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Abstract The global structure of combinatorial landscapes is not fully understood,
yet it is known to impact the performance of heuristic search methods. We use a so-
called local optima network model to characterise and visualise the global structure
of travelling salesperson fitness landscapes of different classes, including random
and structured real-world instances of realistic size. Our study brings rigour to the
characterisation of so-called funnels, and proposes an intensive and effective sampling
procedure for extracting the networks. We propose enhanced visualisation techniques,
including 3D plots and the incorporation of colour, sizes and widths, to reflect relevant
aspects of the search process. This brings an almost tangible new perspective to the
landscape and funnel metaphors. Our results reveal a much richer global structure
than the suggestion of a ‘big-valley’ structure. Most landscapes of the tested instances
have multiple valleys or funnels; and the number, disposition and interaction of these
funnels seem to relate to search difficulty on the studied landscapes. We also find
that the structured TSP instances feature high levels of neutrality, an observation not
previously reported in the literature. We then propose ways of analysing and visualising
these neutral landscapes.
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1 Introduction

The global structure of realistic combinatorial fitness landscapes is still little under-
stood, yet it clearly impacts the performance of heuristic search methods. A way of
characterising a landscape global structure under a given neighbourhood operator is
by considering the distribution of its local optima. Boese et al. (1994) conjectured
that the search space of travelling salesman instances under 2-exchange moves has a
‘globally convex’ or ‘big-valley’ structure, in which local optima are clustered around
one central global optimum. This globally convex structure has subsequently been
observed in other combinatorial fitness landscapes such as the NK model (Kauff-
man and Levin 1987), graph bipartitioning (Merz and Freisleben 1998), and flowshop
scheduling (Reeves 1999). Under this view, there are many local optima but they are
easy to escape from, with the coarse level gradient leading to the global optimum. This
hypothesis has become generally accepted and has inspired the design of local search
heuristics referring to a similar principle with different names: adaptive multi-starts,
large-step Markov chain, soft-restarts, chained local search and iterated local search.
The notion of a big-valley is related to the notion of a ‘funnel’ structure from the study
of energy landscapes in theoretical chemistry, as discussed further in Sect. 2.2.

However, recent studies on TSP landscapes have revealed a more complex picture
(Hains et al. 2011; Ochoa and Veerapen 2016b). The big-valley seems to decompose
into several sub-valleys or multiple funnels. This helps to explain why certain iterated
local search heuristics can quickly find high-quality solutions, but fail to consistently
find the global optimum in cases where the global optimum is known. A similar
multi-funnel structure has been observed on some continuous optimisation problems
(Locatelli 2005; Lunacek and Whitley 2006; Lunacek et al. 2008), where its impact
on search difficulty has been established. In particular, landscapes with more than one
funnel, where the global optimum is located in a deep, narrow funnel are significantly
harder. The literature on characterising the multi-funnel structure of combinatorial
landscapes is mostly lacking. This is partly due to the lack of adequate tools to study
their complexity. We propose using local optima networks to analyse and visualise the
global structure of combinatorial fitness landscapes. Local optima networks compress
the whole search space into a graph, where nodes are local optima and edges are
transitions among them with a given search operator (Tomassini et al. 2008; Verel
etal.2011). The model emphasises the number, distribution and most importantly, the
connectivity pattern of local optima. Modelling landscapes as networks introduces a
new set of metrics to analyse fitness landscapes and, interestingly, the possibility of
visualising them.

This article complements and extends our recent work on local optima network
analysis of TSP fitness landscapes (Ochoa and Veerapen 2016a,b). Our previous work
considered only a handful of instances of size up to 700 cities, and deliberately excluded
degenerate instances (i.e. instances featuring neutrality). The sampling process was
less intensive, and the characterisation of funnels incomplete. The main contributions
of this article are:

1. An intensive sampling procedure, which allows the extraction of local optima
networks for larger TSP instances (of up to 1500 or so cities) of different types,
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including both random and structured real-world instances (city instances and
drilling problems).

2. An empirical characterisation and modelling of funnel floors, which requires both
the identification of sink nodes, and the incorporation of higher-level plateau-nodes
to model instances with neutrality.

3. A rigorous empirical characterisation of funnel basins, using the notion of mono-
tonic sequences from theoretical chemistry (Berry and Kunz 1995).

4. Enhanced visualisation of the multi-funnel structure, including 3D plots, alterna-
tive graph layouts, and the incorporation of colour, nodes sizes and edge widths,
to reflect relevant aspects of the search process.

5. A correlation study identifying connections between heuristic search performance
and the global structure of the studied TSP instances.

The remainder of this article is organised as follows. The next section gives rel-
evant background on TSP solvers and the notion of ‘funnel’. Section 3 defines the
local optima network model considered. Section 4 describes the proposed empir-
ical methodology, including the procedures and conceptual tools for extracting
the network data, detecting the funnel floors and calculating the funnel basins. It
also describes the TSP instances studied. Section 5 overviews our results includ-
ing an analysis and visualisation of local optima networks, a more traditional
fitness-distance analysis, a study of the impact of the sampling parameters and a
correlation study between heuristic search performance and global landscape met-
rics. Finally, Sect. 6 summarises our main findings and suggests directions of future
work.

2 Background and related work
2.1 TSP solvers

This section describes the TSP solvers used in our study both for comparison purposes
and as part of the sampling procedure implemented.

2.1.1 Concorde

Concorde is currently the best-performing exact TSP solver (Applegate et al. 2007,
2003a). It has been used to solve the largest non-trivial TSP instances (of up to
85,900 cities) for which provably optimal solutions are known. Concorde is based
on a complex Branch and Cut algorithm that uses a multitude of heuristic mechanisms
to achieve good performance on a wide range of TSP instances. For example, it carries
out a limited number of iterations of the Chained Lin—Kernighan heuristic (described
below) during the initial stages of its computation to determine an initial upper bound
to the objective value. Additionally, an exact mixed integer program solver is used
to compute and refine the lower bound by solving a relaxed linear program of the
problem.
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2.1.2 The chained Lin—Kernighan heuristic

The Lin—Kernighan (LK) algorithm (Lin and Kernighan 1973) is a powerful and well-
known heuristic for finding approximate solutions to the TSP. For about two decades,
it was the best local search method, and nowadays it is a key component of many state-
of-the-art TSP solvers. LK-search is based on the idea of k-exchanges: take the current
tour and remove k different links from it, which are then reconnected in a new way to
achieve a legal tour. Figure 1a illustrates a 2-exchange move. A tour is considered to
be ‘k-opt’ if no k-exchange exists which decreases its length. LK-search applies 2, 3
and higher-order k-exchanges. The order of a change is not predetermined, rather k
is increased until a stopping criterion is met. Thus many kinds of k-exchanges and all
3-exchanges are included. There are many ways to choose the stopping condition and
the best implementations are rather involved. We use the implementation available in
the Concorde software package (Applegate et al. 2003a), which uses do not look bits
and candidate lists.

