
J Heuristics (2017) 23:137–164
DOI 10.1007/s10732-017-9332-2

A variable neighborhood search for the network design
problem with relays

Yiyong Xiao1 · Abdullah Konak2

Received: 11 October 2015 / Revised: 11 April 2017 / Accepted: 13 April 2017 /
Published online: 24 April 2017
© Springer Science+Business Media New York 2017

Abstract Given a set of commodities to be routed over a network, the network design
problem with relays involves selecting a route for each commodity and determining
the location of relays where the commodities must be reprocessed at certain distance
intervals. We propose a hybrid approach based on variable neighborhood search. The
variable neighborhood algorithm searches for the route for each commodity and the
optimal relay locations for a given set of routes are determined by an implicit enumer-
ation algorithm. We show that dynamic programming can be used to determine the
optimal relay locations for a single commodity. Dynamic programming is embedded
into the implicit enumeration algorithm to solve the relay location problem optimally
for multiple commodities. The special structure of the problem is leveraged for com-
putational efficiency. In the variable neighborhood search algorithm, the routes of the
current solution are perturbed and reconstructed to generate neighbor solutions using
random and greedy construction heuristics. Computational experiments on three sets
of problems (80 instances) show that the variable neighborhood search algorithm with
optimal relay allocations outperforms all existing algorithms in the literature.

Keywords Network design · Telecommunications networks · Variable neighborhood
search · Dynamic programming

B Abdullah Konak
auk3@psu.edu

Yiyong Xiao
xiaoyiyong@buaa.edu.cn

1 School of Reliability and System Engineering, Beihang University, Beijing 100191, China

2 Information Sciences and Technology, Penn State Berks, Tulpehocken Road,
P.O. Box 7009, Reading, PA 19610-6009, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-017-9332-2&domain=pdf

138 Y. Xiao, A. Konak

1 Introduction

The network design problem with relays (NDPR) is a challenging multi-commodity
network design problem with side constraints limiting the distance that a commodity
can traverse a network without visiting a special node called relay. Given a network
and a set of commodities, a path is to be determined to route each commodity from its
source node to its target node. In order to continue its journey, a commodity must be
reprocessed at certain distance intervals on its route. The reprocessing of a commodity
takes place at special nodes, called relays, which must be strategically located on the
network such that the total distance on any path segment without a relay node is
less than an upper bound λ. Being a combination of the network design and facility
location problems, the NDPR and its variants have several application areas such
as telecommunications networks and distribution systems. In fiber-optic networks,
for example, light-wave signals must be regenerated at certain intervals along their
routes in order to overcome attenuation (Winters et al. 1993). In natural gas distribution
networks, compressors are used tomaintain the proper gas pressure (Andre et al. 2009;
Kabirian and Hemmati 2007; Tabkhi et al. 2009). In multi-zone truck dispatching
systems, loads are transferred to new trucks or exchange drivers at the dispatching
hubs en route to their destinations (Ali et al. 2002; Taylor et al. 2001; Üster and
Kewcharoenwong 2011). This strategy ensures the continuous movement of loads. In
variants of the problem adopted in transportation networks, relay locations (charging
stations) should be located within the range of electrical vehicles (Schneider et al.
2014).

In this paper, a partial hybrid algorithm is proposed to solve the version of the
problem that includes three types of decisions as defined by Cabral et al. (2007):
(1) deciding which edges to be included in the network, (2) determining a route for
each commodity, and (3) allocating relay nodes on the commodity routes. In this gen-
eral form, the NDPR has been sporadically studied in the literature since it was first
defined by Cabral et al. (2007) in the context of the wireless network design. Cabral
et al. (2007) proposed a mathematical model where both routing and relay location
decisions are expressed by a single type of decision variable, whichmakes the problem
separable in terms of commodities. Because the combinations of all feasible paths and
relay locations must be generated as input into the model, Cabral et al. (2007)’s model
includes a prohibitively large number of decision variables. To address this challenge,
Cabral et al. (2007) introduced a column generation approach where only a subset of
all feasible path and relay combinations are considered. Although this method does
not guarantee optimality, solutions close to optimality can be found in reasonable CPU
times. In addition, Cabral et al. (2007) proposed four different construction heuristics
to the problem. The common characteristic of these construction heuristics is that a
solution is constructed by adding a commodity to the solution one at a time. These
construction heuristics differ depending on the computational complexity to select the
commodity to add to the partial solution. Kulturel-Konak and Konak (2008) proposed
a network flow-based formulation of the problem and developed a genetic algorithm
(GA) combinedwith local search. TheirGA’s crossover is a greedy construction heuris-
tic, and solutions are improved by local search operators. Konak (2012) showed that
relay locations could be optimally determined for a given set of paths by solving a

123

A variable neighborhood search for the network design... 139

set-covering problem and developed a hybrid-GA where routes are searched by the
GA, and relay locations are determined by solving a set-covering problem. Later on,
Konak (2014) applied the same principle to solve the two-edge disjoint NDPR where
the relay locations are determined by a Lagrangian heuristic. Kabadurmus and Smith
(2015) also studied the two-edge disjoint NDPR by considering edge capacities and
proposed a three-stage heuristic based on the mathematical formulation of the prob-
lem. Laporte and Pascoal (2011) developed a labeling algorithm to find the minimum
cost path with a feasible relay assignment for a single commodity. The authors also
extended their labeling algorithm to solve the bi-criteria version of the problem where
the cost of paths and relays are minimized concurrently. Li et al. (2012) introduced a
column generation approach for the directed version of the problem. Their algorithm
is similar to the approach of Cabral et al. (2007) in the sense that the same formulation
and column generation approach are used, but Lin et al. (2014) utilized MIP and a
variant of the labeling algorithm of Laporte and Pascoal (2011) to solve pricing sub-
problems for each commodity. In addition, Lin et al. (2014) proposed a tabu search
(TS) to the problem.

Optimal relay assignment on a given network, which is a sub-problem of theNDPR,
has also been studied in the literature as a stand-alone problem, particularly within
the context of fiber-optic telecommunications networks. Gouveia et al. (2003) aimed
to determine the optimal locations of switching stations in an optical network under
two conditions: (1) the distance that a light path is routed between two switching
stations is less an upper bound (a technological limit); and (2) a light path can be
routed through only a few number of hops (a quality-of-service requirement). Chen
et al. (2010) defined the optimal regenerator assignment problem as minimizing the
number of regenerators to be located in an optical network under the constraint that
each node pair is connected through at least one path such that the total distance of
each subsequence of the edges on the path without regenerators placed on its internal
nodes is less than an upper bound. They also showed that the optimal regenerator
assignment problem is NP-complete. In a follow-up work, Chen et al. (2015) studied
a generalized version of the problem where only a subset of node-pairs is expected to
be connected. They also devised a branch-and-cut approach based on a node-weighted
directed Steiner forest formulation of the problem, whichwas shown to solve instances
with up to 200 nodes to optimality.

As briefly summarized above, a limited number of heuristic approaches have been
proposed to the NDPR although the exact approaches are only applicable to solve
small-sized problem instances. One of the challenges of developing effective heuris-
tics to the NDPR is the dependency between the routing and relay decisions. If a
combinatorial optimization problem includes multiple types of decisions variables, it
is usually difficult to develop effective encoding schemes and search operators that
can take advantage of the special structure of the problem. In the case of the NDPR,
the researchers exerted a great deal of effort to devise effective crossover/mutation
operators for GA (Konak et al. 2009; Kulturel-Konak and Konak 2008) or local move
operators for TS (Lin et al. 2014) because traditional ones are not viable alternatives
due to the dependency between the route and relay decisions. In such cases, the prob-
lem can be decomposed into sub-problems, each having its own solution space based
on the type of decision variables, and then each sub-solution space is searched by

123

140 Y. Xiao, A. Konak

its specialized algorithm. In the literature, this approach is called partial hybrid algo-
rithms (Talbi 2002). In this paper, a new partial hybrid algorithm is proposed to solve
the NDPR. The contributions of this paper are as follows:

• We propose an exact algorithm to assign relays for a given set of commodity routes
using dynamic programming.

• We develop a label-setting heuristic to solve the NDPR with a single commodity.
• These two algorithms are embedded within a variable neighborhood search (VNS)
framework to generate new solutions from a current solution. It should also be
noted that VNS is applied to the NDPR for the first time in this paper.

