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Abstract In this paper we present a heuristic approach to two-stage mixed-integer
linear stochastic programming models with continuous second stage variables. A
common solution approach for these models is Benders decomposition, in which
a sequence of (possibly infeasible) solutions is generated, until an optimal solution
is eventually found and the method terminates. As convergence may require a large
amount of computing time for hard instances, the method may be unsatisfactory from
a heuristic point of view. Proximity search is a recently-proposed heuristic paradigm in
which the problem at hand is modified and iteratively solved with the aim of producing
a sequence of improving feasible solutions. As such, proximity search and Benders
decomposition naturally complement each other, in particular when the emphasis is
on seeking high-quality, but not necessarily optimal, solutions. In this paper, we inves-
tigate the use of proximity search as a tactical tool to drive Benders decomposition,
and computationally evaluate its performance as a heuristic on instances of different
stochastic programming problems.

Keywords Integer programming · Benders decomposition · Stochastic program-
ming · Heuristics

1 Introduction

Stochastic programming (SP) is an important framework for dealing with uncertainty
in optimization. SP models tend to be huge, and their solution typically requires a
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decomposition method to break the model into manageable parts. Benders decompo-
sition (Benders 1962) is one of the most widely used approaches for SP. In Benders
decomposition, a sequence of solutions to a “master” problem is generated, each
of which is checked for feasibility by solving one or more subproblems. Without
applying some heuristic to recover feasibility, the solution to the master problem, typ-
ically, cannot be used to update the incumbent. Even in the case that the solution to
the master is feasible, its actual cost must be computed a-posteriori by solving the
subproblems, which may reveal that the solution is worse than the incumbent. This
iterative process continues until a feasible solution to the master problem is found for
which the estimated cost of each subproblem is correct, i.e., the solution is optimal,
and the method terminates. In other words, Benders decomposition primarily acts
as a “dual algorithm” that rarely, and incidentally, improves the incumbent solution.
As a consequence, because convergence may require a large amount of computing
time for hard instances, the method may be unsatisfactory from a heuristic point
of view.

Proximity search (PS) is a general approach focused on improving a given feasible
“reference solution”, and seeking to quickly produce a sequence of improving feasible
solutions (Fischetti andMonaci 2014). The approach is related to large-neighborhood
search (LNS) heuristics (Shaw 1998) that explore a neighborhood defined by con-
straints restricting the search space, in particular to Local Branching (Fischetti and
Lodi 2003), which adds a constraint that eliminates all solutions that are not “suffi-
ciently close” to a reference solution.

The generic Mixed-Integer Linear Program (MILP) of interest has the form

(MI LP) min cT x

Ax ≥ b,

x j ∈ {0, 1}, ∀ j ∈ B,

x j ∈ Z, ∀ j ∈ G,

x j ∈ R, ∀ j ∈ C,

where A is an m × n input matrix, b and c are input vectors of dimension m and n,
respectively, and the variable index set N := {1, . . . , n} is partitioned into B,G, and
C, withB the index set of the 0–1 variables, G the index set of general integer variables,
and C the index set of continuous variables. Removing the integrality requirement on
variables with indices in B ∪ G gives the LP relaxation.

PS works in stages, each aimed at producing an improved feasible solution. In each
stage, a reference solution x̃ is given, and one seeks to improve it. To this end, an
explicit cutoff constraint

cT x ≤ cT x̃ − θ (1)

is added to the original MILP, where θ > 0 is a given tolerance that specifies the
minimum improvement required. The objective function of the problem can then be
replaced by the proximity function
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�(x, x̃) =
∑

j∈B:̃x j=0

x j +
∑

j∈B:̃x j=1

(1 − x j ) (2)

to be minimized. One then applies the MILP solver, as a black box, to the modified
problem in the hope of finding a nearby solution better than x̃ (see Algorithm 1 for
more details).

