J Heuristics (2016) 22:1-53 @ CrossMark
DOI 10.1007/s10732-015-9300-7

Exploiting subproblem optimization in SAT-based
MaxSAT algorithms

Carlos Ansotegui! - Joel Gabas! - Jordi Levy?

Received: 20 October 2014 / Revised: 23 July 2015 / Accepted: 16 August 2015 /
Published online: 15 September 2015
© Springer Science+Business Media New York 2015

Abstract The Maximum Satisfiability (MaxSAT) problem is an optimization variant
of the Satisfiability (SAT) problem. Several combinatorial optimization problems can
be translated into a MaxSAT formula. Among exact MaxSAT algorithms, SAT-based
MaxSAT algorithms are the best performing approaches for real-world problems. We
have extended the WPM?2 algorithm by adding several improvements. In particular,
we show that by solving some subproblems of the original MaxSAT instance we can
dramatically increase the efficiency of WPM2. This led WPM2 to achieve the best
overall results at the international MaxSAT Evaluation 2013 (MSE13) on industrial
instances. Then, we present additional techniques and heuristics to further exploit the
information retrieved from the resolution of the subproblems. We exhaustively analyze
the impact of each improvement what contributes to our understanding of why they
work. This architecture allows to convert exact algorithms into efficient incomplete
algorithms. The resulting solver had the best results on industrial instances at the
incomplete track of the latest international MSE.

Keywords Constraint optimization - Satisfiability - Maximum Satisfiability

X Carlos Ansétegui
carlos@diei.udl.es

Joel Gabas
joel.gabas@udl.cat

Jordi Levy
levy @iiia.csic.es

1 DIEIL Universitat de Lleida, Lleida, Spain
2 IITA-CSIC, Barcelona, Spain

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-015-9300-7&domain=pdf

2 C. Ansétegui et al.

1 Introduction

Combinatorial optimization problems arise in many domains: scheduling and plan-
ning, software and hardware verification, knowledge compilation, probabilistic
modeling, bioinformatics, energy systems, smart cities, social networks, computa-
tional sustainability, etc. From a computational point of view, many optimization
problems are NP-hard meaning that is unlikely that they admit a polynomial-time
algorithm. The good news is that some real problems are already efficiently solved
by state-of-the-art Constraint Programming techniques (Rossi et al. 2006) and many
others are only slightly beyond the reach of these techniques.

In recent decades, Satisfiability (SAT) solvers (Biere et al. 2009) have progressed
spectacularly in performance thanks to better implementation techniques and con-
ceptual enhancements, such as Conflict Driven Clause Learning-based algorithms,
which are able to reduce the size of the search space significantly in many instances
of real NP-Complete problems. Every year, the community celebrates competitions
where the performance of all these solvers is compared, and every year we con-
template how the number of solvable problems increases, and how instances that
were considered very difficult, become easy. Thanks to these advances, nowadays
the best SAT solvers can tackle industrial problems with hundreds of thousands of
variables and millions of clauses. We use the term industrial in the sense of practi-
cal or real-world applications. Some extensions of SAT that have also attracted the
interest of the scientific community in recent years include: Pseudo-Boolean (PB) sat-
isfiability, Satisfiability Modulo Theories (SMT), satisfiability of Quantified Boolean
Formulas, Maximum Satisfiability (MaxSAT), Model Counting (#SAT), etc. There
exist also solvers for all these extensions of SAT, and competitions where they are
tested.

The MaxSAT problem is the optimization version of SAT. The idea behind this
formalism is that sometimes not all the constraints of a problem can be satisfied, and
we try to satisfy the maximum number of them. The MaxSAT problem can be further
generalized to the Weighted Partial MaxSAT (WPMS) problem. In this case, we can
divide the constraints into two groups: the clauses (constraints) that must be satisfied
(hard), and the ones that may or may not be satisfied (soft). In the last group, we may
associate different weights with the clauses, where the weight is the cost of falsifying
the clause. The idea is that not all constraints are equally important. The addition of
weights to clauses makes the instance Weighted, and the separation into hard and soft
clauses makes the instance Partial. The WPMS problem is a natural combinatorial
optimization problem, and it has been already applied in many domains (Ansétegui
et al. 2013b; Morgado et al. 2013a).

In the MaxSAT community, we find two main classes of complete algorithms:
branch and bound (Heras et al. 2007; Kiigel 2010; Li et al. 2009; Lin and Su 2007; Lin
et al. 2008) and SAT-based (Ansétegui et al. 2012; Davies and Bacchus 2011; Heras
etal. 2011; Honjyo and Tanjo 2012; Koshimura et al. 2012; Martins et al. 2011, 2012;
Morgado et al. 2012).

SAT-based approaches clearly dominate on industrial and some crafted instances, as
we can see in the results of the international MaxSAT Evaluation (Argelich et al. 2006-
2004). SAT-based MaxSAT algorithms basically reformulate a MaxSAT instance into

@ Springer

Exploiting subproblem optimization in SAT-based MaxSAT... 3

asequence of SAT instances. By solving these SAT instances the MaxS AT problem can
be solved (see (Ansotegui et al. 2013b; Morgado et al. 2013a) for further information).
Intuitively, this sequence is built such that it can be split into two parts where the
instances in the first part are all unsatisfiable while the instances in the second one
are all satisfiable. By locating the phase transition point, i.e., the last unsatisfiable
instance and the first satisfiable instance, we can locate the optimum of the optimization
problem. As we will see, once we solve an unsatisfiable SAT instance we can refine the
lower bound, while when we solve a satisfiable SAT instance we can refine the upper
bound. Among SAT-based MaxSAT algorithms we also find two main classes: (i)
those that focus the search on refining the lower bound, and exploit the information of
unsatisfiable cores and, (ii) those that focus the search on refining the upper bound, and
exploit the information of the satisfiable assignments. Both approaches have strengths
and weaknesses. Our current work aims to find an efficient balance between both
approaches.

In this paper, we present the improved version of the SAT-based MaxSAT algo-
rithm WPM2 (Ansotegui et al. 2010) (see Sect. 4) presented originally in Ansétegui
et al. (2013a), a more detailed experimental analysis of the new algorithm, further
improvements and an incomplete version. The aim of this paper is not only to present
a method that performs well, but also to understand why this is the case. This way we
will be able to identify the interaction with other future improvements in the field and
whether they are complementary or not to this work.

In our experimental investigation, our reference point is the original WPM?2 algo-
rithm which solves 959 out of 2078 instances from the whole benchmark of industrial
and crafted instances of the MSE13.

With respect to the improvements we have incorporated, first of all, we extend
the original WPM2 algorithm by applying the stratification approach described in
Ansotegui et al. (2012), what results in solving 100 additional instances. Second, we
introduce a new criteria to decide when soft clauses can be hardened (Ansétegui et al.
2012; Morgado et al. 2012), that provides 68 additional solved instances. Finally,
our most effective contribution is to introduce a new strategy that focuses search on
solving subproblems of the original MaxSAT instance. In order to define these sub-
problems we use the information provided by the unsatisfiable cores we obtain during
the solving process. The improved WPM2 algorithm is parametric on the approach
we use to solve these subproblems. This allows to combine the strength of exploiting
the information extracted from unsatisfiable cores and other optimization approaches.
By solving these smaller optimization problems we get the most significant boost in
our improved WPM2 algorithm. In particular, we experiment with an Integer Lin-
ear Programming (ILP) approach, corresponding to the strategy shown in Sect. 3,
and three MaxSAT approaches: (i) refine the lower bound for these subproblems
with the subsetsum function (Cormen et al. 2009; Ansotegui et al. 2010), (ii) refine
the upper bound with the strategy applied in minisat+ (Eén and Sorensson 2006),
SAT4J (Berre 2006), gqmaxsat (Koshimura et al. 2012) or ShinMaxSat (Honjyo and
Tanjo 2012), and (iii) a binary search scheme (Heras et al. 2011; Cimatti et al. 2010;
Fu and Malik 2006) where the lower bound and upper bound are refined as in the
previous approaches. The best performing approach in our experimental analysis is
the second one and it allows to solve up to 296 additional instances. As a summary, the

@ Springer

4 C. Ansétegui et al.

overall increase in performance we achieved so far compared to the original WPM2
is about 464 additional solved instances, or 48 % more. These improvements led
WPM?2 to be the overall best performing approach on the industrial instances of the
MSEI13.

To further explain the good results of our approach we include and extend the study
originally presented in Ansotegui (2013a) on the structure of the unsatisfiable cores
obtained during the search process of SAT-based algorithms (see Sect. 6). We explain
how the improved WPM?2 algorithm takes advantage of this structure.

We have also explored how we can exploit information retrieved from the subprob-
lems that are solved. When the strategy used to optimize the subproblems is able to
produce satisfying assignments, i.e., it refines the upper bound (see approaches (ii)
and (iii) above), we can use these assignments as a heuristic to guide and boost the
search. This improvement allows to solve 50 additional instances. The overall increase
in performance compared to the original WPM?2 is 514 additional solved instances.
Actually, if we take into account the timeout of 7200 s (2 h) used in our experi-
ments, we obtain an overall speed-up of about three orders of magnitude (see Sect. 6).
Moreover, we show that high quality satisfying assignments can be obtained in a rea-
sonably short time, giving us naturally an incomplete approach. Our experimental
results confirm that the incomplete version of our exact improved WPM2 algorithm
would have dominated the track for incomplete solvers at the MSE13. Furthermore,
at MSE14, even though it was not the best complete approach, it dominates the others
as incomplete.

From the perspective of coming up with an efficient implementation of our
approach, it is obvious that SAT-based MaxSAT algorithms have to be implemented
on top of an efficient solver based on SAT technology. This solver has to be capable of
returning an unsatisfiable core when the input instance is unsatisfiable and a satisfying
assignment when the instance is satisfiable. Moreover, SAT-based MaxS AT algorithms
require the addition of linear PB constraints as a result of the reformulation process
of the original problem into a sequence of SAT instances. These PB constraints are
used to bound the cost of the optimal assignment. Currently, in most state-of-the-art
SAT-based MaxSAT solvers, PB constraints are translated into SAT. However, there
is no known SAT encoding which can guarantee the original propagation power of the
constraint, i.e, what we call arc-consistency, while keeping the translation low in size.
The best approach so far, has a cubic complexity (Bailleux et al. 2009). This can be a
bottleneck for WPM?2 (Ansotegui et al. 2010) and also for other algorithms such as,
BINCD (Heras et al. 2011) or SAT4J (Berre 2006).

In order to treat PB constraints with specialized inference mechanisms and a mod-
erate cost in size, while preserving the strength of SAT techniques for the rest of the
problem, we use the SMT technology (Sebastiani 2007) (see Sect. 5). Related work in
this sense can be found in Nieuwenhuis and Oliveras (2006). Also, in Ansétegui et al.
(2011) a Weighted Constraint Satisfaction Problems (WCSP) solver implementing the
original WPM1 (Ansotegui et al. 2009) algorithm is presented.

Finally, we have also seen the development of successful methods for solving com-
binatorial problems by applying techniques from Operations Research. Although the
literature shows us that some NP-hard problems are more suitable for logic-based
approaches while others are more efficiently solved with integer programming tech-

@ Springer

Exploiting subproblem optimization in SAT-based MaxSAT... 5

niques, our current study would not be exhaustively conducted without showing the
performance of integer programming techniques on MaxSAT problems. Actually, we
can easily reformulate the WPMS problem into an ILP problem (see Sect. 3) and apply
an ILP approach. We show that the ILP approach is not competitive on the industrial
instances where a logic-based approach like the one proposed here is more efficient.

This paper proceeds as follows. Section 2 formally defines the main concepts that
are used in the paper. Section 3 presents the translation of WPMS into ILP. Section 4
describes the WPM?2 algorithm and the new improvements. Section 5 describes the
SMT problem and discusses some implementation details of the SMT-based MaxSAT
algorithms. Section 6 presents the experimental evaluation. Finally, Sect. 7 shows the
conclusions and the future work.

2 Preliminaries

Definition 1 A /iteral | is either a Boolean variable x or its negation Xx. A clause c is
a disjunction of literals. A SAT formula is a set of clauses that represents a Boolean
formula in Conjunctive Normal Form (CNF), i.e., a conjunction of clauses.

Definition 2 A weighted clause is an ordered pair (c, w), where c is a clause and w
is a natural number or infinity (indicating the cost of falsifying ¢, see Definitions 5
and 6). If w is infinite the clause is hard, otherwise it is soft.

Definition 3 A Weighted Partial MaxSAT (WPMS) formula is an ordered multiset of
weighted clauses:

(S <(Cl, U)[), E) (CSa ws)v (CS+1’ OO), B (CS-‘rhs OO)>

where the first s clauses are soft and the last / clauses are hard. The presence of soft
clauses with different weights makes the formula Weighted and the presence of hard
clauses makes it Partial. The ordered multiset of weights of the soft clauses in the
formula is noted as w(¢). The top weight of the formula is noted as W (¢), and defined
as W(p) = > w(g)+ 1. The set of indexes of soft clauses is noted as S(¢) and the set
of indexes of hard clauses is noted as H (¢). When it is clear to which formula ¢ these
soft (hard) clauses belong, we also refer to these sets of indexes as S (H). Finally, the
set of variables occurring in the formula is noted as var(g).

Example 1 Given the WPMS formula ¢ = ((x1,95), (x2, 3), (x3, 3), (X1 V X2, 00),
(x1 Vv X3, 00), (X2 V X3, 00)), we have that w(p) = (5, 3,3), W(p) = 12, S(p) =
{1,2,3}, H(p) = {4, 5, 6} and var(p) = {x|, x2, x3}.

Definition 4 Given a WPMS formula ¢ and a set of indexes A, ¢4 is the WPMS
formula that contains the clauses (c;, w;) such thati € A. By ¢g we refer the set of
soft clauses and by ¢p to the set of hard clauses.

Example 2 Given the WPMS formula ¢ of Example 1, we have that ¢35 =
((x1,5), (x3,3), (X1 V X3,00)), ps = ((x1,5), (x2,3), (x3,3)) and oy = ((x1 V
X2, 00), (X1 V X3, 00), (X2 V X3, 00)).

@ Springer

6 C. Ansétegui et al.

Definition 5 An assignment for a set of Boolean variables X is a functionZ : X —
{0, 1}, that can be extended to literals, (weighted) clauses, SAT formulas and WPMS
formulas as follows:

Ix)=1—-7Z(x)

Iy v ... Vi) =max{Z{y),..., LUy}
IZ{cty...,cn}) =min{Z(cy),...,Z(cy)}

Z((c, w)) = w (1 — I(c))

T, W)y - s Csns Wytn))) = S0t T(ci, wi))

We will refer to the value returned by an assignment Z on a weighted clause or a
WPMS formula as the cost of Z.

Given a WPMS formula ¢ and a set of indexes A, we will refer to 74 as an assign-
ment for 4.

Definition 6 We say that an assignment 7 satisfies a clause or a SAT formula if the
value returned by Z is equal to 1. In the case of SAT formulas, we will refer also to this
assignment as a satisfying assignment or solution. Otherwise, if the value returned by
7 is equal to 0, we say that 7 falsifies the clause or the SAT formula.

Definition 7 The SAT problem for a SAT formula ¢ is the problem of finding a solution
for ¢. If a solution exists the formula is satisfiable, otherwise it is unsatisfiable.

Definition 8 Given an unsatisfiable SAT formula ¢, an unsatisfiable core ¢c is a
subset of clauses ¢c C ¢ that is also unsatisfiable. A minimal unsatisfiable core is an
unsatisfiable core such that any proper subset of it is satisfiable.

Example 3 Given the SAT formula: ¢ = {(x1), (x2), (x3), (X1 VX2), (x1 VX3), (X2 V
x3)} we have that {(x1), (x2), (x3), (X1 V X2)} € ¢ is an unsatisfiable core and
{(x1), (x2), (x1 V x2)} C ¢ is a minimal unsatisfiable core.

Definition 9 A SAT algorithm for the SAT problem, takes as input a SAT formula ¢
and returns an assignment 7 such that 7 (¢) = 1 if the formula is satisfiable. Otherwise,
it returns an unsatisfiable core ¢c.

Given unlimited resources of time and memory, we say that a SAT algorithm is
complete if it terminates for any SAT formula. Otherwise, we say that it is incomplete.

Definition 10 The optimal cost (or optimum) of a WPMS formula ¢ is cost(p) =
min{Z(¢) | Z : var(p) — {0, 1}} and an optimal assignment is an assignment 7 such
that Z(¢) = cost(gp). We will refer to this assignment as a solution for ¢ if Z(¢) # oo.
Any cost above (below) cost (¢) is called an upper (lower) bound for ¢.

Example 4 Given the WPMS formula ¢ of Example 1, we have that cost(p) =
min{6, 8, 11, co} = 6 and the optimal assignment Z maps (x1, x2, x3) to (1, 0, 0).

Definition 11 The Weighted Partial MaxSAT problem for a WPMS formula ¢ is the
problem of finding a solution for ¢. If a solution does not exist the formula is unsat-
isfiable.

@ Springer

Exploiting subproblem optimization in SAT-based MaxSAT... 7

Definition 12 A WPMS algorithm for the WPMS problem, takes as input a WPMS
formula ¢ and returns an assignment Z, such that, Z(¢) > cost (¢).

Given unlimited resources of time and memory, we say that a WPMS algorithm is
complete or exact if for any input WPMS formula ¢ and returned Z, Z(¢) = cost(¢).
Otherwise, we say it is incomplete.

Definition 13 An integer linear Pseudo-Boolean (PB) constraint is an inequality of
the form wixy + - - - + wyx, op k, where op € {<, >, =, >, <}, k and w; are integer
coefficients, and x; are Boolean variables. A cardinality constraint is a PB constraint
where the coefficients w; are equal to 1. A PB Ar-Most (At-Least) constraint is a PB
constraint where op is < (>).

Example 5 5x1+3x3+3x3 < 6isaPB At-Most constraint and Sx; +3x2+3x3 > 6
is PB At-Least constraint.

3 Translation of weighted partial MaxSAT into ILP

In order to solve a WPMS problem, a first reasonable approach consists in reformu-
lating the WPMS problem as an ILP problem and applying an ILP solver. Several
encodings can be found in the literature (Li and Manya 2009; Manquinho et al. 2009;
Ansétegui and Gabas 2013; Davies and Bacchus 2013).

Here, we describe the precise encoding we used in Ansétegui and Gabas (2013).
Given a WPMS formula, ((c1, wy), ..., (cg, wy), (Cs+1, 00), ..., (Cs4n, 00)), We can
translate it into an ILP instance, as follows:

. . . §
M1n1mlze:z:1 w; - b;
Subject to:
ILP (¢} U ¢Y)
0 <v <1,v €var(py Ugs)

The Minimize section of the ILP formulation defines the objective function of
the problem. This corresponds to the aggregated cost of the falsified soft clauses in
the WPMS formula we want to minimize. In order to identify which soft clauses
are falsified by a given assignment to the original x; variables of the problem, we
introduce an indicator variable b; for each soft clause (c;, w;). These b; are also
known as reification, relaxation or blocking variables.

