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Abstract We present a new hybrid evolutionary algorithm for the effective hyper-
volume approximation of the Pareto front of a given differentiable multi-objective
optimization problem. Starting point for the local search (LS) mechanism is a new
division of the decision space as we will argue that in each of these regions a different
LS strategy seems to be most promising. For the LS in two out of the three regions
we will utilize and adapt the Directed Search method which is capable of steering
the search into any direction given in objective space and which is thus well suited
for the problem at hand. We further on integrate the resulting LS mechanism into
SMS-EMOA, a state-of-the-art evolutionary algorithm for hypervolume approxima-
tions. Finally, we will present some numerical results on several benchmark problems
with two and three objectives indicating the strength and competitiveness of the novel
hybrid.
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1 Introduction

In many applications one is faced with the problem that several objectives have to be
optimized concurrently resulting in a multi-objective optimization problem (MOP).
One important characteristic of MOPs is that their solution sets, the so-called Pareto
sets, respectively their images, the Pareto fronts, do not consist of a single point as
for ’classical’ scalar optimization problems. Instead, these sets typically form (k −1)-
dimensional objects, where k is the number of objectives involved in the given MOP
(Hillermeier 2001).

For the treatment of MOPs specialized evolutionary algorithms, multi-objective
evolutionary algorithms (EMOAs), have caught the interest of many researchers (see,
e.g., Coello et al. 2007; Deb 2001; Rozenberg et al. 2012; Zhang and Li 2007 and
references therein). Reasons for this include that EMOAs are applicable to a wide
range of problems, are of global nature and hence in principle not depending on the
initial candidate set (i.e., the initial population). Further, due to their set based approach
they allow to compute a finite size representation of the entire Pareto set in a single
run of the algorithm.

On the other hand, it is widely accepted that EMOAs tend to converge slowly
resulting in a relatively high number of function evaluations needed to obtain a suitable
representation of the set of interest. As a possible remedy, researchers have proposed
memetic or hybrid strategies (e.g., Bosman 2012; Ishibuchi et al. 2003; Jaszkiewicz
et al. 2012; Knowles and Corne 2005; Lara et al. 2010; Moscato 1989; Shukla 2007;
Vasile and Zuiani 2011). Algorithms of that type hybridize local search strategies
coming e.g. from mathematical programming techniques with EMOAs in order to
obtain fast and reliable global search procedures.

The quality of the approximation of the Pareto front may be measured by the
scalar-valued hypervolume indicator (HV) Zitzler (1999). The idea to integrate this
indicator in the selection process of EMOAs was proposed in Knowles (2002) and
Knowles and Corne (2003) and later generalized for arbitrary indicators (Zitzler and
Künzli 2004). In general, indicator-based EMOAs (also known as IBEAs) aim at
generating a set of solutions maximizing a specific performance indicator. The SMS-
EMOA (Beume et al. 2006) is known as a powerful state-of-the-art EMOA internally
maximizing the hypervolume indicator with particular merits in case of more than 2
objectives (Wagner et al. 2007). This performance measure has a number of appealing
properties (see e.g. Bringmann and Friedrich 2010a, b; Knowles and Corne 2002;
Zitzler et al. 2003) like strict monotonicity and Pareto compliance. The distributions
obtained using the HV are biased toward the knee regions of the Pareto front (Auger
et al. 2009). However, computational complexity increases exponentially with the
problemdimension. Since the hypervolume indicator (aswell as anyother performance
indicator) induces an auxiliary scalar optimization problem which is defined on the
set of archives its gradient can be computed (Emmerich and Deutz 2014) which gives
rise to set based mathematical programming techniques as done in Hernández et al.
(2014).

In this work, we present a hybrid of a particular LS mechanism tailored for hyper-
volume approximations with the SMS-EMOA. The basis for the LS mechanism, the
Hypervolume Directed Search (HVDS), is a certain region division which is possible
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for MOPs with differentiable objectives. We will argue that a different local search
strategy is most promising if the candidate solution x is either (i) ’far away’ from
the Pareto set, (ii) ’near’, or (iii) ’in between’. In case x is ’far away’ we propose
to use a steepest descent like method in order to approach the rough location of the
Pareto set as fast as possible, while for candidate solutions in the other two regions a
particular steering is advisable. For this, we will use and adapt the recently proposed
Directed Search (DS) method (Schütze et al. 2016) as this method is capable of steer-
ing the search from a given point into any direction d given in objective space. Thus,
DS is well suited for the problem at hand as the hypervolume indicator is defined in
objective space. We present HVDS both as standalone algorithm and as local search
engine within SMS-EMOA leading to SMS-EMOA-HVDS which is the first hybrid
EMOA for hypervolume approximations of the Pareto front. Numerical experiments
on several benchmarkMOPs with two and three objectives show the benefit of the new
approach. A preliminary study of this work can be found in Hernández et al. (2013)
which is restricted to bi-objective problems.

The idea to utilize steering features within hybrid evolutionary algorithms is not
new. Brown and Smith (2005) use the multi-objective gradient (Fliege and Fux 2000)
together with the so-called negative gradient simplex to obtain well-spread solutions
along the Pareto front. Bosman (2012) uses a line search procedure as local search
enginewithin an evolutionary algorithm such that the accordingmovement in objective
space (i.e., F(xi+i )− F(xi ), where xi is the current and xi+1 the novel iterate) is equal
to a predescribed direction in objective space. Finally, the Directed Search method
(Schütze et al. 2016) utilizes a similar idea than the one from Bosman (2012) but uses
this to steer the search both toward and along the Pareto front. The main differences of
these works to the current study are (i) the region division that is proposed here in order
to perform a different local search in each of these regions, and (ii) that the method is
tailored to the context of HV approximations which requires separate considerations.