The rest of the paper is organized as follows. In Sect. 2, we present the descrip-
tion of the NDPR and a mathematical programming model. In Sect. 3, two dynamic
programming-based algorithms for the relay location problem (RLP) are proposed
for the single-commodity and multi-commodity cases. In Sect. 4, we present a label-
setting algorithm for the one-commodity NDPR to initialize the VNS algorithm. The
VNS algorithm with the exact approach for the RLP is provided in Sect. 5. In Sect. 6,
computational experiments are carried out using 40 existing problem instances and 40
new problem instances, and the results are compared to the existing algorithms in the
literature. Finally, Sect. 7 concludes the paper.

2 Formulation of the problem

We re-formulate the NDPR based on the undirected models by Kulturel-Konak and
Konak (2008) and the directed model by Li et al. (2012). The parameters and decision
variables of the model are listed as follows:

V set of nodes
n number of nodes, n = card(V)

i, j index of nodes, i=1,2,…,n
di j distance between nodes i and j
ci j cost for installing an edge between nodes i and j
λ maximum distance that a commodity can travel without visiting a relay
A set of arcs (i, j) that satisfy di j ≤ λ

ri cost of locating a relay at node i
H set of commodities
m number of commodities, m = card(H)

k index of commodities, k = 1, 2, . . .,m
hik 1 if node i is the source node of commodity k;−1 if node i is the target node

of commodity k; and 0, otherwise.

The decision variables used in the model are defined as follows:

xi j binary variable indicating whether arc (i, j) is selected (xi j = 1) or not (xi j =
0)

yi binary variable indicating whether node i is selected to locate a relay (yi = 1)
or not (yi = 0)

pi jk binary variable indicatingwhether arc (i, j) is used by commodity k(pi jk = 1)
or not (pi jk = 0)

123

A variable neighborhood search for the network design... 141

fik non-negative continuous variable indicating the cumulative travel distance of
commodity k when arrived at node i without visiting a relay. If node i is the
source node of commodity k or is not visited by commodity k, then fik is
zero; otherwise, it is a positive number.

The objective function is to minimize the total cost, including edge and relay costs.
Problem NDPR:

Minimize
∑

(i, j)∈A,i< j

ci j xi j +
∑

i∈N
ri yi

S.t. ∑

(i, j)∈A

pi jk −
∑

(j,i)∈A

p jik = hik ∀k ∈ H, i ∈ V (1)

∑

(j,i)∈A

p jik ≤ 1 ∀k ∈ H, i ∈ V (2)

xi j ≥ pi jk ∀k ∈ H, (i, j) ∈ A (3)

xi j = x ji ∀(i, j) ∈ A (4)

f jk − fik ≥ pi jkdi j − λ(1 − pi jk + yi) ∀k ∈ H, (i, j) ∈ A (5)
∑

(i, j)∈A

pi jkdi j ≤ f jk ≤ λ
∑

(i, j)∈A

pi jk ∀k ∈ H, j ∈ V (6)

xi j , pi jk, yi ∈ {0, 1}; fik ≥ 0 ∀(i, j) ∈ A, k ∈ H (7)

Constraints (1) is the standard node-balance constraints for multicommodity net-
work design problems. Constraint (2) ensures that an arc can be used by a commodity
at most once. Constraint (2) also eliminates sub-tours in the solutions. Constraint (3)
and (4) requires that edge (i, j) is selected if it is used by any commodity. Constraint
(5) is used to calculate the cumulative distance traveled by commodity k without
visiting a relay node. Constraint (6) guarantees the cumulative travel distance at any
node j must be greater than or equal to the distance it has traveled directly from the
predecessor to node j and less than or equal to the upper bound λ. Constraint (6) also
forces f jk to be zero if node j is not visited by commodity k, which is indicated by∑
(i, j)∈A

pi jk = 0.

Problem NDPR uses one less type of decision variables than the model presented
in Kulturel-Konak and Konak (2008). Additionally, Constraint (2) ensures that a node
appears in a commodity route at most once. Constraint (2) also eliminates sub-tours in
a commodity route, reducing the degeneracy of the model. For example, route {1 →
2 → 3 → 2 → . . .3 → 2 → 3 → 4} has the same cost as that of {1 → 2 → 3 → 4}.
Note that Constraint (5) alone cannot prevent this phenomenon if nodes 2 and 3 are
relays.

The NDPR has the property of symmetry on commodity routes. If a commodity
can be sent through the route P(i → j), where i is the source node and j is the
destination node, with relay set Rp along in the tour, then a commodity can also be
sent back through the reverse route P ′(j → i)with the same relay set Rp. Furthermore,
because the network is undirected (i.e.,di j = d ji and ci j = c ji), exchanging the source

123

142 Y. Xiao, A. Konak

and destination nodes of a commodity (or multiple commodities) will not change the
optimal solution.

To solve large-sized NDPRwith a heuristic algorithm, the NDPR is partitioned into
two sub-problems: (1) the routing problem, which deals with selecting edges to route
the commodities from their source nodes to target nodes and (2) the relay location
problem (RLP), which deals with placing relays on the given routes. We propose a
VNS approach for the routing problem and develop an exact algorithm to solve the
RLP for given routes.

3 Exact and heuristic algorithms for the relay location problem

The relay location problem (RLP) is a sub-problem of the NDPR. In this section, two
exact algorithms are introduced for the single-route RLP (S-RLP) and multi-route
RLP (M-RLP). These algorithms are used within the VNS algorithm proposed in this
paper.

3.1 A dynamic programming (DP) method for the single-route RLP (S-RLP)

In this section, a dynamic programming (DP) algorithm is introduced to determine
the optimal relay locations for a given single route. The S-RLP can be described as
follows. A given commodity route consists of n nodes that are indexed from 1 (the
source node) to n (the target node). The distance between node i and its succeeding
node i+1 is denoted as di such that di ≤ λ. Each node i has a relay installation cost of
ri . The goal of the RLP is to find a set of relays with the minimum relay installation
cost such that the total distances between the first node and the first relay, between any
two consecutive relays, and between the last relay and last node are all less than λ.

TheDP algorithm starts from the target node andmoves backward toward the source
node to determine the optimal objective function values and decision variables. The
backward recursive equation of the DP algorithm for the S-RLP is given as follows:

fi =
⎧
⎨

⎩

0 i = n
ri + min{ f j | j = i + 1, ..., i∗}, i = n − 1, n − 2, ..., 2
min{ f j | j = 2, ..., i∗}, i = 1

,

where fi represents the optimal total relay cost (including the relay cost at node
i) for sending the commodity from node i to the target node, and node i∗ is the
farthest node that the commodity can be routed from node i without visiting a relay
in the middle. For each node i , node i∗ can be pre-calculated as i∗ = max{i ′|i ′ =
i, ..., n;

i ′−1∑
j=1

d j, j+1 ≤ λ}. Using the backward recursive equation, the DP algorithm

calculates fi from i = n to 1, where f1 is the optimal total relay cost for the route. The
pseudo-code of the DP algorithm is given in Fig. 1. In the pseudo code, j∗ represents
the best relay location between nodes i + 1 and i∗(Lines from 5 to 10). The optimal
relay cost fi is associated with a set of optimal relay nodes, denoted by Ui , which is

123

A variable neighborhood search for the network design... 143

Function DP ()
1) Let fn 0
2) Let Un {} // set of relay nodes
3) For each i from n-1 to 1step by -1 do
4) Let Acc_dis 0
5) Let j* i+1
6) For each j from i+1 to n do
7) Let Acc_dis Acc_dis + dj-1,j

8) If (Acc_dis>) Then break
9) If (fj<fj*) Thenlet j* j

10) End For
11) Let fi ri + fj*;

12) Let Ui {i} Uj*

13) End For
14) return f1, U1 // the optimal cost and the node set for placing relays

End

Fig. 1 Pseudo-code of dynamic programming for the S-RLP

7 3 5 4 1 3 22 1 1 3 1 2 2 2
Source targetλ=5

f9=0f8=2f7=3f6=3

3

f5=6f4=8f3=6f2=13f1=6

987654321
4

Fig. 2 An example of S-RLP

obtained by Ui = {i} ∪Uj∗ (Line 12). The DP algorithm has O(n2) time complexity.
Due to its special structure of the routes, the problem can be effectively solved for a
single commodity using dynamic programming.

Figure 2 illustrates an example of the S-RLP, where the relay and edge costs are
displayed above the nodes and edges, and themaximumdistanceλ is 5. The commodity
is routed from node 1 to node 9. Table 1 shows the detailed steps of calculating fi
from i = 9 to i = 1.

3.2 A recursive dynamic programming method for multi-route RLP (M-RLP)

The M-RLP is much more complex than the S-RLP because commodity routes may
share paths and relay nodes. Figure 3 illustrates an example of theM-RLP where three
commodities share common route segments. Therefore, applying the DP algorithm
to the M-RLP one route at a time may yield a good solution but does not guarantee
optimality.