The Subject to section includes the constraints that have to be satisfied under any
assignment. This corresponds to the original set of hard clauses of the WPMS formula
represented by ¢}, = Uji}; 4+1¢j» and the set of clauses connecting the soft clauses
of the WPMS formula with their respective indicator variable represented by ¢ =
Ui_, CNF (c; < b;). Notice that by enforcing consistency, we ensure that b; is true iff
the soft clause c; is falsified. Function C N F (¢) transforms ¢ into Conjunctive Normal
Form while function I L P(¢) maps every clause ¢; € ¢ into a linear inequality with
operator >. The left-hand side of that linear inequality corresponds to the sum of
the literals in ¢; once mapped into integer terms, such that, literal x (x) is mapped to

@ Springer

8 C. Ansétegui et al.

integer term x (1 — x). The right-hand side corresponds to constant 0. After moving
the constants to the right, the right-hand side corresponds to constant —k, where k is
the number of negative literals in clause c¢;. Finally, we add the bounding constraints
that ensure that every integer variable in the ILP formulation has domain {0, 1}. It can
be easily seen that, since we are minimizing, the implication b; — ¢; fromc¢; < b; is
unnecessary. Notice that, by the same nature of the minimization problem, variables
b; will be 0 (false) whenever it is possible and we do not need the part of the double
implication that ensures that ¢; — b;,ie., b — Ci.

Example 6 Given the WPMS formula ¢ = ((x1 V x2,2),(x1 V x2,3),(*x1 V
X, 00), (X1 V X3, 00)), the corresponding ILP formulation is:

Minimize: 2 - by + 3 - by

Subject to:

x| +x2+b; >0; #x1 Vxy Vb = (x1 Vx2) = by
—x1 — by > =2; #Xx1 Vb —

- = \

—xy — by > =2 #Xp VD) by — (x1 Vxp)

xX]—x3+by>—1; #x1 VXV by = (x] VX2) > by
—x1 —by > =2; #Xx1 Vb _ ——
xp —by > —1; #xo Vo =b = Eva)

—x1 +x > —1; #X1 VX

—x] —xp > —2; #X] VX

0<x1<10<x<10<b<1;0<by<1;

4 Original WPM2 algorithm and improvements

In this section, we present the complete SAT-based MaxSAT algorithm WPM2
(Ansotegui et al. 2010) for the WPMS problem and how it has been improved.

At a high description level, given an input WPMS formula ¢, the original WPM2
algorithm (Ansotegui et al. 2010), described in Algorithm 1, iteratively calls a SAT
solver querying whether there is an assignment to ¢ with a cost less than or equal
to a certain k. The initial value of k is 0 and the last value is exactly the optimal
cost of ¢, i.e., cost(¢). Notice that all SAT queries with a k < cost(¢) must have a
negative answer while all the queries with k > cost(¢) must have a positive answer.
Therefore, our optimization problem can be reformulated as identifying where the
phase transition from negative answers to positive answers occurs.

More formally, the query sent to the SAT solver is a SAT formula ¢* thatis satisfiable
iff there is an assignment, say Z, such that Z(¢) < k. In order to construct such a
formula, we need to detect which soft clauses are falsified under a certain assignment
Z, sum up their cost and compare with k.

To detect if a clause is falsified, we extend every soft clause (c;, w;) with a unique
auxiliary Boolean indicator variable b; obtaining (c; vV b;, w;). Notice that, if ¢; is false,
then in order to maintain consistency b; must be true. Therefore, these b; variables
work as indicator variables that become true if a clause c¢; is falsified.

To add the weights of the falsified soft clauses and compare the cost with k we use
PB constraints that are translated into a SAT formula.

@ Springer

Exploiting subproblem optimization in SAT-based MaxSAT... 9

Example 7 Before we go into detail on algorithm WPM2, let us describe how a naive
SAT-based MaxSAT algorithm would work. Let us consider a simple WPMS formula
representing the Weak Pigeon-Hole Problem (Razborov 2001; Raz 2002) of 5 pigeons
and 1 hole. Variable x; is true if the ith pigeon is in the hole.

¢ =((x1,5), (x2,5), (x3,3), (x4,3), (x5, 1)) U (CNF(in = 1,00))

The weight of the soft clauses indicates the cost of not having the ith pigeon in the
hole and the hard clauses indicate that at most one pigeon can be in the hole. A naive
SAT-based MaxSAT solver would search for the optimal cost, solving a sequence of
@* SAT instances which are satisfiable iff there is an assignment to g, i.e., to the x;
variables, with a cost less than or equal to k. In order to build such (pk SAT instances,
all the soft clauses are extended and the PB At-Most constraint, 5 - by + 5 - by +
3-b3+3-bs+1-bs <k, is used to bound the aggregated cost of the falsified
clauses.

ok = { (x1 V by), (x2 V b2), (x3V b3), (x4 V ba), (x5 V bs) } UCNF (3 x; < 1)U
CNF(GS -b1+5-bp+3-b3+3-ba+1-bs <k)

Since cost(p) = 12, we know that the SAT instances between ¢° to ¢!l are
unsatisfiable, while the SAT instances between ¢! to ¢'8 (the top weight W () = 18)
are satisfiable. A naive binary search between 0 and 18 would check the satisfiability of
this sequence: ¢, p'3, ! and ¢'2. Since ¢! and ¢!? are unsatisfiable and satisfiable,
respectively, we have found the phase transition point and we can conclude that the
optimal cost is 12.

The first characteristic of the original WPM?2 algorithm is that it works with two
sets of PB constraints: AM and AL. The set AM of PB (At-Most) constraints are
used to bound the aggregated cost of the falsified soft clauses. In particular, AM is a
set of PB constraints that bound the cost of non-overlapping subsets of soft clauses.
More precisely, an am € AM is a PB constraint of the form >, _, w; b; < k where
A is a subset of the indexes of the soft clauses, ; and w; are the corresponding
indicator variables and weights of the ith soft clause and & the concrete bound for that
subset of soft clauses. When describing algorithms, we will use the object oriented
programming notation am.A and am.k to refer to the set A and integer k related to an
At-Most constraint am € AM. The idea of having multiple and smaller PB At-Most
constraints instead of a single one was introduced in Ansétegui et al. (2009).

The set AL of PB (At-Least) constraints are used to impose that the aggregated cost
of the falsified clauses in a given subset of soft clauses must be at least some natural
number. These are redundant constraints and are not necessary for the soundness of
the algorithm but help to improve the performance of the SAT solver. More precisely,
an al € AL is a PB constraint of the form ZieA w; b; > k.

For the sake of space and readability, we will use the notation (A, w(ga), <, k)
and At-Most constraint instead of Zie 4 Wi bj < k and PB At-Most constraint in the
algorithms. Mutatis mutandis for the PB At-Least constraints.

@ Springer

10 C. Ansétegui et al.

In the following, we go into detail on the original WPM?2 algorithm (Algorithm 1).
First of all, we check whether the set of hard clauses (¢) is satisfiable (Algorithm 1
line 1). If it is unsatisfiable, we can already stop since there is no solution to ¢.
Otherwise, the main loop of the algorithm starts (Algorithm 1 line 3). Notice that we
exit this loop iff the sat function returns satisfiable. In that case, we have found a
solution.

Algorithm 1: Original WPM2.
Input: ¢ = ((c1, wy), ..., (cs> ws), (541,00, ..., (Cs4h> 00))

1: if (UNSAT, _,) = sat(¢py, _, _) then return (oo, ¥)
2: (AL, AM) := (0, V)
3: while true do
4 (st,C,T):=sat(p, AL, AM)
5: if st = SAT then
6: L return (Z(¢), Z)
7 else
8: (A, k) := optimize(ps, AL, AM, C)
9 AL = {{A, w(pa), >, k)] U AL
10: AM = {{A, w(pa), <,k)}UAM \ {am € AM}
am.ACA
Function sat(p, AL, AM)
1: (A k) = (Jam.A, Y am.k)
ameAM
2 oF :={p.c;} U{p.c; v b;} U CNF(AL U AM)

i¢A icA

3 (st, (plé,I) = satsolver((pk)

£ Ci={i € S(p) | (pci € 9PV (p.6i V bj € 9¢))
s: return (st, C,7)

Function optimize(p, AL, AM, C)
1 A= [Jam.A UC

ameAM,
am.ANC#Y
2 k :=1b := subsetsum(w(py), > am.k + 1)
ameAM,
am.ACA

3: while rrue do

4 (st,_,) :==sat(_, AL, {{A, w(pa), <, K)})
if st = SAT then return (A, [b)

else k :=1b := subsetsum(w(py), k + 1)

Al

The sat function (Algorithm 1 line 4) builds the SAT formula at the current iteration
and sends it to the SAT solver. As we can see, a SAT formula ¢ is built by extending
soft clauses with indicator variables and aggregating to ¢* the conversion to CNF
of the PB constraints into the sets AL and AM (sat line 2). Actually, only a subset
of the soft clauses is relaxed, i.e., extended with indicator variables b;. In particular,

@ Springer

Exploiting subproblem optimization in SAT-based MaxSAT... 11

those that have appeared previously in some unsatisfiable core. This is done because
of efficiency issues.

The SAT solver outputs a triplet (sz, (p](‘:, T) (sat line 3). If the SAT solver returns
satisfiable (st = SAT), goé is empty and 7 is the satisfying assignment (solution) found
by the SAT solver. If the SAT solver returns unsatisfiable (st = UNSAT), (p](‘: is the
unsatisfiable core found by the solver and Z is empty. Finally, the sat function returns
the status, st, the indexes of the soft clauses in the unsatisfiable core C (sat line 4) if
st = UNSAT, and the satisfying assignment Z if st = SAT.

When the sat function returns st = SAT (Algorithm 1 line 5) we return the optimal
cost and the optimal assignment (Algorithm 1 line 6) and the algorithm ends. When the
sat function returns st = UNSAT (Algorithm 1 line 7) we analyze the unsatisfiable core
returned by the solver and we compute, within the optimize function (Algorithm 1 line
8), which is the set of indexes of soft clauses and bound (A, k) to construct the new At-
Most constraint (A, w(p4), <, k) and update the AL and AM sets (Algorithm 1 lines
9 and 10). Technically speaking, the AL constraints give lower bounds on cost (@),
while the AM constraints enforce that all solutions of the set of constraints AL U AM
are the solutions of AL of minimal cost. This ensures that any solution returned by
sat(p, AL, AM), if there is any, has to be an optimal assignment of ¢.

Within the optimize function, basically, we check which non-relaxed soft clauses
and At-Most constraints on relaxed clauses are involved in the unsatisfiable core. The
union of the indexes of all these clauses, set A (optimize line 1), gives us the indexes
of the new At-Most constraint. Notice that the non-relaxed soft clauses involved in A
will be relaxed in the next step within the sar function (sat line 2). In order to finish the
building process of the new At-Most constraint, we have to compute its independent
term k (optimize lines 2—-6). Intuitively, the next k has to be the next lower bound
candidate for the subproblem defined by the soft clauses related to A, i.e., ¢4 . Notice
that the previous candidate was the sum of the k’s (sziAcAg am k) of the At-Most
constraints involved into the unsatisfiable core, which were proven by the SAT solver
to be too restrictive. In order to obtain the next candidate, we need to find the minimum
integer k that satisfies the next conditions: (i) k is a linear combination of the weights
involved in @4, (ii) k is greater than or equal to (ZZ%%AACATIA am.k) + 1 and (iii) the new
At-Most constraint (A, w(g,4), <, k) is consistent with the set of constraints in AL.

As we can see in the optimize function, (i) and (ii) are enforced by the subsetsum
function (optimize lines 2 and 6) while (iii) is checked by the sat function (optimize line
4). The main idea is that the subset sum problem (Cormen et al. 2009) is progressively
solved until we get a solution that also satisfies the AL constraints.

Actually, the optimize function represents the following optimization problem:

Minimize >, 4 w; - b; (i)

Subject to:
Dicawi b =k (ii)
AL (iii)

O<b<licA

where k' = (ZZ%%AQZ‘ am.k) + 1. Notice that, by removing the AL constraints, we
get the subset sum problem.

@ Springer

12 C. Ansétegui et al.

Finally, once we obtain (A, k) (Algorithm 1 line 8) to construct the new At-Most
constraint (A, w(gya), <, k), we update the AL and AM sets. Basically, we replace in
the AM set the At-Most constraints whose respective soft clauses are already consid-
ered in the new At-Most constraint (Algorithm 1 line 10). Notice that the new At-Most
constraint enforces that the cost of any assignment to the subproblem ¢4 has at most
cost k. Optionally, we extend the A L set with an additional redundant constraint stating
that the cost of any assignment to the subproblem ¢4 has to be at least k (Algorithm 1
line 9).

For further information and detailed proofs on the soundness and completeness of
the original WPM2 algorithm see Ansotegui et al. (2010).

Example 8 The original WPM?2 algorithm performs the following iterations on the
pigeon-hole formula presented in Example 7.

@ = ((x1,5), (x2,5), (x3,3), (x4, 3), (x5, 1)) U (CNF(in = 1,00))

In the first iteration, the SAT formula ¢ is sent to the SAT solver within the sar
function. The SAT solver certifies that it is unsatisfiable, and returns an unsatisfiable
core (noted with dots) that involves the soft clauses 1 and 3, and the set of hard clauses.
Semantically speaking, this core tells us that pigeons 1 and 3 can not be at the same time
in the hole. The optimize function computes the new At-Most constraint (5b1 4 3b3 <
3) that corresponds to the subproblem ¢y 3;. Notice that the corresponding At-Most
constraint for a subproblem restricts to k the aggregated cost of its falsified soft clauses.
Obviously, the first optimal candidate k for ¢y 3) is 3 since we will try first to leave
out the pigeon with the minimum weight. Then, the soft clauses are relaxed with an
additional variable and the corresponding constraints are added to AL and AM. These
changes (noted with triangles <) transform ¢° into ¢>. The second iteration is similar
to the first one, but with the soft clauses 2 and 4. The new At-Most constraint computed
by the optimize function is (5b> + 3b4 < 3).

Iteration 1

D=0 e B ={ v b) <
(x2), (xp)s
(x3), ® (x3Vv b3), «
(xg), (x4),
(x5) U (x5) U
CNF(Exj <1)e CNF(Xx; < DU

CNF(5by +3b3 = 3) 4U
CNF(5by +3b3 <3) <

sat(p, AL, AM) = (unsar, {1, 3}, %); Z(¢) > 0; optimize(pg, AL, AM, {1,3}) = ({1, 3}, 3);
Iteration 2
3_ 6 _

7 ={ (x1v by) > ={ (x;v by),
(x2) , e (xpV by), «
(x3V b3), (x3V b3),
(x4) ;. (x4V by), «
(xs) U s)}U
CNF(Xxj <1)e CNF(Xx; <1HU
CNF (5b) +3b3 = 3)U CNF (5b) +3b3 = 3)U
CNF (5b) +3b3 < 3) CNF(5by +3by > 3) 4 U

CNF (5b] +3b3 <3)U
CNF (5by +3bg <3) «

sat(p, AL, AM) = (unsar, (2,4}, 9); Z(p) > 3; optimize(pg, AL, AM, {2,4}) = ({2,4},3);

@ Springer

Exploiting subproblem optimization in SAT-based MaxSAT... 13

In the third iteration, we get an unsatisfiable core for ¢® with the soft clauses 1 and
2, the two At-Most constraints from previous subproblems and the set of hard clauses.
The optimize function returns the subset of indexes that defines the new subproblem
®{1,2,3,4}, with the soft clauses from the core and from the previous subproblems that
intersect with it. It also returns the next optimal candidate for ¢(; 2 3.4}, k = 8, which
satisfies the three conditions: (i) it is a linear combination of the weights of ¢ 2 3 4},
(ii) it is greater than or equal to the addition of the subsumed previous subproblem
optimal candidates plus one (3 4-3 4 1) and (iii) its corresponding At-Most constraint
(5b1 + 5by 4+ 3b3 + 3by < 8) is consistent with the set of constraints in AL. We have
to replace the two At-Most constraints involved in the core with the new one, that is
less restrictive. Notice that the previous constraints only allowed the two pigeons with
weight 3 to be out of the hole. On the other hand, the current constraint allows both one
pigeon with weight 3 and one with weight 5 to be out of the hole. However, this is not
enough to solve the subproblem since at-least three pigeons should be out of the hole.

Iteration 3

O =1V by e WS =1 v by,
(v by), e (Vv by),
(x3Vv b3), (x3V b3),
(xqV by), (xqV by),
(x5)Iu (x5)IU

CNF(Sxj <1) eU

CNF(5b +3b3 > 3)U
CNF (5by +3by > 3)U
CNF(5b] +3b3 <3) e

CNF(Sx; < 1)U
CNF(5by +3b3 = 3)U
CNF (5by +3b) = 3) U

CNF (5b] + 5by + 3b3 +3by = 8) 4 U
3by <8) «

CNF(5by +3bg <3) e CNF(5by + 5by +3b3 +
sat(¢, AL, AM) = optimize(pg, AL, AM, {1,2}) =
(unsar, {1, 2}, 0); ({1,2,3,4},8);
Z(p) > 6;

In the fourth and the fifth iteration the sat function provides a core involving the soft
clauses in @12 3,4). The optimize function provides new bounds 10 and 11, respec-
tively. This last bound does allow three pigeons to be out of the hole. However, this is
not yet enough to solve the whole problem.

Iteration 4
sat(p, AL, AM) = optimize(pg, AL, AM,{1,2,3,4}) =
(unsar, {1, 2, 3,4}, 9); ({1,2,3,4},10);
Z(p) > 8;

Iteration 5
sat(p, AL, AM) = optimize(pg, AL, AM,{1,2,3,4}) =
(unsa, {1, 2, 3,4}, 0); ({1,2,3,4),11);
Z(p) > 10;

In the sixth iteration, we get a core involving all the soft clauses, the At-Most
constraint and the set of hard clauses. The At-Most constraint corresponding to sub-
problem ¢y 2 3 43, allows three pigeons out of the hole, but one is still in the hole.
Since pigeon 5 is also in the hole, there is a conflict. We get the new constraint involv-
ing all the soft clauses and the new bound 12. In the seventh iteration, we get that
¢'? is satisfiable and the original WPM2 algorithm ends. Notice that indeed 12 is the
minimum cost that allows four pigeons out of the hole.

@ Springer

14 C. Ansétegui et al.

Iteration 6

o ={ (Vb) e o2 ={ (x;v by)
(xpVv by), ® (xpV by),
(x3Vv b3), (x3V b3),
(xqV by), @ (xqV by).
(x5) e}U (x5V b5) €}U
CNF(X.x; < 1) eU CNF(Xxj =1HU
CNF (5by +3b3 =3)U CNF (5b] +3b3 > 3)U
CNF (5by +3bg > 3)U CNF (5by +3by = 3)U
CNF (5b| + 5by +3b3 +3by = 8) U CNF (5b] + 5by +3b3 +3bg = 8) U
CNF (5by + 5by + 3b3 +3by > 10) U CNF (5b| + 5by + 3b3 + 3bg = 10) U
CNF (5by + 5by +3b3 +3bgy > 11) U CNF (5b| + 5by +3b3 +3bg = 11) U
CNF (5by + 5by +3b3 +3bg < 11) e CNF (Sby + 5by +3b3 +3by + 1b5 > 12) 4 U
CNF(S5by + 5by +3b3 +3bg + 1b5 < 12) 4
sat(p, AL, AM) = optimize(pg, AL, AM,{1,2,3,4,5}) =
(unsar, {1, 2, 3,4, 5}, 0); ({1,2,3,4,5},12);
Z(p) > 115

Tteration 7

sat (g, AL, AM) = (sat, B, Z); cost(p) = 12;

In what follows, we present how the original WPM?2 algorithm can be improved by
the application of the stratified approach, the hardening of soft clauses, the optimization
of subproblems, and the exploitation of the assignments whose costs are upper bounds
on the subproblems. The first three improvements were already applied in Ansétegui
et al. (2013a).

