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Abstract The Orienteering Problem (OP) is a well-known variant of the Traveling
Salesman Problem. In this paper, a novel Greedy Randomized Adaptive Search Proce-
dure (GRASP) solution is proposed to solve the OP. The proposed method is shown to
outperform state-of-the-art heuristics for the OP in producing high quality solutions.
In comparison with the best known solutions of standard benchmark instances, the
method can find the optimal or the best known solution of about 70 % of the instances
in a reasonable time, which is about 17 % better than the best known approach in
the literature. Moreover, a significant improvement is achieved on the solution of two
standard benchmark instances.

Keywords Traveling Salesman Problem - Orienteering Problem - Heuristic - GRASP

1 Introduction

The Orienteering Problem (OP) is a well-known variant of the Traveling Salesman
Problem (TSP). The problem is inspired from an outdoor game usually played in
mountainous or forested areas, where a set of checkpoints (landmarks) is available.
Each checkpoint is associated with a profit and can be visited at most once. Within a
predefined time limit, a contestant starts from the origin, visits a subset of the check-
points, and finishes at the destination. Since it may not be possible to visit all the
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checkpoints, the objective in the OP is to collect the maximum possible profit by
visiting some preferred checkpoints.

The OP is an NP-hard problem (Laporte and Martello 1990), which was originally
introduced by Tsiligirides (1984). This problem arises in many real-world applications,
including athlete recruiting (Chao et al. 1996b), technician routing (Tang and Miller-
Hooks 2005), and tourist trip planning (Vansteenwegen et al. 2009).

Due to its NP-hardness, the branch-and-bound (Laporte and Martello 1990; Ramesh
et al. 1992) and branch-and-cut (Fischetti et al. 1998; Gendreau et al. 1998a) exact
algorithms, which are proposed to solve the problem to optimality, are usually time
consuming. Therefore, most researches have focused on heuristic approaches. Among
these heuristics, the most successful approaches, which have been recently proposed,
include the Tabu Search heuristic (TS) (Gendreau et al. 1998a), Ant Colony Optimiza-
tion (ACO) (Schilde et al. 2009), 2-Parameter Iterative Algorithm (2-PIA) (Silberholz
and Golden 2010), and GRASP! with Path Relinking (GRASP-PR) (Campos et al.
2014). For a comprehensive review of the OP and its solutions, the reader is referred to
the recent surveys by Vansteenwegen et al. (2011), Archetti et al. (2014), and Gavalas
et al. (2014).

GRASP is a metaheuristic algorithm commonly applied to combinatorial opti-
mization problems. In this algorithm, successive constructions of greedy randomized
solutions are followed by iterative improvements through a local search. In this paper,
we reconsider the GRASP solution approach introduced by Campos et al. (2014) to
develop anovel GRASP heuristic method for the OP, which is shown to be competitive
with the state-of-the-art.

The paper is organized as follows. The formal definition of the problem and one
of its mathematical integer linear formulations are described in Sect. 2. Section 3 is
devoted to the description of the proposed GRASP method for solving the OP. Various
experimental results are presented in Sect. 4, the paper ends with some concluding
remarks in Sect. 5.

2 Problem description and formulation

The OP can be modeled on a complete graph G = (V,E) where V =
{0,1,--- ,n,n+ 1} is the set of vertices in G, and E = {(u, v)|u, v € V} represents
the set of edges. Vertices 0 and n + 1 are the origin and the destination points, respec-
tively, while vertices 1 to n are the potential checkpoints. Vy = V\{0, n + 1} represents
the checkpoint set. A travel time, #,,,,, between each pair of vertices (u, v) € E is given,
and a profit p, is assigned to each vertex v € V.

A solution to the problem is a path that begins from vertex 0, visit a subset of
vertices in V{y, and ends at vertex n + 1. Each vertex in the subset must be visited at
most once, and the time taken to visit the vertices of the solution cannot exceed T}y -
The aim of the OP is to collect the maximum profit from the visited vertices.

For a formal definition, the following integer programming formulation of the
problem has been presented (Vansteenwegen et al. 2011).

1 Greedy Randomized Adaptive Search Procedure (Feo and Resende 1995).
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In this formulation, two sets of decision variables x and u are available. x;; = 1 if a
visit to vertex i is followed by a visit to vertex j, and O otherwise; u; is equal to the
position of vertex i in the solution path.