Nevertheless, we can apply the DP algorithm within a recursive implicit enumer-
ation framework to obtain the optimal solution for the M-RLP. The algorithm is
referred to as the Recursive Dynamic Programming (RDP) algorithm. Let π(k) =
{sk1, sk2, · · · , sklk } represent the route of commodity k such that skp is the index of
the pth node and lk is the number of the nodes in the route (p = 1 for the source node
and p = lk for the target node). We define fkp as the optimal total relay cost of the
sub-problem consisting of route k from the pth node to the last node and the remain-

123

144 Y. Xiao, A. Konak

Table 1 The calculation steps of dynamic programming

i ri i∗ Programming for
calculating fi

Opt. j∗ j∗ ∈ [i + 1, i∗] fi Set of relay node
Ui = {i} ∪Uj∗

9 4 9 f9 = 0 0

8 2 9 f8 = r8 + min{ f9} 9 2 8

7 3 9 f7 = r7 + min{ f8, f9} 9 3 7

6 1 9 f6 = r6 + min{ f7, f8, f9} 8 3 6, 8

5 4 8 f5 = r5 + min{ f6, f7, f8} 8 6 5, 8

4 5 6 f4 = r4 + min{ f5, f6} 6 8 4, 6, 8

3 3 6 f3 = r3 + min{ f4, f5, f6} 6 6 3, 6, 8

2 7 5 f2 = r2 + min{ f3, f4, f5} 5 or 3 13 2, 5, 8 or 2,3,6,8

1 3 4 f1 = r1 + min{ f2, f3, f4} 3 6 1, 3, 6, 8

The boldface font indicates the optimal solution

Fig. 3 An example of the
M-RLP with three overlapping
routes

1
s1

t1

s2

t2 s3

t3

2 3 4 5

6
7

8

9

10

11

ing routes from k+1 to m. For example in Fig. 3, f1,1 will be the optimal objective
value of the original problem, f1,3 represents the optimal solution of the sub-problem
consisting of routes {3 → 4 → 5 → 6}, {9 → 5 → 4 → 3 → 2 → 8 → 7}, and
{11 → 4 → 3 → 10}, and f2,2 represents the optimal solution for sub-problem com-
posed of routes {5 → 4 → 3 → 2 → 8 → 7} and {11 → 4 → 3 → 10}. Note that
fkp includes only the relay cost of newly installed relays for the current sub-problem
and excludes the cost of existing relays installed by the higher level of sub-problem (the
original problem is the highest level). The recursive dynamic programming equation
can be formulated as follows:

fkp =
⎧
⎨

⎩

0 ∀p = lm; k = m
fk+1,1 ∀p = lk; k = m − 1, ..., 2, 1
ri + min{ fkq |q ∈ [p + 1, p∗]} ∀i = Skp; p = lk − 1, ..., 2, 1; k = m, ..., 2, 1;

where p∗ is the farthest node that commodity k can be sent to without visiting a
relay node if the commodity starts from the pth node. Node p∗ can be determined

by p∗ = max{p′|p < p′ ≤ lk,
p′−1∑
q=p

dskq ,sk,q+1 ≤ λ}. The RDP algorithm for M-RLP

starts from the first node (p = 1) of the first commodity (k = 1) and moves to the
last node (p = lm) of the last commodity (k = m) through a series of recursive calls.
Note that the backward recursive procedure used in the DP algorithm for the S-RLP

123

A variable neighborhood search for the network design... 145

Fig. 4 A numeric example of the M-RLP with λ = 4

introduced in Sect. 3.1 is not directly applicable to the M-RLP. In the M-RLP, each
fkp needs to be calculated multiple times due to sharing of nodes among commodity
routes. Figure 4 illustrates this difference and the logic of recursion on an example
with two commodity routes, Route 1 [1 → 2 → 3 → 4 → 5 → 6] and Route 2
[7 → 8 → 3 → 4 → 9 → 10], such that nodes 3 and 4 are shared by these two
routes. The steps of the backward recursive procedure to calculate the values of fkp
from f26 to f11 are given in Table 2. In step 9, f15 and f16 need to be recalculated
after fixing y4 = 1 because placing a relay at node 4 will affect the optimal values for
f15 and f16 (i.e., node 4 is also shared by Route 1). The same rule applies to step 10
because node 3 is also shared by the previous route.

The RDP algorithm is a forward recursive procedure that starts from f11 and works
toward fkp. The pseudo-code of the RDP algorithm is described in Fig. 5, where the
procedureMain() is the starting point of recursion and returns the optimal f11 as well.
The function Get_ f (k, p) calculates fkp using recursion. A global array is needed to

Table 2 Steps of M-RLP with dynamic programming

step fkp First node Shared Calculation function

1 f26 10 0 f26 = 0

2 f25 9 0 f25 = r9 + min{ f26}
3 f24 4 0 f24 = r4 + min{ f25, f26}
4 f23 3 0 f23 = r3 + min{ f24, f25}
5 f22 8 0 f22 = r2 + min{ f23, f24}
6 f21 7 0 f21 = min{ f22, f23, f24}
7 f16 6 0 f16 = f21
8 f15 5 0 f15 = r5 + min{ f16}
9 f14 4 1 f14 = r4 + min{ f15, f16}.

Note: f15 and f16 need to
be recalculated with fixing
y4 = 1

10 f13 3 1 f13 = r3 + min{ f14, f15}
Note: f14 and f15 need to
be recalculated with fixing
y3 = 1

11 f12 2 0 f12 = r2 + min{ f13, f14}
12 f11 1 0 f12 = min{ f12, f13}

123

146 Y. Xiao, A. Konak

1)Main ()
2)Begin
3) Let k 1, p 1
4) Result Get_f (k, p)
5)End
6)Function Get_f(cur_k, cur_p)
7) For each k from cur_k to m do
8) If (k = cur_k) Then let start_p cur_p

9) Else let start_p 1
10) Let last_station start_p; Acc_dis 0
11) For each p from start_p+1 to lk do
12) Let i sk,p-1, j skp, Acc_dis Acc_dis+dij

13) If Acc_dis Then
14) If yj=1 Then let Acc_dis 0, last_station p

15) Else //must have a relay in [last_station+1, p-1], and find the optimal position q*.
16) Let c* A_large_number

17) For each q from last_station+1 to p-1 do
18) Let i' skq, yi' 1
19) Let c ri' + Get_f(k, q)
20) If c* > c Then Let c* c, q* q

21) Let yi' 0
22) End For
23) Return c*

24) End If
25) End For
26) End For
27) Return 0
28)End

Fig. 5 Pseudo-code of the RDP algorithm for multi-route RLP

store the optimal relay position calculated at Line 20 of Fig. 5 (temporary variable
q∗). The main functions of the procedureGet_ f (cur_k, cur_p) are to find the optimal
position q∗ between [last_station+1, p−1] (from Line 16 to 22) and to assign a relay
to node q∗. During recursion, fkp may be calculated several times as shown in the
example above. In each level of recursion, the algorithm stops after the optimal relay
station behind the starting node is found. The function Get_ f (cur_p, cur_k) returns
the optimal fcur_p,cur_k if an optimal q∗ exists (Line 23) or returns 0 otherwise (Line
27), which means that the existing assignment of relays is already feasible.

The RDP algorithm is a depth-first-like recursive algorithm, which is known to be
P-complete (Reif 1985). In the worst case scenario, the RDP algorithm requires O(n!)
recursions. In practice, however, many recursive calls can be avoided by using the
following properties.

Property 1 For a commodity route k of the M-RLP, a relay must be located at node i
if d ji + di j ′ > λ.

Property 1 is straightforward. It simply states that if the total distance of any two
consecutive edges of any route is greater than λ, then a relay must be placed at the
middle node of the two consecutive edges. According to Property 1, relays can be
assigned to some nodes of the routes in advance to reduce the computational burden.

123

A variable neighborhood search for the network design... 147

Property 2 For any route k of the M-RLP, if the commodity can be sent through
P(s → t), with relay set Rp, then the commodity can also be sent through the reverse
route P ′(t → s) with the same relay set Rp.

Property 3 For any two routes k1 and k2 of the M-RLP, if route k1 is a sub-route of
or equal to route k2, then route k1 can always share the relays of route k2, without
installing any additional relay for route k1.

Property 3 indicates that if route k1 is a part of route k2, we can remove route k1
before calling the RDP to optimize the relay cost, and the resulting solution will be
the same because the removed route k1 can always utilize the relays of route k2.