Algorithm 1 Proximity Search
Let x̃ be the initial feasible solution to improve
repeat

Explicitly add cutoff constraint (1) to the MILP model
Install the new objective function Δ(x, x̃), defined by (2), to be minimized
Run the MILP solver on the new model until a termination condition is reached, and let x∗ be the best
feasible solution found
Refine x∗ by solving (possibly heuristically) the original MILP model after fixing xj = x∗

j for all j ∈ B
Recenter Δ(x, ·) by setting x̃ := x∗, and/or update θ

until an overall termination condition is reached

Apowerful variant of the above scheme, called “proximity search with incumbent”,
is based on the idea of providing x̃ to the MILP solver as a starting solution. To avoid
x̃ being rejected because of the cutoff constraint (1), the latter is weakened to its “soft”
version

cT x ≤ cT x̃ − θ(1 − z) (3)

while minimizing �(x, x̃) + Mz instead of just �(x, x̃), where z ≥ 0 is a continuous
variable, M � 0 is a large penalty and �(x, x̃) is defined by (2).

Computational experience confirms that PS is quite successful (at least, on some
classes of problems), due to the fact that the proximity function improves the “relax-
ation grip” of the model, meaning that the solutions of the LP relaxation tend to have a
large number of integer components, thus improving the success rate of the heuristics
embedded within the MILP solver. This is true, in particular, for the MILP models
where feasibility is enforced dynamically through cut generation. In fact, the solutions
to the LP-relaxation tend to be similar to the reference solution, thus most feasibility
constraints are likely to be satisfied without the need to explicitly impose them.

PS has a “primal nature”, meaning that it proceeds from a feasible solution to a
“nearby” feasible solution of improved value. As such, PS and Benders decomposi-
tion naturally complement each other, in particular when the emphasis is on seeking
heuristic solutions. In this paper, we investigate the use of PS as a tactical tool to drive
Benders decomposition, and computationally evaluate its performance as a heuristic
on instances of different stochastic programming problems.

The main contribution of our work is the development of a method that is able to
produce good-quality feasible solutions to large-scale instances of (certain types of)
stochastic programming problems, for which standard MILP solvers are unable to do
so either because the instances are too big to load into memory or the time to solve
even the root node relaxation is prohibitive.

The remainder of the paper is organized as follows. In Sect. 2, we introduce Prox-
imity Benders, a variant of proximity search that is specifically designed to handle
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MILPs arising in stochastic programming. In Sect. 3, we present a heuristic that can
enhance the performance of Proximity Benders. In Sect. 4, we discuss the results of a
set of computational experiments that demonstrate the efficacy of Proximity Benders
on instances of three stochastic programming problems. We conclude, in Sect. 5, with
some final remarks and future research directions.

2 Proximity Benders

In what follows, we will concentrate on a MILP of the form:

(P) min cT0 y +
∑K

k=1
μk

cTk xk = μk (4)

A0y + Akxk ≥ bk k = 1, . . . , K (5)

y ∈ Y (6)

xk ∈ Pk k = 1, . . . , K (7)

where Y = P0 ∩ {0, 1}m and each set Pk (k = 0, . . . , K ) is a polyhedron. In other
words, we assume that problem P has a block structure allowing for a decomposi-
tion into a master problem that involves binary variables y along with K continuous
variables μk , plus K subproblems arising after fixing y, each being a Linear Program
(LP) on the (xk, μk) variables. In addition, we assume that it is not hard to determine a
feasible (sub-optimal) solution of P . MILPs of this type frequently arise in stochastic
programming, and are typically attacked by Benders decomposition.