The overall tour-finding strategy using LK-search was, previously, to repeatedly
start the basic LK routine from different starting points keeping the best solution found.
This practice ended in the 1990s with the seminal work of Martin et al. (1992), who
proposed the alternative of kicking (perturbing slightly) the LK tour and reapplying
the algorithm. If a better tour is produced, the old LK tour is discarded and the new
one kept. Otherwise, the search continues with the old tour and kicks it again. This
simple yet powerful strategy is nowadays known as iterated local search. It was named
Chained Lin—Kernighan (Chained-LK) by Applegate et al. (2003b), who also provided
an improved implementation to solve large TSP instances. The kick or escape operator
in Chained-LK is a type of 4-exchange (depicted in Fig. 1b), named double-bridge
by Martin et al. (1992). It consists of two 2-exchanges, each of which is a ‘bridge’ as
it takes a legal, connected tour into two disconnected parts. The combination of both
bridges must then be chosen in order to produce a legal final tour.

2.2 The notion of funnel
The intuition behind the concept of a ‘funnel’ is captured by Fig. 2 where two funnels

are depicted as two groups of local optima which are close in configuration space
within a group, but well-separated between groups.
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Fig. 2 Depiction of two funnels
f(X)

Y

The term ‘funnel’ was introduced in the protein folding community to describe
“a region of configuration space that can be described in terms of a set of downhill
pathways that converge on a single low-energy structure or a set of closely-related low-
energy structures” (Doye et al. 1999). It has been suggested that the energy landscape
of proteins is characterised by a single deep funnel, a feature that underpins their ability
to fold to their native state. In contrast, some shorter polymer chains (polypeptides)
that misfold are expected to have other funnels that can act as traps. Approaches to
elucidate the global landscape structure have led to the concept of disconnectivity
graphs (Becker and Karplus 1997; Doye et al. 1999; Wales 2005), also known as
barrier trees (Flamm et al. 2002). In the context of energy landscapes, Berry and
Kunz (1995) first introduced the term monotonic sequence to describe a sequence of
local minima where the energy of minima is always decreasing. The set of monotonic
sequences that lead to a particular minimum was termed ‘basin’; in this sense a ‘basin’
is analogous to a protein folding ‘funnel’. The collection of local optima associated to a
funnel has also been termed ‘super-basin’ in the literature introducing disconnectivity
graphs (Becker and Karplus 1997).

Energy landscapes in theoretical chemistry and fitness landscapes in optimisation
are conceptually related, as has been already observed by Stadler (2002). This rela-
tionship is particularly close for continuous optimisation. Locatelli (2005) studied the
sources of difficulty in continuous optimisation and finds that it is not strictly related
to the number of local optima, but to how chaotic their positions are. Lunacek and
Whitley (2006) propose a metric, dispersion, that quantifies the proximity of the best
regions in the search space. A high dispersion metric indicates the presence of mul-
tiple funnels. In a follow up work, Lunacek et al. (2008) studied abstract landscapes
with two funnels and find that evolutionary algorithms mostly fail when the global
optimum is located in a proportionally smaller funnel. Recent work on exploratory
landscape analysis of continuous search spaces reveals that multimodality and global
structure are among the most important high-level properties that help differentiate
between problem classes (Bischl et al. 2012; Kerschke et al. 2015).

The literature is much more scarce for discrete search spaces. The notion of a big-
valley discussed in the introduction is clearly related to the notion of a single funnel
structure, and fitness distance scatter plots and correlation metrics are a standard
tool in landscape analysis. Other approaches to understanding the global structure of
combinatorial landscapes have been applied to small and simplified problems. Barrier
trees have been applied to discrete optimisation problems where the notions of local
optima, basins and saddle points are clearly defined, for instance in the context of
spin-glasses (Hordijk et al. 2003). Flamm et al. (2002) have extended these definitions
so that barrier trees can be constructed for highly degenerate problems (i.e landscapes
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with neutrality). They present empirical results for binary strings of up to length 10.
Hallam and Prugel-Bennett (2005) construct barrier trees for MAX-SAT problems
with up to 40 variables using branch-and-bound to find only the best local optima in
the space.

Daolio et al. (2011) studied the community structure of local optima networks
on two classes of instances of the quadratic assignment problem. The two problem
classes give rise to different configuration spaces, with the so-called real-like instances
revealing a modular structure. The approach is based on a full enumeration of local
optima. Therefore, instances of size up to 10 were analysed. In a follow up work with a
data-driven approach, the modularity of instances up to size 32 was studied (Iclanzan
etal. 2014). This work, however, did not relate the community structure to the notion of
funnels. Herrmann et al. (2016) recently established a connection between groupings
(communities) in local optima networks and the notion of funnels. They extracted the
networks of N K landscapes of length 20 and various levels of epistasis, and applied
a community detection algorithm. Results confirm that landscapes consist of several
clusters and the number of clusters increases with the epistasis level. A higher number
of clusters, and a larger size of the cluster containing the global optimum were found
to lead to a higher search difficulty.

3 The local optima network model

This section describes the local optima network model used in our study. We start
by defining the notion of fitness landscapes, and follow by formalising the notions of
nodes and edges of the network model.

A fitness landscape (Stadler 2002) is a triplet (S, N, f) where S is a set of potential
solutions i.e. a search space; N : § —> 25 a neighbourhood structure, is a function
that assigns to every s € § a set of neighbours N(s), and f : § — R is an
objective function (also called fitness function) that can be pictured as the height of
the corresponding solutions.

The search space of a TSP instance of size m is the set of permutations of the
m cities. The objective function f is given by the length of the tour, which is to be
minimised. In order to model TSP fitness landscapes, we adapted the local optima
network model with escape edges (Verel et al. 2012). To construct these networks,
we need to define their nodes and edges. The definitions are related to the search
operators being modelled, specifically, the local search heuristic and escape operators.
Our study considers those within the Chained Lin—Kernighan algorithm, namely, the
Lin—Kernighan local search heuristic and the double-bridge escape move (described
in Sect. 2.1.2).

Local optima A local optimum, which in the TSP is a minimum, is a solution s*
such that Vs € N(s*), f(s*) < f(s). Notice that the inequality is not strict, in order
to allow the treatment of the neutral landscape case.

The neighbourhood N is imposed by LK-search, which considers variable values of
k. The local optimality criterion is, therefore, rather stringent. Only a small proportion
of all possible solutions are LK-optimal. The set of local optima, which corresponds
to the set of nodes in the network model, is denoted by L and its cardinality by n.
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Escape edges Edges are directed and based on the double-bridge operator. There
is an escape edge from local optimum x to local optimum Yy, if y can be obtained after
applying a double-bridge kick to y followed by LK-Search. Edges are weighted with
estimated transition probabilities between the connected nodes. These probabilities are
estimated by the sampling process. Specifically, edge weights are integers indicating
the number of times an edge was visited during the sampling process (described in
Sect. 4.1). The set of escape edges is denoted by E.

Local optima network (LON) A local optima network is a graph LON = (L, E)
where nodes are the local optima L, and edges E are the escape edges. Edges are
directed and weighted. Weights indicate transition probabilities.