The objective function (1) is to maximize the total profit of the visited vertices.
Constraint 2 ensures that the path starts at vertex 0 and ends at vertex n + 1. Constraint
3 ensures that the path is connected and each vertex is visited at most once. Constraint
4 ensures that the path meets the time budget. Finally, Constraints 5 and 6 ensure that
there are no subtours.

3 A novel GRASP heuristic for solving the OP

GRASP (Feo and Resende 1995) is a multi-start metaheuristic commonly used for
solving combinatorial optimization problems. In each iteration, a solution is generated
by applying two phases: a construction and a local search. The best solution of all
iterations is kept as the result.

The construction phase basically starts with an empty solution as its first partial
solution. For each partial solution, a candidate list of elements that can extend the
partial solution to another feasible solution is created. This list is then restricted to more
eligible candidates by an evaluation function. Next, a random candidate is selected
from the list and the partial solution is extended by that candidate. The candidate list is
then updated for the new partial solution and when there are no candidate elements that
can extend the last constructed partial solution, the construction phase stops. Finally,
the quality of the constructed solution is improved through a local search.
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Algorithm 1 GRASP-SR
1: function GRASP- SR()

> Construction phase
2:  curPath = bestPath =< 0,n+ 1 >
3: while ADDVERTEX() do > Note: This loop does not have any statements.
> Local search phase
4:  bestPath = cur Path
5:  while LOCALSEARCH() do & Note: This loop does not have any statements.

6:  return best Path

8: function ADDVERTEX(blocked = —1)
: > Add a new vertex to the curPath — O((n — 1)l + 12)

10:  r =curPath

11: [ =|curPath| -1,

12 cL={

13:

14:  for w:=1ton do > 0((n— D)

15: if w ¢ r and w # blocked then

16: i =arg min {T|r' =< r[0], ..., Tk — 1], w, FIK], ..., r[I] >} > 0()
I<k<l

17: r =< r[0], ..., r[i — 11, w, r[il, ..., r[l] >}

18: if 7,/ < Tinax then

19: CL=CLU{"}

20: else > 0(l)

21: j=1

22: fori:=1toldo

23: if j <i then

24: j=i

25: while j # [ and Torr— <o), ..., =1 L1 411>~ Tinax do

26: j=Jj+1

27: 7" =< 00, ey ¥ 1 = 11, G A 1 e, P4 1] >

28: if Tr” < Tinax then

29: if Py > Pror (P = Prand T, < Ty) then

30: CL=CLU{")

31:  if CL # {} then > 0(1%)

32: best = Max{P; — Pr|i € CL}

33: RCL = {ili € CL and P; — Py > 0.2 x best)

34: cur Path = a random path from RCL after being improved by 2-Opt

35: return True

36: return False

37: function LOCALSEARCH()
38:  r =bestPath

39: | = |best Path| —2;
40:  improved = False
41:  fori:=1toldo

42: curPath =< r[0], ..,r[i = 11, 7[i + 11, ..., [l + 1] >

43: Apply 2-opt to curPath

44. while ADDVERTEX(r[i]) do > Note: This loop does not have any statements.
45: if Peyrpath > PoestPath OF (Peur Path = Ppest Parh @04 Teyrparh < Tpest parn) then

46: best Path = cur Path

47: improved = True

48:  return improved

Campos et al. (2014) proposed a GRASP with path relinking to solve the OP. In
this section, we reconsider their work and propose a novel GRASP heuristic for the
OP, which is competitive with GRASP using path relinking and also competitive with
the state-of-the-art. In what follows the proposed heuristic approach is denoted by
GRASP-SR (GRASP with Segment Remove).
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A novel GRASP solution approach for the Orienteering Problem 703

In this section, we represent each OP solution path » as a sequence of vertices
<r[0]=0,r[1],---,r[l] =n+1 >, where [ + 1 is the number of visited vertices
of the graph, denoted by |r|. In addition, the total profit and travel time of path r are
denoted by P, and T}, respectively.

The GRASP-SR algorithm is demonstrated in Algorithm 1. This algorithm consists
of a construction phase (Lines 2-3) followed by a local search (Line 5), which are
described in the following two subsections.