The above properties can significantly reduce the computational burden of the RDP
algorithm in large-sized problems because commodities tend to share route segments.
The approach is first to use Property 1 to divide the commodity routes into multiple
sub-routes and then use Property 2 to identify those sub-routes that are part of or
equal to other routes and remove them (Property 3). After that, we can use the RDP
algorithm to optimize the relay cost of remaining sub-routes. For example, given
a M-RLP instance with two commodity routes: [1 → 2 → 3 → 4 → 9] and
[5 → 6 → 3 → 4 → 9 → 8] such that d23 + d34 ≥ λ, node 3 must have a relay
according to Property 1, and the original two-commodity M-RLP is then divided into
a four-commodity M-RLP with routes: [1 → 2 → 3], [3 → 4 → 9], [5 → 6 → 3],
and [3 → 4 → 9 → 8]. According to Property 3, route [3 → 4 → 9] is a sub-route of
route [3 → 4 → 9 → 8] so it can be removed. As a result, we need only to apply the
RDP to the remaining routes [1 → 2 → 3], [5 → 6 → 3], and [3 → 4 → 9 → 8] to
obtain the optimal relay cost.

4 A label-setting algorithm

In this section, a label-setting heuristic, called LSA(s, t), is introduced to construct a
route with feasible relay assignments from a source node s to a target node t such that
the total cost of the edges and relays are minimized. The main idea of LSA(s, t) is to
construct the route one node at a time by selecting the lowest cost node among a set
of candidate nodes in a similar way to Dijkstra’s Shortest Path Algorithm. A notable
difference is that the optimal cost of the route is calculated by the DP procedure. In
Fig. 6, we present the pseudo-code of the LSA(s, t) procedure. In the procedure, vi
denotes the label of node i(vi = 0 for unvisited and vi = 1 for visited), Ci is the
cost (edge and relay costs) of a feasible route from node s to node i , and Pi is the
predecessor of node i on the route from node s to node i . In the beginning, each node
i ∈ N is labeled as unvisited and assigned to a large temporary cost. In each iteration,
Ci is updated for each unvisited node using the DP procedure and the node with the
lowest Ci is labeled as visited, i.e. its route from node s is fixed.

The LSA(s, t) procedure is used to repair disconnected routes during the process of
creating candidate solutions in theVNS algorithm. In addition, theLSA(s, t) procedure
is also used to construct a random feasible initial solution for the VNS algorithm. The
procedure to construct a random solution is presented in Fig. 7. In each iteration of
the procedure, a commodity k that has not been routed yet is randomly selected, and

123

148 Y. Xiao, A. Konak

01) Procedure LSA(s, t)
02) For each i in N do
03) Set vi 0 //initialize the visit states of node i to be unvisited

04) Set Ci M //initialize the cost from node s to node i
05) Set Pi s //initialize the predecessor of i to be source node s
06) End For
07) Set i s //set s as current node
08) Set Ci 0
09) Do while (i t)
10) For each (i, j) in A such that vj=0 do
11) Generate the path Q from node s to node j by utilizing Pi and arc (i, j)
13) If (DP(Q)<Cj) Then Set Cj DP(Q) and Pj i

14) End For
15) Set vi 1 //set node i as visited

16) Set i arg min {Cj | j N and vj=0} //select the next unvisited node
17) End Do
18) Generate a path Q from node s to node t by utilizing Pt

19) Set R DP(Q) //call DP to get the optimal relays of Q
20) Return Q, Ct, and R //return the route, cost, and relays from node s to node t
21) End

Fig. 6 Pseudo-code of the LSA(s, t) for the one-commodity NDPR problem

1) Procedure Construct_Solution()
2) Do while(H {})
3) Select a commodity k randomly and uniformly from H
4) Set H H\ k
5) Call LSA(sk, tk) to determine the route (Qk) and relay assignments (Rk) for commodity k

6) Set cij 0 for all (i, j) Qk

7) Set ri 0 for all (i, j) Rk

8) End Do
9)End

Fig. 7 Initial solution construction procedure

the LSA(s, t) procedure is applied to determine the route (Qk) and relay assignments
(Rk) of commodity k. Before constructing the route for the next commodity, the cost
of the arcs and relays that are already installed for the previous commodities are set to
zero. Thereby, a solution is constructed one commodity at one time in a random order
of commodities.

5 Variable neighborhood search (VNS) for the NDPR

Variable neighborhood search (VNS) is a high-level metaheuristic that has been suc-
cessfully applied to different optimization problems in various fields (Mladenović and
Hansen 1997; Hansen and Mladenović 1997; Xiao et al. 2014). In this section, a VNS
algorithm is proposed to iteratively improve a current solution that is constructed by
the LSA(s, t) procedure. The VNS algorithm removes a randomly selected segment
of a randomly selected commodity route from the current solution and constructs new

123

A variable neighborhood search for the network design... 149

paths to reconnect the disconnected segments. If the resulting solution has a better
objective function value, it is accepted as the new current solution; otherwise, it is
rejected. We define the neighborhood structure of the current solution in terms of the
difference between the numbers of the nodes in the disconnected route and the newly
constructed route, i.e., length(z′)− length(z) where z and z′ denote the selected exist-
ing route and the new route, respectively, and length(z) represents the number of the
nodes of route z. Thus, given a number K , a new route z′ is generated from the current
route z as follows:

(i) Two random nodes i and j of the current route z are selected.
(ii) All arcs of the nodes on the path connecting nodes i and j are removed temporarily

from the current solution.
(iii) A random new path from node i to node j is found by using a random depth-first

search such that length(z′) − length(z) ≤ K .

Parameter K is the neighborhood index that restricts a candidate solution to be
generated within the K th neighborhood of the current solution and limits the extent
to which the current solution is allowed to change in the process of generating the
candidate solution. TheVNS algorithm searches for new solutions in the neighborhood
structures by increasing K from zero to Kmax sequentially. In Fig. 8, we provide an
example to illustrate how the neighborhood structures are defined. Figure 8a shows
the current route of commodity k starting from source node sk to target node tk . In
the figure, the solid nodes indicate the route segment to be removed while the arcs
between any two empty nodes of the route remain intact. In Fig. 8b–f, the five routes
represent candidate solutions generated from different neighborhoods of the current
solution.

After the initial solution is set as the current solution, the VNS algorithm first
searches for new better solutions with K = 0. That means only the candidates with
route length shorter than or equal to the current solution will be generated. If a better
one is found, then it is accepted as the new current solution (the first improvement

sk

tk
sk

tk
sk

tk

(A) (B) (C)

sk

tk
sk

tk
sk

tk

(D) (E) (F)

Fig. 8 Examples of neighborhood structures used in the VNS algorithm a current solution b a new route
path with K = −1 c a new route path with K = 0 d a new route path with K = 1 e a new route path with
K = 2 f a new route path with K = 3

123

150 Y. Xiao, A. Konak

1) ProcedureVNS_for_NDPR(Pmax, Kmax, Nmax)

2) Let P 0

3) Do while (P Pmax)

4) Call LSA(s, t) to initialize a solution with a random commodity order.

5) Let f the current solution’s objective value, fbest f

6) Let K 0, N 0

7) Do while (K Kmax)

8) Select a random commodity c, and on its route randomly select two nodes i and j

9) Temporarily remove of all arcs of the nodes between nodes i and j

10) Find a random path connecting nodes i and j such that length(z') - length(z) K

11) Call procedure LSA(s, t) to rebuild all other routes that have been broken

12) Call Recursive Dynamic Programming to optimize relay locations

13) Calculate the new objective cost fnew

14) If (fnew<f)Then accept the new solution, and let f fnew,K 0, N 0

15) Else let N N +1

16) If (N Nmax) Then let K K+1, N 0

17) End Do
18) If (f < fbest) Then let fbest f, P 0

19) Else let P P +1

20) End Do
21) Return fbest

22) End

Fig. 9 Framework of VNS algorithm for NDPR

principle), and the search is restarted by setting K ← 0. If the current solution is
not improved after Nmax consecutive new solution generations in the neighborhood
K , a broader neighborhood is tried by setting K ← K + 1. After the highest level
of the neighborhood (i.e, K = Kmax) is searched without any improvement, the
VNS algorithm is restarted with a new initial solution. The search is terminated when
either a maximum elapsed CPU time Tmax has been reached, or the search has been
consecutively restarted for Pmax times without any improvement in the best solution.
In Fig. 9, we present the overall VNS algorithm for the NDPR. The lines (8), (9),
and (10) implement the shaking concept in VNS, which generates random candidate
solutions. Lines (10), (11), and (12) serve as the role of a greedy local search procedure
that uses procedure LSA(s, t) and the RDP procedures to construct new routes and
determine the optimal relays. In other words, the process of generating new candidate
solutions (from line (8) to (12)) includes both a random search to discover diverse
solutions and a greedy approach to increase the effectiveness of the search.