4 Empirical methodology

Our approach extracts and analyses local optima networks of TSP instances of realis-
tic sizes and different types. The objective is to map and characterise the landscapes’
global structure. Clearly, a full enumeration of the local optima for TSP instances of
non-trivial size becomes unmanageable. Therefore, networks are constructed from a
sample of high-quality local optima in the search space. This section starts by describ-
ing our sampling methodology and procedure for constructing the LONs. Thereafter,
we describe the approach for characterising the funnel structures, which requires both
detecting the funnel floors, and computing their basins.

4.1 Sampling the network data

To extract the network data, we considered the Chained-LK implementation of Con-
corde (see Algorithm 1). Instead of discarding the search history, we store, in L, every
new improving LK local optima found during the search process. We also create and
store, in E, a directed edge between the starting and ending optima after a double-
bridge followed by LK. Edges only go from a node with higher cost to a node of equal
or lower cost, in order to store the monotonic sequences and thus identify funnels (see
Sect. 4.2). We keep count of the number of times an edge is visited, this number is
stored as the edge’s weight.

A thousand independent runs of Chained-LK are executed for each TSP instance.
We consider two initialisation mechanisms, one producing better initial solutions than
the other, in order to have a broader picture of the search space. Half of the runs use the
Quick-Borivka method, the default initialisation for Concorde’s Chained-LK, which
is based on the minimum-weight spanning tree algorithm of Boriivka (Applegate et al.
2003Db). The other half starts from a random solution. The default kicking procedure in
Concorde’s Chained-LK is used: the edges involved in the double-bridge are selected
using random walks along connected vertices. Each Chained-LK run continues until
at least 10,000 consecutive iterations are performed without finding an improving
solution. The network is thereafter created by the combination of the unique nodes
and edges produced by this sampling process.
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272 G. Ochoa, N. Veerapen

Data: I, TSP instance
Result: L, set of local optima,
E, set of escape edges
L<—{hE<{
for i < 1 to 1000 do
Sstart < initialSolution()
sstart < LK(Sstart)
L < LU {sgtart}
while j < 10000 do
Send < applyKicK(ssrart)
Send < LK(Send)
J<J+1
if Objective(scnq) < Objective(sgtart) then
L <~ LU {sena}
E < E U {(sstarts Send)}
Sstart <~ Send
j <0
end
end

end
Algorithm 1: Local optima network sampling combining 1000 runs of Chained-LK.

4.2 Identifying funnel structures

The challenge is to devise an approach for identifying funnel structures, for different
types of TSP instances, once the local optima networks have been extracted. Our
approach adapts the notion of monotonic sequences from theoretical chemistry (Berry
and Kunz 1995). We consider a monotonic sequence as a sequence of local optima
where the evaluation of solutions is non-deteriorating. The collection of monotonic
sequences leading to the same lowest minimum correspond to the so-called ‘monotonic
sequence basins’ (Wales 2005). These structures have also been called ‘super-basins’
in the theoretical chemistry literature (Becker and Karplus 1997). We choose here
to call them ‘funnel basins’ or simply ‘funnels’ borrowing from the protein folding
literature. We can distinguish the primary funnel, as the one involving monotonic
sequences that terminate at the global optimum. The primary funnel is separated
from other neighbouring secondary funnels by transition states laying on a so-called
‘primary divide’ (Berry and Kunz 1995). Above such a divide, it is possible for a local
optima to belong to more than one funnel thorough different monotonic sequences.

Our approach requires us to empirically locate the lowest cost minima which poten-
tially lie at the bottom funnels, and thereafter compute each funnel basin. These
procedures are described below.

4.2.1 Identifying the funnel floors

Hains et al. (2011) considered funnel floors (or funnel bottoms) as those solutions
empirically found after considerable search effort. Specifically, for each TSP instance,
Chained-LK was run until at least 10,000 iterations without finding an improving tour,
and this procedure was repeated 1000 times from different starting solutions. However,
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runs were considered separately and the intermediate local optima and transitions
among them discarded, therefore, the number of funnel floors was overestimated.
We propose a refinement of this approach to more accurately estimate the number
of funnels. We keep a similar computational effort, but store all the different local
optima visited across the 1000 runs, and combine them into a single local optima
network. This allows us to merge local optima transitions found across different runs.
We name the solutions found at the end of each run (i.e. 10,000 consecutive iterations
without an improvement) as attractors rather than as funnel bottoms. Our local optima
network data shows two interesting features. First, solutions attracting the search
process are not always single solutions, but are often part of connected local optima
plateaus. Second, attractor nodes are not always at the bottom of funnels: a single run
is trapped in an attractor, but when combining the 1000 runs into a single LON, many
attractors show escape paths to solutions with lower evaluation. Therefore, in order to
refine the process of detecting the conjectured funnel floors, we propose constructing
a sub-network from the LON, where nodes are the attractors: the Attractor Network
(AN). Once this network is constructed for a given instance, we detect its sinks, i.e.
nodes without outgoing edges. We consider these sinks as the solutions at the bottom
of funnels, which produced a reduced number of funnels for the studied instances
as compared to previous work (Hains et al. 2011; Ochoa and Veerapen 2016b). We
overview below the notation and procedures used to detect the number of funnel floors.

— Attractor nodes are empirically determined as those local optima at which Chained-
LK stalls after a large search effort (10,000 consecutive iterations without finding
an improving solution in our implementation). The set of attractor nodes is denoted
by A, and its cardinality by a.

— A sink node, is an attractor node without outgoing edges to other attractor nodes
of lower evaluation. Sink nodes are conjectured to be at the bottom of a funnel
structure. The set of sink nodes is denoted by S and its cardinality by s.

— A plateau node, is a higher-level node compressing a group of local optima with
the same objective function value belonging to a connected component according
to the escape edges defined in Sect. 3. Plateau nodes can also be characterised as
attractors or sinks.

— Attractor-plateau nodes are calculated by compressing connected attractor nodes
at the same objective function level. The set of attractor-plateau nodes is denoted
by A, and its cardinality by a,,.

— A sink-plateau node, is an attractor-plateau node without outgoing edges to other
attractor-plateau nodes. The set of sink-plateau nodes is denoted by S, and its
cardinality by s,.

Our previous local optima network models of TSP landscapes (Ochoa and Veer-
apen 2016b) involved a less extensive sampling and did not consider plateau nodes.
However, the study of a more varied set of instances revealed neutrality (i.e. different
solutions with the same objective function value) on the landscapes of most structured
instances, especially those of drilling problems. The random instances do not show
neutrality, but many of the city instances and a large proportion of the drilling prob-
lems do reveal plateaus that can be extensive. It was, therefore, necessary to include
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Fig. 3 Visualisation of the attractor network (a), and the same network b after compressing plateau nodes
for a selected instance with 532 cities (att532). In the attractor network, each node is a local optimum with
size proportional to its in-strength (i.e. the weighted in-degree). In the attractor-plateau network, nodes
are rectangular with width proportional to the number of nodes in the plateau. The instance contains two
funnel sink-plateaus, visualised in red (the global optima) and yellow (the secondary funnel sink), the legend
indicates their cost values. Grey nodes are above (i.e higher cost) than their respective sinks (Color figure
online)

plateau nodes, and to define two auxiliary network models (described below) in order
to algorithmically detect the sink nodes, and thus funnel floors.

— Attractor Network (AN), the sub-graph AN = (A, E,;) of LON where nodes are
the attractors A, and edges E, C E are the escape edges connecting them.