We next describe our PS heuristic scheme for problem P . Given a feasible solution
(ỹ, x̃, μ̃), PS adds the cutoff constraint

cT0 y +
K

∑

k=1

μk ≤ U − θ

to P , where U = cT0 ỹ + ∑K
k=1 μ̃k and θ > 0 is a given tolerance, and replaces the

objective function with the Hamming distance

�(y, ỹ) =
∑

j :̃y j=0

y j +
∑

j :̃y j=1

(1 − y j ) (8)

with respect to ỹ. In our implementation, we used the “proximity search with incum-
bent” variant, see (3), where the cutoff constraint is imposed in a soft way by
introducing a new continuous variable z0 ≥ 0 with a large cost M0 � 0 in the
objective function (8), along with the constraint

cT0 y +
K

∑

k=1

μk ≤ U − θ (1 − z0) (9)
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At any stage of the algorithm, we have a collection of previously-generated Benders
cuts involving the master variables, which we enforce by requiring that (y, μ) ∈ �,
where � is the polyhedron defined by the current collection of cuts (initially, � =
	m+K ). Therefore, the master problem has the form,

(PM (ỹ,U, �))

min

{

�(y, ỹ) + M0z0 : cT0 y +
K

∑

k=1

μk ≤ U − θ (1 − z0), y ∈ Y, (y, μ) ∈ �

}

,

(10)

and can be solved by any black-box MILP solver.
According to classical Benders’ decomposition, given an optimal solution of the

master problem, say (y, μ), one solves each subproblem,

(Pk(y, μk)) min
{

cTk xk : Akxk ≥ bk − A0y, xk ∈ Pk
}

, (11)

independently to possibly derive violated cuts to be added to the master. In our imple-
mentation, we followed the cut-generation recipe described in Fischetti et al. (2010),
i.e., for each k, we introduce two additional nonnegative variables zk and νk and rewrite
the corresponding subproblem as

(˜Pk(y, μk)) min{Mkzk + νk : Akxk + 1zk ≥ bk − A0y

cTk xk − νk ≤ μk,

xk ∈ Pk, zk ≥ 0, νk ≥ 0}

, (12)

where Mk � 0 is a sufficiently large penalty used to drive zk as close to zero as
possible and 1 is the vector of all ones. If the optimal solution value of ˜Pk(y, μk) is
strictly positive, a new cut can be derived and added to the master. Specifically, let
(x∗

k , z
∗
k , ν

∗
k ) denote the optimal solution found for the k-th subproblem ˜Pk(y, μk). If

z∗k > 0, problem Pk(y, μk) is infeasible, and one can derive a Benders’ feasibility cut
of the form

αT y ≤ γ (13)

to add to the master. Otherwise, i.e., z∗k = 0 and ν∗
k > 0, a Benders’ optimality cut of

the form

αT y + βμk ≤ γ (14)

can be added to the master. In both cases, the cut may be derived using the optimal
solution of the master and exploiting strong duality for a linear program. The reader is
referred toFischetti et al. (2010) for further details. In the remainder,wewill sometimes
refer to subproblem ˜Pk(y, μk) simply as subproblem k.
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Obviously, if z∗k = 0 for all k and cT0 y + ∑K
k=1 c

T
k x

∗
k < U , then one can update

the incumbent (ỹ, x̃, μ̃) and iterate proximity search starting from this new solution.
A more formal description of Proximity Benders is given in Algorithm 2.

Algorithm 2 Proximity Benders
Use a heuristic to find an initial feasible solution (ỹ, x̃) to problem P

Set U := cT0 ỹ +
∑K

k=1 cTk x̃k

Initialize Γ := �m+K (no Benders cuts)
continue := TRUE
while continue do

Solve master problem PM (ỹ, U,Γ) defined by (10), to obtain a (possibly heuristic) solution (y, μ, z0)
continue := FALSE
for all k = 1, . . . ,K do