Note that in line 9 of Fig. 9, the arcs of the removed route segment may also be
shared by other commodity routes. Therefore, removing these arcs may disconnect
other routes, and these broken routes are reconstructed using the LSA(s, t) proce-
dure. Although the LSA(s, t) procedure is a deterministic greedy algorithm, different
solutions can be discovered because the path between the selected nodes i and j is
randomly repaired. An example of this process is shown in Fig. 10 where Route 1
(from node s1 to node t1) is selected to create a new solution. When the arcs of the
nodes on the path between nodes i and j are removed (fromFig. 10a, b), Route 2 is also

123

A variable neighborhood search for the network design... 151

s1

t1

s2

t2

i
j

s1

t1

s2

t2

i
j

i'

j'

(A) (B)

s1

t1

s2

t2

i
j

i'

j'
s1

t1

s2

t2

i
j

i'

j'

(C) (D)

Fig. 10 An example of neighborhood search

broken from node i ′ to node j ′. Therefore, after the selected route is reconnected using
a random depth-first search as shown in Fig. 10c, (line 10), the LSA(s, t) procedure is
used (line 11) to rebuild any remaining disconnected routes (Fig. 10d).

6 Computational experiments

This section presents the results of computational experiments to test the VNS algo-
rithm and compare its performance with other algorithms from the literature. First, the
VNS algorithm is used to solve the problem set defined by Konak (2012). This prob-
lem set includes 40 instances of two types—Type-I and Types-II as given in Tables 4
and 6. In Type-I problems, cost ci j and distance di j of edge (i, j) are defined as the
Euclidian distance between nodes i and j.In Type-II problems, the cost is defined as
ci j = λ − di j so that there is a strict tradeoff between the edge distance and cost. As
shown in Tables 4 and 6, two different levels of λ and |H | values are used for each
problem group. In addition, a new set of test problems, referred to as Type-III, are
considered in this paper. The Type-III problem set uses the same networks with those
of the Type-I and Type-II sets, but cost ci j for edge (i, j) is a random number gen-
erated between 0 and λ, and larger numbers of commodities are considered to make
the problems more challenging. The parameters of these new test problems are given
in Table 8. The VNS algorithm was coded in VC++ 6.0 and run on a PC computer
equipped with 3.4GHz Intel� Coretm i5 3570 CPU and MSWindows 7 system (Fig.
11).

The first set of experiments involved testing the effectiveness of the LSA(s, t) pro-
cedure, which is used to initialize solutions and repair disconnected routes while

123

152 Y. Xiao, A. Konak

(A) (B)

0

10

20

30

40

50

60

70

80

90

100

0 25 50 75 100 0 25 50 75 100
0

10

20

30

40

50

60

70

80

90

100

Fig. 11 Two optimal solutions verified by AMPL/CPLEX (nodes with circle indicating relays) a No. 1
instance of Type-III (cost = 367) b No. 2 instance of Type-III (cost = 176)

Table 3 The comparisons of single commodity solutions found by LSA(s, t) to the optimal solutions

Prob. type Instances Optimal solutions found
by LSA(s, t)

Optimality rate (%) Average deviation from
optimal solution (%)

I 150 150 100 0

II 150 150 100 0

III 500 361 72.7 2.1

generating new solutions in the VNS algorithm. The LSA(s, t) procedure was used to
find the route and relay assignments for each single commodity of the test problems
individually and compared the solutions to the optimal solutions found by Problem
NDPR.Note that the optimal route and relay assignments can be determined effectively
for a single commodity. In Table 3, the summary of this comparison is presented. The
LSA(s, t) procedure found all the optimal solutions of the 300 problem instances of
Type-I and Type-II successfully. For Type-III problems, the LSA(s, t) procedure found
361 optimal solutions for the 500 test instances. On the average, the LSA(s, t) proce-
dure yielded 2.1% higher cost than the optimal solutions for 500 problem instances of
Type-III.

Table 4 presents the comparative results for the problem instances of Type-I (i.e.,
ci j = di j). Each problem instance was repeatedly solved for 10 random replications
with the same parameter settings of Pmax = 10, Kmax = 3, and Nmax = 3000.
In the table, the column Dev. indicates the deviation from the best of 10 runs of
the VNS algorithm to the previous best-known solutions from Kulturel-Konak and
Konak (2008), Konak (2012), or Lin et al. (2014). New best-known solutions were
found for instances No. 15, No. 19, and No. 20, and these new solutions are given in
Figs. 12, 13 and 14 in “Appendix”. The overall performance of the VNS algorithm is
compared to the existing algorithms in Table 5, where column Avg. cost indicates the
average objective function value of 20 Type-I problems, column Best solutions found

123

A variable neighborhood search for the network design... 153

Table 4 Results of the computational experiment for Type-I problems

Nos. n m λ |A| Prev. best
known

10 runs of VNS

Avg Best Dev. Avg time(s)

1 40 5 30 198 473.80 473.80 473.80 0.00 13

2 40 5 35 272 354.57 354.57 354.57 0.00 11

3 40 10 30 198 518.98 518.98 518.98 0.00 37

4 40 10 35 272 399.76 400.48 399.76 0.00 52

5 50 5 30 279 283.78 283.78 283.78 0.00 9

6 50 5 35 372 260.23 260.23 260.23 0.00 8

7 50 10 30 279 540.38 540.38 540.38 0.00 37

8 50 10 35 372 407.48 408.51 407.48 0.00 52

9 60 5 30 305 509.90 509.89 509.89 0.00 20

10 60 5 35 412 377.02 377.02 377.02 0.00 20

11 60 10 30 305 678.84 678.84 678.84 0.00 59

12 60 10 35 412 499.63 499.63 499.63 0.00 48

13 80 5 30 641 356.65 356.65 356.65 0.00 63

14 80 5 35 853 328.80 328.80 328.80 0.00 36

15 80 10 30 641 464.99 463.16 463.16 −1.83 93

16 80 10 35 853 436.75 436.75 436.75 0.00 130

17 160 5 30 2773 287.84 287.84 287.84 0.00 52

18 160 5 35 3624 270.22 271.47 270.22 0.00 71

19 160 10 30 2773 405.64 404.96 404.96 −0.68 432

20 160 10 35 3624 397.59 398.04 392.24 −5.35 500

The boldfaced-italic and boldfaced fonts indicate new and previous best-known solutions, respectively

shows the number of problems in which the algorithm is able to find the best-known
solution, column Avg. dev. from best indicates the average value of the deviations
(in percentage) of the solutions from their individual new best-known solutions, and
column Avg. time(s) indicates the average CPU time (in seconds). It can be seen that
the VNS algorithm had the best performance (best of 10) in terms of Avg. cost, Best
solutions found, and Avg. dev from best. The VNS algorithm found the best-known
solution for all the problem instances. The second best method is the GA(avg. of 10)
with the relatively higher computational efficiency, the third one is LSGA(best of 10),
and CH1 is the worst one with only one best solution found.

In Tables 6 and 7, the VNS algorithm is compared to the previous methods using
Type-II problems (i.e., ci j = λ − di j). These results were also found with the same
parameters settings of Pmax = 10, Kmax = 3, and Nmax = 3000, and each problem
instance was solved for 10 random replications. It can be seen in Table 6 and 7 that
although the VNS algorithm did not improve the best-known solutions of the Type-
II problems, it is very competitive. Notably, for 19 out of 20 instances (excluding
No. 18 instance), the VNS algorithm could always find their previous best-known
solutions in each of the 10 replications, indicating a robust performance for Type-II

123

154 Y. Xiao, A. Konak

Ta
bl
e
5

C
om

pa
ri
so
n
w
ith

th
e
ex
is
tin

g
al
go

ri
th
m
s
on

Ty
pe
-I
pr
ob

le
m
s

M
et
ho

d
A
vg

.c
os
t

B
es
ts
ol
ut
io
ns

fo
un

d
A
vg

.d
ev
.f
ro
m
be
st

(%
)

A
vg

.t
im

e(
s)

C
PU

ty
pe

M
et
ho

d
so
ur
ce
/s
ol
ut
io
n
so
ur
ce

C
H
1

45
2.
61

1
9.
85

−
–

C
ab
ra
le
ta
l.
(2
00

7)

L
SG

A
(b
es
to

f
10

)
41

4.
19

16
0.
40

52
36

3.
2G

In
te
lX

eo
n

K
ul
tu
re
l-
K
on

ak
an
d
K
on

ak
(2
00

8)

G
A
(a
vg

.o
f
10

)
41

9.
46

1
1.
80

11
4

3.
2G

In
te
lX

eo
n

K
on

ak
(2
01

2)