— Attractor-plateau Network (AN),), the graph AN, = (A, E,) formed by con-
tracting the nodes and edges of the Attractors network AN .

Figure 3 illustrates the attractor and attractor-plateau networks for the well-studied
TSPLIB instance att532 (more details in Table 1), which consists of the 532 largest
cities of the USA and considers pseudo-Euclidean distances between them. The pro-
cedure by Hains et al. (2011), estimated four funnels for this instance. Our analysis,
instead, suggests that it has only two funnels, whose sinks are represented in red and
yellow in Fig. 3. As the figure indicates, there are 48 attractor nodes (a), which are
compressed into 7 plateau-attractor nodes (b). Not all the 7 plateau-attractor nodes
are funnel floors, as most of them have outgoing edges to other nodes. Instead only
two of them, the sinks coloured in yellow and red in plot (b), are conjectured to be
at the bottom of funnels. The whole sampled local optima network for this instance,
including nodes within 1% in evaluation from the global optimum cost, is visualised
in Fig. 5a.

4.2.2 Identifying the funnel basins

Once the funnel sinks are detected, we can proceed to identify the funnel basins
(see Algorithm 2). This is done by finding all the local optima in the network which

@ Springer



Mapping the global structure of TSP fitness landscapes 275

Table 1 TSP instances with number of cities as suffix, edge type, Chained-LK success rate, and features
resulting from running the Concorde solver: running time and number of branch-and-bound (B&B) nodes

Instance Edge type CLK success Concorde solver

Optimum Run time (s) B&B nodes

Random uniform instances

E506.25 EUC-2D 0.957 16,313,719 12.0 6.2
E755.73 EUC-2D 0.128 20,158,565 28.0 8.0
E1010.37 EUC-2D 0.478 22,904,325 18.3 3.8
E1243.85 EUC-2D 0.030 25,227,141 118.4 38.0
E1521.33 EUC-2D 0.030 28,027,563 239.8 74.6
Random clustered instances

C506.25 EUC-2D 0.329 6,816,950 8.0 5.6
C755.73 EUC-2D 1.000 9,867,050 32 1.0
C1010.37 EUC-2D 0.112 10,716,003 41.7 14.2
C1243.85 EUC-2D 0.136 12,943,477 110.3 33.6
C1521.33 EUC-2D 0.178 13,608,402 34.5 6.2
Somewhat structured instances (city problems)

att532 ATT 0.437 27,686 10.3 6.2
2re66 GEO 0.183 294,358 7.3 34
pr1002 EUC-2D 0.673 259,045 33 1.0
11304 EUC-2D 0.286 252,948 19.4 1.0
nrwl1379 EUC-2D 0.008 56,638 34.5 12.6
Highly structured instances (drilling problems)

u574 EUC-2D 0.442 36,905 4.1 1.4
rat783 EUC-2D 0.959 8806 4.0 1.2
ul060 EUC-2D 0.214 224,094 35.2 15.4
d1291 EUC-2D 0.258 50,801 1098.5 37.4
11577 EUC-2D 0.012 22,249 292.3 9.8

are reachable from each funnel sink (sink-plateau for the instances with neutrality).
Breadth-First-Search is used for this purpose. The set of unique solutions in the com-
bined paths to a given funnel sink corresponds to the funnel basin. The cardinality of
this set corresponds to the funnel size. Notice that the membership of a solution to a
funnel might be overlapping, that is, a solution may belong to more than one funnel, in
that there are paths from that solution to more than one funnel sink. The relative size
of the primary funnel (or any other secondary funnel) is calculated as its size divided
by the total number of local optima.

As described above, funnel sinks are nodes without outgoing edges in the attractor
network, which is a sub-graph of the sampled local optima network (LON). When
considering the whole LON, out-going edges might exist between sub-optimal sinks
and local optima with lower evaluation, which are not sinks themselves, but belong
to a different basin. In consequence, before identifying the funnel basins for each
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sub-optimal sink, we remove all its outgoing edges. This is done by the function
disconnectSinks(LON, §) in Algorithm 2.

Data: LON: sampled local optima network, S: funnel sinks
Result: bsizes: basin sizes vector, basins: funnel basins vector,
boverlap: set of local optima in more than one basin

i <0

DLON < disconnectSinks(LON, §)

for s € S do
basins[i] < breadthFirstSearch(DLON, s)
bsizes[i] < length(basins[i])
i<—i+1

end

boverlap < {}

fori, j € range(l,length(S) do

‘ boverlap < boverlap U intersection(basins[i], basins[j])
end

Algorithm 2: Identifying funnel basins. Function disconnectSinks(LON, S) removes
all outgoing edges from sub-optimal sinks in LON.

4.3 Instances

Table 1 summarises the TSP instances studied. We consider 20 instances of moderate
size (in the range of 500 to 1500 or so cities) and different types. The first 10 instances
are randomly generated using the DIMACS generator.! Half of these are composed
of uniformly distributed cities (prefixed by ‘E’), while in the other half, the cities are
clustered (indicated by a ‘C’). The suffix number ‘.x’ in the instance name indicates, as
per DIMACS convention, a seed of x + 10, 000. These synthetic instances are part of a
larger set of 200 instances that we generated, with the number of cities being uniformly
selected in the range [400, 1600]. These are used in Sect. 5.6 for a correlation study
between landscape metric and heuristic search performance.

The bottom 10 instances in Table 1 are well-known instances from TSPLIB (Reinelt
1991). A popular way of constructing TSP instances is to choose a set of actual cities
and define the cost of travel between any two cities as the distance between them. The
first 5 TSPLIB instances are constructed in such a way. The last 5 arise from the task
of drilling holes in printed circuit boards. The types of edge weights are as follows.
EuC-2D refers to the Euclidean distance of points in a 2D plane rounded to the nearest
integer. ATT refers to a pseudo-Euclidean distance where the sum of the squares is
divided by 10 and the square root of this value is then rounded to an integer. GEO refers
to the integer geographical distance computed from latitude and longitude coordinates
on the surface of a sphere representing an idealised Earth.

The third column in Table 1 reports the success rate of the 1000 Chained-LK runs
used for extracting the network data. By success rate, we mean the ratio of runs that
found at least one global optimum. The last two columns give information on the

1 http://dimacs.rutgers.edu/Challenges/TSP/download.html.
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solving difficulty of each instance. Specifically, we report the mean run time and the
mean number of branch-and-bound nodes required by Concorde (interfaced with IBM
ILOG CPLEX 12.6 as its mixed integer solver) to solve the instances to optimality on
a 3.4GHz Intel Core i7-3770 CPU across 10 runs. Although Concorde is an exact
solver, the means are computed since it uses Chained-LK to generate initial solutions.
Therefore, times include the Chained-LK time to compute initial solutions. This leads
to different execution times and branch-and-bound trees. A number of branch-and-
bound (B&B) nodes equal to 1 indicates that the lower and upper bounds found in
the initial stages of the Concorde solving process match, and thus no actual tree was
explored.