The remainder of this paper is organized as follows: in Sect. 2, we briefly state
the background required for the understanding of the sequel. In Sect. 3, we present
the region division and the local searcher HVDS that is tailored for hypervolume
maximization. In Sect. 4, we will present SMS-EMOA-HVDS which is a hybrid
of SMS-EMOA and HVDS. In Sect. 5, we will show some numerical results and
comparisons to demonstrate the strength of the novel hybrid. Finally, we conclude and
show possible paths for future research in Sect. 6.

2 Background

In the following we consider continuous multi-objective optimization problems
(MOPs) that can be expressed as

min
x∈Q

F(x), (1)

where Q ⊂ R
n is the domain and F : Q → R

k is defined as the vector of the objective
functions

F(x) = ( f1(x), . . . , fk(x))T , (2)
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and where each objective fi : Q → R is assumed to be sufficiently smooth. In this
work, we will concentrate on unconstrained problems, i.e., problems of the form (1)
where Q = R

n .
The optimality of a MOP is defined by the concept of dominance.

Definition 1 (a) Let v,w ∈ R
k . Then the vector v is less than w (v <p w), if vi < wi

for all i ∈ {1, . . . , k}. The relation ≤p is defined analogously.
(b) A vector y ∈ Q is dominated by a vector x ∈ Q (x ≺ y) with respect to (1) if

F(x) ≤p F(y) and F(x) �= F(y), else y is called non-dominated by x .
(c) A point x ∈ Q is called (Pareto) optimal or a Pareto point if there is no y ∈ Q

which dominates x .
(d) The set PQ of all Pareto optimal solutions is called the Pareto set and its image

F(PQ) the Pareto front.

The Directed Search (DS) method is a point-wise iterative search procedure that
is capable of steering the search from a given point into a desired direction d ∈ R

k

in objective space (Schütze et al. 2016). To be more precise, given a point x ∈ R
n , a

search direction ν ∈ R
n is sought such that

lim
t↘0

fi (x0 + tν) − fi (x0)

t
= di , i = 1, . . . , k. (3)

Such a direction vector ν solves the following system of linear equations:

J (x0)ν = d. (4)

Hereby, J (x) denotes the Jacobian of F at x , i.e.,

J (x) =
⎛
⎜⎝

∇ f1(x)T

...

∇ fk(x)T

⎞
⎟⎠ ∈ R

k×n, (5)

where∇ fi (x) denotes the gradient of the i-th objective fi at x . Since typically k 
 n,
we can assume that the system in Eq. (4) is (highly) underdetermined. Among the
solutions of Eq. (4), the onewith the least 2-norm can be viewed as the greedy direction
for the given context. This solution is given by

ν+ := J (x)+d, (6)

where J (x)+ denotes the pseudo inverse of J (x). If the rank of J := J (x) is k
(i.e., maximal) the pseudo inverse is given by J+ = J T (J J T )−1. Since there is no
restriction on d the search can be steered in any direction, e.g., toward and along the
Pareto set.

A commonly accepted measure for assessing the quality of an approximation is the
so-called hypervolume indicator (Zitzler 1999).

Definition 2 Let v(1), v(2), . . . v(μ) ∈ R
k be a non-dominated set and R ∈ R

k such
that v(i) ≺ R for all i = 1, . . . , μ. The value
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H(v(1), . . . , v(μ); R) = Λk

(
μ⋃

i=1

[v(i), R]
)

(7)

is termed the dominated hypervolume or value of the hypervolume indicator with
respect to reference point R = (r1, . . . , rk)

T , where Λk(·) denotes the Lebesgue
measure in Rk .

This measure has a number of appealing properties, however, determining its value
is getting the more tedious the larger the number of objectives is being considered
(Beume 2009).1 In case of two objectives (k = 2) and a lexicographically ordered
non-dominated set v(1), v(2), . . . v(μ) the calculation of (7) reduces to

H(v(1), . . . , v(μ); R) =
[
r1 − v

(1)
1

]
·
[
r2 − v

(1)
2

]
+

μ∑
i=2

[
r1 − v

(i)
1

]
·
[
v

(i−1)
2 − v

(i)
2

]
.

3 HVDS: a local search algorithm for hypervolume maximization

In this section we present HVDS, a point-wise iterative local search method for hyper-
volume maximization. The underlying idea is to divide the search space into three
different regions since points in each region demand a different treatment. We will
propose such a region division and the according local search in each region.

3.1 Motivation

Assume first that a point x ∈ Q assigned for local search is ‘far away’ from the Pareto
set which is quite likely in early stages of the search process. It is thus desired for the
new iterate xnew to approach the set of interest (as a whole) as fast as possible while
the particular location of xnew with respect to the Pareto set is rather secondary. On
the contrary, the following discussion shows that a steering of the search (e.g., via
DS) might be even hindering the overall performance: in Brown and Smith (2005)
it has been observed that the objectives’ gradients of a given MOP typically point
toward similar directions if x is ‘far away’ from the Pareto set (if existing). Consider
for simplicity the extreme case, namely that all gradients point into the same direction,
i.e., let

∇ fi (x) = λi∇ f1(x), i = 1, . . . , k, (8)

where λi > 0, i = 1, . . . , k. If xnew is obtained via line search it can be written as

xnew = x + tν, (9)

where t ∈ R+ is the step size and ν ∈ R
n the chosen search direction. Note that ν

defines the movement in decision space, and that the related movement in objective

1 An overview about recent results on the complexity of HV computation is provided in http://simco.gforge.
inria.fr/doku.php?id=openproblems.
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space is given by J (x)ν (this can be seen from Eq. (3)). Thus, in case (8) holds, we
have

J (x)ν =
⎛
⎝

∇ f1(x)T ν

. . .

