (x̃ j ) j∈I to the corresponding LP-relaxation solution values (x j ) j∈I
are computed and the variables x̃ j , j ∈ I are indexed so that δ1 ≤ δ2 ≤ · · · ≤ δ|I|.
Then, VN diving successively solves the subproblems P(x̃, {1, . . . , k}) obtained from
the original problem P , where the first k variables are fixed to their values in the cur-
rent incumbent solution x̃ . If a feasible solution is found by solving P(x̃, {1, . . . , k}),
it is returned as a feasible solution of the original problem P . Otherwise, a pseudo-
cut δ({1, . . . , k}, x̃, x) ≥ 1 is added in order to avoid exploring the search space of
P(x̃, {1, . . . , k}) again, and the next subproblem is examined. If no feasible solu-
tion is detected after solving all subproblems P(x̃, {1, . . . , k}), kmin ≤ k ≤ kmax ,
kmin = kstep, kmax = |I|−kstep, the linear relaxation of the current problem P , which
includes all the pseudo-cuts added during the search process, is solved and the process
is iterated. If no feasible solution has been found by the time the stopping criteria are
met, the algorithm reports failure and returns the last (infeasible) integer solution.

The pseudo-code of the VN diving heuristic is given in Algorithm 11. The input
parameters for theVNdiving algorithmare the inputMIP problem P and the parameter
d, which controls the change of neighbourhood size during the search process. In the
pseudo-code the statement of the form y = FindFirstFeasible(P, t) denotes
a call to a generic MIP solver, an attempt to find a first feasible solution of an input
problem P within a given time limit t . If a feasible solution is found, it is assigned to
the variable y, otherwise y retains its previous value.

In the case of variable neighbourhood diving, a set of subproblems P(x̃, Jk), for dif-
ferent values of k, is examined in each iteration until a feasible solution is found. In the
single neighbourhood diving procedure, we only examine one subproblem P(x̃, Jk)
in each iteration (a single neighbourhood, see Algorithm 12). However, because only a
single neighbourhood is examined, additional diversificationmechanisms are required.
This diversification is provided through keeping the list of constraints which ensures
that the same reference integer solution x̃ cannot occur more than once (i.e., in more
than one iteration). An additional MIP problem Q is introduced to store these con-
straints. In the beginning of the algorithm, Q is initialized as an empty problem (see
line 4 in Algorithm 12). Then, in each iteration, if the current reference solution x̃ is
not feasible (see line 8 in Algorithm 12), the constraint δ(̃x, x) ≥ �δ(̃x, x)	 is added
to Q (line 9). This guarantees that future reference solutions can not be the same as
the current one, since the next reference solution is obtained by solving the problem
MIP(Q, near(x)) (see line 17), which contains all constraints from Q, (see Defini-
tion (8)). The variables to be fixed in the current subproblem are chosen from those
which have the same value as in the linear relaxation solution of the modified problem
LP(̃x), where x̃ is the current reference integer solution (see lines 7 and 11). The
number of variables to be fixed is controlled by the parameter α (line 11). After initial-
ization (line 5), the value of α is updated in each iteration, depending on the solution
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Algorithm 11: Variable neighbourhood diving for 0–1 MIP feasibility.
Function VNdiving(P, d);

1 Set proceed1 = true, proceed2 = true; Set timeLimit for subproblems;
2 while proceed1 do
3 Solve the LP relaxation of P to obtain an optimal LP basic solution x ;
4 x̃ = near(x);
5 if x = x̃ then return x̃ ;
6 δ j =| x̃ j − x j |; index x j so that δ j ≤ δ j+1, j = 1, . . . , |I| − 1;
7 Set nd =| { j ∈ I : δ j �= 0} |, kstep = near(nd/d), k = |I| − kstep ;
8 while proceed2 and k ≥ 0 do
9 Jk = {1, . . . , k}; x ′ = FindFirstFeasible(P(x̃, Jk ), timeLimit);

10 if P(x̃, Jk ) is proven infeasible then P = (P | δ(Jk , x̃, x) ≥ 1);
11 if x ′ is feasible then return x ′;
12 if k − kstep > |I| − nd then kstep = max{near(k/2), 1};
13 Set k = k − kstep ;
14 Update proceed2;

end
15 Update proceed1;

end
16 Output message: “No feasible solution found”; return x̃ ;

status returned from the MIP solver. If the current subproblem is proven infeasible,
the value of α is increased in order to reduce the number of fixed variables in the
next iteration (see line 16), and thus provide better diversification. Otherwise, if the
time limit allowed for subproblem is exceeded without reaching a feasible solution or
proving the subproblem infeasibility, the value of α is decreased. Decreasing the value
of α increases the number of fixed variables in the next iteration (see line 17), and
thus reduces the size of the next subproblem. In the feasibility pump, the next integer
reference solution is obtained by simply rounding the linear relaxation solution x of
the modified problem LP(̃x). However, if near(x) is equal to some of the previous
reference solutions, the solution process is caught in a cycle. In order to avoid this
type of cycling, we determine the next reference solution as the one which is at the
minimum distance from near(x) (with respect to binary variables) and satisfies all
constraints from the current subproblem Q (see line 18). In this way the convergence
of the variable neighbourhood diving algorithm is guaranteed (see Lazić et al. 2014).