3.1 Our GRASP construction method

Our construction method starts with the path r =< r[0] = 0, r[l] =n+1 > ( =
|[r| — 1), which goes directly from vertex O to vertex n + 1. This path is considered
as the current path and we try to improve its quality by successive insertion of new
vertices into the path. New vertices are added by function AddVertex() as follows.

Consider CL as the candidate list of paths, which are better in quality than the
current path. At the beginning, this listis empty (Line 12). Each vertex w ¢ r isinserted
in the best position of r (i.e., the one that produces the minimum path travel time)
without changing the relative order of the vertices in the current path (Lines 16—17).
If the new path r’ is feasible, it is added to the candidate list (Lines 18—19); otherwise,
for each position0 < i <I+1linr' =< r'[0],--- ,F'[i],---,r'[j), -+, F’/[[+1] >,
the position i < j < I 4 1 is found (if possible), such that j — i is minimal and the
pathr” =< r'[0],--- ,r'[i = 11, F'[j + 1], --- , r'[ + 1] > obtained by removing the
vertices from position i to j of ' is feasible. 2 If P» > P,, r" is a better solution than
r, and it is added to the candidate list, but if P,» = P,, r” is added to the candidate
list if its travel time is shorter than the travel time of r (Lines 21-30). The total time
complexity of constructing the candidate listis O ((n — [)I).

If no improvement is possible, the CL becomes empty and the function returns
False, showing no improvement is possible; otherwise, the maximum profit improve-
ment of the paths is considered among the candidate list. The candidate list is restricted
to the paths having an improvement within the fraction « = 0.2 of this value. A dis-
cussion about the adjustment of this parameter is presented in Appendix 1.

best = Max{P; — P,|i € CL} )
RCL = {ili € CL and P; — P, > 0.2 X best} (10)

Next, an element of the RCL is randomly selected and considered as the new
current path. To reduce the length of this path, the 2-opt improvement mechanism is
applied to the path and then the function returns 7T rue (Lines 31-36).

2 If the travel distance time matrix satisfies the triangular inequality, this can be done in time complexity
O(l). The algorithm is similar to the linear algorithm for solving the well-known “the smallest sub-array
with sum greater than a given value” problem. Using the same algorithm, one can find j values for all
positions of i (Lines 21-30). This O (/) algorithm is applied even if the triangular inequality condition does
not hold, sacrificing some quality.
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The process of adding new vertices by calling AddVertex() is repeated until no
improvement is possible (Lines 3—4). The total time complexity of each improvement
isO((n—DL+1 2), which is proportional to the number of vertices in the path.

The proposed construction method is similar to that of Campos et al. (2014) with
the difference that when it is not possible to directly insert a vertex into the path, we
try to remove a segment of the path to make space for the insertion of the new vertex.
Thus, the proposed construction method is more general than the construction method
of Campos et al. (2014) with the same overall time complexity.

3.2 Local search

The construction method of Campos et al. (2014) is followed by a two-phase local
search. The first phase is based on some sequential one-to-one exchanges between the
vertices in the path and the not less profitable vertices outside the path. Since these
one-to-one exchanges may make space for the insertion of some new vertices into the
path, the second phase is devoted to the insertion of these new vertices.

The proposed construction method contains both aforementioned local searches
in its process. One-to-one exchanges is equivalent to the insertion of a vertex along
with the removal of a segment of length one and the second phase is equivalent to the
insertion of a vertex without any segment removal.

We have implemented another simple local search to improve the constructed path.
This local search is applied by the Local Search() function, which works as follows.

For each vertex w € r \ {0, n + 1}, remove the vertex from the path and apply the
2-opt optimization to the path. The resulting path is then improved by the construction
method. In the construction method, w is excluded from the improved path (Line 15).
If the best path constructed by this way is better than the original path, it is selected
as the next path and the function returns 7 rue; otherwise, the function returns False,
showing that no improvement is possible by the local search. This process is continued
until no further improvement is possible.

Although this final local search increases the total time complexity of each improve-
mentto O ((n—1)I>+13), our experimental results show that GRASP-SR is competitive
with the state-of-the-art in terms of both performance and run-time.

3.3 Example

To clarify the proposed algorithm, the algorithm is traced on the first instance of the
p64 benchmark instances described in Sect. 4.1. The coordinates and the profits of
the vertices required for following the example are given in Table 1. In this example,
Tnax 1s 15 and vertices 0 and 1 are the starting and the finishing points, respectively.