5 Results

The results and analysis are reported in the following six subsections. We start by
reporting general statistics of the sampled local optima networks across the instance
set. Section 5.2 concentrates on features characterising the landscapes’ global struc-
ture. Section 5.3 visualises the local optima network of some selected instances.
Thereafter, Sect. 5.4 provides a more classic fitness landscapes analysis. We finish
with a study of the effects of sampling parameters on the landscape metrics (Sect. 5.5),
and a correlation study between landscape metrics and heuristic search performance
(Sect. 5.6).

5.1 General network metrics

Table 2 reports basic statistics of the sampled local optima networks, including the
number of unique global optima go, the number of different local optima 7, the number
of unique objective function evaluations evals, and the relationship between these two
values n/evals as an indication of the amount of neutrality in the landscape. The table
also reports the number of connected components ¢, the proportion of nodes in the
network from where there is a path to a global optimum py,; and the average [ g_o and
maximum /g, path length from any node in the network to a global optimum. The
last two columns report the average d and maximum d"%* in-strength (i.e. incoming
weighted degree, where the weight of an edge is the number of times it was traversed
during sampling) of nodes in the networks.

Results show that, as expected, the number of global optima and the average and
maximum path length to a global optimum generally increase with the number of cities
for each instance class. There are, however, striking differences among the classes.
The randomly generated instances always show a single global optimum and each
local optima has a different objective function value (as indicated by columns evals
and n/evals). This is not the case for the structured instances, where several global
optima are generally the norm. Indeed global optima seem to be located in large
plateaus (of several thousands of nodes) for some of the drilling instances. The high
amount of neutrality is also revealed by the smaller number of objective function
levels as compared to the number of optima, with the ratio being as large as several
hundreds or thousands. This is probably because several pairwise distances between
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Mapping the global structure of TSP fitness landscapes 279

cities are the same, and some of these distances are rather small. Therefore, several city
orderings will have the same evaluation. The structured instances also show longer
path lengths to a global optimum, which can be in part explained by high amount of
neutrality.

The average in-strength, d, is usually quite low since most nodes are visited only
once. Higher values indicate either that multiple runs find the same nodes or that there
is cycling between nodes of equivalent evaluation. This cycling is also why d”* is
quite high for some instances.

A surprising consequence of sampling and modelling the local optima networks for
the very neutral instances such as ul060 and f11577, is that the number of connected
components (¢ in Table 2) equals the number of runs in the sampling process (1000).
This means that each run traverses a different set of solutions, in other words, there are
no shared local optima among the runs, even though many runs reach the same objective
function values. We suspect that these instances contain such large plateaus, that runs
(starting from different initial points) explore completely different parts of them. For
example, the number of different global optima found by our sampling process on
instance ul060 is 163,569. The metric n/evals in Table 2, gives an estimate of the
average size of plateaus for each instance, which can be as large as several hundred.

5.2 Funnel metrics

Table 3 reports metrics describing the global structure of the random instances. We
report the proportions of: solutions in the primary funnel (i.e the funnel containing the
global optimum) f,,, solutions in the largest funnel (which can be the primary funnel)
fig, and solutions belonging to more than one funnel f,,. The table also reports the
number of attractors a and funnel sinks s. The proportion of the in-strength (i.e. the
weighted in-degree) of global optimum sinks to the in-strength of all sinks, dg,, is
given and the Chained-LK success rate from Table 1 is reproduced in the last column
for comparison purposes.

Results suggest that the number of funnels generally increases, and the size of
the primary funnel decreases, with increases to the number of cities on both instance
classes. The random uniform instances (prefixed with ‘E’), show a larger number
of funnels and a smaller primary funnel, when compared to the clustered instances
(prefixed with ‘C’). These metrics change faster with the instance size on the uniform
instances, specially the number of funnels. The proportion of solutions in more than
one funnel is also larger for the uniform instances, which is expected given the larger
number of funnels. By virtue of its definition, the relative in-strength of globally
optimal sinks is closely related to success rate, but it is not exactly the same, as can
be observed from the table.

Table 4 reports global metrics for the structured instances. Since these instances
contain neutrality, the attractor-plateaus networks (AN ) are constructed in order to
identify the plateau-sink nodes, and thus the number of funnels. Results suggest that
the number of funnels is less correlated to the instance size as it is the case for the
random instances. Since some of the instances here exhibit several primary funnels,
note that f,, represents the relative size of largest of those funnels. Other instance
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Table 3 Random instances

global structure metrics Jgo Jig Jou “ $ dgo CLK
E506.25 099 099 0.50 4 2 0.75 0.96
E755.73 0.37 059 044 17 10 021 0.13

Relative sizes of the primary E101037 092 092 0.86 33 12 050 049

funnel fgo, the largest funnel EI24385 005 022 046 214 148 003 0.03

J1g» proportion of solutions in

more than one funnel fyy, E1521.33  0.05 0.05 0.17 372 327 0.03  0.03

number of attractor local optima  C506.25 .00 1.00 0.00 5 1 1.00  0.33

a, number of funnel sinks s, and 75573 100  1.00 0.0 1 1 100 1.00

relative in-strength of global

optimum sinks dg,. Chained-LK C1010.37 0.81 0.81 0.72 39 7 032 0.11
success rates are reproduced in C124385 043 043 037 29 9 0.16  0.14
the last column for comparison 152133 048 051 007 28 8 047 0.8
purposes
Table 4 Structured instances global structure metrics

fgo fig fov a ap Sp dgo CLK
att532 0.89 0.89 0.37 52 8 2 0.55 044
2re66 0.74 0.74 0.66 55 29 13 0.26 0.18
pr1002 0.64 0.64 0.46 60 53 50 0.51 0.67
11304 0.74 0.74 0.59 38 33 16 0.34 0.29
nrwl379  <0.01-0.02 0.02-0.04 0.11-0.95 54,325 86473 61-442 0.01 0.01
us74 0.79 0.79 0.29 26 6 2 053 044
rat783 0.82 0.82 0.10 10,104 5 4 0.86 0.96
ul060 <0.01 <0.01 0-0.94 757,533 90-1000 90-1000 0.21 0.21
d1291 0.03-0.08 0.03-0.08 0.50-0.86 476,107  116-294  98-275 022 0.26
11577 <0.01 <0.01 0-0.94 1,838,082  55-1000 55-1000 0.01 0.01

Relative sizes of the primary funnel fg,, the largest funnel fj¢, proportion of solutions in more than one
funnel fpy, number of attractor local optima a, number of plateau attractors ap, number of sink-plateau
nodes sp, and relative in-strength of global optimum sinks dg,. Chained-LK success rates are included. For
the very neutral instances (nrw1379, ul060, d1291, f11577) a range instead of a single value is reported

features seem to influence the landscape global structure. The number of funnels on
the structured instances is somewhere in between that of the uniform and the clustered
random instances (see Table 3). The uniform random instances show the largest number
of funnels in the studied set.