4.4 Summary

The differences among heuristics presented in this section may be summarized as
follows: Only diving heuristics use hard variable fixing; VNP and diving heuristics use
pseudo-cuts to reduce the solution space at each iteration, cutting of already examined
portions (unlike to feasibility pump heuristics); VNP uses VNB as a subroutine which
is based on soft variable fixing. According to results presented in Lazić et al. (2014),
the best heuristics, among those presented in this section, are VN and SN diving
heuristics. This fact may lead to a conclusion that hard variable fixing in combination
with pseudo-cuts is the most suitable approach for getting high quality first feasible
solution in short time for MIP problems. Thus, it would be interesting to examine
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Algorithm 12: Single neighborhood diving for 0–1 MIP feasibility.
Function SNDiving(P);

1 Solve the LP relaxation of P to obtain an optimal LP basic solution x ;

2 Set i = 0; Set x̃0 = near(x);

3 if (x = x̃0) then return x̃0;
4 Set Q0 = ∅;
5 Set proceed = true; Set timeLimit for subproblems; Set value of α;
6 while proceed do
7 Solve the LP(P, x̃ i ) problem to obtain an optimal solution x ;

8 if (�δ(̃xi , x)	 = 0) then return x̃ i ;

9 Qi+1 = (Qi | δ(̃xi , x) ≥ �δ(̃xi , x)	);
10 δ j =| x̃ j − x j |; index x j so that δ j ≤ δ j+1, j = 1, . . . , |B| − 1;

11 k = [| { j ∈ B : x̃ ij = x j } | /α]; Jk = {1, . . . , k};
12 x ′ = FindFirstFeasible(P (̃xi , Jk ), timeLimit);
13 if feasible solution found then return x ′;
14 if P (̃xi , Jk ) is proven infeasible then
15 Qi+1 = (Qi+1 | δ(Jk , x̃

i , x) ≥ 1); P = (P | δ(Jk , x̃
i , x) ≥ 1);

16 α = 3α/2;
else

17 if time limit for subproblem exceeded then α = max{1, α/2};
end

18 x̃ i+1 = FindFirstFeasible(MIP(Qi+1, [x]), timeLimit);
19 if MIP(Qi+1, near(x)) is proven infeasible then Output message: “Problem P is proven

infeasible”; return;
20 i = i + 1;

end

the behaviour of such approaches when applied on other classes of problems such
as e.g., 0–1 MINLP. Note that Feasibility pump and Objective feasibility pump have
been integrated in CPLEX, XPRESS and GUROBI commercial MIP solvers as well
as in SCIP non-commercial MIP solver. All heuristics presented in this section may
be applied to general MIP problems as well.

It is worth mentioning that there are also other heuristics for creating a first feasible
that are usually used to solve certain problem classes. Some representatives are Fix-
and-Relax, Insert-and-Fix, Fractional Relax-and-Fix heuristics that are usually applied
to solve the Lot-sizing Problems see e.g., Pochet and Wolsey (2006), Stadtler (2003),
Belvaux andWolsey (2000), Toledo et al. (2015). Although theymay be applied to any
0–1MIP problem, these heuristics are not reviewed here since theirmerit have not been
yet assessed in such context. So, applying these heuristics alone, or in combination
with existing ones to solve general 0–1MIP problems may be valuable future research
direction.

5 Proximity heuristics

This section is devoted to heuristics that look for a high quality MIP feasible solution
explored in the proximity of a solution at hand. As will be shown, the solution whose
neighborhood is explored may be just LP feasible.
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5.1 Ceiling heuristic

Saltzman and Hillier (1992), proposed a heuristic for general integer linear pro-
gramming that was successfully applied for solving 0–1 MIP problems as well. The
proposed heuristic is based on examination of so-called “1-ceiling points”, i.e., MIP
feasible solutions located near to the boundary of the feasible region. More precisely,
a 1-ceiling point is a MIP feasible vector x such that for each j at least one of vectors
x + e j or x − e j is infeasible. The heuristic works in three phases:

– Phase I. In the first phase, the algorithm finds an optimal solution x̄ of the LP
relaxation of the problem, determines the set of constraints binding at that solution
and the set of normalized extreme directions defining the cone originating at x̄ .

– Phase II. In the second phase, the algorithm chooses a hyperplane that is explored
in a certain direction. As soon as some solution with an integer component value
is encountered during the search, it is rounded to an integer solution that is not
necessarily a 1-ceiling point. The hyperplane to be explored is chosen as one
along which the objective value changes as little as possible. More precisely, in a
maximization problem, the objective function decreases as we move away from x̄
along every extreme direction. So, let the rate of change of the objective function
value per unit step taken away from x̄ along direction dk be ρk and let Ei , be the set
of extreme directions emanating from x̄ which lie on the i-th constraint hyperplane,
i.e., the hyperplane that is the boundary of the half space

∑
j∈N ai j x j ≤ bi . Then

the hyperplane i∗ to be explored is chosen as i∗ = arg mini
∑

k∈Ei
ρk . This

hyperplane is explored in the direction d = ∑
k∈Ei∗ d

k . Going in this direction
through the chosen hyperplane, as soon as a non-integer solution x with at least
one integer component is met, it is rounded to the integer solution x̃ so that i∗-th
constraint is satisfied. More precisely, let ai∗ j , j ∈ N be the coefficients of i∗-th
constraint, then components of solution x̃ are given as:

x̃ j =
⎧
⎨

⎩

�x j�, if ai∗ j > 0
�x j + 0.5�, if ai∗ j = 0

�x j	, if ai∗ j < 0
(10)

– Phase III (Improvement phase). Once a feasible integer solution is found in Phase
II, the Phase III procedures are launched in order to improve it, if possible, by
altering either one or two of its components. Each of these procedures, described
hereafter, is capable of locating a 1-ceiling point (if one exists). These two proce-
dures work in the following way:

– The first procedure, called STAYFEAS, attempts to improve a given feasible
solution x̃ by altering just one of its components. In other words, STAYFEAS
examines all integer solutions of the form x̃ ′ = x̃ ± e j , for all j ∈ N . The
procedure returns the best feasible solution x̃ ′ (if any of this form exists).

– The second procedure tries to improve a given feasible solution x̃ by simulta-
neously altering two of its components. That procedure consists of two steps.
In the first step, just one component, e.g., x̃ j is modified by either +1 or - 1 . If
the obtained solution is feasible, the STAYFEAS procedure is applied to that
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solution, in an attempt to improve it further. On the other hand, if the obtained
solution is not feasible, a second procedure named GAINFEAS is launched
in order to get a feasible solution possibly better than x̃ by changing another
component k �= j of the infeasible solution.