∇ fk(x)T ν

⎞
⎠ = ∇ f1(x)T ν · λ, (10)

where λ = (λ1, . . . , λk)
T ∈ R

k . Note that the vector in (10) is a multiple of λ, i.e.,
we obtain a one-dimensional movement regardless of the choice of ν which is n-
dimensional. Though (8) and thus (10) is apparently only true if the distance of x to
the Pareto set is infinite, the range of directions d = J (x)ν in which the search can
be steered with a satisfactory step size is expected to be small for points x that are
sufficiently far away from the Pareto set. We refer to Schütze et al. (2016) for a more
thorough discussion. Thus, rather than using DS (or any other steering mechanism) it
seems to be wise to perform a greedy search toward the Pareto set.

Second, we consider the other extreme situation, namely that x is already nearly
optimal which happens in later stages of the search process. In that case no further
significant improvements can be expected when searching along descent directions.
Instead, it seems to be wise to perform the search along the Pareto front.

Finally, points do apparently not have to be ‘far away‘ nor ‘near’ to the Pareto set.
In that case we suggest to search along descent directions that (locally) improve the
hypervolume value.

To summarize, we suggest to divide the decision space Q into three regions. These
together with their suggested local search are as follows:

– Region I x is ‘far away’ from the Pareto set (denoted by ‘x ∈ I ’). In that case, a
greedy search toward the rough location of the Pareto front is desired.

– Region I I x is ‘in between’, i.e., neither ‘far away’ nor ‘near’ to the Pareto front.
In that case, a descent direction has to be selected such that a movement in that
direction maximizes the hypervolume.

– Region I I I x is ‘near’ to the Pareto set. In that case, a search along the Pareto
front will be performed.

In the following we propose a particular way to realize the region division and will
further on discuss the local search in each region.

3.2 Region division

Assume we are given a MOP whose objectives are differentiable. Let

RQ := {x ∈ Q : ∇ fi (x) �= 0, i = 1, . . . , k} (11)

and define η : RQ → R via

η(x) =
∥∥∥∥∥

k∑
i=1

α̃i
∇ fi (x)

||∇ fi (x)||2

∥∥∥∥∥
2

2

, (12)
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where α̃ is a solution of the following optimization problem

min
α∈R

⎧⎨
⎩

∥∥∥∥∥
k∑

i=1

αi
∇ fi (x)

||∇ fi (x)||2

∥∥∥∥∥
2

2

: αi ≥ 0, i = 1, . . . , k,

k∑
i=1

αi = 1

⎫⎬
⎭ . (13)

The following result is the basis for the region division.

Proposition 1 Let all objectives fi , i = 1, . . . , k, be continuously differentiable in
x ∈ RQ, η be as in (12) and x ∈ RQ. Then

(a) η(x) ∈ [0, 1]
(b) η(x) = 1 ⇔ ∇ fi (x) = λi∇ f1(x) with λi > 0 for i = 1, . . . , k.
(c) η(x) = 0 ⇔ x ∈ RQ is a Karush–Kuhn–Tucker (KKT) point.
(d) η(x) is a continuous mapping.

Proof (a) Clearly, η(x) ≥ 0. Further, it is

η(x) =
∥∥∥∥∥

k∑
i=1

α̃i
∇ fi (x)

||∇ fi (x)||2

∥∥∥∥∥
2

2

≤
k∑

i=1

α̃i

∥∥∥∥
∇ fi (x)

||∇ fi (x)||2
∥∥∥∥
2

2
=

k∑
i=1

α̃i = 1. (14)

(b) “⇒”: by strict convexity of the function in (13) it follows directly that

∇ f1(x)

‖∇ f1(x)‖2 = . . . = ∇ fk(x)

‖∇ fk(x)‖2 (15)

which is equivalent to (8).
“⇐”: let α be a convex weight, then

k∑
i=1

αi
∇ fi (x)

||∇ fi (x)||2 =
k∑

i=1

αi
λi∇ f1(x)

||λi∇ f1(x)||2 =
k∑

i=1

αi
∇ f1(x)

||∇ f1(x)||2 = ∇ f1(x)

||∇ f1(x)||2
(16)

by which it follows that η(x) = 1.
(c) “⇒”: let η(x) = 0, then there exists a convex weight α s.t.

k∑
i=1

αi
∇ fi (x)

||∇ fi (x)||2 =
k∑

i=1

αi

||∇ fi (x)||2∇ fi (x) = 0. (17)

Thus, choosing w̃i := αi/‖∇ fi (x)‖2, i = 1, . . . , k, the vector w := w̃/‖w̃‖1 is
a convex weight with

∑k
i=1 wi∇ fi (x) = 0, i.e., x is a KKT point.

“⇐”: now let x ∈ RQ be a KKT point. That is, there exists a convex weight α s.t.

k∑
i=1

αi∇ fi (x) =
k∑

i=1

αi‖∇ fi (x)‖2 ∇ fi (x)

||∇ fi (x)||2 . (18)
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Fig. 1 Values of η and possible region division for MOP (20). a Values of η. b Region division

Choosing w̃i := αi‖∇ fi (x)‖2, i = 1, . . . , k, then w := w̃/‖w̃‖1 is a convex
weight such that

∑k
i=1 wi∇ fi (x)/‖∇ fi (x)‖2 = 0, i.e., η(x) = 0.