For the instances with high levels of neutrality, i.e. nrtw1379 and the drilling prob-
lems except u574 and rat783, it was not possible to assess whether the attractor local
optima at a given objective function level fully connected into a single plateau or
groups of plateaus sharing the same objective function value. The plateaus are poten-
tially very large, with the sampling process not guaranteeing their full exploration.
Alternatively there may be multiple plateaus for a single objective function level. We
therefore used two different methods to estimate bounds for the different metrics. The
first method approximates the plateaus by assuming that they are indeed connected.
With this approach, instances such as d1291 and 11577, reveal a relatively small num-
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ber of funnels despite their large number of different local optima. The second method
does not assume that there is a single plateau for each objective function level, instead
it considers all connected nodes sharing the same evaluation as different plateaus.
This leads to 1000 such plateaus, the same as the number of runs, for instances ul060
and f11577. Further discussion of this issue, through the analysis of distances between
solutions, is presented in Sect. 5.4. Note that for these two instances, fg, and f;, have
very small ranges and are thus summarised by a single value.

A thorough study of these highly neutral instances may require additional sampling
efforts and additional analysis to characterise the extent of the plateaus. We leave that
for future work. Nevertheless, the global structure in terms of the number of funnels
does not seem to differ significantly from that of the city instances or clustered random
instances, if we assume that plateaus are indeed connected. We argue that search
difficulty on very neutral landscapes relates not only to the multi-funnel structure, but
also to the size and location of the plateaus. A large plateau at the global optimum
level may reflect an easy to search instance, while a large sub-optimal plateau may act
as a trap that is difficult to escape from.

5.3 Network visualisation

One of the advantages of modelling a system as a network, is the possibility of visu-
alising it. This is one of the strengths of the proposed approach, as it allows a more
accessible way of grasping the complexities of landscapes global structure.

Software for analysing and visualising networks is currently available in various
languages and environments. Here we use the R statistical language together with
the igraph package (Csardi and Nepusz 2006). Layout algorithms are at the core
of network visualisation, they assign vertices to positions in a metric space. Force-
directed methods model the pairwise attraction and repulsion of vertices, and are
known to reflect the community structure or modularity of a network (Noack 2009).
We, therefore, use them in order to visually characterise the landscapes’ multi-funnel
structure. Funnels can be visually identified as modules in the network. As our model
indicates, nodes are LK-search local optima and edges represent escape transitions
according to double-bridge moves. We decorated them to reflect features relevant to
search dynamic. The size of nodes is proportional to their incoming strength (weighted
incoming degree), therefore, it reflects the extent to which nodes attract the search
dynamics. The colour of nodes reflects their funnel membership. We used the heat
colours palette, a sequential colour scheme skewed to the reds and yellows. Red
identifies the global optima, and the yellow colour gradient reflects an increase in cost.
The edges’ widths are proportional to their weight, which indicates the frequency of
transitions. That is, the most frequently visited edges are thicker. We present both
2D and 3D images. In Ochoa and Veerapen (2016a), we proposed a 3D visualisation
where the x and y coordinates are, as usual, determined by a graph layout algorithm; the
innovation is to use the objective function as the z coordinate. This provides a clearer
representation of the funnel sink and basin concepts, bringing an almost tangible aspect
to the landscape and funnel metaphors. The global optimum can be identified in the
3D plots as the node with the lowest z coordinate.
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In order to have manageable images, we plotted the networks corresponding to the
subset of local optima within 0.1 or 0.05% in evaluation from the global optimum. We
also removed self-loops for improved visibility. Figures 4 and 5 illustrate local optima
networks for selected random and structured instances, respectively.

The plots in Figs. 4a, b illustrate how the number of funnels rapidly increases with
the number of cities for the uniform random instances. Instance E1243.85 features
76 and 19 funnels for solutions within 0.1 and 0.05% in evaluation from the global
optimum, while instance E755.73, have 4 and 2, respectively. The size of the fun-
nel containing the global optimum is much smaller for E1243.85 as compared with
the smaller uniform instance E755.73 and the clustered instance of the same size
C1243.85. Indeed, instances E755.73 (Fig. 4a) and C1243.85 (Fig. 4b) have a similar
Chained-LK success rate despite their difference in size, which indicates the impor-
tance of global structure in search difficulty. Both instances feature a large secondary
funnel coloured in orange, which acts as a strong attractor of the search process as
indicated by the size of its funnel sink.

Figure 5 illustrates the local optima networks for solutions within 0.1% in objective
function value from the optimal solution for 2 city instances att532 and pr1002, and
one drilling problem u574. Instances att532 (Fig. 5a) and u574 (Fig. 5c) have a similar
CLK success rate and also a similar global structure for solutions within 0.1% in
evaluation from the global optimum cost. They both feature two funnels visualised in
red (the primary funnel) and yellow (the secondary funnel). In att532 the two funnels
are overlapping, whereas in u574 they are separated (for solutions within 0.1 % in
evaluation, but they may overlap at higher solution costs). An important difference
between the random (Fig. 4) and the structured instances (Fig. 5) is that the latter
show neutrality. This is reflected by the number of global optima (a single one for
all the studied random instances), and 2 and 4 for att532 and u574, respectively.
The neutrality can also be appreciated at higher solution costs on the 3D plots for
att534 and u574, where several solutions are located at the same objective function
level.

The global structure of city instance pr1002 (Fig. 5b) is strikingly different. It
clearly has a large primary funnel sink visualised in red, which reflects the high
CLK success rate (0.67) of this instance. There are however 3 secondary funnels
whose sink solutions have an evaluation 80 units higher than the optimum (visu-
alised in orange and yellow). It is important to note that these 3 nodes do not form
a plateau despite having the same objective function values, they are not connected
with double-bridge moves according to our sample. These 3 funnels have several
connections to other solutions in the primary funnel, although they do not connect
directly to the primary funnel sink. Therefore, they are separate funnels according
to our empirical definition. The visual depiction however, seems to reflect that they
belong to the primary funnel, which suggests that there might be hierarchies of funnel
structures.

For some of the studied instances, each sampling run visits a different set of solu-
tions. This leads to as many connected components as there are runs, as is the case for
instances ul060 and f11577. Furthermore, each component consists of a long chain of
nodes with some small loops when plateaus are explored. The previously used network
visualisation provides relatively little information for such cases. Figure 6 presents an
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Fig.4 Local optima networks for selected random instances. Images are shown in 2D and a 3D projection.
Funnel structures are visualised in colours, with red indicating the funnel containing the global optimum,
and the yellow gradient an increase in cost. Grey nodes are those belonging to more than one funnel. The
legend indicates the sinks cost difference from the global optimum. Node sizes are proportional to their
incoming strength. a E755.73, 0.1%, 4 funnels, CLK success: 0.13. b E1243.85, 0.5%, 19 funnels, CLK
success: 0.03. ¢ C1243.85, 0.5%, 3 funnels, CLK success: 0.14 (Color figure online)
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(a)

(b)

(©)

Fig.5 Local optima networks for selected structured instances. Images are shown in 2D and a 3D projection.
Funnel structures are visualised in colours, with red indicating the funnel containing the global optimum,
and the yellow gradient an increase in cost. Grey nodes are those belonging to more than one funnel. The
legend indicates the sinks cost difference from the global optimum. Node sizes are proportional to their
incoming strength. a att532, 0.1%, 2 funnels, CLK success: 0.44. b pr1002, 0.1%, 5 funnels, CLK success:
0.67. ¢ u574, 0.1%, 2 funnels, CLK success: 0.44 (Color figure online)
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Fig. 6 Local optima networks for ul060 and fl1577. For both, the 25 components containing the 25 largest
plateaus are plotted. Each component, which corresponds to a run, is displayed as a column of blue dots
for single solutions and red lines for plateaus. The length of the red lines is proportional to the square root
of the number of unique solutions found in a given plateau in a given component. The y-axis corresponds
to the ratio of objective function values to the that of the global optima. The gray line indicates ratio 0, the
global optima objective value (Color figure online)

alternative visualisation for instances where different runs do not share any common
solutions. Blue dots represent single solutions. Red lines represent consecutive solu-
tions in a plateau, i.e. the solutions have the same cost, and the length of the line is
proportional to the number of solutions in the plateau. Each run is displayed as one
column of dots and lines since there is no overlap between the solutions found in
different runs.