Finally, we show that a collateral result of optimizing these subproblems by refining
the upper bound is to turn the original WPM?2 complete algorithm into an incomplete
algorithm given a fixed amount of time or memory resources. We present the improve-
ments in Algorithm 2 by extending Algorithm 1. The improvements are underlined.

4.1 Stratified approach

The first improvement corresponds to the stratified approach introduced in Ansétegui
et al. (2012) for algorithm WPM1. The stratified approach (Algorithm 2 lines 2, 4,
7 and 9) consists in sending to the SAT solver only a subset of the soft clauses, i.e.,
ou (Algorithm 2 line 4). For the sake of clarity, we will refer to this subset as a
module. More precisely, a module M is the set of indexes of the clauses to be sent to
the SAT solver. Therefore, when the sat function returns st = SAT, it means that we
have solved the subproblem ¢y,. If)/ is equal to ¢, then we have solved the whole
problem and we can finish (Algorithm 2 line 7). A crucial point is how we extend our
current module. This action is performed by the newmodule function (Algorithm 2
line 9).

In our current approach, we follow the stratified strategy applied in Ansétegui et al.
(2012). There, a module M is formed by the indexes of the clauses whose weight
is greater than or equal to a certain weight wy,,y. Initially, wy,,y is co. In order to
extend the current module, we apply the diversity heuristic (Algorithm 2 line 9) which
supplies us with an efficient method to calculate how we have to reduce the value of
Wimax. In particular, when there is a low diversity of weights in w(¢ \ ¢u), Wnax 1S
decreased to max w(g \ ¢y), while when there is a high diversity of weights, w,qx
decreases faster to keep the diversity of w(p \ ¢jr) low. A similar approach with

@ Springer

Exploiting subproblem optimization in SAT-based MaxSAT... 15

an alternative heuristic for grouping clauses can be found in Martins et al. (2012).
In Morgado et al. (2013b), it is proposed to only consider in the working formula or
the current module, those clauses that have been falsified by a satisfying assignment
corresponding to an upper bound.

4.2 Clause hardening

The hardening of soft clauses in MaxSAT SAT-based solvers has been previously
studied in Borchers and Furman (1998), Li et al. (2007), Larrosa et al. (2008), Heras
et al. (2008), Marques-Silva et al. (2011), Ansétegui et al. (2012), and Morgado et al.
(2012). Inspired by these works we study a hardening scheme for WPM2. While clause
hardening was reported to have no positive effect in WPM1 (Ansétegui et al. 2012),
we will see that it boosts efficiency in WPM2.

The clause hardening (Algorithm 2 lines 2, 8 and 11) consists in considering hard
those soft clauses whose satisfiability we know does not need to be reconsidered. We
need some lemma ensuring that falsifying those soft clauses would lead us to non-
optimal assignments. In the case of WPM1, all soft clauses satisfying w; > W, where
W =>{w; | (ci, w;) € ¢ Aw; < Wiay} is the sum of weights of clauses not sent to
the SAT solver, can be hardened.

The correctness of this transformation is ensured by the following lemma:

Algorithm 2: Improved WPM2.

Input: ¢ = {(c1, wy), ..., (css ws), (541,00, .-+, (Cs4h» 09))
: if (UNSAT, _, _,_) = sat(¢y, _, _, _) then return (co, @)
: (AL, AM, B, Zs, H', M) := (8,0, 0,8, ¥, newmodule(p, H(p)))

1
2
3: while true do
4
5

(st,C. Ty, B) = sat(py, AL, AM, B)
if st = SAT then

Ze{Iy . Is}
Ig:= argmin Z(p)

6

7 if o)y = ¢ then return (Zy;(p), Zy)
8: H' := harden(p, AM, M)

9 M := newmodule(p, M)

10: else
11: (A, k,Tp,Is) = optimize(psuy, AL, AM,C, H',Tg)
icA _ iea
12: B:=1{bi | Za(p.c;) =0 U{D; | Za(p.c;) = 1} U Bs\a
3 AL == {(A, w(ps), >, k)] UAL
1 AM = (A, w(@a), <, k) U AM \ {am € AM)
am.ACA

Lemma 1 (Lemma 24 in Ansétegui et al. (2013b))

Let gﬁ] = {(Cl7 wl)’ M) (CS7 wS)a (CS+17 OO), ML) (Cs+ha OO)} be a Ma-XSATfor'
mula with cost zero, let 3 = {(c’l, w/l), ooy (cl, w))} be a MaxSAT formula without
hard clauses and W = 3, _; w'. Let

@ Springer

16 C. Ansétegui et al.

_jw ifw=sWw
harden(w) = 0 ifw = W
and | = {(c;, harden(w;)) | (ci, w;) € @1}. Then, cost(p1 U ¢2) =cost(¢] U @),
and any optimal assignment for (pi U @3 is an optimal assignment of ¢1 U ;.

However, this lemma is not useful in the case of WPM2 because we do not proceed
by transforming the formula, like in WPM 1. Therefore, we generalize this lemma. For
this, we need to introduce the notion of optimal candidate of a formula.

Function sat(p, AL, AM i)
1: (A k) = (Jam.A, Y am.k)

ameAM
2 ¢* = {g.c;}Ulp.c; V b} UCNF(AL U AM)UB
i¢A icA
3: repeat
4 (st, (p]é, I):= satsolver(tpk)

5: (B.¢%) == (B\ 0. ¥\ B)
o until (6 N pf =)

7 Ci=1{i € S@) | (w.ci € 9E) V (9.6; V bi € p¢)
8: return (st, C, Z, f)

Function optimize(¢, AL, AM, C, H', Is)
1A= (Uam.A UC)\H’

ameAM,
am.ANC#)

2 k :=1b = subsetsum(w(pa), > amk + 1)
ameAM,
am.ACA

3 ub:=W(pys)

4: while true do

refine . refine
lowerl?ound btnalrb);sue];lrch upper bound
> 7

5 k = strategy(ub—1)

am.ACH’
6: (st, _,Tp,_) =sat(@augun’ AL, {{A, w(pa), <, k)}U{am € AM},)

7 if st = SAT then

Ze{Zy.Is}
8 (Zs, ub) := (argmin Z(p), Z4(pA))
if b = ub then return (A, b, T4, Zg)

10: else
11: k :=1b := subsetsum(w(pa), k + 1)
12: if [b = ub then return (A, (b, T4, Tg)

@ Springer

Exploiting subproblem optimization in SAT-based MaxSAT... 17

Definition 14 Given a WPMS formula ¢ = ((c1, wy), ..., (¢, wy), (Cs41,00), ...,
(cs+h, 00)), we say that k is an optimal candidate of ¢ if there exists a subset A C
{1,...,s}suchthat >, , w; = k.

Notice that, for any assignment Z of the variables of ¢, we have that Z(¢) is an
optimal candidate of ¢. However, if k is an optimal candidate, there does not exist
necessarily an assignment Z satisfying Z(p) = k. Notice also that, given ¢ and &,
finding the next optimal candidate, i.e., finding the smallest k' > k such that k¥’ is an
optimal candidate of ¢ is equivalent to the subset sum problem.

Lemma 2 Let @1 U@y be a WPMS formula and k\ and ky values such that: cost(p1 U
©2) = ki + ko and any assignment T satisfies T(p1) > ki and Z(¢;) > ky. Let k' be
the smallest possible optimal candidate of ¢ such that k' > ky. Let @3 be a set of soft
clauses with W = > {w; | (ci, wi) € ¢3}.

Then, if W < k' — ko, then any optimal assignment T' of @1 U @, U @3 assigns
T (p2) = k2

Proof Let Z' be any optimal assignment of ¢ U @2 U @3. On the one hand, as for any
other assignment, we have 7’ (¢3) > k;.

On the other hand, any of the optimal assignments Z of ¢; U ¢, can be extended
(does not matter how) to the variables of var(¢3) \ var(¢; U ¢3), such that

Ie1 U Ug3) =Z(p1) + L(p2) + L(93) ki +ho + W <k +& (D)

Now, assume that Z'(g2) # kp, then Z'(¢2) > k’. As any other assignment,
T'(¢1) = ki. Hence, Z'(p1 U @2 U 93) > ki + k' > Z(p1 U @2 U ¢3), but this
contradicts the optimality of Z’. Therefore, Z'(¢2) = k». O

Example 9 It may seem that the condition of Lemma 2 is hard to satisfy unless ¢
and ¢, are over disjoint sets of variables. This is not the case, and here we present a
simple example where ¢ and ¢, share variables and Lemma 2 holds:

@ =CNF(((x1 +x2 < 1),00), ((x3 + x4 < 1), 00), ((x1 +x2+x3 + x4 < 2), 00))
e1 = ((x1, D), (x2, D) Ugn
@2 = ((x3, 1), (x4, D) U g
1 U = ((x1, 1), (x2, 1), (x3, 1), (x4, D)) U g

Notice that the condition of Lemma 2 is satisfied for ¢1 and ¢y, since k1 = cost(¢1) =
1, ky = cost(¢2) = 1 and k1 + ko = cost (o1 U ¢2) = 2.

In order to apply this lemma we have to consider formulas ¢ Ug, ensuring cost(¢ U
@) = k1 + ky and Z(¢p1) > ki and Z(¢p2) > ky, for any assignment Z. This can be
easily ensured, in the case of WPM2, if both ¢ and ¢, are subproblems. Then, we only
have to check if the next optimal candidate k" of ¢, exceeds the previous one k, more
than the sum W of the weights of the clauses not sent to the SAT solver. In such a case,

@ Springer

18 C. Ansétegui et al.

we can consider all soft clauses of ¢, and their corresponding AM constraint with k»
as hard clauses. In other words, we do not need to recompute the optimal k of .

The harden(ep, AM, M) function (Algorithm 2 line 8) returns the set of indexes
of soft clauses H’ that needs to be considered hard based on the previous analysis
according to: the current set of At-Most constraints AM, the next optimal candidates
of these constraints and the sum of the weights W of soft clauses beyond the current
Wimax, 1.€., NOt yet sent to the SAT solver.

Function harden(¢, AM, M)

 H ={i | (A, w(pa), <.k) € AMiy A w(@\ @p) < subsetsum(w(ga). k + 1) — k}
2: return H’

Finally, in the optimize function (Algorithm 2 line 11) we introduce H’ since as we
will see in the next subsection, we need to know which are all the hard clauses to this
point of the execution.

4.3 Subproblem optimization

As we have mentioned earlier, one key pointin WPM2 is how to compute (A, k) within
the optimize function (Algorithm 2 line 11) to construct the new At-Most constraint
(A, w(g), =, k)). In the original WPM2 algorithm, the idea was to compute the next
lower bound candidate, k, for the subproblem ¢ 4. We can go further and set k to the
optimal cost of the subproblem ¢4yuy, i.e., k = cost((pAUH).]

In order to do this, while taking advantage of the AL constraints generated so far,
we only have to extend the definition of the minimization problem corresponding to
the original optimize function, by adding g aun to the Subject to section.

To solve Uy, we can use any complete approach related to MaxSAT, such as,
MaxSAT branch and bound algorithms, MaxSAT SAT-based algorithms, saturation
under the MaxSAT resolution rule (Larrosa and Heras 2005; Bonet et al. 2006), or we
can use other solving techniques such as PB solvers or ILP techniques, etc. Therefore
the improved WPM2 algorithm is parametric on any suitable optimization solving
approach. In this work, we experimented with an ILP approach, corresponding to the
strategy shown in Sect. 3, and three MaxSAT approaches (new optimize line 5) that
we describe in the next lines.

The first and natural approach consists in iteratively refining (increasing) the lower
bound (k = Ib) on cost(paun) by applying the subsetsum function as in the original
WPM2 (new optimize lines 5 and 11). The procedure stops when /b satisfies the
constraints AL U pauy (new optimize line 9). Notice that, since we have included
@aun into the set of constraints, we will get an optimal assignment or solution for
PAUH -

The second approach consists in iteratively refining (decreasing) the upper bound
following the strategy applied in minisat+ (Eén and Sorensson 2006), SAT4J (Berre

! For the sake of clarity, we will obviate in the following mentioning the hardened soft clauses (H') due to
the clause hardening technique (see Sect. 4.2).

@ Springer

Exploiting subproblem optimization in SAT-based MaxSAT... 19

2006), gmaxsat (Koshimura et al. 2012) or ShinMaxSat (Honjyo and Tanjo 2012).
The upper bound ub is initially set to the top weight of ¢ 4. Then, we iteratively check
whether there exists an assignment for ¢ 4uy With cost k = ub — 1. Whenever we get
a satisfying assignment (Z4) we update ub to Z4(py4), i.e., the sum of the weights w;
of those soft clauses falsified under the satisfying assignment (new optimize line 5).
Notice that since Z 4 is a satisfying assignment, it follows that Z4(¢p4) = Za(@aun)-
If we get an unsatisfiable answer, the previous upper bound (Z4(¢4)) is the optimal
cost for paup (new optimize lines 11 and 12).

The third approach applies a binary search scheme (Heras et al. 2011; Cimatti et al.
2010; Fu and Malik 2006) on k (new optimize line 5). We additionally refine the lower
bound (/b) as in our first approach and the upper bound (Z4(¢4)) as in the second
approach. The search ends when lb and Z4 (¢ 4) are equal (new optimize lines 9 and 11).

A final remark is that, if we combine this technique with the previous hardening
technique, then we simply have to take into account the set of indexes of soft clauses
H'’ that became hard. As we can see in the new optimize function (Algorithm 2 line 11),
we first compute the set A as in the original function, but excluding the soft clauses
that became hard H' (new optimize line 1). Then, we call the sar function but adding
@aunun and the set of At-Most constraints involved in H', i.e., {am € AM} 4. ach
(new optimize line 6).

The worst case complexity, in terms of the number of calls to the SAT solver, of the
improved WPM2 algorithm is the number of times that the optimize function is called
(bounded by the number of soft clauses) multiplied by the number of SAT calls needed
in each call to the optimize function. This latter number is logarithmic on the sum of
the weights of the clauses of the core if we use a binary search, hence essentially the
number of clauses. Therefore, the worst case complexity, when using a binary search
to solve the subproblems, is quadratic on the number of soft clauses.

In order to see that the number of calls to the optimize function is bounded by the
number of clauses we just need to recall that WPM2 merges the At-Most constraints.
Consider a binary tree where the soft clauses are the leaves, and the internal nodes
represent the merges (calls to the optimize function). A binary tree of n leaves has n—1
internal nodes.

Solving all the subproblems exactly can be very costly since these are NP-hard
problems. Notice that some of these subproblems can be integrated soon into another
subproblem which we will also solve. A reasonable strategy would be to solve a
subproblem when it appears for the second time, meaning that the associated & is not
the optimal cost. However, in practice, we found that the more efficient strategy was
to solve a subproblem only if it incorporates a previous subproblem.

Example 10 The improved WPM2 algorithm performs different iterations from the
ones of the original WPM?2 in Example 8 on the pigeon-hole formula presented in
Example 7.

¢ = ((x1,5), (x2,5), (x3,3), (x4, 3), (x5, 1)) U (CNF(in = 1,00))

In contrast to the original, the improved WPM2 algorithm performs fewer calls to the
sat function with an unsatisfiable response. Therefore, it performs fewer calls to the

@ Springer

20 C. Ansétegui et al.

optimize function and fewer updates to AL and AM. Besides, the sar function deals
with formulas ¢, with fewer soft clauses and sets AL and A M with shorter constraints.
We find the first difference in the first iteration where, applying the stratified approach,
we consider only a subproblem ¢); with those clauses whose weight w; > 5. The first
unsatisfiable core (noted with dots), involves the soft clauses 1 and 2, and the set
of hard clauses. The optimize function computes the new At-Most constraint that
corresponds to the subproblem ¢y 2jun . The optimal cost k for this subproblem is 5,
since this is the weight of both pigeons. Notice that, applying the stratified approach,
we get a better first lower bound for the formula. The soft clauses are relaxed and the
corresponding constraints are added to AL and AM (noted with triangles «). In the
second iteration, we get that 902,1 is satisfiable. Since @y, is not equal to ¢, we compute
a new module M with those clauses whose weight w; > 3.

Iteration 1
o =1 (1), oy =1 xvb), <
(x2), o} U (x2V by), €4}V
CNF(Q xj <1)e CNF(> x; <DHU
CNF (5b) +5b; = 5) €4 U
CNF (5b1 +5by <5) «
sat(pp, AL, AM,) = optimize(p, AL, AM, {1,2},{},) =
(UNSAT, {1,2}, 4, _); {1,245, _,_)
Z(p) > 0;
Iteration 2
sat(ppy, AL, AM,) = (SAT, B, Z, _)iop # ¢ — L(p) =5, M ={1,2,3,4};

The third iteration is similar to the first one, but with the soft clauses 3 and 4.
Iteration 3

o3 =14 1V by), o3 =1 (v by),
(xpV by), (x2V b2),
(x3), ® (x3Vv b3), <
(x4), o} U (x4V by), 4} U
CNF(Xx; <1) oU CNF(Xxi <1)U
CNF(5b) +5by > 5) U CNF(5b) +5by > 5) U
CNF(5by +5by < 5) CNF(3b3 +3bs > 3) 4 U

CNF (5by 4 5by < 5) U
CNF(3b3 +3bs <3) <

sat(ppy, AL, AM,) = optimize(p, AL, AM, {3,4},{},) =
(UNSAT, {3, 4}, 9, _); ({3,4},3,_, _);
I(p) > 5;

It is in the fourth iteration where we can appreciate the impact of subproblem opti-
mization. In Example 8, we needed three iterations to get the bound 11 for the At-Most
constraint corresponding to the subproblem ¢y 2 3 43. Incorporating the hard clauses
to the optimize function and solving the subproblem ¢y > 3 43un, we get directly the
optimal cost 11 in just one iteration. In the fifth iteration, we get that (pi,l is satisfiable.
As @) is not equal to ¢ we have to compute a new module again. Before doing that,

@ Springer

Exploiting subproblem optimization in SAT-based MaxSAT... 21

we apply the hardening technique. We get that the soft clauses 1, 2, 3 and 4, and their
corresponding At-Most constraint can be considered as hard (H’). This is because the
current k of this At-Most constraint is 11 (5 + 3 4 3) and its next k¥’ candidate is 13
(5 + 5 + 3), while the addition of weights of those soft clauses not yet in M, i.e., {5},
is only 1. So, reconsidering this At-Most constraint would lead to an assignment with
a higher cost than falsifying all the soft clauses not yet in M. Semantically speaking,
the increase in cost of any non-allowed distribution of pigeons 1, 2, 3 and 4, is always
higher than the cost of allowing the pigeon 5 to be out of the hole. After applying the
hardening technique, we compute the new module M (clauses whose weight w; > 1)
that corresponds to the whole problem (i.e., in the next iteration with a satisfiable

response from the sat function, we will have found the solution).
Iteration 4

oS ={ (Vb), e oy =1 v b)),

(x2V by), e (xV by),

(x3Vv b3), e (x3V b3),

(x4V by), o} U (x4V by), U

CNF(Xxi <1) oU CNF(Xxi <D U

CNF (5by +5by = 5)U CNF (5b1 +5by = 5) U

CNF (3b3 +3by > 3) U CNF (3by +3bgy > 3) U

CNF (5b1 +5by <5) eU CNF (5b1 + 5by +3b3 +3by > 11) € U

CNF(3b3 +3by <3) CNF (5b1 +5by +3b3 +3b4 < 11) 4
sat(opy, AL, AM,) = optimize(p, AL, AM,{1,2,3,4},{},) =
(UNSAT, {1, 2,3,4},9, _); (1,2,3,4}, 11, _, _);
Z(p) > 8

Iteration 5

sat(ppr, AL, AM, _) = (SAT, 0, Z, _); — T(p) > 11; H =(1,2,3,4}; M =(1,2,3,4,5);
7 M F ¢ ¢

In the sixth iteration, the sat function returns a core with all the soft clauses, the At-
Most constraint and the set of hard clauses. Applying the hardening technique, the soft
clauses with indexes in H’ and the corresponding At-Most constraint are considered
as hard. Therefore, the new At-Most constraint computed by the optimize function
involves only the soft clause 5 and has the new bound k£ = 1. In the seventh iteration,
we get that (p}wz is satisfiable. Since @)y is equal to ¢, 12 is the solution to the problem.