(d) follows by construction of η. ��

Thus, by the above result and using the observation made in Brown and Smith
(2005) we can conclude that (i) x is far away from the Pareto set iff η(x) is close to
1, (ii) x is near to the Pareto set iff η(x) is close to 0, and (iii) else x is in between.
Hence, by determining two values a, b ∈ (0, 1) with a < b we can make the region
division via

x ∈ I ⇔ η(x) ≥ b

x ∈ I I ⇔ η(x) ∈ (a, b)

x ∈ I I I ⇔ η(x) ≤ a

(19)

As example consider the three objective problem

f1, f2, f3 : R3 → R

fi (x) =
3∑

j=1

(x j − ai
j )
2,

(20)

where a1 = (1, 0, 0)T , a2 = (0, 1, 0)T and a3 = (0, 0, 1)T . Figure 1a shows the
value of η (in objective space for a better visualization) and Fig. 1b a possible division
of the image space into the three regions. For the region division we have used a = 0.1
and b = 0.5.

Remark 1 For the important special case k = 2 (i.e., for bi-objective problems) one
can simplify the region division by using alternatively the angle between the two
gradients:

cosα(x) = 〈∇ f1(x),∇ f2(x)〉
||∇ f1(x)||2||∇ f2(x)||2 ∈ [−1, 1]. (21)
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Using (21) one can proceed analogously to (19) and set

x ∈ I ⇔ cosα(x) ≥ b̃

x ∈ I I ⇔ cosα(x) ∈ (a, b)

x ∈ I I I ⇔ cosα(x) ≤ ã

(22)

for ã, b̃ ∈ (−1, 1)with ã < b̃. In the previous study (Hernández et al. 2013) the values
ã = −0.8 and b̃ = 0.8 were proposed.

3.3 Performing the local search in each region

In the following we will propose a search strategy for each of the three regions. For
this, we will first consider the extreme case that the given archive/population consists
of only one element, and will later on consider the general case. Reason for this is that
if a point x is assigned for local search in a general archive, this can be led back to the
case of one element archives.

3.3.1 One element archives

Assume we are given an archive A = {x}, i.e., a point x ∈ Q which is assigned for
local search and a reference point R = (r1, . . . , rk)

T for the hypervolume indicator.

Local search in Region I As the above discussion shows the explicit steering of the
search is a delicate problem. Thus, it seems to be wise to utilize established multi-
objective descent methods in order to approach the Pareto set/front as fast as possible.
Such methods can be found e.g. in Fliege et al. (2009), Fliege and Fux (2000), and
Schäffler et al. (2002). A descent direction ν at a point x satisfies 〈∇ fi (x), ν〉 < 0,
i = 1, . . . , k.

For the treatment of bi-objective problems we have used the descent direction
proposed in Lara et al. (2010)

ν = 1

2

( ∇ f1(x)

||∇ f1(x)||2 + ∇ f2(x)

||∇ f2(x)||2
)

(23)

as it does not require to solve an additional optimization problem coupled with an
Armijo-like step size control as used in Lara et al. (2010). Note, however, that the
descent direction in (23) is restricted to bi-objective problems and has no analogon
for MOPs with more than two objectives. For the treatment of such problems we have
used the descent method proposed in Schäffler et al. (2002) which requires to solve
an additional optimization problem to compute the search direction. More precisely,
we choose the vector −q(x) which is defined in the following.

Theorem 1 (Schäffler et al. 2002) Let problem (1) be given and the map q : Rn → R
n

be defined by
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q(x) =
k∑

i=1

α̂i∇ fi (x), (24)

where α̂ is a solution of

min
α∈Rk

⎧⎨
⎩

∥∥∥∥∥
k∑

i=1

αi∇ fi (x)

∥∥∥∥∥
2

2

;αi ≥ 0, i = 1, . . . , k,

k∑
i=1

αi = 1

⎫⎬
⎭ . (25)

Then the following statements hold.

(a) Either q(x) = 0 or −q(x) is a descent direction.
(b) For each x̂ ∈ R

n, there exists a neighborhood N (x̂) and a constant L x̂ ∈ R
+
0

such that
‖q(x) − q(y)‖2 ≤ Lx̂‖x − y‖2, ∀ x, y ∈ N (x̂). (26)

Note that if q(x) = 0, then x is a KKT point. Thus, the computation of −q(x)

includes a test for first order optimality.

Local search in Region II If x is in Region II, the task is to find a descent direction
dI I <p 0 (in objective space) such that a movement in that direction maximizes the
hypervolume. Since the new iterate xnew is performed via DS, we can (idealized) write
its image ynew = F(xnew) as

ynew = F(x) + tdI I , (27)

where t ∈ R is a given (fixed) step size and dI I has to be chosen such that it solves
the k-dimensional problem

max
d∈Rk

vol(d) =
k∏

i=1

(ri − fi (x) − tdi )

s.t. ||d||22 = 1,

(28)

which is related to the maximization of the hypervolume (compare to Fig. 2). If one
replaces the 2-norm by the infinity norm in the constraint of problem (28) (which
drops the assumption that the movement is done with an equal step in objective space)
a straightforward computation shows that

dI I,∞ = F(x) − R (29)

solves the problem (where we assume that F(x) <p R). For our implementations
we have used the direction in Eq. (29) since it is easier to calculate and since we
observed that it yields no difference in the performance of the algorithm compared to
the solution of problem (28). Note, however, that the solution of (28) may come with
additional CPU time but not with additional function evaluations.
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Local search in Region III If x is nearly optimal, a search in a descent direction will
not lead to significant improvements anymore. Instead, it seems to be wise to continue
the search along the Pareto set. Here, we suggest to perform a search via DS along the
linearized Pareto front (see Fig. 3). The particular steps of the search are described in
the following for KKT points, the steps for nearly optimal solutions are the same.