Solve subproblem P̃k(y, μk) defined by (12), to get an optimal solution (x∗
k, z

∗
k, ν

∗
k)

if z∗
k > 0 then

Add a Benders feasibility cut (13) from subproblem P̃k(y, μk) to the description of Γ
continue := TRUE

else if ν∗
k > 0 then

Add a Benders optimality cut (14) from subproblem P̃k(y, μk) to the description of Γ
continue := TRUE

end if
end for
if z∗

1 = · · · = z∗
K = 0 and cT0 y +

∑K
k=1 cTk x∗

k < U then
Update ỹ := y
Update U := cT0 y +

∑K
k=1 cTk x∗

k

continue := TRUE
end if

end while

A sequence of passes through the “while” loop in which the incumbent ỹ is not
updated is called an outer iteration, while an inner iteration is a single pass through
the “while” loop where the master problem and the K subproblems are solved.

The idea of mixing Benders decomposition with local search is not new. In partic-
ular, Rei et al. (2009) use local branching to produce a pool of (possibly infeasible)
integer solutions of the master problem, from which diversified Benders cuts can be
derived. However, our approach reverses the role of local search and Benders decom-
position: instead of using local search inside a Benders method, we apply a black-box
Benders solver within an external local search scheme, i.e., PS. In doing so, wemodify
the objective function of the master problem, thus drastically changing the sequence
of points provided by the various masters, as well as their associated Benders cuts.

3 A repair heuristic

Due to its particular structure, finding a heuristic solution to problem P involves
deciding the values of the y variables, as the x andμ variables can easily be computed
by solving a sequence of LP subproblems, provided of course that these subproblems
are feasible.

We say that y is feasible (for problem P) if fixing y = y does not produce an
infeasible subproblem. In many applications, the feasible y’s satisfy the following
monotonicity property: let y ∈ {0, 1}m and y′ ∈ {0, 1}m with y′ ≥ y; if y is feasible,
then y′ is also feasible. This implies, in particular, that y = (1, . . . , 1) is always a
feasible (though likely very bad) solution.
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Assuming monotonicity, one can easily derive a repair heuristic that starts with
an infeasible y, and iteratively increases some of its components until a feasible y′
is found. Of course, the quality of the final solution depends on how cleverly the
components to be increased are chosen. In this respect, the following repair heuristic
seems a reasonable option, and is applied in an inner iteration ofAlgorithm2 to enforce
feasibility of the current y when only a few subproblems k have z∗k > 0.

Given the current infeasible solution y we consider each subproblem k with z∗
k

> 0,
in turn, and solve the following auxiliary problem

(Pk(y)) min
{

cT0 y + cT
k
xk : A0y + Akxk ≥ bk, y ≥ y, y ∈ Y, xk ∈ Pk

}

(15)

obtained from problem P by eliminating all variables and constraints associated with
subproblems k �= k and imposing the additional constraint y ≥ y. In this way, we
model the effect of changing some variables y j with y j = 0 to retrieve feasibility
for the current subproblem. The resulting problem is then solved heuristically with
a certain time limit imposed (or by simply rounding up the root node LP-solution)
to quickly get an integer solution y′. Then we set y = y′ and iterate on the next
subproblem k with z∗k > 0. A pseudo-code of the resulting procedure is given in
Algorithm 3.

Algorithm 3 Repair Heuristic
Let y be the initial infeasible solution to repair
for all k = 1, . . . ,K do
if z∗

k > 0 then
Solve auxiliary problem (P k(y)) defined by (15) and get a solution (y′, xk)
Set y = y′

end if
end for

In some cases, 1−y (instead of y) satisfies themonotonicity property, and the repair
heuristic can still be applied by replacing y ≥ y with y ≤ y in (15). This happens,
e.g., in the stochastic network interdiction problem described in Sect. 4.3.

4 Computational experiments

The Proximity Benders algorithm presented in Sect. 2, denoted as ProxyBenders
in the following, has been implemented in C using IBM-ILOG Cplex 12.6.1 as the
MILP solver. We ran the algorithm on different benchmark instances in order to test
its effectiveness, namely:

• instances of a stochastic capacitated facility location problem described, for exam-
ple, by Bodur et al. (2014);

• instances of a stochastic network interdiction problems described, for example, by
Bodur et al. (2014); and

• instances of a stochastic fixed charge multi-commodity network design problem
derived from those introduced by Crainic et al. (2014).