5.2 Relaxation enforced neighbourhood search

The Relaxation Enforced Neighborhood Search heuristic (RENS) was proposed by
Berthold (2007) as a new start heuristic for general MIPs working in the spirit of a
large neighborhood search. RENS starts by solving an LP relaxation of the problem.
After that all integer variables that received integer values in the solution of the LP
relaxation are fixed while a large neighborhood search (LNS) is performed on remain-
ing variables. The LNS is implemented by solving a resulting sub-MIP in which not
only variables are fixed, but also all general integer variables with a fractional LP-
value are rebounded to the nearest integers. If the sub-MIP is solved to optimality then
the obtained solution is the best rounding of the fractional LP solution that any pure
rounding heuristic can generate. Additionally, if the created sub-MIP is infeasible,
then no rounding heuristic exists which is able to generate a feasible solution out of
the fractional LP optimum.

5.3 Relaxation induced neighbourhood search

The Relaxation Induced Neighborhood Search (RINS), is an improving heuristic pro-
posed by Danna et al. (2005). The idea of RINS stems from the fact that often the
incumbent solution of a MIP and the optimum of the LP-relaxation have many vari-
ables set to the same values. So, a partial solution, obtained by fixing these variables,
may likely be extended to a complete integer solution with a good objective value.
Therefore, RINS is focused on those variables whose values are different in the LP-
relaxation and in the incumbent solution. In order to find appropriate values for such
variables RINS explores the neighborhood structure defined by the incumbent solution
x̃ and LP-relaxation solution x̄ as:

RIN (x̃, x̄) = {x : x j = x̃ j for j ∈ I such that x̄ j = x̃ j ; x MIP feasible} (11)

This neighborhood is called the relaxation induced neighborhood of x̃ . In order,
to efficiently explore this neighborhood, RINS solves the sub-MIP deduced from the
original MIP, fixing the variables that have the same values in the incumbent and in
the LP relaxation and adding the objective cut-off cx ≥ (1 + θ)cx̃ , since we are
interested in solutions that are better than the current incumbent solution. However,
solving this sub-MIP exactly may require substantial time and thus it is preferable to
solve sub-MIP approximatively, imposing the node limit, or alternatively to call RINS
only if a high enough percentage of variables can be fixed.

Since the continuous relaxation changes from one node in the branch-and-cut tree
to the next, RINS may be invoked some subset of the nodes in the tree in order to find
high quality solutions of the initial MIP within the imposed time limit.
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5.4 Proximity search heuristics

Fischetti andMonaci (2014) proposed a Proximity search heuristic (Algorithm 13) for
0–1 ConvexMixed Integer Programs. The purpose of the procedure is to refine a given
feasible solution x∗ of a problem.The basic procedureworks iteratively, solving at each
iteration a MIP derived from the original problem by replacing the original objective
function, by a “proximity objective” δ(x, x∗) (or δ(x, x∗)+ηcx in order to favor high
quality solutions) defined relative to the current iterate x∗ and the objective function
constraint cx ≥ (1+ θ)cx∗. The solution x̃ obtained by solving such a defined MIP, is
further improved by solving the initial problem fixing values of all binary variables to
their values in x̃ . The procedure finishes its work when specified (predefined) stopping
conditions are satisfied (e.g., max number of iterations, max CPU time allowed etc.).
The steps of a Proximity search heuristic are given at Algorithm 13.

Algorithm 13: Proximity search heuristic for 0–1 MIP
Function PSH(x∗);

1 repeat
2 add the objective function constraint cx ≥ (1 + θ)cx∗ to the MIP ;
3 replace objective function by “proximity objective” δ(x, x∗) (or δ(x, x∗) + ηcx);
4 apply MIP solver in order to solve the new problem;
5 if MIP solver returns a solution x̃ , refine it solving initial problem fixing values of all binary

variables to these in x̃ ;
6 Let obtained solution be x ;
7 recenter search by setting x∗ = x and/ or update value of θ ;

until Stopping criterion is satisfied;
return x∗;

5.5 Summary

All heuristics presented in this sectionmay be applied in solving generalMIP problems
except Proximity search heuristic. Among themRINS and Proximity search heuristics
require a MIP feasible solution at the input, while the other two heuristics are able to
construct MIP feasible solutions by themselves. In particular, as already pointed out
RENS heuristic ia actually conceived as a heuristic for finding a first feasible solution
for general MIPs. In addition, the above heuristics use different ways to define and
explore the proximity of an incumbent solution. Ceiling heuristic tries to improve a
feasible MIP solution simultaneously altering at most two of its components; RINS
and RENS explore a neighborhood defined by fixing certain variables that receive
integer values in the solution of LP relaxation; while Proximity search heuristics look
for an improving solution which is at the same time closest to the incumbent one.
Among these heuristics RINS heuristic is implemented in CPLEX and Gurobi MIP
solvers. The main purpose of RINS is to improve the best solution found so far.
However, as already mentioned, since it is time consuming heuristic it is invoked only
at the predefined number of nodes of branch-and-bound tree. On the other hand, SCIP
solver contains RINS, RENS and proximity search heuristics.
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6 Advanced heuristics

In this section we present heuristics that may be considered as frameworks for building
new heuristics for 0–1MIP. Therefore, we call these heuristics “Advanced heuristics”.

6.1 Parametric tabu search

The parametric tabu search (PTS), proposed by Glover (2006), is a general frame-
work for building heuristics for solving general MIP problems. The main idea of PTS
is to solve a series of linear programming problems deduced from the original MIP,
incorporating branching inequalities as weighted terms in the objective function. This
approach may be seen as an extension of a parametric branch-and-bound algorithm
(Glover 1978), that is accomplished replacing the branch-and-bound tree search mem-
ory by the adaptive memory framework of a tabu search. In that way more flexible
strategies are introduced than those of Branch-and-Bound.