(1) Compute the KKT weight α associated to x . This can be done by solving (25).
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(2) It is known thatα is orthogonal to the linearized Pareto front at F(x) (Hillermeier
2001). Thus, an orthonormal basis of the tangent space can be obtained as follows:
compute a QU -factorization of α,

α = QU = (q1, q2, . . . , qk)U. (30)

Since Q ∈ R
k×k is orthogonal, the vectors q2, . . . , qk span the desired tangent space.

(3) Now we can maximize the hypervolume in objective space similar to (28).
The differences here are that (i) we are restricting the search to directions d ∈
span(q2, . . . , qk) and (ii) the optimization will not only yield the optimal direction
but also the optimal step size (i.e., ynew those corresponding decision vector xnew can
be retrieved via DS). The (k − 1)-dimensional unconstrained optimization problem is
given by

max
λ∈Rk−1

vol(λ) =
k∏

i=1

(ri − fi (x) − (Q2λ)i ), (31)

where
Q2 = (q2, . . . , qk) ∈ R

k×k−1. (32)

The search direction is thus given by

dI I I = Q2λ
∗, (33)

where λ∗ is a solution of (31).
(4) Using DSwe compute xnew such that ynew ≈ F(x)+ Q2λ

∗. If the hypervolume
value is not increased by xnew we perform the Armijo-like backtracking approach as
in Lara et al. (2010) using the hypervolume value as objective function.

For the special case k = 2 the solution of (31) can be expressed analytically if all
the elements of the KKT weight are positive. Let α = (α1, α2)

T be the KKT weight
associated to x , then the tangent vector of the linearized Pareto front at F(x) is e.g.
given by d = (−α2, α1)

T and problem (31) can be stated as

max
λ∈R

vol2(λ) = (r1 − f1(x) − λd1) × (r2 − f2(x) − λd2). (34)

Proposition 2 Let k = 2 and α >p 0, then the global maximizer of Problem (34) is
given by

λ∗ = d1r2 + d2r1 − d1 f2(x) − d2 f1(x)

2d1d2
. (35)

Proof If αp >p 0, then it follows that also d1, d2 �= 0. The first derivative of vol2 is
given by

vol2
′(λ) = 2λd1d2 + d2 f1(x) − r1d2 + d1 f2(x) − d1r2 (36)

Setting this to zero leads to

λ∗ = d1r2 + d2r1 − d1 f2(x) − d2 f1(x)

2d1d2
. (37)
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Further, the second derivative at λ∗ is given by

vol2
′′(λ∗) = 2d1d2 < 0. (38)

The negativity holds since α >p 0 and by construction of d, and the claim follows. ��
Remark 2 We stress that due to the linearization of the Pareto front at F(x) it can
happen that the new iterate xnew is located in Region II leading to a kind of oscillating
behavior in the sequence of iterates.We have, however, not observed any instabilities in
our computations. Further, if x is already near to the optimal solution, such oscillations
do typically not happen.

Algorithm 1 shows the pseudo code of the HVDS as standalone algorithm for
one-element archives which puts together the above discussion. Figure 4 shows some
exemplary iterations of HVDS in all three regions of MOP (20).

Algorithm 1 HVDS as standalone algorithm for one element archives
Require: x0: starting point, a, b: values for region assignment; R: reference point
Ensure: : sequence {xi } of candidate solutions

i := 0
repeat

Compute η(xi ) as in Eq. (12)
if η(xi ) ≥ b then � xi ∈ I

Compute νI (e.g. as in Eq. (23) for k = 2)
Compute tI ∈ R+
xi+1 = xi + tI νI

else if η(xi ) ∈ (b, a) then � xi ∈ I I
dI I = F(xi ) − R
νI I = J (xi )

+dI I
Compute tI I ∈ R+
xi+1 = xi + tI I νI I

else � xi ∈ I I I
Compute the KKT weight α as in Eq. (25)
Compute Q2 as in Eq. (32)
Compute λ∗ by solving (31)
dI I I = Q2λ

∗
Compute tI I I ∈ R+
xi+1 = xi + tI I I ∗ νI I I � compute new iterate

end if
i := i + 1

until tI I I = 0 or a maximum number of iterations is reached

3.3.2 General archives

In the following we describe the adaption of the HVDS for archives with arbitrary
sizes.

Local search in Region I If a point x ∈ A is chosen for local search that is according
to the region division ’far away’ from the Pareto front, an improvement toward the
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Fig. 4 Exemplary iterations of the HVDS in each region of MOP (20). a Region I. b Region II. c Region
III
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Fig. 5 Local search in Region II for multiple archive entries

solution set is desired regardless of the location of the other elements of A. Hence,
we recommend to proceed as the one element archive by choosing a descent direc-
tion from Eq. (23) in the case of k = 2 or proceed as in Schäffler et al. (2002) for
k > 2.

Local search in Region II If a point x ∈ A is located in the Region II it is necessary to
consider its neighboring solutions in A since the chosen movement in objective space
should ideally increase the contribution of the newly found solutions xnew computed
from x without decreasing the contribution of the other elements in A. To perform
this movement we have to look for the k neighboring entries of x in A in order to
set a new reference point. For k = 2 the adaption comes straightforward since the
neighborhood from a point x is given by only two points for non-extreme points
(where the archive entries are sorted according to one objective). For the extreme
points we used the updated reference point given by the SMS-EMOA. Figure 5
shows the bi-objective case for setting the reference point RF(x) for a non-extreme
point.