Iteration 6

oM ={(xvby), e P32 ={ (v by).
(xvhy), e (x2V b)),
(x3Vvb3), e (x3Vv b3),
(x4Vby), ® (x4V by),
(x5) o}U (xsv bs) €U
CNF(Y.x; <1) U CNF(Xx; <1)U
CNF(5by +5by > 5) U CNF(5by +5by > 5) U
CNF (3by +3by = 3)U CNF (3by +3by = 3)U

CNF(5by + 5by +3b3 +3bs > 11)U CNF(5by + 5by + 3b3 + 3by > 11) U
CNF(5by +5by +3b3 +3by < 11) & CNF(5by + 5by + 3b3 +3by < 11) U
CNF(lbs > 1) €U
CNF(lbs < 1) <

sat(ppy, AL, AM,) = optimize(p, AL, AM, {1,2,3,4,5},{1,2,3,4},) =
(UNSAT, {1, 2,3,4,5},0, _) {5}, 1);
Z(p) > 11;

@ Springer

22 C. Ansétegui et al.

Iteration 7

sat(pp, AL, AM,) = (SAT, B, Z, _); oy = ¢ — cost(p) = 12;

4.4 Exploiting satisfying assignments from subproblems

Whenever we obtain an upper bound or solution for a subproblem, we can obtain an
upper bound for the whole problem. Consider g4 g7, Where A is a subset of the indexes
of the soft clauses in a WPMS formula ¢ and H the set of indexes of the hard clauses,
as the subproblem we want to solve. According to the search strategy we use in the
optimize function (see Sect. 4.3) we may obtain assignments Z4 (Algorithm 2 line 6)
that are upper bounds or directly a solution for g auy. If we extend this assignment
by assigning a random value in {0, 1} to every variable in var(¢) \ var(paug), then
it is not difficult to see that Z4(¢) > cost(¢), i.e., Zo(¢) is an upper bound for ¢.
Therefore, by comparing Z 4 (¢) with the cost of the best assignment found so far Zs(¢)
(Algorithm 2 line 8), the improved WPM2 algorithm becomes naturally an incomplete
approach. It is incomplete in the sense that it reports the assignment with the best cost
found within restricted time and memory resources.

Also, due to the stratification approach, once we obtain a satisfying assignment Z s
for a module M (Algorithm 2 line 4), we may have obtained a better upper bound for
¢. Therefore, following the same idea, we update conveniently Zg (Algorithm 2 line
6) as in the optimize function.

Obviously, this incomplete approach makes sense if we are able to obtain quickly
good quality upper bounds. We will show that this is the case in the experimental
section (see Sect. 6). However, let us visualize the behavior of the improved WPM2
algorithm on a particular instance. In Fig. 1, we show the upper bounds Z4 (¢) and
lower bounds obtained during the execution of the improved WPM2 on an industrial
Partial MaxSAT formula ¢. The upper bound refinement strategy was used for the
subproblem optimization phase.

For the sake of comparison, we also show the lower bounds obtained with the
original WPM2 algorithm. The objective is to show that the improved WPM2 algorithm
not only is able to provide good upper bounds, it also converges faster to the optimal
cost.

In the x-axis, we show the elapsed seconds of the search in a logarithmic scale.
The y-axis correspond to the range of the objective function (from 0 to top weight). In
the upper half (from optimum to top weight) we show the value of the obtained upper
bounds and in the lower half (from optimum to 0) we show the value of the lower
bounds.

As we can see, the original WPM2 does not provide any upper bound until the
optimum is found. In contrast, the improved WPM2 does provide several upper bounds
coming from the subproblem optimization phase.

Both algorithms provide lower bounds. Every lower bound update corresponds to
anew k for a subproblem obtained after a call to the optimize function and is followed
by a call to the sat function to check the satisfiability of the whole problem. Notice
that the subproblem optimization occurs always between lower bound updates. In the

@ Springer

Exploiting subproblem optimization in SAT-based MaxSAT... 23

Instance: MSE13 PMS Industrial pbo-mqc nencdr 10tree520p

top weight 3 T T T
improved WPM2 upper bound ---e---
improved WPM2 lower bound —e—
original WPM2 lower bound —+—
.)
) e
S e . H
‘-.:‘ ® % o .
o ®. b
e e.. L] i
. M 3 . V.o
° R T
optimum e i
0 . 1 1 1
0.1 1 10 100 1000

Run time (seconds)

Fig. 1 Upper and lower bounds obtained with the original and the improved WPM2

improved WPM2 algorithm, during the subproblem optimization phase, the upper
bound for the particular subproblem is always improved, i.e., it decreases. However,
if we extend this assignment to the whole problem this monotonic behavior is not
guaranteed. This is why, in Fig. 1, during the subproblem optimization phase, the
upper bounds for the whole problem tend to decrease but can also increase.

With respect to the quality of these upper bounds, notice that, in less than 5 s, an
upper bound very close to the optimum (less than 6 % error) is obtained. Also, an
upper bound Z 4 (¢) equal to the optimal cost cost (¢) (0 % error) is obtained in 132 s,
earlier than the solution itself (226 s). This is interesting because it means that we
can obtain very high quality assignments or even a solution before solving exactly the
problem, i.e., certifying that there is no any other assignment with a lower cost.

Finally, we can see that, thanks to subproblem optimization, the improved WPM?2
only needs 6 calls (lower bounds updates) on the whole problem, while the original
WPM2 needs more than 40.

For more detailed information, we analyze the quality of upper bounds for all the
instances of our experimentation in Sect. 6 (Figs. 2 and 3).

We can further exploit the satisfying assignments obtained during the search. In
modern SAT solvers, the polarity of the decision variables is chosen according to
the most recent polarity they were assigned in a previous partial assignment. This
technique is called phase saving (Pipatsrisawat and Darwiche 2007) and its main goal
is to avoid redoing work. Notice that, during backtracking, many variable assignments
are undone and the suitable polarity needs to be revealed again during search.

In our SAT-based MaxSAT algorithms, we perform independent queries to a SAT
solver. Therefore, some suitable information can be lost. For example, in Sect. 5 we
discuss how to preserve learned clauses by using the SAT solvers in incremental

@ Springer

24

C. Ansétegui et al.

Industrial Instances

100

100 T T T . . .
all industrial —e—
pms close solution ---&---
wpms upgradeability ------
S
€
=)
£
a
o
<]
8
S B g...g
2 BB E
a
0 ! “A\ N A \
0 5 10 20 50
Run time (%)
Crafted Instances
100 B—F— : .
: all crafted —e—
wms CSG ---&--
wpms random-net ------
g m.. g
£
a
o 50 | | —
L
s &g
S
a 5
20 4
(2 EEERY - PRSI - R o g
10 4
>r y
0 S8R
0

Run time (%)

100

Fig. 2 Upper bound quality relative to the resolution time (at the top industrial instances, at the bottom

crafted instances)

@ Springer

Exploiting subproblem optimization in SAT-based MaxSAT... 25

Industrial Instances

1078 T T T T T
1000 4
900 [/ i
3 i
2 |
C
8 H
7 H
£ 800 fl -
S} H
5 |
Qo '
E 1
E] |
Z 700 i
600 f{ i
distance to optimum < 20% ---+---
distance to optimum < 5% ------
distance to optimum = 0% —e—
500 L - L I
60300 900 1800 3600 7200
Run time (seconds)
Crafted Instances
1000 T T T T T
JOCL EEREERE b SRR TR TR TR drerrennsa e L PP PP TP PP EPEPERERERE
900 f¥ i
1 7
Q .
o H
= H
S :
2 :
5 700 ¥ 4
g :
Qo .
5 i
=}
=z H
600 i -
500
distance to optimum < 20% ---=+---
distance to optimum < 5% ---x---
distance to optimum = 0% —e—
400 1 1 1 1
60300 900 1800 3600 7200

Run time (seconds)

Fig.3 Number of instances on which a certain upper bound quality is reached (at the top industrial instances,
at the bottom crafted instances)

@ Springer

26 C. Ansétegui et al.

mode. Here, the idea is to use the optimal assignment Z4 for a subproblem ¢uy
(Algorithm 2 line 11) to guide the search in the next call to the SAT solver. Basically,
the set B (Algorithm 2 line 12) is updated to contain the unit clauses that represent
whether the ith soft clause was satisfied (b;) or falsified (b;) by the 74 of the most recent
subproblem it took part in. We expect assignments Z4 to be more informed as search
proceeds and therefore be able to guess the satisfaction status of soft clauses in optimal
assignments for ¢. In the sar function the set g is appended to the set of clauses sent to
the SAT solver (new sat line 2). Although this gives us extra propagation, it may be the
case that our guess is wrong, therefore we iteratively call the SAT solver until no unit
clause in B is involved in the unsatisfiable core (new sat lines 3, 5 and 6). Notice that
the unit clauses that do not appear in any core, do remain in the set B providing us extra
propagation power (Algorithm 2 line 4). Therefore, we use the optimal assignments
from subproblems to guess the phase of the variables in an optimal assignment to the
whole problem ¢. In addition, we can also use the satisfying assignments Z 4, obtained
within the subproblem optimization, to guide the search during this phase.

5 Engineering efficient SMT-based MaxSAT solvers

We have implemented both the last version of the WPM1 algorithm (Ansétegui et al.
2012) and the improved WPM?2 algorithm on top of the Yices SMT solver (Dutertre
and de Moura 2014).

An SMT formula is a generalization of a Boolean formula in which some propo-
sitional variables have been replaced by predicates with predefined assignments from
background theories such as, e.g., linear integer arithmetic. For example, an SMT
formula can contain clauses like x; V x V (b +2 < by) and (by > 2 - by + 3 - b3),
where x| and x; are Boolean variables and b1, by and b3 are integer variables. Pred-
icates over non-Boolean variables, such as linear integer inequalities, are evaluated
according to the rules of a background theory. Leveraging the advances made in SAT
solvers in the last decade, SMT solvers have proved to be competitive with classical
decision methods in many areas. Most modern SMT solvers integrate a SAT solver
with decision procedures (theory solvers) for sets of literals belonging to each theory.
This way, we can hopefully get the best of both worlds: in particular, the efficiency
of the SAT solver for the Boolean reasoning and the efficiency of special-purpose
algorithms for the theory reasoning.

Another reasonable choice would be to use a PB solver, which can be seen as a
particular case of an SMT solver specialized on the theory of PB constraints (Man-
quinho et al. 2009, 2010). However, if we also want to solve problems modeled with
richer formalisms like WCSP, the SMT approach seems a better choice since we can
take advantage of a wide range of theories (Ansétegui et al. 2011).

Among the theories considered in the SMT-LIB (Barrett et al. 2010) (SMT Library)
we are interested in QF_LIA (Quantifier-Free Linear Integer Arithmetic). With the
QF_LIA theory we can model the PB constraints that SAT-based MaxSAT algorithms
generate during their execution. To this end, the PB variables can be declared as integer
variables whose domain is {0, 1}. Therefore, for the SMT-based MaxSAT algorithm,
we just need to replace the conversions to CNF by the proper linear integer arithmetic

@ Springer

Exploiting subproblem optimization in SAT-based MaxSAT... 27

predicates. As we can see in Example 11, the SMT-LIB language v2.0 is a standard
language with a prefix notation where the operator is placed at the beginning of the
predicates.

Example 11 Given the SAT instance of Example 8 Iteration 3, @® = {(x1 Vb)), (x2V
b2), (x3 V b3), (x4 V bg), (x5) } UCNF(X_x; < 1) UCNF(5-by +3-b3 = 3)U
CNF(5-by+3-bys >3)UCNF(5-b1+3-b3 <3)UCNF(5-by+3-bs <3) The
SMT instance g06 in the SMT-LIB language v2.0 under QF_LIA (Barrett et al. 2010)
would be as follows:

; Set QF_LIA theory ; Soft clauses
(set-logic QF_LIA) (assert (or x1 (= bl 1)))
(assert (or x2 (= b2 1)))
; Declaration of variables (assert (or x3 (= b3 1)))
(assert (or x4 (= b4 1)))
(declare-fun x1 () Bool) (assert x5)
(declare-fun x2 () Bool)
(declare-fun x3 () Bool) ; Hard clauses
(declare-fun x4 () Bool)
(declare-fun x5 () Bool) (assert (or (not x1) (not x2)
(declare-fun bl () Int) (assert (or (not x1) (not x3)
(declare-fun b2 () Int) (assert (or (not x1) (not x4)
(declare-fun b3 () Int) (assert (or (not x1) (not x5)
(declare-fun b4 () Int) (assert (or (not x2) (not x3)
(declare-fun b5 () Int) (assert (or (not x2) (not x4)
(assert (or (not x2) (not x5))
; Bounds for PB variables (assert (or (not x3) (not x4))
(assert (or (not x3) (not x5))
(assert (>= bl 0)) (assert (or (not x4) (not x5)
(assert (<= bl 1)
(assert (>= b2 0)) ; PB constraints
(assert (<= b2 1)
(assert (>= b3 0)) (assert (>= (+ (* bl 5) (* b3 3)) 3))
(assert (<= b3 1)) (assert (>= (+ (* b2 5) (* bd 3)) 3))
(assert (>= b4 0)) (assert (<= (+ (* bl 5) (* b3 3)) 3))
(assert (<= b4 1)) (assert (<= (+ (* b2 5) (* b4 3)) 3))
(assert (>= b5 0))
(assert (<= b5 1)) ; Check satisfiability

(check-sat)

As suggested in Fu and Malik (2006) and Martins et al. (2011), we can preserve
some learned lemmas from previous iterations that may help to reduce the search
space. In order to do that, we execute the SMT solver in incremental mode. Within
this mode, we can call the solve routine and add new clauses (assertions) on demand,
while preserving learned lemmas. However, notice that our algorithms delete parts of
the formula between iterations. For example, when we have to update the AM set in
the WPM2 algorithm (see Sect. 4) by deleting some At-Most constraints. Therefore,
we also have to take care of any learned lemma depending on them.

The Yices SMT solver gives the option of marking assertions as retractable. If
the SMT solver does not support the deletion of assertions but supports the usage of
assumptions, we can replace every retractable assertion ¢, with a — ¢, where a is an
assumption. Before each call, we activate the assumptions of assertions that have not
been retracted by the algorithm. Notice that assertions that do have been retracted will
have a pure literal (@) such that a has not been activated. Therefore, the solver can

@ Springer

28 C. Ansétegui et al.

safely set to false a, deactivating the clause. Moreover, any learned lemma on those
assertions will also include a. For example, Z3 and Mathsat SMT solvers do not allow
to delete clauses, but they allow the use of assumptions.

From the point of view of incrementality it is also quite recommendable to reuse as
much as possible the PB constraints we modify during the search, since we will also
be able to reuse learned clauses depending on them. Pioneering works in this sense can
be found in Bofill et al. (2013) and Andres et al. (2012). Our current implementation
does notincorporate these complementary improvements, but it would certainly benefit
from them.

6 Experimental results

In this section we present an intensive experimental investigation on the industrial
and crafted instances of the MaxSAT Evaluation 2013 (MSE13) (Argelich et al. 2006-
2004). We provide results for the improved WPM2 SMT-based MaxSAT solver and
the best solvers of the MSE13. We run our experiments on a cluster with Intel Xeon
CPUE7-8837 @ 2.67GHz processors and a memory limit of 3.5 GB. These are exactly
the same specs as in the MSE13.

The instance set of the MSE13 is divided in four categories depending on the variant
of the MaxSAT problem: MaxSAT (MS), Partial MaxSAT (PMS), Weighted MaxSAT
(WMS) or WPMS. In addition, instances are further divided according to their nature
into three subcategories: random, crafted or industrial (we are actually only interested
in industrial and crafted). In each subcategory, instances are grouped by families.

We use the same set of instances for experiments on complete and incomplete
solvers. The experimental results for complete and incomplete solvers are presented
in Sects. 6.1 and 6.2, respectively.

6.1 Complete solvers

In this subsection, we analyze the performance of the improved WPM2 complete
solver. First of all, we present the summarized results of the complete solvers at
MSEI13 in Tables 1 and 2. Second, we analyze the impact of each improvement on the
original WPM2 algorithm in Table 3 (full detailed information in Tables 11 and 12).
Then, we compare the results of the improved WPM2 solver with the best solvers of the
MSE13 in Table 4 (full detailed information in Tables 13 and 14). Finally, in Tables 5
and 6, we further analyze the results of the improved WPM2 solver, discussing how
it is able to exploit more efficiently the structure of the instances.

Tables 1 and 2 show the results of the MSE13 (with a timeout of 1800 s). Since
families have different numbers of instances, we considered it was more fair to present
the solvers ordered by mean family ratio of solved instances. In Table 1 we see the four
best performing solvers on each industrial and crafted subcategory. In Table 2 we see
the best performing solvers on the whole set of industrial and crafted instances. We
have excluded ISAC+, since it is a portfolio based solver and our intention here is
to compare ground solvers. Notice that / SAC+ already includes some of the ground
solvers. The ground solvers with the best overall performance were: wpm2-13s* which

@ Springer

Exploiting subproblem optimization in SAT-based MaxSAT... 29

actually corresponds to a WPM2 variation (wpm2gpy,q* in Table 3), maxhs13 which
consists in an hybrid SAT-ILP approach described in Davies and Bacchus (2011),
gms2 which is based on an upper bound refinement described in Koshimura et al.
(2012), optim-ni and msunc which implement the core-guided binary search algo-
rithm described in Heras et al. (2011) and Morgado et al. (2012), pwbo2.3 which takes
advantage of parallel processing as described in Martins et al. (2011), Martins et al.
(2012), wpm1-2013 which is the SMT-based version of the improved WPM1 algo-
rithm described in Ansétegui et al. (2012), ilp which translates WPMS into ILP and
applies the MIP solver IBM-CPLEX studiol124 as described in Sect. 3, and wmsz09
which implements a branch and bound algorithm described in Li et al. (2006), Li et al.
(2007), Li et al. (2009). Further information about solvers and authors can be found
in Argelich et al. (2006-2004).