To evaluate the performance of Proximity Benders, we also considered alternative
approaches and ran, on the same benchmark instances, the following algorithms:
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• IBM-ILOG Cplex 12.6.1 in its default settings (Cplex in the following) on the
MILP associated with an instance; and

• A natural implementation of a Benders decomposition algorithm (Benders in
what follows) in which the proximity paradigm is not exploited.

In our implementation, we set Mk = 100, 000 to enforce feasibility in the
subproblems. Theminimum improvement required in the cutoff constraint ofProxy-
Benders is set as θ = 10−5z0, where z0 is the incumbent solution value. Thus, we
use a non-aggressive policy and we let the value of θ decrease during the execution of
the algorithm. Each algorithm was run in single-thread mode with a time limit of 1 h
per instance on an Intel Xeon E3-1220V2 running at 3.10 GHz, with 16GB of RAM.

ProxyBenders requires an initial feasible solution. A natural idea is to use
the repair heuristic starting from infeasible solution y = 0. This produces rea-
sonable results for the stochastic facility location and the stochastic fixed-charge
multi-commodity network design problems, but not for the stochastic network interdic-
tion problem, as the repair heuristic is unable to improve it. To have amoremeaningful
initial solution, in all cases we also run algorithm Benders and stop it when the
incumbent has been updated 10 times. The best of the two feasible solutions produced
is provided as initial feasible solution to all algorithms (for all instances in our testbed).

4.1 Metrics

To compare the performance of the different heuristics, we use an indicator recently
proposed in Achterberg et al. (2012) and Berthold (2013), aimed at measuring the
trade-off between the computational effort required to produce a solution and the
quality of the solution itself. Specifically, let z̃opt denote the optimal solution value
for a given problem, and z(t) be the value of the best heuristic solution found at a time
t . Then, a primal gap function p can be computed as

p(t) =
{

1 if no incumbent found until time t

γ (z(t)) otherwise

where γ (·) ∈ [0, 1] is the primal gap, defined as

γ (z) =

⎧

⎪

⎨

⎪

⎩

0 if |̃zopt | = |z| = 0,

1 if z̃opt · z < 0,
z−̃zopt

max{|̃zopt |,|z|} otherwise.

Finally, the primal integral (PI) of a run until time tmax is defined as

P(tmax) =
∫ tmax

0
p(t) dt (16)
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Proximity Benders: a decomposition heuristic for… 189

and is actually used to measure the quality of primal heuristics: the smaller P(tmax),
the better the expected quality of the incumbent solution if we stopped computation
at an arbitrary time before tmax.

We also count the number of instances for which an algorithm produced the best
solution at the time limit (#w for number of wins), the number of instances for which
a solution is found that improves the initial feasible solution (#i), and the total number
of improving solutions found (#s).

4.2 Stochastic capacitated facility location

Our first benchmark includes instances of a stochastic variant of the capacitated facility
location problem (CAP), as described by Louveaux (1986). In this variant, first-stage
variables determine the set of facilities to be opened before observing the actual real-
izations of customer demands. The second-stage variables determine the fraction of
customer demands allocated to the open facilities. Denoting by I the set of potential
facilities, by J the set of customers, and by K the set of scenarios, the problem can be
formulated as follows (see Bodur et al. 2014 for further details)

min
∑

i∈I
fi yi + 1

|K |
∑

k∈K

∑

i∈I

∑

j∈J

qi j x
k
i j

∑

i∈I
xki j ≥ λkj j ∈ J ; k ∈ K

∑

j∈J

xki j ≤ si yi i ∈ I ; k ∈ K

∑

i∈I
si yi ≥ max

k∈K
∑

j∈J

λkj

yi ∈ {0, 1} i ∈ I

xki j ≥ 0 i ∈ I ; j ∈ J ; k ∈ K (17)

where fi and si represent the fixed cost and capacity, respectively, of facility i ∈ I ,
λkj is the realized demand of customer j ∈ J in scenario k ∈ K , and qi j denotes the
cost of sending a unit of demand from facility i ∈ I to customer j ∈ J .