For k > 2, the problem becomes more complicated since a neighborhood is not
well defined (in the case of k = 2 it is enough only ordering the points in descending
order to define the neighbors, however for k > 2 it is not the case). To overcome this
problem we propose to choose such points that minimize the difference between each
objective of F(x) from all non-dominated points in the population. Once having these
points we are now in the position to construct a new RF and use Equation (29) for
obtaining the improvement direction. Algorithm 2 shows the pseudo code to obtain
the reference point.
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Algorithm 2 Set reference point for Region II
Require: Point x from A in Region II and the set of non-dominated points N .
Ensure: Reference point R

for i = 1, . . . , k do
Set Ri = 0
Set Di = ∞
for all points n in N do

aux = fi (n) − fi (x)

if fi (n) > fi (x) and aux < Di then
Di = aux
Ri = fi (n)

end if
end for

end for

Algorithm 3 SMS-EMOA-HVDS
Require: MOP, archive size μ, values a, b for region division
Ensure: An approximation P of the given MOP.
Initialize a population P ⊂ Q with μ elements at random
repeat

generate offspring x ∈ Q from P by variation
choose p ∈ [0, 1] uniformly at random
if p ≤ pH V DS then � Apply HVDS

choose the generated offspring x for local search
x̃ =HVDS(x , a, b, R)

else
x̃ = x

end if
P := P ∪ {x̃}
build ranking S1, . . . , Sh from P
compute the hypervolume contribution for each x ∈ Sh
denote by x∗ the element with the least hypervolume contribution
P:=P \ {x∗}

until stopping criterion fulfilled
return P

Local search in Region III For Region III we proceed to use the new reference point
as stated for Region II. To be more precise, we propose to use the reference point
RF(xi ) for intermediate points (i.e., i ∈ {2, . . . , l −1}) and the original point R for the
extreme archive entries. In this case we follow the same process as the one element
archive using the generated reference point.

4 Integrating HVDS into SMS-EMOA

Here we make a first attempt to integrate HVDS into an EMOA. As base algorithm
we have chosen to take SMS-EMOA since it is a state-of-the-art evolutionary algo-
rithm that aims for optimal hypervolume approximations of the Pareto front. HVDS is
integrated into SMS-EMOA as additional generational operator with a certain prob-
ability pH V DS for application (for an empirical evaluation of the values of pH V DS ,
a, and b we refer to the next section). To be more precise, the new hybrid algorithm

123



The hypervolume based directed search method for... 289

Table 1 Test function problems

Multi-objective optimization problems

DTLZ 1 (Linear front - 2D,3D) domain x ∈ [0, 1]n
f1(x) = (1 + g(x))0.5

∏k−1
i=1 xi

fm=2:k−1(x) = (1 + g(x))0.5(
∏k−m

i=1 xi )(1 − xk−m+1)

fk (x) = (1 + g(x))0.5(1 − x1)

g(x) = 100 ∗ (n + ∑n
i=1((xi − 0.5)2 − cos(20 ∗ π(xi − 0.5))))

DTLZ 2 (Concave front - 2D,3D) domain x ∈ [0, 1]n
f1(x) = (1 + g(x))

∏k−1
i=1 cos(xi

π
2 )

fm=2:k−1(x) = (1 + g(x))(
∏k−m

i=1 cos(xi
π
2 )) sin(xk−m+1

π
2 )

fk (x) = (1 + g(x)) sin(x1
π
2 )

g(x) = ∑n
i=1(xi − 0.5)2

DTLZ 3 (Concave front - 2D,3D) domain x ∈ [0, 1]n
f1(x) = (1 + g(x))

∏k−1
i=1 cos(xi

π
2 )

fm=2:k−1(x) = (1 + g(x))(
∏k−m

i=1 cos(xi
π
2 )) sin(xk−m+1

π
2 )

fk (x) = (1 + g(x))sin(x1
π
2 )

g(x) = ∑n
i=1(xi − 0.5)2

DTLZ 7 (Disconnected front - 3D) domain x ∈ [0, 1]n
fm=1:k−1(x) = xm

fk (x) = (1 + g(x))
(

k − ∑k−1
i=1

(
fi

1+g(x)
(1 + sin(3 ∗ π ∗ fi ))

))

g(x) = 1 + (9 ∗ ∑n
i=1 xi )/k

P1-HVDS (Convex front - 2D) domain x ∈ [−1, 1]2
f1(x) = (x1 − 1)4 + (x2 − 1)2

f2(x) = (x1 + 1)2 + (x2 + 1)2

P3-HVDS (Convex-Concave front - 2D) domain x ∈ [−3, 3]2
f1(x) = 1

2 ∗ (
√

(1 + (x1 + x2)
2) + √

(1 + (x1 − x2)
2) + x1 − x2) + λ ∗ e(−1∗(x1−x2)

2)

f2(x) = 1
2 ∗ (

√
(1 + (x1 + x2)

2) + √
(1 + (x1 − x2)

2) − x1 + x2) + λ ∗ e(−1∗(x1−x2)
2)

Shifted ZDT1 (Convex front - 2D) domain x ∈ [0, 1] × [−1, 1]n−1

f1(x) = x1

f2(x) = g(x) ∗ (2 − √
f1(x)/g(x))

g(x) = 1 + 9
n−1

∑n
i=1 x2i

Shifted ZDT2 (Concave front - 2D) domain x ∈ [0, 1] × [−1, 1]n−1

f1(x) = x1

f2(x) = g(x) ∗ (2 − ( f1(x)/g(x))2)

g(x) = 1 + 9
n−1

∑n
i=1 x2i

Shifted ZDT3 (Disconnected front - 2D) domain x ∈ [0, 1] × [−1, 1]n−1

f1(x) = x1

f2(x) = g(x) ∗ (2 − √
f1(x)/g(x)) − ( f1(x)/g(x)) sin(10π ∗ f1(x)))

g(x) = 1 + 9
n−1

∑n
i=1 x2i
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Table 1 continued