We have completed the evaluation of the MSE13 by providing results of some
solvers on those categories where originally they did not take part. For example, results

Table 1 MSEI13 best solvers ordered by mean ratio of solved instances

MS PMS WMS WPMS
Random 1. msz13 f 1. I1SAC+ 1. ckm-s 1. I1SAC+
2. ISAC+ 2. wmsz09 2. ISAC+ 2. wmsz09
3. ckm-s 3. wmsz+ 3. msz13 f 3. wmsz+
4. wmsz+ 4. ckm-s 4. wmsz+ 4. ckm-s
Crafted 1. ahms 1. ISAC+ 1. ISAC+ 1. maxhs13
2. ISAC+ 2. qgms2-m 2. wmsz+ 2. ISAC+
3. msz13 f 3. gms2-mt 3. wmsz09 3. ilp13
4. ckm-s 4. antom_s1 4. msz13 f 4. wpm1-13
Industrial 1. pmifu 1. I1SACH+ 1. - 1. I1SAC+
2. wpm1-11 2. gms2-mt 2. - 2. wpm1-13
3. ISAC+ 3. wpm2-13x% 3. - 3. wpm2-13x%
4. optim-ni 4. optim-ni 4. - 4. msunc

Table 2 MSEI3 best solvers

Ind. (%) 1078 Cra. (%) 1000 Total (%) 2078
1. wpm2-13% 75.0 820 46.3 521 61.5 1341
2. maxhs13 59.7 719 59.9 670 59.8 1389
3. gms?2 68.7 640 473 481 58.6 1121
4. optim-ni 70.1 671 39.7 435 55.8 1106
5. msunc 714 784 377 429 55.5 1215
6. pwbo2.3 63.0 686 455 521 54.7 1207
7. wpm1-13 65.0 743 40.1 452 533 1195
8. ilp13 463 575 61.1 723 533 1298
9. wmsz09 19.5 238 59.2 745 38.1 983

Mean ratio and number of solved instances; Best results are in bold

@ Springer

30 C. Ansétegui et al.

Table 3 Impact of WPM2 improvements, compared on the industrial and crafted instances of MSE13
(number and mean ratio of solved instances)

Solvers MS PMS WMS WPMS Ind. MS PMS WMS WPMS Cra. Total

wpm? 20 429 - 202 651 12 247 10 39 308 959
506% 67.9% - 495% 618% 140% 599% 66% 192% 31.5% 47.6%
wpm?2y 21 467 - 203 691 12 248 10 98 368 1059
516 % 742% - 525% 669% 140% 58.1% 6.6% 299% 340% 51.4%
wpm2g, 21 464 - 260 754 12 248 15 98 373 1127
516 % 735% - 624% 69.0% 140% 58.1% 103% 299% 34.6% 52.8%
wpm2epia 18 239 - 261 518 18 248 23 253 542 1060
487% 318% - 554% 432% 165% 468% 21.0% 555% 400% 41.7%
wpm2pic 19 259 - 267 545 17 257 22 258 554 1099
497% 405% - 572% 455% 160% 48.7% 206% 56.5% 408% 43.5%
wpm2aa 18 480 - 319 817 12 256 16 199 483 1300
487 % 763% - 740% 737% 140% 61.6% 120% 50.1% 42.0% 58.8%
wpm2ge 21 486 - 326 833 12 255 16 198 481 1314
516 % 75.6% - 755% 738% 140% 614% 120% 499% 419% 58.8%
wpm2smpa 17 503 - 326 846 15 261 19 264 559 1405
478% 80.6% - 746% 766% 152% 62.1% 203% 684% 492% 637 %
wpm2sppe 20 497 - 339 856 14 265 19 263 561 1417
506% 78.7% - 774 % 763% 148% 628% 203% 673% 49.0% 634 %
wpm2gpat 16 502 - 326 844 13 270 18 255 556 1400
468% 80.7% - 755% 768% 144% 632% 18.6% 67.1% 488% 63.6%
wpm2gme 18 513 - 334 865 14 271 18 255 558 1423
487% 819% - 767% 78.1% 148% 635% 18.6% 66.1% 48.7% 64.3%
Wpm2shucg 20 524 - 336 880 14 267 18 272 571 1451
506 % 82.5% - 770% 78.6% 148% 63.0% 18.6% 68.8% 492% 64.8%
WPM2sihucgo 20 528 - 333 881 14 272 18 288 592 1473
506% 829 % - 765% 789 % 148% 63.7% 18.6% 737 % 51.0 % 65.7 %

Best results are in bold

of solvers wpm1-13 and wpm2-13% have been added in the MS category. Results of
solver gms2 have been also added to MS and WMS categories. We had to change the
format of these instances so that gms2 could read them. These additional results do
not change the overall performance, but they give the full picture.

From Table 2, we emphasize that the solver implementing the variation of the
WPM2 algorithm (wpm?2-13x) was already the best in family ratio of solved instances
on the whole set of industrial and crafted instances at MSE13. Although it solved fewer
instances than maxhs 13 on the whole set, wpm2-13x dominated both in family ratio
and number of solved instances on the set of industrial instances.

Table 3 shows our first experiment, where we evaluate the impact of each improve-
ment on the original WPM2 algorithm (with a timeout of 7200 s). All the variations
on the WPM2 algorithm are implemented on top of the Yices SMT solver (version

@ Springer

Exploiting subproblem optimization in SAT-based MaxSAT... 31

Table 4 wpm2gpycqo compared to MSE13 best complete solvers on the industrial and crafted instances
of MSE13 (number and mean ratio of solved instances)

Solvers MS PMS WMS WPMS Ind. MS PMS WMS WPMS Cra. Total
wpm2pucgo 20 528 - 333 881 14 272 18 288 592 1473
506% 829% - 765% 789 % 148% 63.7% 186% 73.7% 51.0% 657 %
wpm2-13x 16 502 - 326 844 13 270 18 255 556 1400
468 % 80.7% - 755% 768% 144% 632% 186% 67.1% 488% 63.6%
maxhs13 7 486 - 259 752 7 304 43 330 684 1436
224 % 70.6% - 538% 627% 120% 71.1% 453% 891 % 622% 62.5%
qms2-g2 19 543 - 119 681 10 284 30 207 531 1212
340% 85.0% - 465% T12% 132% 732 % 222% 582% 503% 61.4%
optim-ni 38 503 - 165 706 7 261 32 165 465 1171
83.7% 808% - 507% 132% T74% 64.6% 250% 448% 42.7% 588 %
ilp13 7 354 - 259 620 46 333 76 311 766 1386
224% 541% - 553% 520% 377% 684% 647% 780% 655 % 584 %
wpm1-13 21 422 - 351 794 12 207 11 301 531 1325
51.6% 684% - 796 % 70.1% 140% 483% 74% T49% 435% 57.6%
pwbo2.33 7 445 - 269 721 8 254 12 204 478 1199
24% T719% - 585% 648% 124% 652% 146% 66.7% 484% 57.1%
msunc 26 512 - 270 808 8 249 17 164 438 1246
564 % T19% - 67.0% 735% 7178% 585% 13.6% 43.6% 382% 569 %
wmsz09 0 200 - 85 285 156 318 82 234 790 1075
00% 290% - 189% 242% 864% 604% 612% 561% 63.6% 427 %
msz13f 0 152 - 132 284 156 317 83 232 788 1072
00% 228% - 260% 220% 864% 602% 662% 527% 634% 41.5%
w/pmifu 42 287 - 261 590 5 61 37 125 228 818
87.5% 462% - 509% 505% 66% 351% 27.1% 309% 27.8% 398 %
ckm-s 0 119 - 12 131 156 293 79 23 551 682
00% 152% - 72% 120% 91.0% 550% 462% 74% 456% 278 %
ahms 0 34 - 10 44 146 224 73 179 622 666
00% 60% - 55% 54% 865% 403% 425% 447% 49.6% 262 %

Best results are in bold

1.0.29). The different variations (see Sect. 4) and corresponding implementations are
named wpm?2 with different subindexes. Subindex ; stands for stratified approach and
j, for clause hardening. Regarding to how we perform the subproblem optimization, ;
stands for ILP translation, ; stands for lower bound refinement based on subset sum,
« for upper bound refinement based on satisfying truth assignment, and ;, for binary
search. Subindex , stands for optimizing all the subproblems and . for optimizing only
subproblems that contain already extended clauses. Finally, , stands for guiding the
search with the optimal assignments from subproblems and ,, for guiding the search
also with the satisfying assignments within the subproblem optimization.

The original wpm?2 has a performance of 47.6 % (959) family ratio (number) of
solved instances. By using the stratified approach explained in Sect. 4.1 (wpm2;)

@ Springer

32 C. Ansétegui et al.

we solve some additional instances in all categories having the highest increase on
WPMS crafted subcategory. Overall, we solve 100 more instances. By applying also
the clause hardening explained in Sect. 4.2 (wpm2,) we solve 68 more instances,
mainly on WPMS industrial subcategory. This last one, with 52.8 % (1127) family
ratio (number) of solved instances, increases in performance by 5.2 % (168) compared
to wpm?2.

Regarding the different variations for optimizing the subproblems (see Sect. 4.3),
we can see that optimizing the subproblems through ILP (wpm?2;j;,) is not competitive
on industrial instances. It solves 236 fewer industrial instances than wpm?2gj,. This is
expected since, as we will see in Table 4, i[p-13, the approach based on a full translation
to ILP, is also not competitive on industrial instances. On crafted instances it performs
similar to the other subproblem optimization variations. It solves 169 more crafted
instances than wpm?2gy, but it is not the best performing variation. Notice, however,
that on MS and WPMS industrial subcategories solves more instances than i/p-13.

Optimizing subproblems by refining the lower bound (wpm2,p1,), gives us some
additional solved instances in all categories, having the highest increases on WPMS
industrial subcategory (50) and on WPMS crafted subcategory (101). It is important
to highlight that optimizing subproblems with subset sum, instead of applying the
subset sum as in the original WPM2 algorithm, leads to a total increase of 173 solved
instances compared to wpm?2yj,.

Optimizing subproblems by refining the upper bound (wpm2j,,%*), gives us an
additional boost with respect to wpm2,;,. We get the highest increases in solved
instances, on PMS industrial subcategory (22), and on WPMS crafted subcategory
(56). Compared to wpm?2gj,, we have a total increase of 273 solved instances. Notice
that this variation is the one that competed in the MSE13 and is referred as wpm?2-13x%
in Tables 1, 2 and 4. Optimizing with binary search (wpm2;j,) has almost the same
global performance as wpm2pyq*.

By optimizing only subproblems that do contain clauses that were already extended
in previous iterations, we have an increase in family ratio and number of solved
instances on all subproblem optimization variations. The upper bound refinement
variation (wpm2gp,.) is the one with best performance, with 64.3 % (1423) family ratio
(number) of solved instances. It increases in performance by 11.5 % (296) compared
to wpm2g,.

Finally, wpm2gjyc4 is the result of extending the previous best variation (wpm2;p,¢)
by guiding the search with the optimal assignments from subproblems (see Sect. 4.4).
This way, the number of solved instances increases by 28. By guiding the search also
with the satisfying assignments within the subproblem optimization (wWpmZ2spucgo),
the number of solved instances increases by 22 more, solving 50 more instances than
wpm2pye. This last variation (Wpm2gpycgo), With 65.7 % (1473) family ratio (number)
of solved instances, increases in performance by 18.1 % (514) compared to wpm?2.
This is in percentage 138.0 % (153.6 %). Actually, if we take into account the timeout
of 7200 s used in our experiments, we obtain an overall speed-up of 1573 (three orders
of magnitude) with respect to wpm?2. Basically, we compare the total run time of the
solvers on all the instances. Not solved instances are assumed to contribute only with
the timeout.

@ Springer

Exploiting subproblem optimization in SAT-based MaxSAT... 33

Table S wpm2gpcgo. certify-opt and sat4j on industrial instances

wpm2spycgo certify-opt satdj
Subcategory # #H #S #x Db H#HAM #x Wb #AM #x Db #AM
MS 55 0.0 1.810° 20 08 412 0 100 1 0 100 1
PMS 627 33100 13-10 528 63.6 87.8 267 100 1 247 100 1
WPMS 396 4.9-10° 8.6-103 333 339 426 59 100 1 55 100 1
Total industrial 1078 3.7-10° 9.4.10* 881 49.6 212 326 100 1 302 100 1
Table 6 wpm2gpycqo. certify-opt and sat4j on crafted instances
wpm2spycgo certify-opt sat4j

Subcategory # #H #S #x Job #AM #x JDob #HAM #x J%b #AM
MS 167 0.0 12-100 14 965 98.8 6 100 1 6 100 1
PMS 377 2910 38102 272 920 243 222 100 1 224100 1
WMS 116 0.0 53.10° 18 572 5.5 15 100 1 14 100 1
WPMS 340 2910 58102 288 844 69 205 100 1 203 100 1
Total crafted 1000 2.1-10* 1.2.103 592 862 28.7 448 100 | 447 100 1

Table 4 shows our second experiment, where we compare the best variation of
the improved WPM2 solver (wpm2pycq0) With the best solvers of the MSE13 (with
a timeout of 7200 s). In particular, we selected the best ground overall performing
solvers presented in Table 2 and the best solvers for each subcategory in Table 1.

We see that wpm2gp,cq0 1s the best solver on the industrial set, both in family ratio
and number of solved instances. On crafted instances, it is only the fifth in family
ratio of solved instances. Although, on crafted instances, i/p is the first in family
ratio of solved instances, as we have seen in Table 3, the variation which optimizes the
subproblems through an ILP translation (wpm2y;,) does not improve the performance
of the upper bound refinement variation (wpm2sp,4+). We can conclude, however,
that wpm2gpycg0 is the best in family ratio and number of solved instances across all
industrial and crafted instances, and so the most robust followed by maxhs and gms?2.

There can be several explanations for the good performance of wpm2gjycg0. In the
following we extend the study presented in Ansotegui (2013b). One of this explanations
is that SAT-based MaxSAT solvers are supposed to take advantage by exploiting the
information (learned clauses, At-Least and At-Most constraints, etc) obtained from
each SAT instance (¢*) into which the WPMS instance ¢ is reformulated.

The conjecture is that this information makes easier the resolution of the SAT
instances where k is closer to cost (¢). In particular, those ones that are unsatisfiable
which tend to be harder to solve. In order to test the plausibility of this conjecture, we
introduce a new complete algorithm which takes as input the WPMS formula ¢ and a
cost that we initially set to cost (¢). Therefore, this algorithm only needs to certify that
the initial cost indeed corresponds to the cost of an optimal assignment. In particular,
it just checks that @@~ is unsatisfiable and “**!(#) is satisfiable. We will refer
to this algorithm as certify-opt.

@ Springer

34 C. Ansétegui et al.

In Tables 5 and 6, we compare certify-opt with the two basic search schemes
of SAT-based MaxSAT solvers: (i) those that focus the search on refining the lower
bound, and exploit the information of unsatisfiable cores (solver wpm2;pycg0) and, (ii)
those that focus the search on refining the upper bound, and exploit the information
of satisfying assignments (solver sat4;j (Berre 2006)). All these approaches were
implemented on top of the Yices SMT solver.

We experimented with the whole set of industrial and crafted instances from the
MS, PMS, WMS and WPMS categories at the MSE13. Tables 5 and 6 show the results
on industrial and crafted instances, respectively. In the tables, # stands for the total
number of instances, #H and #S stand for the mean number of hard and soft clauses,
respectively, and #x stands for the number of solved instances, within a timeout of
7200 s, for each solver.

The results of our experimentation show that sar4j does not have a better perfor-
mance than certify-opt. Although certify-opt solves 25 more instances than sat4j,
both solvers have almost the same overall performance. This can be explained because
the upper bound refinement converges very quickly to the last satisfiable instance
1@ but it does not take advantage from any information of the previous satisfi-
able instances ((pk with k € [cost(p) + 1, W(g)]) in order to solve more efficiently
@s1@) and s ®~1 The structure of these instances can be seen in example 7.

Regarding wpm2spycqo, it performs much better than certify-opt. For crafted
instances, it solves 144 more instances than certify-opt. The difference is more
dramatic for industrial instances where it solves 555 more. One of the keys of its
success seems to be that it only needs to extend with auxiliary variables those soft
clauses that have appeared into an unsatisfiable core. In contrast, certify-opt or
sat4j need to extend all the soft clauses. In the tables, %b shows the percentage of
extended soft clauses during the search. As we can see, both certify-opt and sat4j
always extend 100 % of the soft clauses, while wpm24,c40 only extends a part of
them. In particular, on industrial instances, where the difference in performance is
higher, it only extend 49.6 % of the soft clauses.

Another key point in the good performance of wpm2gp,cgo is that, the extended
soft clauses in the last query are covered by various At-Most constraints instead of
a single and larger one as in certify-opt or sat4j. This was proven to be more
efficient in Ansétegui et al. (2009). In the tables, #A M stands for the number of At-
Most constraints added during the search. When we go into detail in Table 5, in the last
query of wpm2pycg0 on industrial instances, the mean number of At-Most constraints
is 212. In contrast, in Table 6, in the last query on crafted instances, the mean number
of At-Most constraints is 28.7. This is also consistent with the better performance of
wpm2spycgo ON industrial instances.

6.2 Incomplete solvers
In this subsection, we analyze the performance of the improved WPM2 incomplete

solver. We show the results that it would have obtained on the track for incomplete
solvers at the MSE13 in Table 7 (full detailed information in Tables 15 and 16). We

@ Springer

Exploiting subproblem optimization in SAT-based MaxSAT... 35

Table 7 wpm2gpycqo incomplete compared to MSE13 incomplete solvers on the industrial and crafted
instances of MSE13 (number and mean ratio of solved instances)

Solvers MS PMS WMS WPMS Ind. MS PMS WMS WPMS Cra. Total

wpm2spucgo 18 511 - 336 865 15 260 20 224 519 1384
320% 80.0% - 770 % 760 % 150% 61.0% 19.0% 62.0% 47.0% 62.0 %
ccls 46 501 - 198 745 129 205 83 93 510 1255
91.0% 79.0% - 520% 73.0% 76.0% 37.0% 60.0% 17.0% 42.0% 58.0%
optim 2 60 - 13 75 167 303 115 257 842 917
1.0% 10.0% - 80% 9.0% 100.0% 67.0% 99.0 % 60.0 % 76.0 % 40.0 %
ira-nov 3 103 - 63 169 9 225 30 167 431 600
20% 200% - 28.0% 21.0% 8.0% 61.0% 20.0% 450% 40.0% 29.0%

Best results are in bold

also discuss the quality of the upper bounds obtained during its execution on industrial
and crafted instances in Figs. 2 and 3.

Table 7 shows our first experiment, where we compare the incomplete solver based
on the improved WPM2 algorithm (wpm2pycg0), With the best incomplete solvers
of the MSE13. Results are presented following the same classification criteria as in
the MSE13. For each instance, it is computed which are the solvers that obtain the
best upper bound within 300 s (5 min). For each solver and subcategory we present
the number of instances where the solver reported the best upper bound and the mean
family ratio according to this number.

We can see that wpm2p,cq0 dominates on industrial instances, being the one that
reaches the best upper bound 865 times. This is 120 more times than ccls, the second
one. On crafted instances, both are dominated by optim, that in contrast performs not
well on industrial instances. When we consider the whole set of industrial and crafted
instances, wpm2spycgo is the best one 1384 times, 129 more times than the second
one ccls.