Since the proposed algorithm is a randomized algorithm, each run of the program
may produce a different result. The following is an example run of the algorithm on
this problem. At first, the paths constructed by inserting vertices 9, 41, 3 and 53 in
their best positions are randomly selected in sequence. The constructed feasible path
after these insertions is
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Table 1 The coordinates and the profits of the required vertices of the first instance of p64 benchmark
instances

Vertex 0 1 3 5 9 19 33 41 47 53 57 60
X 0 0 1 0 1 1 1 2 1 2 1 0
Y -7 7 —6 -5 —4 -2 0 1 2 3 4 5
Profit 0 0 6 6 12 18 24 24 18 18 12 6
<0,3,9,41,53,1 > (T = 14.99, P = 60).

Inserting vertex 33 in its best position, results in an infeasible path. However, remov-
ing the segment containing vertices 3 and 9, makes the path feasible and still more
profitable. This path is the next randomly selected path from the candidates list pool.

Hb
<0 ,33,41,53,1 > (T =14.96, P = 66)
Similarly, vertices 5 and 19 are added to the path as follows.

<0,5,33,41,53,1 > (T = 14.99, P = 72)
5
<07,19,33,41,53,1 > (T = 14.99, P = 84)

It is seen that the insertion of vertex 5 is immediately improved by its replacement
with vertex 19, which is more profitable than vertex 5. Since there is not any new
profitable insertion with segment removal, the construction phase is finished.

Next, vertices 19, 33, 41 and 53 are independently removed from the constructed
path and the possibility of new profitable insertions is checked for each of them. For
this run of the program, removing vertex 41 produced the best result as follows.

b
<0,19,33",53,1 > (T = 14.73, P = 60)
<0,5,19,33,53,57,1 > (T = 14.90, P = 78)
5
<07,9,19,33,53,57,1 > (T = 14.90, P = 84)
55
<0,9,19,33,47 ,57,1 > (T = 14.32, P = 84)
<0,5,9,19,33,47,57,60, 1 > (T = 14.83, P = 96)

This path cannot be further improved by the local search. As the results in Table 2
show, this is the best solution path for this instance.

4 Experimental results

In this section, the experimental results on OP standard benchmark instances are
presented. GRASP-SR was implemented in C++ and tests were run on an Intel Core
i7 with a 3.4 GHz CPU.
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Two configurations of GRASP-SR are used in subsequent sections. In the first
configuration, GRASP-SR is replicated 10 times on each instance. In each replication,
500 solutions are generated and the best of these solutions is returned. Therefore, in
this configuration we have 5000 iterations to generate 5000 solutions. The output of
our method for this configuration is described as follows: 3

Best” The best solution and the number of times it was obtained.

Avg. The average of the solutions.

Worst" The worst solution and the number of times it was obtained.

Sec. The time in seconds in which the best solution was found for the first time.
#Iter. The iteration number in which the best solution was found for the first time.
size The number of visited vertices in the best solution path.

For the second configuration, the best solution obtained during the time limit of
2 min is considered. Column 2-min. corresponds to this configuration in the result
tables. This configuration is used to show that our approach is competitive with the
state-of-the-art, even if the time is restricted.

The first benchmark instances for this problem was proposed by Tsiligirides (1984),
which consists of instances with the number of vertices ranging from 21 to 33. Since
most of the current methods are able to solve these small instances to optimality, the
corresponding results are not presented.

GRASP-SR was tested versus the best methods proposed in the literature on two
standard benchmark problem sets. The results are presented in the following subsec-
tions.

4.1 Experimental results on p64 and p66 instances

The problems in the first set are graphs of size 64 and 66 vertices proposed in Chao
et al. (1996a), called p64 and p66 instances, respectively. The two methods presented
the best results for these instances are the ACO (Schilde et al. 2009) and GRASP with
Path Relinking (GRASP-PR) (Campos et al. 2014), which were run on a Pentium 4D
with a 3.2 GHz CPU and an Intel Core i5 with a 3.2 GHz CPU, respectively.

The results comparing our method with these methods on the p64 and the p66
instances are presented in Tables 2 and 3. The ACO, GRASP-PR, and there hereby
proposed GRASP-SR method were repeated ten times on each instance, and for each
method, the best and the worst results of the 10 runs (and only the best if both are the
same), and the time in which the best result of the 10 runs was found are reported in
columns Value and Sec., respectively.