Multi-objective optimization problems

Shifted ZDT6 (Concave front - 2D) domain x ∈ [0, 1] × [−1, 1]n−1

f1(x) = 1 − e−4∗x1 ∗ sin(6 ∗ π ∗ x1)

f2(x) = g(x) ∗ (2 − ( f1(x)/g(x))2)

g(x) = 1 + 9 ∗
(∑n

i=1 x2i
n−1

)0.25

Convex2 (Convex front - 3D) domain x ∈ [−5, 5]n
fi (x) = ∑n

(
j=1
j �=i)

(x j − ai
j )
2 + (xi − ai

i )
4

a1 = (1, 1, 1, 1, . . .), a2 = (−1,−1, −1,−1, . . .), a3 = (1, −1, 1, −1, . . .)

Table 2 Configuration values for SMS-EMOA-HVDSMO and SMS-EMOA, where DI means “distribu-
tion index” and p is the probability to apply the operator

Description Parameter 2D values 3D values

Crossover operator SBX DI = 20.0, p = 0.9 DI = 20.0, p = 0.9

Mutation operator PM DI = 20.0, p = 1/n DI = 20.0, p = 1/n

Population size μ 100 300

LS first parameter a 0.2 0.1

LS second parameter b 0.4 0.4

Probability for LS pH V DS 0.005 0.005

SBX stands for simulated binary crossover and PM for polynomial mutation

SMS-EMOA-HVDS starts by initializing a population P of μ elements at random
from the domain Q. Once having the initialized population the process begins by gen-
erating only one offspring x by genetic operators (crossover and mutation). HVDS
is integrated as an additional generational operator for the produced new elements in
each generation. That is, after producing a new element the algorithm selects a value
p ∈ [0, 1] uniformly at random. If p is less or equal than the probability pH V DS the
local search procedure will be applied, otherwise the new candidate solution is added
to P . It is important to mention that the probability pH V DS balances the emphasis
between global and local search during thewhole run of the algorithm.The aim to apply
HVDS is to push the entire population toward the solution set during the algorithm
process. In this case the produced element can be everywhere within the objective
space, however, thanks to the region division we can make the decision of which LS
strategy should be chosen in order to improve the hypervolume. Each time the HVDS
strategy is called, it executes only one iteration step in our current implementation.
Further, we use the dynamic reference point described above to get R. Algorithm 3
shows the pseudocode of the resulting algorithm SMS-EMOA-HVDS.
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Table 3 HV results of SMS-EMOA with and without HVDS as operator (using the same number of
function evaluations)

Problem # Func n Average SMS-EMOA-HVDSMO

Deviation Median Covered HV (%)

DTLZ1 (2D) M 30K 15 118.25014 3.65605 119.61943 97.82947

DTLZ2 (2D) U 10K 30 120.20997 0.00055 120.21009 99.99944

DTLZ3 (2D) M 30K 15 101.84429 23.49979 105.40498 84.72152

P1-HVDS (2D) U 10K 2 3251.81142 16.40663 3253.60993 99.81105

P3-HVDS (2D) U 10K 2 17.34873 0.00220 17.34852 99.88260

ZDT1 (2D) U 10K 30 109.53759 0.17000 109.60691 99.88643

ZDT2 (2D) U 10K 30 108.61966 1.95078 109.22509 99.35129

ZDT3 (2D) U 10K 30 116.73398 1.46083 117.67874 99.11522

ZDT6 (2D) M 10K 15 104.81097 0.97200 104.78108 98.40024

Convex2 (3D) U 10K 15 21.14882 0.03884 21.16804 99.99858

DTLZ1 (3D) M 50K 15 1330.93727 0.07304 1330.97379 99.99723

DTLZ2 (3D) U 10K 30 1330.41646 0.00501 1330.41637 99.99920

DTLZ3 (3D) M 50K 15 1326.62757 5.85269 1330.17426 99.71441

DTLZ7 (3D) M 30K 15 964.42986 57.13546 992.99807 97.10511

Problem # Func n Average SMS-EMOA

Deviation Median Covered HV (%)

DTLZ1 (2D) M 30K 15 117.40941 5.64543 119.24526 97.13393

DTLZ2 (2D) U 10K 30 120.20604 0.00130 120.20637 99.99617

DTLZ3 (2D) M 30K 15 105.68880 9.48479 107.17194 87.91967

P1-HVDS (2D) U 10K 2 3248.72641 22.57145 3253.23842 99.71636

P3-HVDS (2D) U 10K 2 17.34866 0.00270 17.34891 99.88220

ZDT1 (2D) U 10K 30 109.26564 0.63385 109.57209 99.63844

ZDT2 (2D) U 10K 30 106.42534 3.45765 109.13577 97.34421

ZDT3 (2D) U 10K 30 117.05177 1.27276 117.69188 99.38512

ZDT6 (2D) M 10K 15 97.60659 1.49610 97.41107 91.63651

Convex2 (3D) U 10K 15 21.10150 0.04299 21.09881 99.77483

DTLZ1 (3D) M 50K 15 1330.93127 0.07912 1330.97013 99.99678

DTLZ2 (3D) U 10K 30 1330.41083 0.00288 1330.41086 99.99878

DTLZ3 (3D) M 50K 15 1325.70533 8.01075 1330.19390 99.64509

DTLZ7 (3D) M 30K 15 993.01561 0.02094 993.01893 99.98331

The values are obtained over 20 test runs and k = 2, 3

5 Experiments

Systematic experiments were conducted in order to investigate and validate the behav-
ior of the proposed algorithm SMS-EMOA-HVDS. For this purpose well-established
two-objective (2D) and three-objective (3D) test functions from the ZDT (shifted and
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Fig. 6 DTLZ1 (2D)

Fig. 7 DTLZ2 (2D) (�)

thus unconstrained versions, see Lara et al. 2010, Shukla 2007, and Shukla 2007) and
DTLZ test suites were chosen supplemented by specific functions (see Table 1 to look
the description of the problems). The domains Q for all problems have been chosen
such that the Pareto sets have an empty intersection with the boundary of Q. All the
details regarding the use of SMS-EMOA and its hybrid variant can be found in Table 2.