Following ideas described in Glover (2006), Sacchi and Armentano (2011), imple-
mented and tested the core parametric tabu search for solving 0–1 MIP problems.
At each iteration, the core parametric tabu search solves LP problem deduced in the
following way from the original MIP. Let x ′ be a so-called trial solution that is LP
feasible. Relative to this solution, we may define sets:

N 1(x ′) = { j ∈ I|x ′
j = 1}

N 0(x ′) = { j ∈ I|x ′
j = 0}

that enable us to define so-called goal conditions:

(U P) x j ≥ 1, j ∈ N 1(x ′)
(DN ) x j ≤ 0, j ∈ N 0(x ′)

Unlike a Branch-and-Bound procedure, these conditions are not imposed explicitly,
but by indirectly incorporating them in the objective function. In thatway the following
LP problem is defined:

(LP(x ′, v∗))

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

maximize cx + ∑
j∈N1(x ′) c

′
j (1 − x j ) + ∑

j∈N0(x ′) c
′
j x j

s.t. Ax ≤ b

0 ≤ x j ≤ Uj , j ∈ N

cx ≥ (1 + θ)v∗

(12)

where c′
j are positive parameters, v∗ represents the best known solution value so far

(initially v∗ = −∞) and θ is a small positive value.
After solving the problem LP(x ′, v∗) and obtaining its optimal solution x ′′, the

next trial solution x ′, and therefore the sets N+(x ′) and N−(x ′) are determined as the
response to either the goal or integer infeasibility of the solution x ′′.
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An optimal solution is called goal infeasible if there is some goal infeasible variable
x ′′
j , i.e., a variable for which:

{
x ′′
j < 1 for j ∈ N 1(x ′) or

x ′′
j > 0 for j ∈ N 0(x ′).

(13)

The primary response for such an infeasibility consists of defining new goals in the
opposite directions for a selected subset of goal infeasible variables Gp ⊂ G = { j ∈
N 1(x ′)∪N 0(x ′)|x j goal infeasible}. More precisely, the primary response for j ∈ Gp

is defined as:

– if x ′′
j < 1 and j ∈ N 1(x ′) then transfer j from N 1(x ′) to N 0(x ′) and set x ′

j = 0,

– if x ′′
j > 0 and j ∈ N 0(x ′) then transfer j from N 0(x ′) to N 1(x ′) and set x ′

j = 1.

On the other hand, the secondary response, consists of freeing goal infeasible vari-
ables that belong to the set Gs ⊂ G. The elements of previously mentioned sets Gp

and Gs are determined as gp variables from the set G and gs variables from the set
G − Gp with highest amounts of violation of imposed goal conditions.

An optimal solution x ′′ is called integer infeasible if there is some j ∈ N∗ =
I−N 1(x ′)−N 0(x ′) such that x ′′

j /∈ {0, 1}. In order to respond to such an infeasibility,
the subset N ′ of n′ elements from the set N∗ is chosen and each element from that
set is added either to the set N 1(x ′) or to the set N 0(x ′), i.e., goal conditions are
imposed for a certain number of variables. The choice of elements from the set N∗
is based on the preference measure CPj , that is calculated, relative to the up penalty
f +
j = �x ′′

j 	 − x ′′
j and the down penalty f −

j = x ′′
j − �x ′′

j �, as

CPj = ( f +
j + f −

j )/( f +
j − f −

j + ω)

where ω represents a small positive value. Once n′ elements from the set N∗ are
chosen as those with highest CPj values, each of them is added either to set N 1(x ′)
or N 0(x ′) depending on the values of f +

j and f −
j . Namely, if f +

j < f −
j then j is

added to N 1(x ′), while otherwise it is added to N 0(x ′). More precisely, the response
for j ∈ N ′ is defined as:

– if f +
j < f −

j then add j to N 1(x ′) and set x ′
j = 1

– if f +
j ≥ f −

j then add j to N 0(x ′) and set x ′
j = 0

The steps of the core tabu search are presented atAlgorithm14. Initially, sets N 1(x ′)
and N 0(x ′) are set to be empty and v∗ is set to −∞. After that at each iteration cor-
responding LP(x ′, v∗) problem is treated. If it does not have a feasible solution, the
core tabu search finishes its work, and the best found MIP solution (if any), regarding
previous iterations is reported as the optimal one. Otherwise, the LP(x ′, v∗) problem
is solved. If its optimal solution x ′′ is MIP feasible, the best found solution value is
updated and process is resumed solving new LP(x ′, v∗) problem. Otherwise, the opti-
mal solution x ′′ is either goal infeasible or integer infeasible. If the solution x ′′ is goal
infeasible, sets Gp and Gs are created by choosing their elements with reference to
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the tabu statuses of candidate elements. After that sets N 1(x ′) and N 0(x ′) are updated
according to the responses associated with elements in Gp and Gs . Additionally, tabu
tenures and aspiration values for the selected elements are updated as well. On the
other hand, if the solution x ′′ is integer infeasible, the set N ′ is created and sets N 1(x ′)
and N 0(x ′) are updated according to the responses associated with elements in N ′.
Regardless of the encountered infeasibility, as soon as sets N 1(x ′) and N 0(x ′) are
updated, the next iteration is invoked. The whole process is repeated until reaching the
imposed stopping criterion (e.g., maximum number of iterations, maximum allowed
CPU time etc.).