Figure 6 specifically shows the top 25 largest components, i.e. runs, containing
the 25 largest plateaus. A marked difference can be observed in the distribution of
solutions and plateaus between the two instances. For u1060, there is usually a single
plateau at the end of the run that is very close to the global optimum. The latter is
not actually reached for the top 25 runs with largest plateaus. For 11577, runs usually
encounter a number of different plateaus, manage to escape from them, and finally get
stuck in a non-optimal plateau. The globally optimal value is reached in only 3 out
of 25 runs. The fact that ul060 has fewer plateaus to escape than 11577 provides an
explanation for its higher success rate in finding a global optimum out of 1000 runs.
The visualisation provides a straight-forward view of the distribution of plateaus.

A question that remains is whether all the plateaus with equal evaluation found
across the different runs are actually a single very large plateau. We attempt to answer
this by analysing the distance between solutions in Sect. 5.4.

5.4 Distance analysis
In addition to visualising and analysing the networks, it is also useful to examine the

landscapes using the pairwise distances between nodes. We consider the bond distance
in particular, which is defined as the difference in the number of common edges, or
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bonds, between two solutions. It corresponds to the number of edges within a solution
minus the number of edges that are in common between the two solutions considered.

Bond distance heatmaps can be useful to quickly assess how close pairs of solutions
are to each other. Figure 7 displays the pairwise bond distance between sink nodes
or nodes within sink-plateaus for the six instances visualised in Figs. 4 and 5. The
objective function of each node is displayed on the vertical axis. The plot is mirrored
along the diagonal. For E1243.85 and pr1002, only the ten best local optima are
considered and, in both cases, these nodes are sink nodes and are not part of a plateau.
For the other four instances, there are ten or fewer nodes to consider. The colour
gradient allows us to clearly distinguish the two plateaus within instances att532 and
u574. The bond distance within these plateaus is lower than 15 units and generally
only in single digits, showing that the solutions are very similar, as expected.

When considering highly neutral instances, like ul060 and f11577, where each run
produced a new connected component, an important question is whether the different
plateaus found at the same objective function value are actually part of some very
large plateau or if they are an artefact of the stochasticity of the sampling method.

Figure 8§ attempts to provide some insight by visualising the distribution of pairwise
bond distances between sink-plateau nodes sharing the same evaluation. In practice,
because each sink-plateau contains several hundred nodes, we choose the node with the
highest density as the representative of a given sink-plateau. Ties are broken randomly.
Each representative node is then compared to the other representative nodes that share
the same evaluation. The plot has bond distance as x-axis, frequency of occurrence
as y-axis and the objective value of each node pair is colour-coded as shown in the
legend.

For the two instances, the distributions appear multimodal with one major peak.
This was confirmed using Hartigan’s Dip test (Hartigan and Hartigan 1985; Maechler
2016) which rejected the null hypothesis of unimodality (p value <2.2 x 107!6). The
smallest bond distance found for ul060is 17, while itis 42 for f11577. The largest bond
distances are 193 and 199 for u1060 and 11577, respectively. The distances are fairly
large, meaning that it is not easy to move between plateaus sharing the same evaluation.
Still, for ul060, the smaller distances may indicate that these is a roundabout way to
bridge the disconnected plateaus. For fl11577, the larger distances indicate it is unlikely
that the presence of multiple sink-plateaus is purely the result of the sampling process.
However, we cannot conclusively confirm that the sink-plateaus found are actually
separate either. There might be some pathways between sink-plateaus with the same
evaluation if plateaus were explored for more than 10,000 iterations.

5.5 Effects of sampling methodology

In this subsection we investigate the influence of the stopping criterion and of the
number of runs on the networks and their metrics. In a sense, these parameters affect
the “depth” and “width” of the sampled networks.

We first consider the impact of using fewer than 10,000 consecutive iterations
without improvement as the stopping criterion, and whether this threshold is sufficient
for the different metrics to converge. For 18 of the 20 instances, we generate networks
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®

Fig. 7 Heatmaps for pairwise bond distance between sink nodes or nodes within sink-plateaus. Labels on
the y-axis indicate objective function but omitted on the x-axis. Only the 10 best nodes are considered for
E1243.85 and pr1002. For both, the nodes considered are sink nodes and are not part of a plateau. The two
sink-plateaus in att532 and u574 are clearly identified by the nearly-white shading between neighbouring

nodes (low bond distance). a E755.73. b att532. ¢ E1243.85. d pr1002. e C1243.85. f u574
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Fig. 8 Frequency of occurrence of bond distances when considering one node per sink-plateau of ul060
and f11577. For each objective function level of sink-plateaus, bond distances are computed between all
pairs of representative nodes. Columns are stacked and coloured according to the objective value of the
plateau. The full plot is inset on the top right and the main plot is a zoomed-in version showing the bottom
region. a ul060. b f11577 (Color figure online)
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Fig. 9 Influence of stopping criterion on metrics. Each line represents the average value of one metric
across instances. The red line is the success rate (Color figure online)

for 1000 to 10,000 iterations without improvement, with steps of 1000. The instances
left out are those with high neutrality, ul060 and 11577, for which 1000 runs are not
enough to find common solutions between runs. For these instances, a new sampling
methodology that considers the extensive neutrality needs to be devised, but this is
left as future work.

For each (metric, instance) couple, values outside the [0, 1] range are normalised
and, for each stalling iteration increment, the average is computed across the instances.
Results are presented in Fig. 9 where each line joins the average values across instances
for each metric. The success rate is highlighted by the red line. Some of the curves
are markedly non-monotonic. This is an artefact of using independent subsets of runs
for each stalling threshold. In addition, the normalisation exacerbates the differences
between those subsets.

As can be observed, on average the different metrics have approximately converged
when 10,000 non-improving iterations are used as stopping criterion. For many metrics
the majority of the change in values occurs before the 5000 iterations mark. For a few
(a, ap and s)), this happens later, around the 9000 iterations mark. The two weighted
degree metrics (d and d"%) naturally do not converge since more connections between
already discovered nodes appear, especially in sink plateaus. Overall, these findings
suggest that the stopping criterion is appropriate and the sampled landscapes would
not differ greatly with a higher threshold.

We repeated a similar experiment for the number of runs with values from 100 to
1000 with steps of 100. The stopping criterion is fixed to 1000. Normalisation was
performed where necessary as described earlier. We discarded a few data points for
which no global optimum was found since several of our metrics take the global optima
into account. Results are presented in Fig. 10.