We used all the CAP instances considered in Bodur et al. (2014), obtained using net-
works from the OR-Library (Beasley 1990) and randomly generating the customers’
demands. In particular, we have 4 classes each with 4 instances with 250 scenarios
and 4 classes each with 4 instances with 500 scenarios.

Table 1 reports, for each algorithm and for different time limits (namely, 100 s,
600 s and 1 h), the outcome of our experiments for each instance class. Instances are
grouped as in Bodur et al. (2014) according to (K , CAP #), thus each row refers to
4 instances. Note that for all these instances, the optimal solution value is known,
allowing for an exact computation of the primal integral, see (16).

The results in Table 1 show that ProxyBenders performs better than Cplex for
small time limits, but that it loses its edge when more computation time is available.
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This is due to the fact that these instances are not extremely hard and that all but
two of them can be solved to optimality by Cplex within the 1-h time limit. On
this benchmark, Benders is outperformed by the other two algorithms, though the
presence of redundant constraint (17) in the model ensures that each subproblem is
feasible for any first stage solution, allowing Benders (and ProxyBenders) to
find a feasible solution at each iteration. This fact typically increases the chances of
finding a high-quality solution, and, in fact, deactivates the repair heuristic described
in Sect. 3.

The results above are encouraging and demonstrate the potential of Proximity Ben-
ders, but the instances are inadequate to fully reveal the power of Proximity Benders.
As mentioned, most of the instances can be solved to optimality by Cplex in less than
1 h. That is not the setting for which a decomposition approach is designed. Proximity
Benders is designed to be used in settings where the instances are large, difficult, and
cannot be solved in a reasonable amount of time by providing the MILP formulation
to a solver, indeed for which solving the root relaxation may already be computation-
ally prohibitive. In the next two subsections, we present results on instances that are
(somewhat) more appropriate to show the benefits of a decomposition approach, and
of Proximity Benders in particular.

4.3 Stochastic network interdiction

Our second set of benchmark instances among those described by Bodur et al. (2014)
includes instances of the stochastic network interdiction problem (SNIP) described by
Pan andMorton (2008). In SNIP one is given a directed graphG = (N , A) and a subset
of candidate arcs D onwhich sensors can be installed, so as tomaximize the probability
of catching an intruder that traverses some path in the graph. First-stage decisions
concern the installation of the sensors. In the second stage, a scenario corresponds
to an intruder selecting a path that has minimum probability of being detected when
traversing the path from the intruder’s origin to his destination. Denoting by K the set
of scenarios, the problem can be formulated as follows

min
∑

k∈K
pkx

k
sk

∑

(i, j)∈D
ci j yi j ≤ b

xktk = 1 k ∈ K

xki − qi j x
k
j ≥ 0 (i, j) ∈ D; k ∈ K

xki − ri j x
k
j ≥ 0 (i, j) ∈ A \ D; k ∈ K

xki − ri j x
k
j ≥ −(ri j − qi j )ψ

k
j yi j (i, j) ∈ D; k ∈ K

yi j ∈ {0, 1} (i, j) ∈ D

xki ≥ 0 i ∈ N ; k ∈ K
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where pk is the probability of scenario k, which corresponds to a path from origin sk to
destination tk , ci j is the cost of installing a sensor on arc (i, j) ∈ D, b is the available
budget, and qi j and ri j denote the probability of failing to detect the intruder with
and without a sensor on each arc (i, j), respectively. Finally, coefficients ψk

j represent

the value of the maximum-reliability path from j to tk when no sensors are placed
and can be determined by shortest-path computation. In this case too, the reader is
referred to Bodur et al. (2014) for a complete description of objective function and
constraints.