Algorithm 14: Core Tabu Search for 0–1 MIP
Function CTS();

1 Choose x ′ ∈]0, 1[n ;
2 v∗ = −∞;
3 repeat
4 if LP(x ′, v∗) infeasible then break;
5 x ′′ ← optimal solution of LP(x ′, v∗);
6 if x ′′ MIP feasible then
7 v∗ ← cx ′′;
8 x∗ ← x ′′;
9 continue;

end
10 if x ′′ goal infeasible then
11 Create sets Gp and Gs ;

12 Update sets N1(x ′) and N0(x ′);
13 Update tabu tenures and aspiration;
14 continue;

end
15 if x ′′ integer infeasible then
16 Create set N ′ ;
17 Update sets N1(x ′) and N0(x ′);
18 continue;

end
until Stopping criterion is satisfied;
return x∗;

This core tabu search proceduremay be extended to amore advanced procedure that
includes intensification and diversification steps. For more details regarding the ideas
for creating such one procedure as well as for description of the additional supporting
strategies that may be used within it, we refer the reader to Glover (2006).

6.2 Metaheuristic search with inequalities and target objectives

Many adaptive memory and evolutionary metaheuristics for mixed integer program-
ming include proposals for introducing inequalities and target objectives to guide
the search toward an optimal (or near-optimal) solution. These guidance approaches
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consist of fixing subsets of variables at particular values and using linear program-
ming to generate trial solutions whose variables are induced to receive integer values.
Such approaches may be used in both intensification and diversification phases of a
solution process. Glover and Hanafi (2010a, b) proposed enhanced versions of these
approaches by introducing new inequalities that dominate those previously considered
and new target objectives that underlie the creation of both inequalities and trial solu-
tions. More precisely, they proposed the use of partial vectors and more general target
objectives within inequalities in target solution strategies. The resulting procedures
generate target objectives and solutions by exploiting proximity in the original space
or the projected space. Additionally, they introduced more advanced approaches for
generating the target objective based on exploiting mutually reinforcing notions of
reaction and resistance.

The proximity procedure (Algorithm 16) for solving pure 0–1 MIP problems
(I = N ), proposed in Glover and Hanafi (2010a, b), at each iteration solves the linear
program defined as:

(LP(x ′, c′, v∗))

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

minimize δ(c′, x ′, x) = ∑n
j=1 c

′
j (x j (1 − x ′

j ) + x ′
j (1 − x j ))

s.t. Ax ≤ b

0 ≤ x j ≤ Uj , j ∈ N

cx ≥ (1 + θ)v∗
(14)

where δ(c′, x ′, x) is the target objective and c′ is an integer vector.
Initially, the vector c is used as the vector c′, while the target solution x ′ is obtained

by setting its components to 0 (i.e., in the first iteration the initial LP problem is solved).
After that, for each next iteration, a vector c′ and a new target solution x ′ are deduced
from the optimal solution x ′′ of the last solved LP(x ′, c′, v∗) problem. The new target
solution x ′ is derived from x ′′ simply by setting x ′

j = near(x ′′
j ), j ∈ N . The resulting

vector x ′ of the nearest integer neighbors is unlikely to be 0–1 MIP feasible. If the
solution x ′ is 0–1 MIP feasible, it is stored as a new best solution x∗, the objective
function constraint cx ≥ (1 + θ)v∗ is updated, and target objective δ(c′, x ′, x) is set
to the initial objective cx (i.e., in the next iteration the original LP with the updated
objective function constraint will be solved). On the other hand, if the solution x ′
is 0–1 MIP infeasible, the vector c′ is generated, so that the solution x ′′ of the next
generated problem LP(x ′, c′, v∗) will become closer to satisfying integer feasibility.
The generation is accomplished by the procedure given in Algorithm 15 (see Glover
and Hanafi 2010a for more details).

The rationale for using such a procedure is that the targeting of x j = x ′
j for vari-

ables whose values x ′′
j already equal or almost equal x ′

j does not have great impact
on the solution of the new (updated) LP(x ′, c′, v∗), in the sense that such a targeting
does not yield a solution that differs substantially from the solution to the previous
LP(x ′, c′, v∗) problem. Therefore, it is more beneficial if targeting occurs by empha-
sizing the variables x j whose x ′′

j values differ from their integer neighbours x ′
j by a

greater amount. Note that according to Glover and Hanafi (2010a) the suggested value
for parameter BaseCost , of procedure for generating vector c′, is 20.
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Algorithm 15: Procedure for generating vector c′
Function Generate_vector(BaseCost, x ′, x ′′);

1 Choose λ0 ∈ [0.1, 0.4];
2 for j ∈ N do
3 if x ′′

j /∈]λ0, 1 − λ0] then
4 c′j = 1 + BaseCost (1 − 2x ′

j )(0.5 − x ′′
j )/(0.5λ0) ;

else
5 c′j = 1 + BaseCost (x ′

j − x ′′
j )/λ0 ;

end
end
return c′;

Algorithm 16: Proximity procedure for 0–1 MIP
Function PS(BaseCost);

1 c′ = c;
2 x ′ = 0;
3 v∗ = −∞;
4 repeat
5 if LP(x ′, c′, v∗) infeasible then break;
6 x ′′ ← optimal solution of LP(x ′, c′, v∗);
7 if x ′′ integer feasible then
8 x∗ ← x ′′; //update the best solution
9 v∗ = cx ′′; //update the objective function constraint

10 x ′ = 0, c′ = c;
else

11 x ′
j = near(x ′′

j ), for j ∈ N ; //Construct the target solution x ′ derived from x ′′
12 c′ ← Generate_vector (BaseCost, x ′, x ′′);

end
until Stopping criterion is satisfied;
return x∗;

As a stopping criterion the proximity procedure may use the total number of itera-
tions allowed or the number of iterations since finding the last feasible integer solution
etc.