The algorithmwas applied 20 timeswith population sizes 100 (2D) respectively 300
(3D). The value of the hypervolume indicator (HV) of the final result is used as basis
of comparison to respective runs of the original SMS-EMOA. Based on extensive
systematic investigations the settings a = 0.2, b = 0.4 (2D) resp. a = 0.1 (3D)
together with pH V DS = 0.005 turned out to be most stable over all settings while in
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Fig. 8 DTLZ3 (2D)

Fig. 9 P1-HVDS (2D)

general algorithm behavior is not extremely sensitive regarding the respective settings
of a and b. A dynamic reference point was used for Region II (see Algorithm 2).

Table 3 provides detailed algorithm settings along with the experimental results
and thereby allows for the assessment of the effect of the HVDS operator.

For all test functions, the superior algorithm regarding the averageHV is highlighted
in italic that the sophisticated local search strategy indeed has a positive effect on
algorithm performance. The corresponding ordering regarding median performance
only changes slightly. Moreover, on all considered problems the percentage of the
covered optimal hypervolume is very high while keeping in mind that the number of
function evaluations has not been specifically tuned to gain optimal hypervolume. The
optimal HV values for all the problems have been computed by numerically solving
the following (n · μ)-dimensional scalar optimization problem
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Fig. 10 P3-HVDS (2D)

Fig. 11 ZDT1 (2D) (�)

H : Rn·μ → R

max
v(1),...,v(μ)∈Rn

H(v(1), . . . , v(μ); R), (39)

where μ denotes the population sizes.
Robustness and statistical significance of the results can be assessed by observing

boxplots of the obtained HV in the final generation over all runs in Figs. 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, and 19. The respective boxes range from the lower up to
the upper quartile while the median is highlighted by a horizontal line inside the box.
Points are plotted individually as outliers if they are larger than box boundaries plus
resp. minus 1.5 times the interquartile range. The plotted whisker terminates at the
adjacent point, which is the most extreme point that is not an outlier. Results with (LS)
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Fig. 12 ZDT2 (2D) (�)

Fig. 13 ZDT3 (2D)

and without local search (WLS) are compared while the horizontal line visualizes the
median HV of the original SMS-EMOA runs.

Figures marked with (�) reflect a statistically significant result based on the
Wilcoxon Rank test using a significance level α = 0.05. It becomes obvious that
in 3D the SMS-EMOA supplemented with the HVDS strategy outperforms the origi-
nal version for almost all test functions. Exceptions are DTLZ3, but in this case much
more stable results were generated, and the disconnected problem DTLZ7. In 2D,
results are comparable for all test functions and superiority of the local search vari-
ant is given for DTLZ3, ZDT1, ZDT2 and ZDT6. However, due to the sophisticated
strategy in Region III which searches along the Pareto front, the algorithm in general
faces special challenges for disconnected fronts such as ZDT3 and DTLZ7.
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Fig. 14 ZDT6 (2D) (�)

Fig. 15 DTLZ1 (3D) (�)

Moreover, observing the algorithms’ behavior along the whole run, SMS-EMOA-
HVDS often shows faster convergence in earlier phases of optimization, see the
exemplary Figs. 20 and 21.

6 Conclusions and future work

In this paper, we have proposed a new hybrid evolutionary algorithm for the effec-
tive hypervolume approximation of the Pareto fronts of differentiable multi-objective
optimization problems. The basis of the local search mechanism is a novel division
of the decision space into three regions as we have argued that in each region another
local search seems to be most promising. For the local search we have adapted the
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Fig. 16 DTLZ2 (3D) (�)

Fig. 17 DTLZ3 (3D) (�)

Directed Search method that is able to steer the search into any direction given in
objective space and is thus well suited for the problem at hand as the hypervolume is
defined in objective space.We have presented the resulting iterativemethod, HVDS, as
standalone algorithm as well as local searcher within a hybrid variant of SMS-EMOA.
Experimental results showed that especially in 3D, the integration of HVDS into the
SMS-EMOA has a substantial positive effect on the algorithm performance while in
2D the results are at least comparable to the original SMS-EMOA but often superior
as well. With respect to the considered test functions which cover a wide range of
problem characteristics, robust parameter settings for the SMS-EMOA-HVDS could
be provided. Therefore, we see promising perspectives for even higher dimensions and
further research will focus on generalizing the introduced strategy in this direction.
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Fig. 18 DTLZ7 (3D) (�)

Fig. 19 Convex3 (3D) (�)

Fig. 20 Comparison using boxplots in P3 HVDS (2D) during 3000 function evaluations

Further paths of future research include the adaption of the method to constrained
problems which needs separate considerations. Further, it is desirable to obtain a
gradient-free realization of HVDS, including the region division, in order to increase
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Fig. 21 Comparison using boxplots in DTLZ2 (3D) during 3000 function evaluations

the applicability of the method to a broader class of methods. Finally, it would be
interesting to investigate if and to which extent the chosen method can be applied to
other performance indicators.
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