G
A
(b
es
to

f
10

)
41

3.
31

10
0.
25

11
42

3.
2G

In
te
lX

eo
n

K
on

ak
(2
01

2)

T
S
(a
vg

.o
f
10

)
42

2.
28

1
2.
21

70
PC

L
in

et
al
.(
20

14
)

T
S
(b
es
to

f
10

)
41

4.
12

9
0.
43

24
0

PC
L
in

et
al
.(
20

14
)

V
N
S
(a
vg

.o
f
10

)
41

2.
69

16
0.
12

87
3.
4
G
In
te
lC

or
e
i5

35
70

T
hi
s
pa
pe
r

V
N
S
(b
es
to

f
10
)

41
2.
25

20
0.
00

87
2

3.
4
G
In
te
lC

or
e
i5

35
70

T
hi
s
pa
pe
r

T
he

bo
ld
fa
ce
d
fo
nt
s
in
di
ca
te
be
st
va
lu
es

123

A variable neighborhood search for the network design... 155

Table 6 Results of the computational experiment on 20 instances of Type-II

No. Node m λ |A| Prev. best known 10 runs of VNS

Avg Best Dev. Avg time(s)

1 40 5 30 198 247.27 247.27 247.27 0.00 10

2 40 5 35 272 111.30 111.30 111.30 0.00 6

3 40 10 30 198 292.62 292.62 292.62 0.00 17

4 40 10 35 272 140.51 140.51 140.51 0.00 15

5 50 5 30 279 119.80 119.80 119.80 0.00 7

6 50 5 35 372 155.57 155.57 155.57 0.00 9

7 50 10 30 279 279.70 279.70 279.70 0.00 21

8 50 10 35 372 206.22 206.22 206.22 0.00 28

9 60 5 30 305 317.32 317.32 317.32 0.00 18

10 60 5 35 412 166.35 166.35 166.35 0.00 10

11 60 10 30 305 414.32 414.32 414.32 0.00 30

12 60 10 35 412 242.32 242.32 242.32 0.00 20

13 80 5 30 641 134.73 134.73 134.73 0.00 47

14 80 5 35 853 104.04 104.04 104.04 0.00 21

15 80 10 30 641 187.17 187.17 187.17 0.00 65

16 80 10 35 853 168.62 168.62 168.62 0.00 55

17 160 5 30 2773 78.61 78.61 78.61 0.00 78

18 160 5 35 3624 68.15 68.19 68.15 0.00 71

19 160 10 30 2773 112.06 112.06 112.06 0.00 98

20 160 10 35 3624 109.12 109.12 109.12 0.00 65

The boldfaced fonts indicate previous best-known solutions. The solutions are rounded to two decimal
places

problems.The comparisonwith the existing algorithms is summarized inTable 7. Since
Lin et al. (2014) did not solve Type-II problems, the performance of the TS algorithm
is not available for comparison. It can be seen that the VNS (best of 10) and the GA
(best of 10) are identical. In terms of the average performance, however, the VNS
outperformed the GA for the Type-II problem set.

In Tables 8 and 9, the VNS algorithm and the GA (Konak 2012) are compared using
Type-III problems. The VNS algorithm was run with the same setting of Pmax = 10,
Kmax = 3, and Nmax = 3000 for ten random replications. The GA was also run for
2000 generations with the population size of 50 as used in Konak (2012). The best and
average solutions of the both algorithms are listed in Table 8. ColumnDev. of GA from
VNS presents the deviations of the results of the VNS algorithm from the GA in terms
of the average solution of 10 runs, best solution of 10 runs, and average computational
time. In terms of the best solution of 10 runs, the VNS algorithm outperformed the
GA in 33 problems, found the same solutions with the GA in six problems, and
performed worse than the GA only in one problem. Regarding the average solution of
10 runs, the VNS algorithm significantly outperformed the GA. Table 9 provides the
summary of the comparison between the GA and VNS. The average computational

123

156 Y. Xiao, A. Konak

Ta
bl
e
7

C
om

pa
ri
so
n
w
ith

ex
is
tin

g
al
go

ri
th
m
s
on

20
in
st
an
ce
s
of

Ty
pe
-I
I

M
et
ho

d
A
vg

.c
os
t

B
es
ts
ol
ut
io
ns

fo
un

d
A
vg

.d
ev
.(
%
)

A
vg

.t
im

e(
s)

C
PU

ty
pe

M
et
ho

d
so
ur
ce
/s
ol
ut
io
n
so
ur
ce

C
H
1

19
0.
19

4
4.
15

–
–

C
ab
ra
le
ta
l.
(2
00

7)
,K

on
ak

et
al
.(
20

09
)

L
SG

A
(b
es
to

f
10

)
30

4.
64

0
80

.8
2

36
98

3.
2G

In
te
lX

eo
n

K
ul
tu
re
l-
K
on

ak
an
d
K
on

ak
(2
00

8)

G
A
(a
vg

.o
f
10

)
18

8.
90

7
3.
37

10
3

3.
2G

In
te
lX

eo
n

K
on

ak
(2
01

2)

G
A
(b
es
to

f
10
)

18
2.
79

20
0.
00

10
31

3.
2G

In
te
lX

eo
n

K
on

ak
(2
01

2)

V
N
S
(a
vg

.o
f
10

)
18

2.
79

19
0.
00

35
3.
4G

In
te
lC

or
e
i5

35
70

T
hi
s
st
ud

y

V
N
S
(b
es
to

f
10
)

18
2.
79

20
0.
00

34
6

3.
4G

In
te
lC

or
e
i5

35
70

T
hi
s
st
ud

y

T
he

bo
ld
fa
ce
d
fo
nt
s
in
di
ca
te
be
st
va
lu
es

123

A variable neighborhood search for the network design... 157

Ta
bl
e
8

R
es
ul
ts
of

th
e
co
m
pu

ta
tio

na
le
xp

er
im

en
to

n
40

Ty
pe
-I
II
pr
ob

le
m
s

N
o.

N
od

e
m

λ
|A

|
10

ru
ns

of
V
N
S

10
ru
ns

of
G
A

D
ev
.o

f
G
A
fr
om

V
N
S

A
vg
.

B
es
t

A
vg
.t
im

e(
s)

A
vg
.

B
es
t

A
vg
.t
im

e(
s)

A
vg
.

B
es
t.

T
im

e

1
40

5
30

19
8

36
7.
0

36
7

24
37

6.
8

37
1

71
−9

.8
−4

−4
7

2
40

5
35

27
2

17
6.
0

17
6

12
18

0.
8

17
6

50
−4

.8
0

−3
8.
3

3
40

10
30

19
8

39
4.
0

39
4

54
41

4.
4

39
4

72
−2

0.
4

0
−1

8.
1

4
40

10
35

27
2

20
4.
3

20
4

48
22

1.
4

20
7

61
−1

7.
1

−3
−1

3.
3

5
40

15
30

19
8

43
8.
0

43
8

93
44

6.
6

44
1

13
0

−8
.6

−3
−3

6.
7

6
40

15
35

27
2

25
4.
3

25
4

54
26

3.
7

25
0

98
−9

.4
4

−4
3.
6

7
40

20
30

19
8

44
7.
0

44
7

10
8

45
5.
1

44
8

11
4

−8
.1

−1
−6

.3

8
40

20
35

27
2

28
4.
2

28
1

85
28

8.
7

28
5

10
8

−4
.5

−4
−2

2.
9

9
50

5
30

19
8

17
6.
0

17
6

14
17

6.
0

17
6

44
0

0
−2

9.
9

10
50

5
35

27
2

16
0.
0

16
0

11
16

0.
0

16
0

74
0

0
−6

2.
5

11
50

10
30

27
9

35
1.
0

35
1

57
37

3.
5

35
6

77
−2

2.
5

−5
−1

9.
6

12
50

10
35

37
2

23
1.
0

23
1

50
28

3.
2

23
6

75
−5

2.
2

−5
−2

5

13
50

15
30

27
9

45
1.
0

45
1

84
52

0.
0

46
3

11
6

−6
9

−1
2

−3
1.
6

14
50

15
35

37
2

44
4.
2

44
2

11
9

50
8.
5

46
0

16
8

−6
4.
3

−1
8

−4
8.
8

15
50

20
30

27
9

49
9.
7

49
5

15
0

57
9.
8

51
7

15
6

−8
0.
1

−2
2

−5
.5

16
50

20
35

37
2

47
1.
0

47
1

20
2

55
2.
9

53
9

14
0

−8
1.
9

−6
8

61
.6

17
60

5
30

30
5

37
8.
0

37
8

16
41

7.
2

41
4

63
−3

9.
2

−3
6

−4
6.
9

18
60

5
35

41
2

28
5.
5

28
5

41
28

9.
1

28
6

60
−3

.6
−1

−1
9.
4

19
60

10
30

30
5

53
9.
4

53
4

41
57

4.
4

56
3

93
−3

5
−2

9
−5

2.
2

20
60

10
35

41
2

36
7.
0

36
7

61
37

4.
3

36
7

98
−7

.3
0

−3
6.
6

123

158 Y. Xiao, A. Konak

Ta
bl
e
8

co
nt
in
ue
d

N
o.