The described proximity procedure, may be easily enhanced by updating the prob-
lem inequalities (adding and dropping constraints) in the way described in Glover and
Hanafi (2010a). Further, in order to avoid a big difference between the components
of two vectors c′, used in two consecutive iterations, it is preferable not to change
all the components of c′ each time a new target objective is produced, but to change
only a subset consisting of k of these components. For example, a reasonable default
value for k is given by k = 5. Alternatively, the procedure may begin with k = n and
gradually reduce k to its default value or to allow it to oscillate around a preferred
value. The k components of c′ that will be changed may be chosen as those k having
the k largest c′

j values in the new target objective.
The merit of using a target objective δ(c′, x ′, x) may be expressed in terms of

“reaction” and “resistance”. The term reaction refers to the change in the value of a
variable as a result of creating a target objective δ(c′, x ′, x) and solving the resulting
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problem LP(x ′, c′, v∗). The term resistance refers to the degree to which a variable
fails to react to a non-zero c′

j coefficient by receiving a fractional value rather than
being driven to 0 or 1. Hence, the proximity procedure may be enhanced by intro-
ducing advanced approaches for generating the target objective based on exploiting
the mutually reinforcing notions of reaction and resistance as proposed in Glover and
Hanafi (2010b).

6.3 OCTANE heuristic

Balas et al. (2001) proposed theOCTAhedralNeighbourhoodEnumeration (OCTANE)
heuristic for pure 0–1 programs. The fundamentals of OCTANE rely on the one-to-
one correspondence between 0-1 points in n–dimensional space and the facets of the
n–dimensional octahedron. More precisely, let a cube be given as K = {x ∈ R

n :
−1/2 ≤ x ≤ 1/2} and a regular octagon K ∗ circumscribing this n-dimensional cube
given by K ∗ = {x ∈ R

n : σ x ≤ n/2, σ ∈ {±1}n}. Hence, it follows that every facet
σ of the octahedron K ∗ contains exactly one vertex τ of the hypercube K , namely the
one with τ j = 1/2 if σ j = 1 and τ j = −1/2 if σ j = −1, i.e. τ j = σ j/2.

Since both sets have the same cardinality, every vertex of the hypercube is as well
contained in exactly one facet of the octahedron. Note that this correspondence is kept
even if we translate K and K ∗ for the same vector. The basic idea of OCTANE is that
finding facets that are near an LP feasible point, x0 is equivalent to finding integer
feasible points that are near x0 and therefore potentially LP-feasible themselves. Fur-
thermore, if we choose an optimal solution of the LP-relaxation as an initial point x ,
the integer feasible solutions potentially will be of high quality in terms of the objec-
tive function. So, OCTANE starts by solving the LP-relaxation of the 0-1 program,
then from x , a fractional solution of the LP-relaxation of the 0-1 program, it com-
putes the first k facets of an octahedron that are intersected by the half line originating
at x and having a selected direction d. In this way OCTANE yields k potential 0–1
points of the original 0–1 programming problem. The steps of OCTANE are given in
Algorithm 17.

Algorithm 17: OCTANE for pure 0–1 MIP
Function OCTANE (P);

1 Solve the LP relaxation of P to obtain an optimal LP basic solution x ;
2 Choose a direction vector d and consider the half-line L = x + λd, λ ≥ 0;
3 Compute the first k facets of an octahedron that are intersected by the half line L;
4 Transform k reached facets to 0–1 points;
5 Check the integer feasible points;
6 Report the best found feasible solution (if any);

A Ray Shooting Algorithm. In order to find the first k facets of an octahedron that
are intersected by the half line originating at x and having a selected direction d a ray
shooting algorithm is applied. To describe the Ray Shooting Algorithm, we introduce
the following definitions.
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Definition A facet σ ∈ {±, 1}n is called reachable, with respect to the given ray
r(λ) = x + λd if there exists a λ > 0 for which σr(λ) = n/2. A facet is called
first-reachable, if the parameter λ is minimal among all of reachable facets.

The ray shooting algorithm may be described in the following way. Firstly, some
facet is generated, which is definitely reachable. After that a first-reachable facet is
determined by changing components of this facet. Finally, one performs a reverse
search in order to find k−1 further facets. The first step, namely finding any reachable
facet, is trivial. (After some transformation the reachable facet may be determined as
σ = e see Berthold 2006). After that the first reachable facet is deduced according to
the following theorem:

Theorem 2 If a facet σ is reachable, but not first-reachable, there exists an i ∈ N
for which the facet σ � i defined by: (σ � i) j := −σ j if j = i and σ j otherwise; is a
facet which is hit before σ . Then i is called a decreasing flip. Then starting with σ = e
and iteratively flipping its components, if they yield a decreasing flip, is an algorithm
which has a first-reachable facet, i.e. σ ∗ as output and can be implemented with a
running time of O(nlog(n)).

Thanks to this theorem, we know how to get a facet which is first-reachable. How-
ever there could be more than one first-reachable facet. In practice this is rather the
rule, if one chooses ray directions not randomly, but following some certain geometric
structure.

Reverse search. Reverse search is used to determine the k first reachable facets. The
idea of reverse search is to build up an arborescence rooted at σ ∗ which vertices are all
reachable facets and after that to determine the k first reachable facets. Therefore, in
order to form the arborescencewe need to determine a unique predecessor pred(σ ) for
each reachable facet σ , except for one first-reachable facet which will be the root-node
of the arborescence.

Definition An index i ∈ N is called a

– decreasing + to − flip for σ , if σi = +1 and σ � i is a facet hit before σ

– nonincreasing − to + flip for σ , if σi = −1 and σ � i is a facet hit by r but not
after σ

If there exists at least one decreasing + to - flip for σ , then, pred(σ ) := σ � i
where i corresponds to minimal index of all decreasing flips. On the other hand, if
there is no decreasing + to - flip for σ , but at least one nonincreasing - to + flip, then,
pred(σ ) := σ � i where i corresponds to maximal index of all nonincreasing flips.
Otherwise, pred(σ ) stays undefined. One can prove that there is exactly one facet σ ∗
for which pred(σ ) is undefined and obviously this is a first-reachable facet.