Comparing the results of GRASP-SR with the ACO and GRASP-PR shows that
GRASP-SR is the only method that was able to solve all the p64 instances to the best
known solutions in all its runs. On the other hand, Table 3 shows that the ACO and

3 The values for Sec., #iter, and size are reported for the best solution among the 5,000 generated solutions,
while the other outputs are reported according to the best result of each replication.
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Table 2 GRASP-SR in comparison with the ACO and GRASP-PR approaches on p64 instances

Tnax ACO GRASP-PR GRASP-SR
Value Sec. Value Sec. Value Sec. #iter Size

15 96 0.007 96 0.015 96 0.000 1 9
20 294 0.017 294 0.062 294 0.000 1 15
25 390 0.025 390 0.14 390 0.000 1 18
30 474 0.034 468 0.171 474 0.031 14 20
35 576/570 0.508 576 0.28 576 0.015 5 24
40 714 0.409 714 0.28 714 0.171 78 29
45 816/804 7.013 816 0.296 816 0.062 10 32
50 900/894 4.492 900 0.421 900 0.016 3 35
55 984/978 8.323 984/978 0.296 984 0.000 2 39
60 1062/1056 0.991 1062/1044 0.249 1062 0.031 6 43
65 1116 0.711 1116 0.202 1116 0.000 1 46
70 1188 2.281 1188 0.187 1188 0.000 2 50
75 1236 0.721 1236 0.171 1236 0.031 10 53
80 1284/1278 2.109 1284/1278 0.14 1284 0.686 144 57

GRASP-PR generated the best results on the p66 instances. Although there are two
instances for which our method did not produce the best result in all its runs, the best
result was obtained, in at least half of the runs.

The computation times needed for solving these instances show that all the three
methods can easily find the best results for these instances and are competitive with
each other.

4.2 Experimental results on TSP-based benchmark instances

A larger set of benchmark instances was proposed in Fischetti et al. (1998) based on
the TSPLIB 2.1 instances (Reinelt 1991). In this set, the TSP problems with up to 400

vertices are considered and converted to OP instances as follows. For each instance,

Opt(P
the distance time limit is selected as ij, where Opt(P) is the length of the

shortest Hamiltonian tour for the problem. The first vertex is considered as the origin
and destination point (vertex 0 = vertex n 4 1), and then according to the following
rules each vertex of the TSP instance is assigned a profit value.

Generation 1: pi=1 i=0,..,npy41 =0
Generation 2: pi = [1+ (7141 x i + 73)] mod (100) i=0,..,npy41 =0

99 x to;
Generation 3: pi=14+1 x OlJ i=1,.,n, py=ppy1 =0,

0 = max, ey, o
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Table 3 GRASP-SR in comparison with the ACO and GRASP-PR approaches on p66 instances

Trnax ACO GRASP-PR GRASP-SR
Value Sec. Value Sec. Best" Worst! Sec. #iter Size

5 10 0.01 10 0.00 10 0.00 1 4
10 40 0.01 40 0.00 40 0.00 1 6
15 120 0.01 120 0.02 120 0.00 4 8
20 205 0.06 205 0.02 205 0.00 2 11
25 290 0.02 290 0.03 290 0.02 1 12
30 400 0.02 400 0.05 400 0.02 1 16
35 465 0.03 465 0.06 465 0.02 4 19
40 575 0.04 575 0.28 575 0.02 1 21
45 650 0.05 650 0.08 650 0.00 1 24
50 730 0.05 730 0.09 730 0.00 1 26
55 825 0.06 825 0.09 825 0.00 2 29
60 915 0.13 915 0.11 915 0.02 2 31
65 980 0.08 980 0.11 980 0.00 1 34
70 1070 0.08 1070 0.11 1070 0.02 1 36
75 1140 0.09 1140 0.11 1140 0.00 1 38
80 1215 1.27 1215 0.12 1215 0.00 1 41
85 1270 0.22 1270 0.12 1270 0.00 1 44
90 1340 0.48 1340 0.12 1340 0.02 3 46
95 1395 0.39 1395 0.11 1395 0.02 1 49
100 1465 1.41 1465 0.41 1465 0.06 7 51
105 1520 0.15 1520 0.51 15200 15154 0.62 83 54
110 1560 0.32 1560 0.09 1560 0.39 62 56
115 1595 0.16 1595 0.09 1595 0.02 3 59
120 1635 1.22 1635 0.22 1635 0.20 55 61
125 1670 0.19 1670 0.19 1670° 16657 0.25 69 64
130 1680 0.19 1680 0.02 1680 0.12 61 66