N
od

e
m

λ
|A

|
10

ru
ns

of
V
N
S

10
ru
ns

of
G
A

D
ev
.o

f
G
A
fr
om

V
N
S

A
vg
.

B
es
t

A
vg
.t
im

e(
s)

A
vg
.

B
es
t

A
vg
.t
im

e(
s)

A
vg
.

B
es
t.

T
im

e

21
60

15
30

30
5

60
9.
5

60
7

12
0

63
3.
7

61
1

16
3

−2
4.
2

−4
−4

2.
8

22
60

15
35

41
2

43
1.
2

42
7

35
5

44
4.
8

43
8

17
2

−1
3.
6

−1
1

18
2.
7

23
60

20
30

30
5

62
3.
5

62
0

21
7

64
8.
1

63
1

23
2

−2
4.
6

−1
1

−1
4.
6

24
60

20
35

41
2

45
3.
0

45
3

30
3

49
9.
0

48
3

20
8

−4
6

−3
0

94
.6

25
80

5
30

64
1

18
8.
0

18
8

47
19

3.
9

18
8

10
6

−5
.9

0
−5

9.
4

26
80

5
35

85
3

18
1.
0

18
1

44
19

8.
9

18
5

10
7

−1
7.
9

−4
−6

2.
7

27
80

10
30

64
1

23
8.
0

23
8

81
24

8.
2

23
9

15
2

−1
0.
2

−1
−7

0.
6

28
80

10
35

85
3

23
9.
8

23
7

10
6

26
1.
7

25
1

12
9

−2
1.
9

−1
4

−2
3.
2

29
80

15
30

64
1

27
6.
8

27
6

16
6

29
9.
8

28
6

19
6

−2
3

−1
0

−3
0.
1

30
80

15
35

85
3

27
9.
0

27
7

19
0

30
6.
1

29
6

19
3

−2
7.
1

−1
9

−3
.3

31
80

20
30

64
1

29
6.
3

29
6

24
7

31
9.
9

31
0

27
0

−2
3.
6

−1
4

−2
2.
5

32
80

20
35

85
3

30
8.
0

30
7

35
9

33
3.
6

32
0

26
4

−2
5.
6

−1
3

94
.9

33
16

0
5

30
27

73
12

8.
4

12
0

10
4

14
6.
2

13
6

20
0

−1
7.
8

−1
6

−9
6.
1

34
16

0
5

35
36

24
92

.2
92

99
10

4.
0

94
20

3
−1

1.
8

−2
−1

04
.4

35
16

0
10

30
27

73
17

6.
8

17
6

17
9

21
3.
3

18
6

29
8

−3
6.
5

−1
0

−1
19

.2

36
16

0
10

35
36

24
14

9.
3

14
7

30
5

17
9.
6

15
8

33
1

−3
0.
3

−1
1

−2
6.
2

37
16

0
15

30
27

73
21

6.
4

21
6

18
72

31
3.
2

29
5

45
5

−9
6.
8

−7
9

14
16

.8

38
16

0
15

35
36

24
22

9.
7

22
7

16
12

28
8.
1

25
2

55
4

−5
8.
4

−2
5

10
57

.6

39
16

0
20

30
27

73
26

0.
1

25
3

93
7

34
0.
2

31
9

58
9

−8
0.
1

−6
6

34
7.
6

40
16

0
20

35
36

24
24

3.
7

24
2

13
59

30
6.
5

27
7

70
5

−6
2.
8

−3
5

65
4.
2

T
he

bo
ld
fa
ce
d
fo
nt
s
in
di
ca
te
th
e
be
st
so
lu
tio

ns

123

A variable neighborhood search for the network design... 159

Ta
bl
e
9

Su
m
m
ar
iz
at
io
n
of

ex
pe
ri
m
en
ts
on

40
ne
w
in
st
an
ce
s
of

Ty
pe
-I
II

M
et
ho

d
A
vg

.c
os
t

B
es
ts
ol
ut
io
ns

(%
)

A
vg

.d
ev
.f
ro
m

be
st
(%

)
A
vg

.t
im

e(
s)

C
PU

ty
pe

M
et
ho

d
so
ur
ce

G
A
(a
vg

.o
f
10

)
34

3.
38

2
11

.1
1

18
5

3.
2G

In
te
lX

eo
n

K
on

ak
(2
01

2)

G
A
(b
es
to

f
10

)
32

6.
60

7
5.
15

18
49

3.
2G

In
te
lX

eo
n

K
on

ak
(2
01

2)

V
N
S
(a
vg

.o
f
10

)
31

3.
48

17
0.
61

25
1

T
hi
s
st
ud

y

V
N
S
(b
es
to

f
10

)
31

2.
05

39
0.
04

25
07

T
hi
s
st
ud

y

123

160 Y. Xiao, A. Konak

times used by the GA and VNS algorithm can be considered comparable considering
hardware differences. It is clear that the VNS algorithm performed much better for
Type-III problems than theGAdid. The solutions found by theGAwere 11.06%worse
than those of the VNS algorithm. The VNS algorithm determines the optimal relay
assignments for each candidate solution while the GA uses the exact approach only for
the best solution andutilizes a construction heuristic to determine the relay assignments
for other candidate solutions. Therefore, the VNS algorithm is even more competitive
than the GA for the problem instances with a higher number of commodities, for
which solving the relay assignment sub-problem is more challenging. As seen in
Table 9, the average gap between the solutions of the VNS algorithm and the GA
increases significantly as the commodity number increases. The edge costs in Type-
III problems are randomly assigned, not correlated to the edge’s distance such as in
the case of Type-I and Type-II problems. Therefore, the interaction between the route
selection and relay assignment becomes much more complex in this problem set.
Another difference between the GA and the VNS algorithm is that the GA starts with
randomly generated solutions while the VNS algorithm starts with more promising
solutions generated by the LSA(s, t) procedure.

In Fig. 11, the optimal solutions of two small-sized problems of Type-III (No. 1
and No. 2) are provided. The optimality of the solutions is verified by using CPLEX
12.1 in 2.5h for No. 1 and 13h for No. 2.

Finally, the performance of the VNS algorithm was tested for different values of
parameters Kmax and Nmax, and the relationship between CPU times and problem
size was investigated. The 40 Type-III problems were solved once with parameter
combinations by Pmax = 5, Kmax = 2, 3, and 4, and Nmax = 1000, 2000, 3000,
and 4000. The results were analyzed using ANOVA to investigate the impact of these
parameter settings on solution quality and computational time. Table 10 summarizes
the averageobjective value of 40problems (columnAVGobj) and the averageCPU time
used (column AVG time), as well as their corresponding percent deviations (column
Dev.(%)) from themeanvalues obtained in the previous experiments reported inTable 7
with parameters Pmax = 10, Kmax = 3, and Nmax = 3000. It can be observed that
solution quality is slightly improved by running the algorithm longer or using a larger
range of neighborhood structures at the expense of CPU times. However, the slight
improvement observed in the average objective value was not statistically significant
(F = 0.498, p = 0.608 for Kmax and F = 0.732 and p = 0.533 for Nmax in ANOVA)
while the impact of Kmax on CPU times was significant (F = 4.308, p = 0.014) as
expected (Nmax was included in the ANOVA model for CPU times). In summary,
these results indicate that the VNS algorithm performs robustly within the ranges of
the parameters used in this study.