Then, as it shown in Balas et al. (2001), the arcs of the arborescence are defined
as (pred(σ ), σ ) with associated weight that equals to distance between points σ and
pred(σ ). Additionally, Balas et al. (2001) proved the following statement.

Theorem 3 There is an O(knlog(k)) algorithm which finds k vertices of the arbores-
cence with minimum distance to σ ∗. Moreover, these k vertices correspond to the k
facets of K ∗ first hit by r(λ).
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Selection of the Ray Direction The ray direction may be chosen in some of the
following ways:

– The objective ray. It is created choosing the direction opposite to the direction of
objective function, i.e., d = −c. Clearly such a ray leads into the interior of the
polyhedron and therefore promises to produce feasible solutions.

– The difference ray. The difference between the optimum of the LP-relaxation at the
root-node of the branch-and-bound tree and the current LP–optimum in some node
of the branch-and-bound tree shows a part of the development of each variable
from the value in an optimal LP-solution to the one in an integer feasible solution.
Therefore, this difference vector seems to be a ray direction with a promising
geometric interpretation.

– The average ray. The optimal basis for the LP-relaxation at the current node defines
a cone C which extreme rays are defined by edges of the current LP-polyhedron.
Obviously, the average of the normalized extreme rays of C points into the inner
of the LP polyhedron and therefore, hopefully into the direction of some feasible
solutions.

– The average weighted slack ray. This ray is obtained from the average ray by addi-
tionally assigning weights to the extreme rays. Every extreme ray corresponding
to a non-basic slack variable with positive reduced costs gets the inverse of the
reduced costs as weights, while all others weights are assigned to 0.

– The average normal ray (Berthold 2006). The LP-optimum is a vertex of the LP
polyhedron and therefore, at least n of the linear and bounding constraints are
fulfilled with equality. Therefore the normalized (inner) normal of a hyperplanes
corresponding to some linear constraint gives a direction where all points are
feasible for this constraint. So, the average of all these normals provides a fruitful
direction for finding feasible points.

6.4 Star path with directional rounding

The introduction of Star Paths with directional rounding for 0–1 Mixed Integer Pro-
gram as a supporting strategy for Scatter Search in Glover (1995a) established basic
properties of directional rounding and provided efficient methods for exploiting them.
The most important of these properties is the existence of a plane (which can be
required to be a valid cutting plane for MI P) which contains a point that can be
directionally rounded to yield an optimal solution and which, in addition, contains a
convex subregion all of whose points directionally round to give this optimal solu-
tion. Several alternatives are given for creating such a plane as well as a procedure to
explore it using principles of Scatter Search. That work also shows that the set of all
0–1 solutions obtained by directionally rounding points of a given line (the so-called
star path) contains a finite number of different 0–1 solutions and provides a method to
generate these solutions efficiently. Glover and Laguna (1997) elaborated these ideas
and extended them to General Mixed Integer Programs by means of a more general
definition of directional rounding.

Building on above ideas, Glover et al. (2000) proposed a procedure that combines
Scatter Search and the Star Path generation method as a basis for finding a diverse set
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of feasible solutions for 0–1 Mixed Integer Problems, proposing a 3-phase algorithm
which works as follows. The first step generates a diverse set of 0–1 solutions using
a dichotomy generator. After that each solution generated in a previous phase is used
to produce two center points on an LP polyhedron which are further combined to
produce sub-centers. All centers and sub-centers are combined in the last phase to
produce Star-Paths. As output the algorithm gives the set of all 0–1 feasible solutions
encountered during its execution, and constitutes the required diverse set. The com-
putational efficiency of the approach was demonstrated by tests carried out on some
instances from MIPLIB.

6.5 Restrict-and-relax search

Restrict-and-Relax search (Guzelsoy et al. 2013) is a branch-and-bound based algo-
rithm that dynamically changes sets of fixed and non-fixed (free) variables. At the
beginning, it defines a restricted 0–1 MIP, by fixing some variables, from where it
starts a branch-and-bound based exploration of the solution space. At any node of the
search tree, it may selectively relax previously fixed variables, fix (restrict) additional
variables, or relax and fix variables at the same time. Since Restrict-and-Relax search
operates with restricted 0–1 MIP in a dynamic way it is very suitable for solving
instances that are too large to be fully loaded into memory. In addition, Restrict-
and-Relax search is able to find high-quality feasible solutions more quickly than a
traditional search as well as to prove optimality.

6.6 Summary

The presented heuristics may be seen as frameworks for generating heuristics for 0–1
MIP problems. Namely, for each ingredient of these heuristics there is more than one
option how itmay be implemented. Therefore choices of different ingredients and their
way of implementation obviously lead to different heuristics. So, in our point of view
generating different heuristics from these frameworks may represent very promising
research directions. However, to the best of our knowledge only OCTANE, restrict-
and-relax and the core parametric tabu search heuristics have been implemented and
tested on 0–1 MIP instances. According to results reported in Balas et al. (2001),
OCTANE heuristic is highly competitive with Pivot and Shift heuristic (see Sect.
2). Restrict-and-relax outperforms SYMPHONY (Ralphs and Güzelsoy 2005). On
the other hand as shown in Sacchi and Armentano 2011, the core parametric tabu
search is highly competitive with Feasibility Pump and Objective Feasibility pump
(see Sect. 4). All these facts imply that there is still work to do in this area which may
lead to powerful heuristics for 0–1 MIP. In addition, Parametric Tabu search and Star
path with directional rounding may be also applied to general mixed integer programs.
So, developing heuristics from these frameworks and assessing their performance
on benchmark instances for general MIPs represent another research line. Note that
OCTANE heuristic is integrated in SCIP solver.
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Table 1 Classification of heuristics

Type of heuristic

Constructive Improvement Constructive & Improvement

FP heuristics Local branching Pivot and complement

VNP VN branching Pivot and shift

VN diving RINS Pivot and tabu

SN diving Proximity search Pivot cut and dive

RENS HVNDS heuristics Iterative heuristics (Sect. 3.2)