To the best of the authors’ knowledge, there are only three methods that have been
tested on these benchmark instances. Silberholz and Golden (2010) reported the results
for the Tabu Search heuristic (TS) proposed by Gendreau et al. (1998b) and for their
2-Parameter Iterative Algorithm (2-PIA), running them on an Intel Pentium 4D with
a 3.2 GHz CPU.

The third method is GRASP-PR (Campos et al. 2014), which used a different
distance function and also different rules for generating the profits for these benchmark
instances in comparison with Fischetti et al. (1998). According to our experimental
results, the differences are as follows: Both Fischetti et al. (1998) and Campos et al.
(2014) used the time distances #;; as described in Reinelt (1991), but with different
approaches to cast the real returned values to an integer. Campos et al. (2014) truncated
the values while Fischetti et al. (1998) rounded the values. Additionally, the #;; values
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A novel GRASP solution approach for the Orienteering Problem 709

used for computing the profit values in Generation 3 of Campos et al. (2014) were
not casted to integer values. According to the mentioned time distance evaluations,
the following rules were used in Campos et al. (2014) to generate the profits for the
benchmark instances.

Generation 1: pi=1 i=0,.,npy41 =0

Generation 2: pi =1+ (7141 x (i + 1) + 73)] mod (100) i=0,.,np41 =0
99 x 1

Generation 3: pi=14+1 ;( o ] i=0,.,n py41 =0,

6 = max,cy, o

Our detailed experimental results on these benchmark instances are presented in
Appendix 2. The proposed GRASP-SR is compared with the TS and 2-PIA heuristics
in Tables 7, 8 and 9 and is compared with GRASP and GRASP-PR heuristics in Tables
10, 11 and 12. In these tables, column BC corresponds to the exact Branch-and-Cut
method proposed by Fischetti et al. (1998). The time limit of 5 h was considered for
BC and for the instances that this time limit was exceeded before returning the optimal
solution, the best available solution was reported. The value for running time of these
instances was reported as “t.1.”.

Although our GRASP-SR method with the first configuration almost outperforms
the solutions of other heuristic methods in the literature, it takes more time to reach
its best result. Therefore, it was decided to consider our configuration with the time
limit of 2 min to have a better comparison of the proposed method versus others. The
results summary for this configuration is reported in Tables 4 and 5.

Each entry in the tables indicates the number of instances for which a better solu-
tion was found by the method associated with its row as compared with the method
associated with its column. The row named Optimal corresponds to the number of
instances for which each method could find the optimal solution or a solution equal
or better than the best known solution. Finally, the last row, named optimal(5000),
reports the number of instances for which our GRASP-SR method with the first con-
figuration could find the optimal solution or a solution equal or better than the best
known solution. As an example, considering the Generation 3 instances, the 2-PIA

Table 4 GRASP-SR in comparison with the TS and 2-PIA approaches on the TSP-based benchmark
instances

Generation-1 Generation-2 Generation-3
(42 instances) (42 instances) (42 instances)

TS 2-PIA GRASP-SR TS 2-PIA GRASP-SR TS 2-PIA GRASP-SR

TS - 3 1 - 4 1 - 8 4
2-PIA 23 - 1 28 - 3 31 - 6
GRASP-SR 28 22 - 33 27 - 33 22 -
Optimal 14 19 31 9 14 29 5 13 28
Optimal (5000) 38 29 31
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A novel GRASP solution approach for the Orienteering Problem 711

outperforms our GRASP-SR in 6 instances, while GRASP-SR outperforms 2-PIA in
22 instances. Furthermore, 2-PIA and GRASP-SR found 13 and 28 optimal or best
known solutions, respectively.

The results show that GRASP-SR almost outperforms all the mentioned state-of-
the-art heuristics. GRASP-SR with the time limit of 2 min outperforms the TS, 2-PIA,
GRASP and GRASP-PR in 94, 71, 83 and 46 instances, respectively and performs
worse in only 6, 10, 3 and 10 instances. In other words, the method outperforms the
TS, 2-PIA, GRASP, and GRASP-PR in 75, 56, 69 and 38 percent of the instances and
performs worse than them in only 5, 8, 3, and 8 percent of the instances.

