
J Heuristics (2015) 21:433–456
DOI 10.1007/s10732-015-9284-3

An effective variable selection heuristic in SLS
for weighted Max-2-SAT

Shaowei Cai · Zhong Jie · Kaile Su

Received: 4 November 2012 / Revised: 14 October 2014 / Accepted: 19 January 2015 /
Published online: 3 February 2015
© Springer Science+Business Media New York 2015

Abstract Stochastic local search (SLS) is an appealing method for solving the max-
imum satisfiability (Max-SAT) problem. This paper proposes a new variable selec-
tion heuristic for Max-SAT local search algorithms, which works particularly well
for weighted Max-2-SAT instances. Evolving from the recent configuration checking
strategy, this new heuristic works in three levels and is called CCTriplex. According to
the CCTriplex heuristic, a variable that is both decreasing and configuration changed
has the higher priority to be flipped than a decreasing variable, which in turn has the
higher priority than a configuration changed variable. The CCTriplex heuristic is used
to develop a newSLS algorithm forweightedMax-2-SATcalledCCMaxSAT.We eval-
uate CCMaxSAT on random benchmarks with different densities, and the hand crafted
Frb benchmark, as well as weighted Max-2-SAT instances encoded from MaxCut,
MaxClique and sports scheduling problems. Compared with the state-of-the-art SLS
solver for weighted Max-2-SAT called ITS and the best SLS solver in Max-SAT Eval-
uation 2012 namely ubcsat-IRoTS, as well as the famous complete solver wMaxSATz,
our algorithm CCMaxSAT shows rather good performance on all the benchmarks.

Keywords Local search · Max-2-SAT · Configuration checking

S. Cai (B)
State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China
e-mail: shaoweicai.cs@gmail.com

Z. Jie
Key Laboratory of High Confidence Software Technologies, Peking University, Beijing, China
e-mail: pkutcsj@gmail.com

K. Su
Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia
e-mail: k.su@griffith.edu.au

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-015-9284-3&domain=pdf

434 S. Cai et al.

1 Introduction

Given a conjunctive normal form (CNF) formula F = C1 ∧ C2 ∧ · · · ∧ Cm , the
maximum satisfiability (Max-SAT) problem is to find an assignment to the Boolean
variables in F to maximize the number of satisfied clauses. Max-SAT is NP-hard even
if every clause contains at most two literals (called the Max-2-SAT problem). In the
weighted version of Max-SAT, each clause is associated with a positive number as its
weight, and the goal is to find an assignment to maximize the total weight of satisfied
clauses, or equally, to minimize the total weight of unsatisfied clauses.

Algorithms for Max-SAT can be categorized into two classes: complete algorithms
(Li et al. 2007; Heras et al. 2008; Lin et al. 2008; Ansótegui et al. 2013) and stochastic
local search (SLS) algorithms. SLS algorithms have exhibited great success in solving
SATandMax-SATproblems.They are especially appealingwhen the problem instance
is large in size, or a reasonably good solution is needed in a short time, or when the
knowledge about the problem domain is rather limited (Hoos and Stützle 2004).

A special case of the weighted Max-SAT problem is the weighted Max-2-SAT
problem,which has great importance.A lot of realistic problems such asMaximumCut
(Gramm et al. 2003), Maximum Clique (Heras and Bañeres 2010), sports scheduling
(Ryuhei andTomomi 2006), 3Dmodeling (Staub and Prautzsch 2005), physical design
of VLSI circuits (Kastner and Sarrafzadeh 2002), and Internet search (Dimitropoulos
et al. 2007) can be transformed into weighted Max-2-SAT problems more naturally
than into SAT problems. For solving weighted Max-2-SAT instances, general SLS
algorithms for SAT and Max-SAT have weaker performance than those specific for
weightedMax-2-SAT (Kochenberger et al. 2005; Palubeckis 2008). This work focuses
on designing more efficient SLS algorithms for weighted Max-2-SAT.

The basic schema of SLS algorithms for Max-SAT can be described as follows.
First, all variables appearing in the formula are given a random assignment of boolean
values. Then, in each subsequent search step, a variable is chosen and flipped. We use
pickVar to denote the function for choosing the variable to be flipped. The variable
selection heuristic in the pickVar function is the essential part of an SLS algorithm for
Max-SAT.

SLS algorithms for Max-SAT usually work in two different modes, i.e., the global
mode and the focused mode. In the global mode, the algorithms pick a variable to
flip among all variables, and usually they prefer to pick a variable whose flip can
decrease the number of unsatisfied clauses (thus the global mode is also known as the
greedy mode). In the focused mode, the algorithms pick a variable from an unsatisfied
clause, usually using randomized strategies and exploiting diversification properties
of variables such as age and flip count to pick a variable. Although SLS algorithms for
weighted Max-SAT share the basic schema with those for SAT, well-performing SAT
solvers do not show good performance on weightedMax-SAT instances. For example,
reported in (Smyth et al. 2003), the IRoTS algorithmoutperforms extensions of famous
SLS algorithms for SAT such as WalkSAT (Selman et al. 1994) and DLM (Wu and
Wah 2000) on weighted Max-SAT.