Ceiling heuristic

PTS

Metaheuristic search (Sect. 6.2)

OCTANE

Star path with directional rounding

Restrict-and-relax

7 Classification and summary of main components of MIP heuristics

It is not easy to classify the heuristics based on mathematical programming tech-
niques, since there are different ways to classify heuristic algorithms. In this survey
we have proposed an implicit classification induced by the sections proposed in this
paper. Despite that some heuristics can appear in more than one section. However,
these heuristics can be classified in two very general classes: constructive heuristics
and improvement heuristics. Constructive heuristics start from scratch and proceed
through a set of steps, to produce a solution without guaranty that the generated solu-
tion is feasible. Improvement heuristics start with a solution (feasible or infeasible) and
iteratively execute improving steps to find high quality solutions. In general, successful
heuristics employee a two-phase approach: a constructive heuristic generates an initial
solution and an improvement heuristic tries to produce better solution than the ini-
tial one. Therefore, Table 1 presents the classification of surveyed heuristics into the
following three groups: constructive, improvement and constructive&improvement
heuristics.

Moreover in this section, we identify the main components shared by heuristics
based onmathematical programming. Asmain components of the heuristics presented
above we may identify the following:

– Move operators. The typical move operators are shifting, pivoting and rounding.
Note that in the context of 0–1 MIP problems shifting operators reduce to com-
plementing operators.

– Variable fixing. Soft and hard variable fixing are standard fixing techniques. As
shown, hard variable fixing is accomplished assigning certain values to the subset
of variables, while soft variable fixing requires that certain number of variables
take the same values as in the incumbent solution, without fixing explicitly any of
those variables.
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– Pseudo cuts. Excluding portion from the space search is the main purpose of the
pseudo-cuts, in order to cut-off the solutions already visited during the process.

– Problem decomposition. Problem decomposition refers here whether variable
neighborhood decomposition search (VNDS) principles are used or not.

– Neighborhood structure examined. We distinguish two very general types of
neighborhood structures: single (only one neighborhood structure is examined
throughout solution process) and multiple (multiple neighborhood structures are
examined throughout solution process)

– Proximity objective function. The proximity objective function is the one defined
as the distance of a solution from the incumbent solution.

– MIP solver. Heuristics may rely on exactMIP solver which is usually used to solve
reduced MIP problems deduced from the initial one.

In Table 2, we present which of above components are used by certain heuristic. Sign
‘+’ in the table means that certain ingredient is used, while sign ‘-’ stands for the
opposite.

8 Concluding remarks

This paper provides a survey of heuristics based on mathematical programming for
0–1 mixed integer programs without exploiting any special structure of the prob-
lem at hand. In addition to describing the main ideas of these heuristics we provide
pseudo-codes for the key methods using a uniform coding template. Some of pre-
sented heuristics are concerned with finding a first MIP feasible solution which is
generally NP hard problem by itself. Among the better known heuristics of this type
are the Feasibility Pump heuristics, the Variable Neighborhood Pump approach, and
the Single and Variable Neighborhood Diving heuristics. The second class consists of
improvement procedures for 0–1MIP that require a feasibleMIP solution as the input.
Heuristics of this type include Local Branching, Variable Neighborhood Branching,
and Relaxation Induced Neighborhood Search. The last class of heuristics are those
that neither require a feasible MIP solution as the input nor finish their work after
finding the first feasible solution. Prominent members of this group include Pivot
and Complement, Pivot and Shift, Tabu Search, Pivot-Cut-and-Dive, variable neigh-
borhood decomposition based heuristics, iterative heuristics based on relaxations and
advanced heuristics. The best heuristics for finding a first feasible solution are those
based on diving: Variable Neighborhood and Single Neighborhood diving heuristics.
On the other hand, as the best improvement heuristics may be identified those based
on variable neighborhood decomposition search (VNDS). This may be explained by
the fact that VNDS based heuristics operate with series of small sub-problems of the
original problem unlike the other heuristics which operate mainly with the original
problem even if it is large scale problem.Most of these heuristics are already embedded
in some commercial or non-commercial solvers such as CPLEX, GUROBI, GAMS,
XPRESS, SYMPHONY,COIN, etc. Note thatmost of existing software do not provide
the functionality to implement surveyed heuristics easily. For example, restrict-and-
relax search cannot be implemented in the commercial solvers CPLEX, Gurobi, and
XPRESS since they do not provide capability to start from a restricted problem and to
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fix and unfix variables at selected nodes in the search tree. However, we believe that if
the solver allows more flexibility to the user, this may lead in solving larger and harder
problems that are elusive for the solver for the moment. Therefore potentially valu-
able directions for future research consist in developing new advanced procedures that
combine the ideas of both heuristic and exact approaches. Some initiatives for achiev-
ing this are already underway, for example the combination of variable neighborhood
decomposition search heuristic with iterative linear programming heuristic.

Further, we can observe that the most of advanced heuristics are at the starting point
regarding the evaluation, implementation and analysis of their merit. For example,
to the best of our knowledge there is only one basic implementation of parametric
tabu search, while there is neither implementation of the Metaheuristic Search with
Inequalities and Target Objectives nor of Star Path with directional rounding. Thus,
future research direction may also include implementing and testing new 0–1 MIP
heuristics that stem from these frameworks.
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Hanafi, S., Lazić, J., Mladenović, N.: Variable neighbourhood pump heuristic for 0–1 mixed integer pro-
gramming feasibility. Electron. Notes Discrete Math. 36, 759–766 (2010a)
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Jena, S.D., Cordeau, J.F., Gendron, B.: Lagrangian heuristics for large-scale dynamic facility location with
generalized modular capacities. Tecnical report CIRRELT—2014–21 (2014)
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