Moreover, the proposed algorithm could find the optimal or best known solution
of about 70 % of the instances with only 2 min of computation time for solving each
instance. The TS, the 2-PIA, GRASP and GRASP-PR could find about 22, 37, 29 and
53 percent of the optimal or best known solutions, respectively.

According to Table 8, for problem pr226 of the Generation 2 instances, Silberholz
and Golden (2010) found a solution of 6641, better than the solution of 6615 obtained
within 5 h of computation by Fischetti et al. (1998). GRASP-SR improved the solu-
tion to 6662 in less than a second. For problem pr299 of this generation, we have
obtained a solution of 9173 in about 100 min, which is better than the solution of
9,161 obtained within 5 h of computation by Fischetti et al. (1998). For this instance,
the proposed algorithm could also find a solution of 9165 in less than 2 min of com-
putation time, which is also better than the best know solution for the problem. The
routes corresponding to these new solutions are reported in the footnote of Table 8.

5 Conclusions

In this paper, a novel GRASP solution was proposed for the OP. Being able to find
the optimal or best known solution of about 70 % of the benchmark instances, which
is about 17 % more than the achievement of the best known heuristic approach in the
literature, the proposed algorithm outperforms the state-of-the-art heuristic methods.
In addition, the method improved the solution quality of two standard benchmark
instances. In future studies, the proposed method is expected to be rather simply and
effectively applicable to similar routing problems.

Acknowledgments The authors would like to thank the authors of Fischetti et al. (1998) and Campos et
al. (2014) for sharing their results.

Appendix 1: GRASP-SR parameter selection

In the construction phase of GRASP-SR (Sect. 3.1), the candidate list was restricted
to the paths having an improvement within the fraction @ = 0.2 of the profit gained
through the most profitable path in the candidate list. Campos et al. (2014) presented
some experiments to show that the value of 0.2 is a good choice for their work. In this
appendix, we show that this value is also a good choice in this work.

We considered the 48 TSP-based problem instances of Fischetti et al. (1998) having
no more than 100 vertices (16 instances in each Generation). GRASP-SR was run for
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Table 6 Effect of different o

0.0 02 0.4 06 08 1.0

values on the results of

GRASP-SR Dev. 3583 1417 1625 675 12292 71.146
Optimal 41 41 40 37 33 2

different values of « (0, 0.2, 0.4, 0.6, 0.8, 1.0) 100 times on each instance and the best
solution of these 100 runs were kept for each instance. All the results were obtained in
less than 2 min. For each value of the parameter o, Table 6 shows the average deviation
of the solutions with respect to the optimal solutions (Dev.) and the number of optimal
solutions that GRASP-SR with the given parameter has been able to find (Optimal).

The results show that when « is equal to 0 or 0.2, a larger number of instances
can be solved to optimality. Additionally, when « is set to 0.2, the smallest average
deviation of the results from the optimal solutions is obtained.

Appendix 2: Detailed results on the orienteering problem

In this section, detailed results for the TSP-based benchmark instances are presented
(Tables 7, 8, 9, 10, 11 and 12). The description of the tables provided in this section
was presented in Sect. 4. In addition, the values in bold indicate the best solution
among the solutions of the reported exact and heuristic approaches.

Some additional notes should be considered. As Silberholz and Golden (2010)
mentioned, herein the value of T, has been corrected for problem gr229 to 67,301,
which was incorrectly listed as 1765 in Fischetti et al. (1998). The correct value of
Tnax for problem 1in318 is 21,015, but since the value of 21,045 has been used in
other works, we also used this value for our experimental results. Moreover, the profit
values produced by Campos et al. (2014) for the Generation 3 instances does not
contain the profit value of 100 for the instances rat99, kroc100, kroe100, pr124, and
krob150. Due to floating-point precision errors, for the farthest vertex from the origin
of these instances, the value of 99 has been produced instead of 100. It influenced our
results for instances rat99 and kroe100, resulting in a value one more than the optimal
solutions reported by Campos et al. (2014). Therefore, the same profit values were
used as used in Campos et al. (2014) for a fair comparison.
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