We used several linear and non-linear regression models to investigate the relation-
ship between the CPU time requirement of the VNS algorithm and the problem size
parameters m, n, |A|, and λ. Although the VNS algorithm’s procedures that are used
to repair solutions and assign optimal relays depend on dynamic programming that
has exponential time complexity, the CPU time requirement seems to be a linear func-
tion of m|A|. The best regression model included m|A| and λ as dependent variables
(with adjusted R2 of 0.725). The empirical study showed that the CPU time strongly

123

A variable neighborhood search for the network design... 161

Table 10 Performances of VNS with different parameters on 40 Type-III problems

Pmax Kmax Nmax AVG obj Dev. (%) AVG time Dev. (%)

5 2 1000 315.45 0.61 59.25 −76.36

5 2 2000 314.28 0.34 72.50 −71.08

5 2 3000 314.35 0.28 132.00 −47.34

5 2 4000 313.70 0.12 154.35 −38.42

5 3 1000 313.93 0.24 110.40 −55.95

5 3 2000 313.75 0.12 125.68 −49.86

5 3 3000 314.23 0.26 154.08 −38.53

5 3 4000 314.15 0.26 212.25 −15.32

5 4 1000 314.70 0.40 70.70 −71.79

5 4 2000 314.05 0.27 137.35 −45.20

5 4 3000 313.00 −0.05 201.98 −19.42

5 4 4000 313.50 0.07 277.33 10.64

10 3 3000 313.48 0 250.65 0

The data in the last row data are from Table 7

depended onm|A| (p = 0.000) and was negatively correlated with λ (the relationship
was not statically significant with p = 0.625).

7 Conclusions

In this paper, a variable neighborhood search (VNS) algorithm is proposed for the
NDPR with an exact algorithm for the relay location problem (RLP). The VNS algo-
rithm systematically searches different neighborhoods of the current solution using a
random construction heuristic to optimize the routes of commodities. The dynamic
programming (DP) for single-route RLP and the recursive dynamic programming
(RDP) for the multi-route RLP work within the framework of the VNS algorithm to
optimize the relay assignments. Computational experiments on the three sets of prob-
lems have shown that the VNS algorithm is a very efficient algorithm for the NDPR,
outperforming all existing heuristics in the literature. The VNS algorithm performed
particularly well in Type-III problems with random edge costs and larger numbers of
commodities. A label-setting algorithm is also proposed for constructing a commod-
ity route with relay assignments. Experiments show that the label-setting algorithm is
effective in finding good starting solutions. With these features, the VNS algorithm
can solve large-sized problem instances effectively and efficiently.

The VNS algorithm is a partial hybrid algorithm where a complex problem is
first decomposed into sub-problems, and then each sub-problem is solved by a spe-
cialized algorithm, and a metaheuristic guides the overall optimization process. This
approach is applicable to many real-life problems that involve multiple types of inter-
dependent decision variables such as Time-dependent Vehicle Routing Problem with
Recharging/Refueling Stations, Facility Layout Problem, Facility Location and Rout-
ing Problems in supply chains. For further research, the proposed algorithms can be

123

162 Y. Xiao, A. Konak

applied to the capacitated NDPR and the survivable version of the problem. In this
paper, edges and relays are assumed to have infinite capacities. Therefore, the com-
modities tend to share routes or relays. Considering edges and relays with limited
capacities will make the problem more applicable to telecommunications networks in
particular.

Acknowledgements This work is partly supported by the National Natural Science Foundation of China
under Grant No. 71271009.

Appendix

0 25 50 75 100
0

10

20

30

40

50

60

70

80

90

100

Fig. 12 New best-known solution for No. 15 instance of Type-I (cost = 463.16)

123

A variable neighborhood search for the network design... 163

0 25 50 75 100
0

10

20

30

40

50

60

70

80

90

100

Fig. 13 New best-known solution for No. 19 instance of Type-I (cost = 404.96)

0 25 50 75 100
0

10

20

30

40

50

60

70

80

90

100

Fig. 14 New best-known solution for No. 20 instance of Type-I (cost = 392.24)

123

164 Y. Xiao, A. Konak

References

Ali, T.H., Radhakrishnan, S., Pulat, S., Gaddipati, N.C.: Relay network design in freight transportation
systems. Transp. Res. Part E Logist. Transp. Rev. 38(6), 405–422 (2002)

Andre, J., Bonnans, F., Cornibert, L.: Optimization of capacity expansion planning for gas transportation
networks. Eur. J. Oper. Res. 197(3), 1019–1027 (2009)

Cabral, E.A., Erkut, E., Laporte, G., Patterson, R.A.: The network design problem with relays. Eur. J. Oper.
Res. 180(2), 834–844 (2007)

Chen, S., Ljubić, I., Raghavan, S.: The regenerator location problem. Networks 55(3), 205–220 (2010)
Chen, S., Ljubić, I., Raghavan, S.: The generalized regenerator location problem. INFORMS J. Comput.

27(2), 204–220 (2015)
Gouveia,L., Patricio, P., deSousa,A.F.,Valadas,R.:MPLSoverWDMnetworkdesignwith packet levelQoS

constraints based on ILPmodels. In: IEEE INFOCOM2003. Twenty-second Annual Joint Conference
of the IEEE Computer and Communications Societies, 30March–3 April 2003. Piscataway, NJ, USA,
IEEE (2003)

Hansen, P., Mladenović, N.: Variable neighborhood search for the p-median. Locat. Sci. 5(4), 207–226
(1997)

Kabadurmus, O., Smith, A.E.: Multi-commodity k-splittable survivable network design problems with
relays. Telecommun. Syst. (2015). doi:10.1007/s11235-015-0067-9

Kabirian, A., Hemmati, M.R.: A strategic planning model for natural gas transmission networks. Energy
Policy 35(11), 5656–5670 (2007)

Konak, A.: Network design problem with relays: a genetic algorithm with a path-based crossover and a set
covering formulation. Eur. J. Oper. Res. 218, 829–837 (2012)

Konak, A.: Two-edge disjoint survivable network design problem with relays: a hybrid genetic algorithm
and Lagrangian heuristic approach. Eng. Optim. 46(1), 130–145 (2014)

Konak, A., Kulturel-Konak, S., Smith, A.: Two-edge disjoint survivable network design problem with
relays. In: Chinneck, J.W., Kristjansson, B., Saltzman, M. (eds.) Operations Research and Cyber-
Infrastructure. Operations Research/Computer Science Interfaces Series, vol. 47, pp. 279–292.
Springer, New York (2009)

Kulturel-Konak, S., Konak, A.: A local search hybrid genetic algorithm approach to the network design
problem with relay stations. In: Raghavan, S., Golden, B.L., Wasil, E. (eds.) Telecommunications
Modeling, Policy, and Technology. Springer, New York (2008)

Laporte,G., Pascoal,M.M.B.:Minimumcost path problemswith relays. Comput.Oper. Res. 38(1), 165–173
(2011)

Li, X., Aneja, Y., Huo, J.: Using branch-and-price approach to solve the directed network design problem
with relays. Omega 40(5), 672–679 (2012)

Lin, S., Li, X., Wei, K., Yue, C.: A tabu search based metaheuristic for the network design problem with
relays. In: 2014 11th International Conference on Paper presented at the Service Systems and Service
Management (ICSSSM) (2014)

Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)
Reif, J.H.: Depth-first search is inherently sequential. Inf. Process. Lett. 20(5), 229–234 (1985)
Schneider,M., Stenger, A., Goeke, D.: The electric vehicle-routing problemwith timewindows and recharg-

ing stations. Transp. Sci. 48(4), 500–520 (2014)
Tabkhi, F., Pibouleau, L., Azzaro-Pantel, C., Domenech, S.: Total cost minimization of a high-pressure

natural gas network. J. Energy Res. Technol. 131(4), 0430021–04300212 (2009)
Talbi, E.G.: A taxonomy of hybrid metaheuristics. J. Heuristics 8(5), 541–564 (2002)
Taylor, G.D., Whicker, G.L., Usher, J.S.: Multi-zone dispatching in truckload trucking. Transp. Res. Part E

Logist. Transp. Rev. 37(5), 375–390 (2001)
Üster, H., Kewcharoenwong, P.: Strategic design and analysis of a relay network in truckload transportation.

Transp. Sci. 45(4), 505–523 (2011)
Winters, J.H., Gitlin, R.D., Kasturia, S.: Reducing the effects of transmission impairments in digital fiber

optic systems. IEEE Commun. Mag. 31(6), 68–76 (1993)
Xiao, Y., Zhang, R., Zhao, Q., Kaku, I., Xu, Y.: A variable neighborhood search with an effective local

search for uncapacitated multilevel lot-sizing problems. Eur. J. Oper. Res. 235(1), 102–114 (2014)

123

http://dx.doi.org/10.1007/s11235-015-0067-9

	A variable neighborhood search for the network design problem with relays
	Abstract
	1 Introduction
	2 Formulation of the problem
	3 Exact and heuristic algorithms for the relay location problem
	3.1 A dynamic programming (DP) method for the single-route RLP (S-RLP)
	3.2 A recursive dynamic programming method for multi-route RLP (M-RLP)

	4 A label-setting algorithm
	5 Variable neighborhood search (VNS) for the NDPR
	6 Computational experiments
	7 Conclusions
	Acknowledgements
	Appendix
	References