We focus our experiments on the more difficult instances, which are obtained
by drawing ri j uniform randomly from [0.3, 0.6] and setting qi j = 0.1ri j (Class
3 instances) and qi j = 0 (Class 4 instances) for all (i, j) ∈ A, respectively.
The available budget ranges from 30 to 90. Table 2 gives the corresponding
results.

For the instances in this testbed, Benders tends to perform better than Cplex as
it takes advantage of the decomposition, which is crucial for these large instances.
However, results show that the proximity paradigm produces even better results:
ProxyBenders has a performance similar toCplex andBenders for the smallest
time limit, while it outperforms the other two methods (for both metrics) for larger
time limits. The reason why ProxyBenders performs so well on these instances is
that it continues to find improving solutions during the 1 h execution, whereas Cplex
does not and Benders cannot.

In Fig. 1, we show the best known solution value for each of the heuristics over
time for one of the instances (namely, the fourth instance of Class 4 with a budget of
80). We see that all algorithms start with the same initial solution of value 0.199, and
ProxyBenders finds many improving feasible solutions during its execution; the
final one after about 1600 s has a value equal to 0.155. Cplex, on the other hand,
finds the first improving feasible solution of value 0.187 after 1200 s and terminates
with a solution of value 0.178 found after about 2800 s. As to Benders, it finds about
ten improving solutions: after 1000 s it computes a solution of value 0.158 which is
slightly improved to 0.157 after 2200 s.

4.4 Stochastic fixed-charge multi-commodity network design

Finally, we consider large instances of a stochastic fixed charge multi-commodity
network design problem. Given a directed network G = (N , A) and a set K of
commodities, the deterministic problem seeks a minimum cost set of arcs that allows
the required amount of flow for each commodity to be send from its origin to its
destination (i.e., to satisfy demand). In the stochastic version of the problem, first-
stage binary variables determine the network design, i.e., the set of arcs to be installed,
whereas second-stage continuous variables determine the flow of a commodity along
an arc for a given scenario (i.e., for a given demand realization). Denoting by S the
set of scenarios, the model reads as follows
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Fig. 1 The best known solution value over time for the three heuristics

min
∑

(i, j)∈A

fi j yi j +
∑

s∈S
ps

⎛

⎝

∑

k∈K

∑

(i, j)∈A

cki j x
ks
i j

⎞

⎠

∑

j∈N+(i)

xksi j −
∑

j∈N−(i)

xksji = dksi i ∈ N ; k ∈ K ; s ∈ S

∑

k∈K
xksi j ≤ ui j yi j (i, j) ∈ A; s ∈ S

yi j ∈ {0, 1} (i, j) ∈ A

xksi j ≥ 0 (i, j) ∈ A; k ∈ K ; s ∈ S,

where fi j and ui j denote the fixed cost and capacity, respectively, of arc (i, j) ∈ A,
cki j denotes the cost of sending one unit of commodity k ∈ K along arc (i, j) ∈ A, dksi
denotes the net flow (i.e., the difference between inflow and outflow) at node i ∈ N
for commodity k ∈ K in scenario s ∈ S, and ps denotes the probability of scenario
s ∈ S. Further details about the model can be found in Crainic et al. (2014).

We consider seven of the instance classes (namely, instance classes 4 through 10)
used in Crainic et al. (2014), which, in turn, were derived from the set of R-instances
of Crainic et al. (2011). For each instance class, we consider five networks (namely,
networks 1, 3, 5, 7, and 9) with an increasing ratio of fixed to variable costs and
total demand to capacity. For each of the 35 networks, Crainic et al. (2014) generated
5 instances with 64 scenarios. In order to have instances with a larger number of
scenarios,we generate scenarios as follows. For each commodity and for each network,
we determine the minimum and maximum demand over all scenarios considered in
Crainic et al. (2014). Then, we generate the demand for the commodity in each of
the |S| scenarios by drawing uniform randomly from the interval determined by the
minimum and maximum demand.