In this scenario, the metrics fall within two broad categories: ones that are relatively
constant and those whose value increases. The latter are metrics that depend on the
size of the sample: for instance, the number of local optima and unique evaluations,
the in-strength, and the maximum length of a path to a global optimum. The number
of clusters and of attractor and sink plateaus also increases on average across the
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Fig. 10 Influence of number of runs on metrics. Each line represents the average value of one metric across
instances. The red line is the success rate (Color figure online)

instances. However, when looking at instances individually, they have converged by
1000 runs for smaller instances such as att532. Let us note that the number of global
optima remains more or less constant, except for those instances that have a lot of
them.

Metrics that maintain relatively constant values are those describing properties of
the sampled network with respect to the whole: the proportion of nodes for which
there is a path to a global optimum, the average length of such a path, the relative
sizes of funnels and the relative in-strength of global optimum sinks. On the whole,
these metrics might seem preferable since they do not depend on the number of runs.
Nevertheless, metrics where convergence with respect to the number of runs is unlikely
may still be useful and some arbitrary number of runs should be chosen, probably
related to the available computing budget.

5.6 Correlation study

In order to obtain more general insights into how different landscape features affect
search difficulty, we conduct a correlation study of the different metrics studied in this
paper with respect to the success rate across 1000 runs. To assess the relative quality
of local optima network and global structure metrics as estimators of success, we also
include 64 features based on TSP instance characteristics. These include features that
describe the edge cost distribution, cluster characteristics and minimum spanning trees
(MSTs). They are computed using the tspmeta R package (Mersmann et al. 2013).

Pearson correlations are calculated across two separate sets of instances: 100 uni-
form and 100 clustered instances. For the sake of clarity, only the top 5 positively and
negatively correlated features are presented in Table 5.

We found both instance and network structure features that strongly correlate
with Chained-LK success rate. The features showing the strongest correlations differ
between both sets of instances. On clustered instances, a higher number of struc-
tural features show a strong correlation while the opposite is observed on uniform
instances. However, on the two instance sets, the average path length to a global
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Table 5 Strongest correlations between success rate and features

Uniform instances Clustered instances

T  Feature Corr. T  Feature Corr.
S Rel. in-strength of sub-opt. sinks (dyg,) —0.95 S Rel. in-strength of sub-opt. sinks (d,g,) —0.84
1 Sum of lowest edge values —0.85 S Path length to global opt. (15:0) —-0.71

S Avg. path length to global opt. (/ z.:o) —0.85 S Unique opt. per unique evals (n/evals) —0.65
I~ Number of cities —0.84 S Number of unique local optima (1) —0.65
I Edge value mode frequency —0.84 S Num. of unique evaluations (evals) —0.65
I Nearest-neighbour dist. mean 0.89 I  Nearest-neighbour dist. median 0.58
I MST distance median 0.89 S Rel. size of largest funnel (fj¢) 0.60
I MST distance mean 0.89 I  MST distance mean 0.60
I MST distance sum 0.89 S Rel. size of global opt. funnel (fg,) 0.66
S Rel. in-strength of opt. sinks (dgo) 0.95 S Rel in-strength of opt. sinks (dg,) 0.84

T indicates the type of feature: instance (I) or network structure (S) related

optimum, l;,,, is strongly correlated to success. Also, dg,, the normalised incoming
strength of global-optimum sinks and its complement, djg,, the incoming strength of
non-globally optimum sinks show strong correlations. This is because sub-optimal
sinks act as traps to the search process, from where Chained-LK search cannot escape
with its perturbation operator. For clustered instances, several of the top correlations
are related to neutrality (n, evals, n/evals).

When considering all network structure metrics discussed previously in this paper,
almost all of them produced correlation values below —0.4 or above 0.4. The features
with low correlation values for clustered instances are the number of connected com-
ponents (c), the proportion of solutions in more than one funnel (f,,) and the mean
and maximum in-strength (d and d™%). In contrast, for uniform instances, the 4"
shows a strong correlation (0.74) and it is only f,, that exhibits a low correlation
value with success. Overall, this suggests that the metrics studied reflect the search
dynamics of Chained-LK.

6 Conclusions

Revealing what makes a combinatorial problem hard remains an open challenge. In
this quest, understanding the global structure of the underlying landscapes is essential.
There are few attempts in the literature to analyse, let alone visualise, the global
structure of combinatorial landscapes. This is due in part to the lack of adequate tools
to study their complexity. Local optima networks help to fill this gap. In our sample of
TSP problem instances, we found evidence of multiple funnels, instead of a single big-
valley as previously believed, in TSP landscapes of moderate size (500 to over 1500
cities). Good local optima decompose into multiple valleys of different depths, each
channelling the search process to a separate low cost solution or group of solutions.
We also found evidence of high amounts of neutrality or extensive plateaus at the
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local optima network level in several of the structured instances (i.e. city and drilling
problems).

Our data-driven approach models realistic landscapes as networks, empirically char-
acterises the notion of funnels according to notions from theoretical chemistry, and
proposes novel 2D and 3D network visualisations. This brings new quantitative and
visual insights into landscapes’ global structure. The 3D plots provide a concrete and
intuitive illustration of the fitness landscape and funnel metaphors. The depiction of
edges incoming strength as node sizes, visually reveals the strong attractors of the
search process. We also propose alternative visualisation tools for analysing very neu-
tral, and conduct a distance analysis. Finally, we conduct a correlation study between
Chained-LK success rate and both landscape and TSP instance features.

We found significant differences among the studied instance classes. Randomly
generated instances have a single global optimum and reveal null or very small neu-
trality. On the other hand, structured instances from the TSPLIB generally have more
than one different global optima, with some instances featuring a large global optimum
plateau. This is probably because there are many pairwise city distances with the same
value. Within the same instance class, the number of funnels generally increases, while
the size of the funnel containing the global optima generally decreases with the size of
the instance. However, the instance class strongly influences the global structure. The
random uniform instances revealed a much larger number of funnels as compared with
the other instances studied, which explains why these instances are generally harder
to solve with heuristic search methods.

Our correlation study reveals that Chained-LK success is strongly correlated to
several landscape structural features. On clustered instances a higher number of struc-
tural features show high correlations, as compared to the uniform instances where a
large number of instance features show strong correlations. For both instance types,
however, the features showing the strongest correlation are the incoming weighed
degree of the global optimal sink and its complement, the incoming weighed degree
of the sub-optimal sinks. This confirms the importance of landscapes global structure
in explaining search difficulty: sub-optimal sinks act as traps to the search process,
from where Chained-LK cannot escape with its perturbation operator.

The impact of neutrality on search difficulty is harder to assess, and this will moti-
vate future work with additional sampling mechanisms to explore the extent of local
optima plateaus. Preliminary experiments adding a stronger perturbation to Chained-
LK proved to help in smoothing the funnel structure, that is, reducing the number of
funnels and making the global optima more reachable (Ochoa and Veerapen 2016a).
Future work will expand this study, explore the role of crossover operators in land-
scapes with multiple funnels, and apply the methodology to other combinatorial
optimisation problems.
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