In the following, we analyze the quality of upper bounds provided by wpm2pycg0
on the whole set of industrial and crafted instances. In Fig. 2, we show the mean upper
bound quality obtained during the resolution of the instances. Those instances not
solvedin 7200 s or solved in less than 60 s are discarded. Therefore, only 358 industrial
and 129 crafted instances are taken into account. In x-axis we have the relative elapsed
running time (100 % corresponds to the total time to solve the instance), and in y-axis
we have the relative distance of the upper bounds to the optimum (an upper bound
equal to the top weight or to the optimum, has a relative distance of 100 or 0 %,
respectively). We refer to the relative distance to the optimum as the error in an upper
bound (a small error means a high quality).

In the graphic at the top of Fig. 2, we have the experiments on the whole set of
industrial instances (MS, PMS and WPMS categories), and on the two industrial fam-
ilies, with the best (WPMS upgradeability family) and the worst (PMS close solutions
family) mean upper bound quality. In one third of the resolution time, the mean error
in the upper bounds on the whole set of industrial instances is less than 10 % and in
two thirds it is less than 6 %. In particular, for the WPMS upgradeability family, in

@ Springer

36 C. Ansétegui et al.

10 % of the resolution time the mean error is less than 1 %. Also, on some instances
(PMS pbo-mcq family) the optimum (0 % error) is reached in one second while more
than 1000 s are needed to certify it. On the other hand, for the PMS close solution
family, in 90 % of the resolution time, the mean error is about 37 %.

In the graphic at the bottom of Fig. 2, we have the experiments on the whole set
of crafted instances (MS, PMS, WMS and WPMS categories), and on the two crafted
families, with the best (WPMS random-net family) and the worst (WMS CSG fam-
ily) mean upper bound quality. In one third of the resolution time, the mean error in
the upper bounds on the whole set of crafted instances is less than 4 % and in two
thirds it is less than 2 %. In particular, for the WPMS random-net family, in 5 % of
the resolution time the mean error is less than 1 %. On the other hand, for the WMS
CSG family, in 10 % of the resolution time the mean error is 100 and in 90 % of the
resolution time it is about 14 %.

It may seem that we get better results on crafted instances, however we should
take into account that, the number of crafted instances solved by wpm2gp,ce0 Within
60 and 7200 run time seconds, is lower than the number of industrial instances. For
some instances unsolved by wpm2jycq0, We can consult the optimal cost found by
other MaxSAT solvers (none dominates completely at the MSE13). This allows us to
know which is the quality achieved by wpm2sp,cq0 €ven if it was not able to solve the
instance exactly.

InFig. 3, we experimented with the industrial and crafted instances of MSE13 where
any of the solvers in Table 4 was able to find the optimum.?> We show the number of
industrial and crafted instances, where wpmZ2gp,c¢, Teached an upper bound with a
relative distance to the optimum (error) of less than 20, 5 and 0 % in a given elapsed
run time. In x-axis we show the elapsed time from O to 7200 s, and in y-axis we show
the number of instances.

In the graphic at the top of Fig. 3, we have the experiments on the industrial instances.
We can see that, a high quality of upper bound is reached on a great number of instances
in a relative short run time. From 20 to 5 % error, there is almost no difference. In 60 s,
an upper bound with an error of less than 5 % is reached on 874 out of 1012 instances.
In 300 s it is reached on 945 instances and in 7200 s on 973 instances. With respect
to a 0 % error in the upper bound (optimum is not necessarily certified), in 60 s it is
reached on 596 instances, in 300 s on 804 instances and in 7200 s on 881 instances.

In the graphic at the bottom of Fig. 3, we have the experiments on the crafted
instances. Compared to what happens on the industrial set, there is a greater difference
in number of instances, depending on the maximum error that we consider. We can
see that, an upper bound with an error of less than 20 % is reached on 912 out of 952
instances in 60 s. However, the number of instances with less than a 5 % error in the
upper bound is significantly lower, 704 instances in 60 s, 753 instances in 300 s and
822 instances in 7200 s. With respect to a 0 % error in the upper bound, the difference
is even more important. In 60 s it is reached only on 464 instances, in 300 s only on
502 instances and in 7200 s only on 592 instances.

2 There are only 66 industrial and 48 crafted instances for which was not found.

@ Springer

Exploiting subproblem optimization in SAT-based MaxSAT... 37

As a concluding remark, in 300 s (the timeout of the track for incomplete solvers
at MSE13), wpm2gpyc60 has reached an upper bound with an error of less than
5 % on 945 out of 1012 industrial instances. This is consistent with the results in
Table 7 where we have shown that wpm2gp,c¢0 has the best performance on industrial
instances.

6.3 Results at MaxSAT evaluation 2014

In the previous subsections, we have analyzed and described in detail the impact of
every improvement incorporated in wpm?2. Here, we study the performance of the
wpm?2014 solver that took part in MSE14. This solver behaves exactly as wpm2p,,.
for (Partial) MaxSAT instances, and includes some efficiencies for Weighted (Partial)
MaxS AT instances. In particular, we show that although this solver is not as competitive
as the newest complete solvers, its incomplete version (as described in this article)
ranked the first for the incomplete track.

The sets of instances at MSE 14 are almost the same as the ones at MSE13. The main
difference is that WMS families were integrated into the WPMS set. The classification
criteria remains the same.

Table 8 summarizes the results for the best complete solvers on the whole set of
industrial and crafted instances according to MSE14. We have excluded the portfolio

Table 8 Best complete solvers on the industrial and crafted instances at MSE14 (number and mean ratio
of solved instances)

Solvers MS PMS WPMS Ind. MS PMS WPMS Cra. Total
maxhs 27 417 280 724 7 328 219 554 1278
73.0% 705% 526% 626% 11.8% 692% 758% 622% 64.2 %
eva500a 41 472 368 881 9 302 149 460 1341
865% 197% 128% 184 % 85% 7M13% 478% 478% 628 %
mscg 40 468 363 871 5 310 127 442 1313
855% 80.0% 704% T19% 43 % 67.6% 428% 433% 604 %
qms-g3 14 454 303 771 11 318 181 510 1281
290% 185% 613% 726% 9.0% 734% 525% 509% 61.6%
wpm?2014 29 428 359 816 12 297 151 460 1276
750% 755% 139% 751 % 93 % 69.7% 434% 452% 599 %
open-wbo 42 473 315 830 11 317 130 458 1288
875% 811% 595% 761% 9.0% 734% 310% 429% 593 %
ilp 1 265 249 515 30 339 224 593 1018
0.5 % 400% 459% 390% 205% 626% 152% 614% 503 %
scip-ms 0 211 242 453 24 342 200 566 1019
0.0 % 315% 448% 329% 125% 634% 704% 5718% 455%
ahmaxsat-ls 0 32 25 57 156 294 128 578 635

0.0 % 55% 7.5 % 5.7 % 605% 480% 321% 421% 241%

Best results are in bold

@ Springer

38 C. Ansétegui et al.

I1SACH, since our main aim here is to compare algorithms and ground solvers. We
have also included ilp, scip-ms and ahmaxsat-ls, which win in mean family ratio or
number of solved instances on some crafted categories. On crafted instances, the best
solver in mean family ratio (number) of solved instances is maxhs (ilp), and on the
whole set, it is maxhs (eva500a).

On industrial instances, we can see that wpm2014 is the fourth one. The best
three solvers on industrial instances were eva500a (Narodytska and Bacchus 2014),
mscg (Morgado et al. 2014) and open-wbo (Martins et al. 2014). For open-wbo,
we selected the best version for each category. To our best knowledge eva500a
automatically detects the category and applies a predefined user parametrization.
These three solvers are SAT-based MaxSAT solvers too. Without going into detail,
we could say that the approaches of eva500a and mscg allow them to generate
simpler PB constraints. Moreover, all three new solvers build incrementally these
PB constraints, instead of generating them from scratch. In the case of open-wbo,
PB constraints are explicitly built incrementally. In the case of eva500a and mscg
this incrementality comes naturally as a result of the nature of the algorithm. These
improvements are complementary to the approach of wpm2014 and therefore they
could be incorporated. We can yet see that wpm?2014 achieves the best ratio in WPMS
instances.

Table 9 summarizes the results for the best incomplete solvers on the whole set
of industrial and crafted instances according to MSE14. Clearly, wpm2014 domi-
nates on industrial instances, and it is the best overall solver on industrial and crafted
instances. For optimax (implementing the BCD algorithm (Morgado et al. 2012)), the
second best solver for industrial instances, we also selected the best version for each
category.

Since we are showing a partial order, we have also included the solvers that take
part in all categories dist, ccls2014, ccmpa and ahmaxsat-ls, from which dist and

Table 9 Best incomplete solvers on the industrial and crafted instances at MSE13 (number and mean ratio
of solved instances)

Solvers MS PMS WPMS Ind. MS PMS WPMS Cra. Total
wpm?2014 30 407 365 802 15 301 180 496 1298
755% T719% 732% 732% 7.0% 674% 513% 513% 621 %
optimax2 33 354 247 634 15 295 149 459 1093
785% 597% 598% 598% 1.0% 688% 472% 472% 534 %
dist 0 177 38 215 171 354 186 711 926
0.0 % 31.7 % 108% 245% 827% 663% 508% 61.3% 432%
ccls2014 0 61 39 100 176 299 167 642 742
0.0 % 10.5 % 15.1 % 110% 972% 584% 487% 605% 36.1%
cempa 5 91 52 148 173 281 154 608 756
4.5 % 175% 224 % 179% 875% 545% 388% 524% 354 %
sat4j 5 117 66 188 2 200 82 284 472

205% 236% 193% 223% 05% 403% 286% 271% 247 %

Best results are in bold

@ Springer

Exploiting subproblem optimization in SAT-based MaxSAT... 39

Table 10 Comparison as

incomplete solvers of wpm?2014, wpm2014 open-ubo m
open-wbo and gms wpm?2014 939 850
(51 498 390) (52 423 375)
open-wbo 857 864
(43 473 341) (45 458 361)
qms 820 827

. (13 528 279) (19 522 286)
Best results are in bold

ccls2014 win in mean family ratio or number of solved instances on some crafted
categories.

Finally, we have decided to extend the results of the incomplete track of the MaxSAT
Evaluation by comparing to wpm2014 the best complete solvers than can provide
upper bounds but did not take part at the incomplete track: gms2 and open-wbo.
We performed the comparison on industrial instances, where all these solvers were
competitive.

In Table 10, we present the dominance relation between pairs of solvers on the the
total (MS PMS WPMS) set of industrial instances. For example, wpm2014 (open-
wbo) is able to obtain a better or equal upper bound than open-wbo (wpm2014) on
939 (857) industrial instances of which 51 (43) are MS, 498 (473) are PMS and 390
(341) are WPMS.

On the whole set of industrial instances wpm 2014 outperforms both open-wbo and
gms?2.Even though wpm?2014 was not the best complete solver at MSE 14, it dominates
the other solvers as an incomplete approach. For PMS, we can see that gms?2 is the best
performing approach, but for MS and WPMS, wpm?2014 performs better. Notice that
gms?2 is an efficient implementation of a SAT-based MaxSAT algorithm that mainly
follows and upper-bound refinement strategy but unlike wpm2014 needs to place PB
constraints on the whole set of soft clauses. So, if the subproblems represent most
of the original instance, gms2 should be better, but if the subproblems cover only
a small fraction, wpm?2014 has advantages even with a less efficient approach for
subproblems. Precisely, thanks to the insights of Table 5 in Sect. 6.1, we know that for
PMS instances, wpm2spycg0 (wpm2014) covers in average a 63.6 % of the soft clauses,
while for WPMS, it covers in average only a 33.9 %. This suggests that incorporating
the efficiencies of gms2 into wpm2014 will certainly improve its performance on
PMS instances and perhaps on WPMS instances too.

These results confirm that by applying the subproblem optimization technique and
exploiting the satisfying assignments from subproblems, a complete MaxSAT solver
can be used as an effective incomplete MaxSAT solver.

7 Conclusions and future work
True innovation in heuristic-search research is not achieved from yet another method

that performs better than its competitors if there is no understanding as to why the
method performs well (Sorensen 2015). Following this principle, we have provided

@ Springer

40 C. Ansétegui et al.

a detailed analysis on how the improved WPM2 solver has experienced a significant
boost on solving industrial instances, which is our ultimate goal.

In particular, the subproblem optimization approach and the exploitation of the
satisfying assignments from subproblems seem to have the most clear impact on
efficiency. Therefore, solving incrementally an optimization problem by solving some
of its subproblems is a promising avenue. This way we can focus on a reduced portion
of the instance, allowing us to use less complex PB constraints to solve the whole
problem.

We have seen that SAT-based MaxSAT solvers are able to exploit the information
derived from refining lower bounds and upper bounds. We have confirmed that this is
not only crucial to locate quickly better upper bounds, also to certify efficiently that a
given upper bound is the optimum.

Moreover, from a more practical point of view, we know that although many NP-
hard problems can not be solved exactly, in industry they are mostly focused on
obtaining better upper bounds. Therefore, completeness is not always a mandatory
requirement to guarantee practical success. In this sense, we have shown how we can
turn a complete solver into an efficient incomplete solver by extending the satisfying
assignments from the subproblem optimization phases to the whole problem.

As shown in the experimental evaluation, the incomplete version of the improved
WPM?2 solver would have dominated on industrial instances the track for incomplete
solvers at the MSE13. Furthermore, the solver wpm?2014, which is just a more efficient
implementation of the improved WPM2, was the best performing solver on industrial
instances on the track for incomplete solvers at the MSE14.

As future work, we will study how to improve the interaction with the optimization
of the subproblems. A portfolio that selects the most suitable optimization approach
depending on the structure of the subproblems seems another way of achieving addi-
tional speed-ups.

From the point of view managing even more efficiently PB constraints, following
recent works (Narodytska and Bacchus 2014; Morgado et al. 2014; Martins et al.
2014), it is also quite recommendable to use less complex PB constraints and reuse as
much as possible of them when they are modified.

Finally, we have also shown that the SMT technology is an underlying efficient tech-
nology for solving the MaxSAT problem. A positive side effect is that our algorithm
can be naturally extended to solve the MaxSMT problem.

Acknowledgments Research partially supported by the Ministerio de Economia y Competividad research
project TASSAT?2: TIN2013-48031-C4-4-P and Google Faculty Research Award program.

Appendix

See Tables 11, 12, 13, 14, 15 and 16.

@ Springer

41

Exploiting subproblem optimization in SAT-based MaxSAT...

0916 0s)L'L (0956 0916 OD1TE (096TT 09991 ODIIT HP8Te Beorl (0S)s8y (09)89r (6h)ecy 0§ dO-Idy
(9%)€9¢ (87)00¢ (87)8€T @8P68T (Ov)90L Upize (WSS (ep)L9s (€DILT (CDver (Loer (LOsy (999Ly 8y dN-Id)
(TDogT @Dy (TDyge (tpise (epose (@Dist (TDoLy (TDooS (190 (MLo (nsye (1DesLe (1D69Lc ¢l sur-oxd
((397%7 ey SDrs (SDE9 SD8¥ (DL (sDse ((Y9IR") @®LL9 (98Lzr (s (DTt (SDF0 S1 nor-oqd
0S)L'sT 09sLy 09171 09)esT (0959 (09659 O9HP9T ODFLT (@09¢9 (1D9zes (09)60€ (09)¥8T (0)9L 0§ [uw-oqd
09TIS 09101 (09)€LT 09)6Lz (09Tl (09911 09zt 09)TH6 000 (1066 (09)¥79 (090r9 (09119 0§ duur-oqd
00’1 onror (OW1°0 99)L8T (po6T (9998t (Omg6r (9916T (OMTT9 (OWPS8 (899I (8961 (tDT6r OF swd-oed
©Lrr ©)zee ($)606 ©¢18 ©rcr Sy ©)8'L (©)0°6¢ (S)zsl (©)sLe ©es ©)Ts ©Lrr 9 e-dey
(60)8811 (roLeg (€0)¢es 90er8 (T86S (8DV00T (€)T8L (FOI8I6 (DL¥E 000 (€089 (€109 (6DSOF 0S sop
(6£)679 (FE)9Tyl (LDI80SI (LDorer (ze)zeol (@O8sel (BOILL (6D6v01 (€O8PL (©)9ovey (€9)¢e8 (€£)618 (1E)68F 0S $-0[2
)£ 06 166 #)Ts6 Wr16 (2l (2120 (£)00€ (€91 (MDLvy (DLest 918 (Wr901 (©)eLe + 91110
80)1C1 09168 (SV)0TE Worer - (010 (9oLge (Soves (O9rl (bOsTl (POrss (bOP99 (€OLIy (boere 0§ uks-doq
(9€)9%L (9)608 (99118 6Oy (€oLL6 (89018 (T9L8FT (99916 (ODTvL (T)918 (9O TTel (8DL09T (1T)8EST 0OF Swu-dog
(60168 Q1LY (60)206 90r08 (9O1sS (9OLTe (coTee (toeel (61088 (LDOLS (0D1¥8 (120011 (61)L68 0§ dsw-dog
OIS (€9)s0r (€9)ESH e)9st (Ss81 (80)86c (8DeST (0D)6L9 (g€l (DeoL nyes pers (6D6ce 8¢ nshy-doq
(9101 ©D8rL (91)L°66 (91)9¢1 WD9Y9 (9DT09 (DS (€DSLI (L06S (LS9 (€DL09 (€D¥P8S (¢1)sTe L1 1shy-doq
(61)9°TS (6v)L0T (6¥)9°0€ 6m86l (BNT8r (6M60S (61)99¢ (6v)1el (61)9T6 (6v)€01 (6MT1T (6H)T6L (67)58S 05 Iy-doq
000 00 (DsLe6l (Dyes 000 D911 000 000 (DgT6 (1)LS8T 000 000 000 L soe
SINd

% 9°0S % 9°0S % L8t % 89t % 9°0S %YLy B IIS % L'8t % L'6¥ BLY BIYIS BIYIS %I0S
0T 0C 81 91 0T Ll | 14 81 61 81 1T | (4 0T <SS B0,
(8DE6Y 8D16S (9DL6E (rDose (BD6Y9 (SDSser (6D8PS (9DT6S (LDL6E (9DST9 (61069 (61189 (81)96% ¢S s-uess
(@)81C V15t (Vs8¢ (V687 (©T€9 @9y (@10 @61 (@ESs L. @voL @gsL @y ¢ dp-1o
S
osmyszydm PMSzwdm OMSgudm xP"Szudm 29USgwdm PSzwdm CMSzwdm PHSgudm CMSgudm PMSgudm Sgudm Sgudm qwdm 4 Aprureq
(SQ0uB)SUI PIAJOS JO OIJRI UBAW puE Jaquinu) ¢ [gSIA JO Seour)isul [ernsnput ay) uo pareduwod ‘sjuawrarordur ZINJM Jo 1oedwy T dqel,

pringer

as

C. Ansétegui et al.

42

PIOq UI 21 SJ[NSaI 1sog

% 6'8L % L'8L % 1°8L % 89L % €9L % 99L % 8'EL % L'EL % S'SY % TEY % 0°69 % 6'99 % 819
188 088 G98 8 9¢8 9¥8 £es L18 949 8IS YSL 169 1S9 8LOT 'PUI[®IOL
% S9L % O°LL % LOL % S'SL % V'LL % 9L % S'SL % 0vL % TLS % v'SS % ¥'C9 % STS % S'6v
£ee 9¢e Pee 9ce 6€€ 9C¢ 9Ce 61¢ L9C 19¢ 69¢ €0¢ 0T 96¢ [e10L
WDLTT rDse6r (FDEET rDo'Ll wDser (€DS0S (wDL09 (€DY'8S (1DYYE opeLs ()t (0DsSoy 90 Iz Igs-dsom
WYL WDTYe WDY's YDzl (wDzee wDgre (wD¥9e (Degy (SDO6E (spser (hyst (ODzer (8)Te0T 1T pgs-dsom
(001)SO0T1 00DY01 (00DT'8L (oonLez (0oDTLL (ODS6T (VODT6L (00DI0E (00DSLS (V0DYPIT (00D TL (ODYFI (00D¥'9T 001 oxd-3dn
(6)Tss (6)$S01 (6)L0¥1 (6)s01 (6)s0T1 (8)0€L (6)0z8 6)8t¥ (M9Ly 000 (8)09¢ (8)L6S (8)90L 9C swn
(60971 (60r'el (60)6'L1 60zer (6ol (60051 (6069 (60)EFE (€DYF (€DYOr (LDIST (LOSST (8D)6°SE 6C e[d-oxd
(69)101 (€L)00T (69)r2T (T9)LYE (LLyee oeey (69)L9¢ (29)889 (0L)T61 (oise (€091 (€091 (8D)EPT 66 swdm-oed
(86)961 (L6)est (66)0¥T (86)Tr1 (96)9S1 ($6)09L (16)0°08 (zo)sel ooy (a9Lee (06)10z (SO10T FOO'LS 001 pad-dey
SINdM
% 6'C8 % S'C8 % 618 % L08 % L'8L % 908 % 9°SL % €9L % S0¥ % 8'LE % SEL % TYL % 6°L9
87¢ ¥es %Y <08 Lé6v €05 98¥ 08¥ 65¢ 6¢£C 9v L9V 6Ccy LT9 [eI0L amc
odomyszydm MSzudm O"Sgudm «PMSgwdm PWUSzwdm P9Sgudm CMSgwdm PSgudme CMSgudm PSzwdm USgdm Sgudm cwdm # Aqrureq Qmu..
ponunuod [y d[qe], @_

43

Exploiting subproblem optimization in SAT-based MaxSAT...