123



Proximity Benders: a decomposition heuristic for… 195

Table 3 provides results for instances with 2000 scenarios. The table reports the
same information as Tables 1 and 2, but each line now refers to a specific instance.
Because formany instances the optimal solution value is not known, the primal integral
has been computed with respect to the best known solution value.

For two instances, none of the heuristics was able to improve on the initial feasible
solution in 1 h. For these instances all entries in the table are set to zero. For twenty
instances, Cplex was unable to even solve the LP relaxation in 1 h. These instances
are marked by a star.

We see that Benders performs poorly on these instances, as it only improves the
initial feasible solution for 7 instances out of 35. On the other hand, ProxyBenders
is reasonably effective, especially for the largest instance classes (namely, instance
classes 8, 9 and 10). When restricting ourselves to these instance classes, we see that
Cplex finds improving solutions for only 1 of the 15 instances whereas Proxy-
Benders finds improving solutions for 10 instances. Although ProxyBenders is
not guaranteed to find a feasible solution at each iteration, using a large value Mk

in problem ˜Pk(y, μk) enforces feasibility in many cases. And, whenever this is not
the case, the repair heuristic recovers feasibility, which may or may not provide an
improving solution.

The results clearly exhibit the expected pattern. When given enough time, Cplex
will ultimately overtake ProxyBenders, in terms of primal integral, number of
instances for which it finds the best solution, and the number of instances for which
it finds an improving solution. However, for this testbed too, we see that the proxim-
ity paradigm has a positive effect on the performance of a decomposition algorithm.
Indeed, Benders never ends up with the best solution after 100 s, whereas this hap-
pens for 6 instances usingProxyBenders. Allowing a 10-min time limit,Benders
improves the solution only for 4 instances, and for 5 instance with a 1-h time lime.
For these time limes, ProxyBenders improves 14 and 21 solutions, respectively.

These result reinforce that Proximity Benders should be the method of choice in sit-
uationswhere high-quality solutions to very large instances of stochastic programming
problems need to be found quickly.

5 Final remarks

The computational results presented in this paper provide a proof-of-concept demon-
stration of the potential of Proximity Benders. The computational results suggest that
Proximity Benders should be the method of choice in situations where high-quality
solutions to very large instances of certain types of stochastic programming problems
need to be found quickly. This is true, in particular, for situations in which solving
the LP relaxation is already computationally prohibitive. Proximity Benders naturally
and easily parallelizes, which will further amplify its advantages and benefits.

We next mention just a few possible directions for future research. Investigating
the sensitivity of Proximity Benders to the quality of the initial feasible solution is of
interest. We have used a non-aggressive policy for setting the minimum improvement
required in the cutoff constraint of Proximity Benders. Investigating the performance
of Proximity Benders for different (more aggressive) schemes for setting and updating
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the minimum improvement required is of interest. Exploring whether the efficiency
of Proximity Benders can be improved by incorporating more sophisticated cut man-
agement schemes or by not solving all subproblems in each inner iteration is also of
interest. There are similarities between Proximity Benders and the Feasibility Pump
for finding feasible solutions to MILP (Fischetti et al. 2005). The use of randomiza-
tion is critical to the performance of the feasibility pump and, therefore, randomization
schemes for Proximity Benders, e.g., randomizing ỹ, are worth studying.

Finally, we observe that our proof-of-concept implementation did not target a spe-
cific problem, and we anticipate that tailored implementations for specific problems
would likely be far more efficient. Thus, we expect that Proximity Benders can lead to
quite effective ad-hoc heuristics for very large stochastic programming applications.
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