% L'€9 % 0°€9 % S'€9 %TEY %8T9 BIT9 BYI9 %19 %BLSY %8I %18 %HI'SS %66S
(454 L9T LT 0LT S9T 192 (454 96T LST 8% 87T 8% LYT LLE [eI0L,
(1889 (DoLzt (Dorzt (Mro8 (Dzsoe (Deevl (Dsy8e (1)€0TE 000 @o0 (o0 (@00 (DS9S ¢ yos
(P)1°8¢ (h)sce WLy Pove (18T P68 Bo16 MTey WEsT eI 8re (6L6 ()01 ¢ Tw-asd
(9)€LET (9)9L21 9)L¥8 (©LLST (986¥T ($)9sel (9)TIST DI (LI86ET (LSIOT ($)€T9T (S)TL8T (#)STET T Iqy-out
09)T61 (09071 0906 ©90sr (96T ©ISSE (OIFST (NT0€ (LP6rS (1£)00T (69)6'€8 (65)S'18 (8S)SPT 09 Ms-owr
(14 08)8s (08)9'9 0)L9 01 (00s (066 (0988 (08)c'ce (08)818 (0 LT (08)L'9T (0R)L'ST 08 sg-owr
(80)TsL (90089 (LT)800T (L2918 (LD)L80T (90018 (€0)SSL (¥0)908 (BVOIL (@OFPY (1DLLS (12)69S (1D)LcL 79 ns-bow
(0669 s)LLe (06)0SL 06)1sS PRIP8y (@®)29¢ (BLL6Y (BLILIS (06)S0E (£6)S9€ (9L)6SY (9L)0St (9L)SHy 96 ues-bow
(€)6'59 (€079 (9819 (©8ss (©61S ©910 ©TLy (©0FS 000 000 (©¢s9 (9eTs (£909 ¢ us-qof
000 000 000 000 000 000 000 o0 (MD9s9e (Dzzer (00 (00 (000 ST qy
SINd

% 8¥1 % 1 % 81 % 1 % %1 %TST BOYT %OYL %091 %SIT %OPT %BOPI %Ol
2t €l 4! €l 2t St 4! 4! LT ST 4! 4! Tl L9T 0L
@LLr Or'e (V)9 @rv1 (0)6°61 (D16 (@0 (080 @L1 @¢1 @co @vo @ro § Ts-ow
(PS8 (rnoze (TDLYS (rnese (TD169 (€DSo0l (0DS6y (01889 (SDBEIT (9DO6ET (01)T66 (ODL6L (ODPF8 79 wp-dow
000 000 000 000 000 000 000 000 000 ©00 (000 (000 (000 0§ gdow-diq
000 000 000 000 000 000 000 000 000 000 (000 (000 (000 0§ Low-diq
SN
08MYSzyudm SMYSzuwdm PMSgwdm «P"Sgwdm PMUSgudm PIUSgwdm P1MSzwdm PISgwdm PMSgwdm PMSzwdm YSgwdm Sgwdm gudm @ A[rureq

(SQ0UB)SUI PAATOS JO OTJEI UBAUWI PUB JqUINU) ¢ [FSIA JO SaouRISUI pajjeId ay) uo paredwod ‘spuawarordwr ZNJA Jo 1oedwy 7y dqer,

pringer

As

C. Ansétegui et al.

44

PIOq UI 21 SJ[NSaI 1sog

% 0'IS %SG % LS %88y BOGY BT6Y BOTY %O BYOY HOOF BIYE BOYE %SIE

765 LS 8¢S 98¢ 196 65S 8% €8y 1299 s €LE 89¢ 80€ 0001 "BID [®IOL
% L'EL %889 %199 % 1LY %HBELY B¥8 %H66Y %HIOS %HBSIS %SSS BE6T %66 %T6I

887 TLe SsT 6sT €9¢C 9T 861 661 86T €T 86 86 6¢ 0ve [el0],
@h€6sT (SO60rT (LDzece (9ODSLTE (POYOLT (€90IST (SDLL6 (91)8961 (TWPocl (99)¥801 (000 (000 (000 +L Iou-uer
)09z ()ere (r)L8T (S)9sL (P)60¥ ©roL (©¢vr (96Tl 8T (@6¢ (©0LST (©)88F1 (©)1Le Tl [w-asd
)Po€T (Mo (@11 (2)208¢ (100 (100 (1o (1o (100 Mmro (M9e (Mg (DeT 81 em-our
99)L°0 9990 (99)L0 9980 (99L0 (99L0 (99)TE (99)9T (09)s8F (09969 (8)FHT (8L)6ET (0£)ocy 9§ 1d-ouru
(¥8)6°0 #8960 (18T 0T 9T #R9T (PRSTL (FRETL ST (LT 0SFPT (0S9)0rT (0000 +8 yos-one
(28)91¢ (28)99¢ (28)9T¥ @®9LT (bLLS6 (SLTS6 (££)889 (€9)STs (sL808 (9L)1L8 (Deve (Dive (0000 98 Ied-one
(ongsy (ODges (ON99 (ODTIL (ODT99 (ODTTY (9895 DIve (18T (WIL'69 (DIEL (SHLIL (£)998 0T 31Ne)

SINdM

% 9'81 %E0T %981 %98l %EOT BEOT %HOTL %OTL BT %OIT %EOL %99 %99

81 61 81 81 61 61 91 91 (4 €T SI ol 01 oIl [®I0L,
(160% (D¥9¢ (Mser (D8re (DSt (M91e 000 000 (M¥sy Msvr 000 000 (00 ¢ Ss-owum
©)¢T ©r11 ©)L9 (©)¢81 ©rs ©)Te ©)Fr1 ©Fr1 (8)99% (6)69¥L (S)9'19 (9)0'€9 (S)L'9 79 wp-owm
(©)LTT (P18T1 ©T8 (©)0¢6 (202 oy (9SS (0189 (©LLy ©ry (Myo (M¥o ((MLo s1 wex
(6)st1 ©)7TL8 (6)s61 (6281 (6)€ST (6)9ge (6)69L ©)S19 (ODLP8 (ODIT9 (B)6crT (6Tl (1STT +€ ehis

SINM

0mYyszydm IMSzudm PMSzudm «P"YSgudm 29USgudm P4MSzudm P1Sgudm PlSgudm 2MSguwdm PMSzudm YSzudm Sgudm gudm # A[rureq

penunuod I dqeL

pringer

As

45

Exploiting subproblem optimization in SAT-based MaxSAT...

@00 (DTsT (968 (96T (SDY0 (sD9ce (16T (DYl (SD¥y (SDLT (SN0 (SDI'I (S1E9 (SDEgt s nor-oqd
000 (De9se (1)€s€T (LEOYOT (FDEOr (DOLE (09)TST (09)6T1 (SE)8LT (09)0°6L (0S)8ET (09)F'S8 (0S)EST (09)L'ST 0§ uur-oqd
000 Is6r (L60SE (60991 (LD¥TTl (@8r1e (0S)LOT (09661 (S©)08L (05881 (0S)w6r (0S)L8T (0S)6LT 09)T1S 0§ ouu-oqd
©00 (00 (@00 (Deggs LOVIT (OMOT FOY8T (OWL'LY (0MT9 (OWeL OWMSLT (OWvsT (9€)L8T 00’1 or swd-oed
o0 (oo (@oo (000 ©rT (9601 (9685 (96€T ©re ©@zL O WTHY ©)¢1s ©Lir 9 e-dey
@00 (o0 (@00 (000 ooy (8DSI8 (LS00 (61)8LE (CD08S (8h)6Th (8D)eeL (€9)L6r (9D)EwS (608811 0S Sop
000 (00 (@881 (000 (Te)S9S (0OSLT (TD96 (FPO1F (S€)99S (EMTPL (96T (62)9ST (LDOIET (£)629 08 §-0[9
o0 (oo (oo (Dzss (MoLe (DeLy (DSLE o6l syl (WS'LE (T8 (HEr8 (20870 E06 ¥ 9)-I10
D6eT (60961 (BD61E (8DOTY (109 (BPIL'PT (81081 (€0)98T (BVWSI (6D6+6 (SVTTIS (LDTLS (FOITI (80)1CT 0§ uks-dog
©00 (ODOrL 101 (SD8IF (6D1ST (8VT6S (W18 (OM60 (0M09 (ORT0 (0P90 ONTT (69 1¥Y 9€)9vL Ot Siu-dog
(S)eLe 1S9l (61)L9S (TTT86 (©)8C (8DTLS (€0)LIE (8D6IT (8)€69 (00)66T (SDFIS (0£)91T (90708 (60165 05 dsu-dog
©00 (00 @00 (000 (DEIT V00 OOvITT (6D)Ser (8DL8T (SOIPT (1€)e8y (TEIST (#€)9ST (FO11S 8¢ nshy-dog
Wwrer @¢e9 sy (ser (peet (981 (OD09E (SD6ET (9108 (LDO0E (OD8FT (9D0gT (91)9¢T (9D0zT1 L1 1sAy-dog
(WsTe WDOLT (99)9%L (S9)608 (BMELL (09)TTT (LE6S9 (8M9LT (6¥)691 (L1)96e (8Y)ILT (6¥)S01 (6+)8°61 (6¥)9'S 06 Iy-doq
Mec (Dre (D199 (1gTiT 000 (©¢6r (£)08F o0 (Dicce (@oo0 (Dzir (1Degal (DS 000 L soe
SINd

%00 %00 %00 %00 BSL8 BYIT %BYIC BYIT BIIS BOYE BLES %b¥IS % 8'9% % 90
0 0 0 0 44 L L L & 61 8¢ 9T 91 0T SS [eoL,
@00 00 @00 (000 (6£0sT Or6T Ozer (9eTIl (61)96T (81)6£6 (SE)STOT (FD6ET (F1)9SE (81)g6y TS s-ueas
@00 (o0 @00 (000 ©9s (D09 (DLeL (Desee (@ely (Deve (©T01 (V61T (0)68¥ @8y ¢ dp-o
SIN
suyn s-uyo ferzsw gozswm nfrud/m crdn ¢rsyxvw ¢ggogmd ¢r-fwdm 78-gswh 1u-wido ounsw x¢r-guidm OMUSzudm g A[rure,q

(S90UBISUT PIA[OS JO OTRI UBIW PUB 19QUINU) € SN JO SIOURISUI [PLSNPUL 9Y) UO SIOA[OS 919[dwod 159q ¢TSI 01 paredwos 23MUSzudm ¢ ajqel,

pringer

As

C. Ansétegui et al.

46

PIOq UI QI S)[NSaI 1sog

%S BOTL %H0OTC %HTHYL %S0S %O BHBLTY %8V %IOL %HTIL BTEL BSEL % 8'9L % 6'8L

a4 €1 ¥8¢C S8C 068 029 sL 1L Y6L 189 90L 808 78 188 SLOI "PUu[[eIOL
%SS %BTL %HOIT %68l %H60S %ESS %BYES BSYS %BIY6L %SO BLOS %OLY % S'SL % S9L

01 4! 43 8 197 65T 65T 69t 1s€ 611 S91 0LT 9ze €€€ 96¢ [®I0L
(€S0 W60 eo (o1 OO0 (6668 (9)9°C @01 DI6T (SDg69 1188y (DL€ (FDO'LI DL 1T 16s-dsom
(re6r ()50 8Lzl (OLLL LT WDF6l T (LOIT (wDTEL (SDOSS (€D6+v8 (PD6€l (PDTTl FDY'LT 1T pss-dsom
000 (@00 (06)icce (LWTTE (00DS9T (00DOT (001981 (V0DE9S (VODOT (000 (8)6°ST (00D)00L (001)L6T (001)s01 001 oxd-Sdn
000 @oo (oo (o0 (®006 (@00 (Do6L (LSLOT (IDO06 (8)68L (ODg6E (8161 (6)SHOT (6)css 9t oumn
Moer ©Oriy (99 (Wer9T (1DST (TDEIOT (8D9+8 (6DHST (80)0'8T (60)0°61 (62)6€9 (60)81T (6D)TEL (609%1 6¢ epd-oxd
(@60T (000 (LDTEOT (€D6vcT (ST6 (66)S'0 (SRT'ET (ePeT1e (16)09¢ (L1)S90E (TVITT (CD¥PS (T9LvE (69107 66 swdm-oed
000 (@00 (000 (00 (S8)L18 (TOserl (€0)LS8 (LLVIT (€6)9T1 (SO16ET (TLLEY (€6)L9T (86)THI (86)961 001 ped-dey

SINdM

%09 %BTST %8TC %HO6L %HT BIPS BYOL %6IL %¥8 %O0S8 %808 BG6LL % L08 % 6C8

7€ 611 49! 002 L8T 1293 98% 874 (67 34 €08 TIs 208 8¢S LT9 [eI0L,
(000 (§0)€9¢ (COEPIT (STIS6E 000 (09)9¢ (09081 (€D¥ITS (T80T (09)€ST (090 (09)S'TE (09)T°6 09)rv6 05 do-dy
000 (©86r (000 (00 t)9zel (8DSL9T (OMTLL FO¥Tye (OD¥ee (89179 (89)eS8 (6£)1SS (8K)68T (99)9¢9 8y d-ady
o0 My (Losy (9)T80€ Me0 (Deo (99esT (®)86¢T (9)Lzor (ZDITL (TDose (€)ose (TDISE (zDoge ¢1 sur-oxd
swyp s-wyd> [fe1zsu gzswm nfrud/m crdn g1syxvw ¢grgoqmd ¢i-1wdm g8-gswb 1u-wiido ounsw s¢[-gwdm °5MUSzudm # A[rure

penunuod ¢y dqel,

pringer

As

47

Exploiting subproblem optimization in SAT-based MaxSAT...

%1SE BS8 %H9V9 BbESY BOSS DTS %TEY BEOY % TEL %LEY BUIL %HTO9 %BE09 %89
19 6% 19T LOT €6C ST 0LT vt 8¢ TLe ¥0€ Lig 8I¢ €€€ LLE [e10,
@00 (oo (oo (o0 (000 000 M8 (00 (DLLL (089 (Moo @oo (@oo (o0 S yos
©Fr1T Weer WeL WM8ST (9sTL (M8l More ()80 (o€ M18e (Mee (Ores (9)e8s (Wgsc + Tw-asd
(Mzgre 81y vLL (9L¥IT (8D00ET (9010T (SLLST (1)T0OTI (9)8€T (9)eLET (8)$90T (8€)91€T (8€)$86T (THITIT T IQY-ounu
(M0 (09709 FSePT (TH)SS8 (098011 (09)0°6 (090°SH ($)LS9 (09)8°TT 09761 (09T (LOYTT (85)898 (6S)8LC 09 ns-owr
(LSS (09)€8 (sL68e (08PPI (0¥'S (TLI86E 08)L9 (08)8'¥€ (8L)TT9 Ory (089 (OO0 (089S0 (016 08 sg-ow
(Snore (zosze (9209 (PDsTe (19)9L1 (61)S'LS (LD9I8 (1OFLY (8TISLL B8D)TSL BOVPT BOTIET (8OWLE (8)6¥E 79 Ns-bow
@Le6e FLTI6T (8L)9¢E (69008 (96)€'6 (1L)sSS (06)1SS (96)T'€ (6L)80€ (060695 (96)T9T (96)L'T (96)€T (96)€'FE 96 urI-bowr
©¢re (©668 (o1 (@L1e (000 (9991 ©8¢s (o0 (96T (©6s9 (©Lic oo (o0 (o0 ¢ ys-gof
FOIIT - (000 (SDLLST 000 (9)L901 (02)s9C1 000 (9)01¢ (SDYIT 000 DYoL (991 (991 (FDIT8 ST q1
SINd
%99 BSL %BYL %O %OT6 %HYTI %Yyl B S98 % TEl %8¥l %OTl %¥98 BF98 BLLE
S 8 L ! 9sT 8 €l ol 01 4! L 95T 9sT 9% L91 [eI0L,
Mmro Myo M1ro @Lo Wrss @roc @©ryl (WesT (D6LT @LL1 @sT (©¢go1r (©0¢ (YL ¢ Ss-ow
W8 (8T (99966 (01296 (TS¥'€9 (9968 (1D6SE (LPIL'SS (8)60S @D¥s8 (Q)syL (€9)SIT (£9)€61 (FEFIOT T9 wp-owt
@00 (o0 (o0 (000 (05907 0)0°0 000 BM69r (000 000 (000 (090eT (09)06T (9TEIS 0 g-our
@00 (o0 (o0 (000 (0S)€6T 000 000 LPLey (000 000 (000 (O9Y0e (09)9LE (D)09IS 08 Low
SIN
nfrud/m ounsw 1-wrydo ¢l-Twdm s-uyo ¢grgoqmd xg1-gudm swyp 78-gswb O3MUSzudm ¢ysyxvw [E12Sul GO2SUWM crdpn # Aqureq
(seour)Sul PIAJOS JO OIJRI UBQW PUE JoqUINU) ¢ [HSIA JO SOOUBISUI PIJJRID 9Y) UO SISA0S 939[dw0d 1s9q ¢ [HSIA 03 paredwod odony Scwdm Y 9qe],

pringer

As

C. Ansétegui et al.

48

PIOq UI 21 SJ[NSaI 1sog

BYLT BTYE BLTY BSEY BISY B8P %88y BIY6GE % E0S %OTS BT BYEY %IEY % SS9
8TT 8¢t SOt 1€ ISy 8LY 96¢ 709 €39 T6S 789 88L 06L 99L 0001 "BID [EIOL
%60 BYEY B8Vr BOEYL BYL B LI % 1LY %BLYY %TSS %BLEL %T68 BLTIS BIIS %OSL
4| 91 S91 10€ €C ¥0T SsT 6L1 LOT 88T 0€€ 434 vET 11 0 [e10L,
(8)869 (00 (00 (LT (00 L6y (9DSLTE (Ph68e (#)8L9F (8v)€6ST (ELETL (®)0vey (DL9cy (09)STc v u-uer
Mro (©we Wrsel k91e (Dsee (he6cL (©)9sL (1)9g9 (S)8ps o9z (©)8sT (9o6y (Psor (9eyl ¢l [w-osd
oo Mgz (Dso D6l (DTo Doy (@cose (LDTO (DEO Progc B0 (6)¥SeT (6)Sv6l (8DT'0 81 em-ourw
CDUSHL (€LTT (€9€9 (€9t (ODSO (99)L0 99)8°0 (9156 (99)¢¥E 99L0 (9918 (1199 (19)se€ (99)9s1 95 [d-ouru
80 (#8)s8 (ove (LT (000 (TRSIL #R)0'T (89)r€1 (#8)8+8 #8960 PIT0 (#8)91C (18)S9¢ (410 8 yos-one

@10 (LDor8 (LDLS9 (TL)8ss (DS ee (09)6SeT (TRILT (Th)STE (Uil (@8)91¢ (9910 (98)6'9 (98)T'ST (9)1°0 98 Jed-one
(©¢e 96se OISI ST oo (Dssr (oDTIL (DTre (016811 onDegsy (ODos (Dore (0908 (B)TLT 01 DSD

SINdM

BULE BIYEL %OST BYL %BTW %IVI %98l BSTY %HTTT %98 BESY BTIY BTIY B LYY
LE L1 (43 11 6L 4! 81 €L 0¢ 81 9 €8 8 9L 911 [el0],
000 (o0 (oo (o0 (Dso (D¥oc (mere (M1ro (000 (D60r (1)9601 ($)T80T (P)0TE ()89 ¢ Ss-owm
©1ro (©€69 o1 (9866 (09)0°0S W10 (981 (s9)sTT (8)TS0T ©)¢T (€Dgrst (09)STT (09)LLT (9P)6LTT 79 wp-owm
(D91 (©)SIT (9191 (D90 ()88 (€)oze (©)0¢6 (€691 (©)1€T (©)LTT M WTer (eol (©1ce ST wex
(€9)sTL (6)SST (SD6ES (S)9rF (#1)95€ L1 (6)281 (FDOET (61)91¢€T (6)ST1 (S2)8$8 (¥1)08S (Y1611 (TD6YY #€ q1
SINM

pringer

nfuud/m ounsw w-wndo ¢i-ywdm s-wyo ¢grgoqmd xgy-zwdm swyp 78-gswb OPMUSzudm cysyxvw [Ezsu 602Suim crdn # A[rureq

penunuod 1 J[qeL

As

Exploiting subproblem optimization in SAT-based MaxSAT... 49

Table 15 wpm?2pycgo incomplete compared to MSE13 incomplete solvers on the industrial instances of
MSE13 (number and mean ratio of solved instances)

Family # wpm2spyucgo ccls ira-nov optim
MS
cir-dp 3 6.80(1) 4.26(3) 0.00(0) 0.00(0)
sean-s 52 11.77(17) 34.56(43) 9.62(3) 9.97(2)
Total 55 18 46 3 2
32.0 % 91.0 % 2.0 % 1.0 %
PMS
aes 7 15.26(1) 33.09(1) 35.81(6) 18.54(2)
bep-fir 50 11.22(47) 17.51(47) 35.25(33) 10.06(11)
bep-hysi 17 18.07(17) 3.09(16) 2.86(7) 5.60(9)
bep-hysu 38 39.74(32) 10.34(32) 0.00(0) 4.88(1)
bep-msp 50 26.50(39) 9.02(14) 16.48(7) 10.79(6)
bep-mtg 40 2.92(40) 0.23(40) 0.00(0) 11.62(2)
bep-syn 50 5.10(25) 12.48(28) 13.56(30) 24.07(28)
cir-tc 4 105.67(4) 79.21(4) 0.00(0) 0.00(0)
clo-s 50 43.21(19) 20.61(46) 7.14(9) 0.00(0)
des 50 59.75(32) 31.56(38) 0.00(0) 0.00(0)
hap-a 6 11.09(5) 0.41(6) 0.00(0) 0.00(0)
pac-pms 40 34.45(40) 1.43(40) 0.00(0) 0.00(0)
pbo-mne 50 57.27(47) 17.81(41) 0.00(0) 0.00(0)
pbo-mnl 50 20.04(49) 16.68(48) 0.00(0) 0.00(0)
pbo-rou 15 4.14(15) 0.33(15) 5.45(1) 0.00(0)
pro-ins 12 96.55(9) 60.30(7) 17.61(10) 0.24(1)
tpr-Mp 48 64.36(40) 38.53(36) 0.00(0) 0.00(0)
tpr-Op 50 6.90(50) 47.91(42) 0.00(0) 0.00(0)
Total 627 511 501 103 60
80.0 % 79.0 % 20.0 % 10.0 %
WPMS
hap-ped 100 38.26(89) 28.18(64) 13.65(23) 0.00(0)
pac-wpms 99 104.53(99) 23.52(23) 0.00(0) 0.00(0)
pre-pla 29 8.16(24) 5.83(23) 13.78(10) 1.92(2)
time 26 37.22(10) 45.85(18) 22.34(3) 0.00(0)
upg-pro 100 67.99(82) 51.55(54) 0.00(0) 0.00(0)
wesp-s5d 21 21.20(18) 1.98(10) 14.10(11) 1.08(5)
wesp-s51 21 4.66(14) 0.02(6) 37.07(16) 0.86(6)
Total 396 336 198 63 13
77.0 % 52.0 % 28.0 % 8.0 %
Total Ind. 1078 865 745 169 75
76.0 % 73.0 % 21.0 % 9.0 %

Best results are in bold

@ Springer

50 C. Ansétegui et al.

Table 16 wpm2gpycqo incomplete compared to MSE13 incomplete solvers on the crafted instances of
MSE13 (number and mean ratio of solved instances)

Family # optim wpm2spycgo ccls ira-nov
MS
bip-mc-.7 50 1.92(50) 0.00(0) 40.25(31) 0.00(0)
bip-mc-.8 50 2.61(50) 0.00(0) 39.30(33) 0.00(0)
mc-dm 62 1.14(62) 2.98(13) 2.79(61) 0.61(8)
mc-sg 5 1.63(5) 1.00(2) 26.86(4) 0.01(1)
Total 167 167 15 129 9
100.0 % 15.0 % 76.0 % 8.0 %
PMS
frb 25 14.77(25) 0.00(0) 5.51(1) 7.14(2)
job-sh 3 0.00(0) 37.52(3) 0.00(0) 53.01(3)
mcq-ran 96 2.10(96) 27.26(82) 35.60(74) 22.59(71)
mcq-str 62 13.82(55) 7.36(28) 5.52(23) 5.79(20)
mo-3s 80 2.80(77) 4.98(80) 6.55(77) 31.66(62)
mo-str 60 0.87(3) 4.04(59) 17.74(18) 2.30(56)
mine-kbt 42 7.24(42) 9.27(3) 19.97(9) 6.88(4)
pse-ml 4 2.31(4) 6.03(4) 0.62(3) 1.09(4)
sch 5 14.51(1) 45.15(1) 0.00(0) 19.60(3)
Total 377 303 260 205 225
67.0 % 61.0 % 37.0 % 61.0 %
WMS
frb 34 8.11(33) 10.70(10) 14.46(10) 26.68(26)
ram 15 44.77(15) 13.33(3) 22.87(8) 0.00(0)
wme-dm 62 1.09(62) 0.69(6) 2.20(62) 0.04(4)
wmc-sg 5 52.95(5) 5.16(1) 8.07(3) 0.00(0)
Total 116 115 20 83 30
99.0 % 19.0 % 60.0 % 20.0 %
WPMS s
CSG 10 0.00(0) 54.41(10) 0.00(0) 1.73(6)
auc-pat 86 2.17(86) 35.55(63) 30.08(46) 18.33(14)
auc-sch 84 2.72(84) 0.98(84) 0.71(35) 39.42(76)
mine-pl 56 1.12(7) 0.62(56) 0.79(10) 0.52(53)
mine-wa 18 155.70(18) 0.00(1) 0.04(1) 0.02(1)
pse-ml 12 32.71(4) 26.21(7) 1.18(1) 2.13(4)
ran-net 74 115.17(58) 8.02(3) 0.00(0) 27.33(13)
Total 340 257 224 93 167
60.0 % 62.0 % 17.0 % 45.0 %
Total Cra. 1000 842 519 510 431
76.0 % 47.0 % 42.0 % 40.0 %

Best results are in bold

@ Springer

Exploiting subproblem optimization in SAT-based MaxSAT... 51

References

Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based optimization in clasp. In: ICLP
(Technical Communications), pp. 211-221 (2012)

Ansotegui, C.: Maxsat Latest Developments. Invited Tutorial at CP 2013 (2013a)

Ansotegui, C.: Tutorial: Maxsat Latest Developments (2013b)

Ansétegui, C., Gabas, J.: Solving (weighted) partial maxsat with ilp. In: CPAIOR, pp. 403—409 (2013)

Ansotegui, C., Bonet, M.L., Levy, J.: On solving MaxSAT through SAT. In: Proceedings of the 12th
International Conference of the Catalan Association for Artificial Intelligence (CCIA’09), pp. 284—
292 (2009)

Ansotegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial maxsat through satisfiability testing. In:
Proceedings of the 12th International Conference on Theory and Applications of Satisfiability Testing
(SAT’09), pp. 427-440 (2009)

Ansotegui, C., Bonet, M.L., Levy, J.: A new algorithm for weighted partial maxsat. In: Proceedings the
24th National Conference on Artificial Intelligence (AAAI’10), pp. 867-872 (2010)

Ansétegui, C., Bofill, M., Palahi, M., Suy, J., Villaret, M.: A proposal for solving weighted CSPs with
SMT. In: Proceedings of the 10th International Workshop on Constraint Modelling and Reformulation
(ModRef 2011), pp. 5-19 (2011)

Ansoétegui, C., Bonet, M.L., Gabas, J., Levy, J.: Improving sat-based weighted maxsat solvers. In: Pro-
ceedings of the 18th International Conference on Principles and Practice of Constraint Programming
(CP’12), pp. 86101 (2012)

Ansétegui, C., Bonet, M.L., Gabas, J., Levy, J.: Improving wpm?2 for (weighted) partial maxsat. In: CP, pp.
117-132 (2013a)

Ansétegui, C., Bonet, M.L., Levy, J.: Sat-based maxsat algorithms. Artif. Intell. 196, 77-105 (2013b)

Argelich, J., Li, C.M., Manya, F., Planes, J.: Maxsat evaluation. http://www.maxsat.udl.cat (2006-2014)

Bailleux, O., Boufkhad, Y., Roussel, O.: New encodings of pseudo-boolean constraints into cnf. In: SAT,
pp. 181-194 (2009)

Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB). http://www.
SMT-LIB.org (2010)

Berre, D.L.: Sat4j, a satisfiability library for java. www.sat4j.org (2006)

Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial
Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)

Bofill, M., Palahi, M., Suy, J., Villaret, M.: Boosting weighted csp resolution with shared bdds. Proceedings
of the 12th International Workshop on Constraint Modelling and Reformulation (ModRef 2013), pp.
57-73. Uppsala, Sweden (2013)

Bonet, M.L., Levy, J., Manya, F.: A complete calculus for Max-SAT. In: SAT, pp. 240-251 (2006)

Borchers, B., Furman, J.: A two-phase exact algorithm for max-sat and weighted max-sat problems. J.
Comb. Optim. 2(4), 299-306 (1998)

Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability modulo the theory of costs:
foundations and applications. In: TACAS, pp. 99-113 (2010)

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press,
Cambridge, MA (2009)

Davies, J., Bacchus, F.: Solving maxsat by solving a sequence of simpler sat instances. In: Proceedings of
the 17th International Conference on Principles and Practice of Constraint Programming (CP’11), pp.
225-239 (2011)

Davies, J., Bacchus, E.: Exploiting the power of mip solvers in maxsat. In: SAT, pp. 166-181 (2013)

Dutertre, B., de Moura, L.: The Yices SMT Solver. http://yices.csl.sri.com (2014)

Eén, N., Sorensson, N.: Translating pseudo-boolean constraints into SAT. JSAT 2(1-4), 1-26 (2006)

Fu,Z.,Malik, S.: On solving the partial max-sat problem. In: Proceedings of the 9th International Conference
on Theory and Applications of Satisfiability Testing (SAT’06), pp. 252-265 (2006)

Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSat: A new weighted Max-SAT solver. In: Proceedings of
the 10th International Conference on Theory and Applications of Satisfiability Testing (SAT’07), pp.
41-55 (2007)

Heras, F., Larrosa, J., Oliveras, A.: Minimaxsat: an efficient weighted max-sat solver. J. Artif. Intell. Res.
(JAIR) 31, 1-32 (2008)

Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms for maximum satisfiability.
In: Proceedings of the 25th National Conference on Artificial Intelligence (AAAT’ 11), pp. 3641 (2011)

@ Springer

http://www.maxsat.udl.cat
http://www.SMT-LIB.org
http://www.SMT-LIB.org
www.sat4j.org
http://yices.csl.sri.com

52 C. Ansétegui et al.

Honjyo, K., Tanjo, T.: Shinmaxsat. A Weighted Partial Max-SAT Solver Inspired by MiniSat+. Information
Science and Technology Center, Kobe University, Kobe (2012)

Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: Qmaxsat: a partial max-sat solver. JSAT 8(1/2), 95-100
(2012)

Kiigel, A.: Improved exact solver for the weighted MAX-SAT problem. In: POS-10. Pragmatics of SAT,
Edinburgh, UK, July 10, 2010, pp. 15-27 (2010)

Larrosa, J., Heras, F.: Resolution in max-sat and its relation to local consistency in weighted csps. In: IJCAI,
pp. 193-198 (2005)

Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient max-sat solving. Artif. Intell. 172(2-3),
204-233 (2008)

Li, C.M., Manya, F.: Maxsat, hard and soft constraints. In: Biere, A., van Maaren, H., Walsh, H. (eds.)
Handbook of Satisfiability. IOS Press, Amsterdam (2009)

Li, C.M., Manya, F., Planes, J.: Detecting disjoint inconsistent subformulas for computing lower bounds
for max-sat. In: AAAI pp.86-91 (2006)

Li, C.M., Manya, F,, Planes, J.: New inference rules for Max-SAT. J. Artif. Intell. Res. (JAIR) 30, 321-359
(2007)

Li, C.M., Manya, F., Mohamedou, N.O., Planes, J.: Exploiting cycle structures in Max-SAT. In: Proceedings
of the 12th International Conference on Theory and Applications of Satisfiability Testing (SAT’09),
pp. 467480 (2009)

Lin, H., Su, K.: Exploiting inference rules to compute lower bounds for Max-SAT solving. In: IJCAI’07,
pp. 2334-2339 (2007)

Lin, H., Su, K., Li, C.M.: Within-problem learning for efficient lower bound computation in Max-SAT
solving. In: Proceedings of the 23th National Conference on Artificial Intelligence (AAAI’08), pp.
351-356 (2008)

Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean optimization. In: Proceedings
of the 12th International Conference on Theory and Applications of Satisfiability Testing (SAT’09),
p-p 495-508 (2009)

Manquinho, V.M., Martins, R., Lynce, I.: Improving unsatisfiability-based algorithms for boolean optimiza-
tion. In: Proceedings of the 13th International Conference on Theory and Applications of Satisfiability
Testing (SAT’10), Lecture Notes in Computer Science, vol. 6175, pp. 181-193. Springer, (2010)

Marques-Silva, J., Argelich, J., Graga, A., Lynce, I.: Boolean lexicographic optimization: algorithms and
applications. Ann. Math. Artif. Intell. 62(3—4), 317-343 (2011)

Martins, R., Manquinho, V.M., Lynce, I.: Exploiting cardinality encodings in parallel maximum satisfiability.
In: ICTAL pp. 313-320 (2011)

Martins, R., Manquinho, V.M., Lynce, I.: Clause sharing in parallel maxsat. In: LION, pp. 455-460 (2012)

Martins, R., Joshi, S., Manquinho, V.M., Lynce, I.: ncremental cardinality constraints for maxsat. In: Princi-
ples and Practice of Constraint Programming—20th International Conference, CP 2014, Lyon, France,
September 8—12, 2014. Proceedings, pp. 531-548 (2014)

Morgado, A., Heras, F., Marques-Silva, J.: Improvements to core-guided binary search for maxsat. In:
Proceedings of the 15th International Conference on Theory and Applications of Satisfiability Testing
(SAT’12), pp. 284-297 (2012)

Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and core-guided maxsat
solving: a survey and assessment. Constraints 18(4), 478-534 (2013a)

Morgado, A., Heras, F., Marques-Silva, J.: Model-guided approaches for maxsat solving. In: 2013 IEEE
25th International Conference on Tools with Artificial Intelligence, Herndon, VA, USA, November
4-6, 2013, pp. 931-938 (2013b)

Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided maxsat with soft cardinality constraints. In: Pro-
ceedings of the Principles and Practice of Constraint Programming—20th International Conference,
CP 2014, Lyon, France, September 8—12, 2014. pp. 564-573 (2014)

Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided maxsat resolution. In: Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27-31, 2014, pp. 2717-2723.
Québec City, Canada. (2014)

Nieuwenhuis, R., Oliveras, A.: On sat modulo theories and optimization problems. In: SAT, pp. 156-169
(2006)

Pipatsrisawat, K., Darwiche, A.: Clone: Solving weighted Max-SAT in areduced search space. In: Australian
Conference on Atrtificial Intelligence, pp. 223-233 (2007)

@ Springer

Exploiting subproblem optimization in SAT-based MaxSAT... 53

Raz, R.: Resolution lower bounds for the weak pigeonhole principle. In: Proceedings of the 17th Annual
IEEE Conference on Computational Complexity, Montréal, Canada, May 21-24, 2002, p 3 (2002)

Razborov, A.A.: Improved resolution lower bounds for the weak pigeonhole principle. Electron. Colloquium
Comput. Complex. (ECCC) 8(55), (2001)

Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

Sebastiani, R.: Lazy satisfiability modulo theories. J. Satisf. Boolean Model. Comput. 3(3—4), 141-224
(2007)

Sorensen, K.: Metaheuristics the metaphor exposed. Int. Trans. Oper. Res. 22(1), 3-18 (2015). doi:10.1111/
itor.12001

@ Springer

http://dx.doi.org/10.1111/itor.12001
http://dx.doi.org/10.1111/itor.12001

	Exploiting subproblem optimization in SAT-based MaxSAT algorithms
	Abstract
	1 Introduction
	2 Preliminaries
	3 Translation of weighted partial MaxSAT into ILP
	4 Original WPM2 algorithm and improvements
	4.1 Stratified approach
	4.2 Clause hardening
	4.3 Subproblem optimization
	4.4 Exploiting satisfying assignments from subproblems

	5 Engineering efficient SMT-based MaxSAT solvers
	6 Experimental results
	6.1 Complete solvers
	6.2 Incomplete solvers
	6.3 Results at MaxSAT evaluation 2014

	7 Conclusions and future work
	Acknowledgments
	Appendix
	References