Recently, a strategy called Configuration Checking (CC)was proposed for handling
the cycling problem in local search, i.e., revisiting recent candidate solutions (Cai et al.
2011). It has been successfully used in SLS algorithms for SAT (Cai and Su 2012,

123

An effective variable selection heuristic 435

2013; Luo et al. 2012, 2013), which show state-of-the-art performance. Specially, the
CCASat solver (Cai and Su 2013) won the random track of SAT Challenge 2012.
The CC strategy for SAT forbids a variable to be flipped if since the last time it was
flipped, none of its neighboring variables has been flipped. However, our experiments
show that the direct application of the CC strategy does not result in a well-performing
solver for weighted Max-2-SAT.

In this work, we propose a new variable selection heuristic called CCTriplex, which
can be regarded as an extension of the CC strategy. A variable is said to be configu-
ration changed if since its last flip, at least one of its neighboring variables has been
flipped. According to the CCTriplex heuristic, a variable that is both decreasing and
configuration changed has the higher priority to be flipped than a decreasing vari-
able, which in turn has the higher priority than a configuration changed variable. The
CCTriplex heuristic is more flexible than the CC strategy and makes a good balance
between diversification and intensification, even without clause weighting techniques.

We use the CCTriplex heuristic to develop a new SLS algorithm for weightedMax-
SAT, which is namedCCMaxSAT. CCMaxSAT switches between the global mode and
the focused mode, according to a dynamic probability parameter. This work focuses
on using the CCTriplex heuristic to improve the global mode. CCMaxSAT exhibits
very good performance on weighted Max-2-SAT instances.

For demonstrating the efficiency of CCMaxSAT, we compare it with two SLS
solvers namely ITS (Iterated Tabu Search) (Palubeckis 2008) and ubcsat-IRoTS
(Smyth et al. 2003), as well as the famous complete solver wMaxSATz (Li et al.
2009). ITS is the best SLS solver for weighted Max-2-SAT in the literature (to the
best of our knowledge), and ubcsat-IRoTS is the best SLS solver in Max-SAT Evalua-
tion 2012, particularly on the random weighted Max-SAT category. The experimental
results show that CCMaxSAT significantly outperforms ITS and ubcsat-IRoTS on a
large range of randomweightedMax-2-SAT instanceswith different clause-to-variable
ratios. On the structured benchmark Frb, where ubcsat-IRoTS fails to find an optimal
solution for any instance, the performance of CCMaxSAT is slightly better than that
of ITS. On the benchmarks encoded from MaxCut, MaxClique and sports scheduling
problems, CCMaxSAT overall performs better than the other two SLS solvers. Addi-
tionally, CCMaxSAT finds solutions of better quality (or at least the same quality)
than wMaxSATz on all tested instances except for several sparse random instances.

The remainder of the paper is organized as follows. Some necessary background
knowledge is provided in the next section. Section 3 presents the CCTriplex heuristic,
and Sect. 4 describes the CCMaxSAT algorithm. Section 5 reports the experimental
study of CCMaxSAT. This is followed by more discussions about CCMaxSAT as well
as related works in Sect. 6. Finally, we summarize our main contributions and give
some directions for future work.

2 Definitions and notations

Given a set of Boolean variables V = {x1, . . . , xn}, a literal is either a variable x or its
negation ¬x , and a clause is a disjunction of literals. A CNF formula is a conjunction
of clauses, i.e., F = C1∧C2∧· · ·∧Cm . We use V (F) to denote the set of all variables

123

436 S. Cai et al.

that appear in the formula F . Two variables are neighbors when they share at least one
clause, and N (x) = {y|y and x share at least one clause} is the set of all neighbors
of variable x .

A mapping α : V (F) → {0, 1} is called an assignment. If α maps all variables
to a Boolean value, it is called complete. In local search algorithms for Max-SAT, a
candidate solution is a complete assignment. Given an assignment, a clause is satisfied
if it has at least one true literal, and unsatisfied if it has no true literal. In weightedMax-
SAT, each clause c has an associated weight w(c), and the goal is to find an optimum
assignment that maximizes the total weight of satisfied clauses. A significant special
case of the weighted Max-SAT problem is the weighted MAX-2-SAT problem, which
restricts each clause in the formula to be of length at most two.

Given a weighted CNF formula (F, w), the cost of an assignment α, denoted as
cost (F, α), is the total weight of all unsatisfied clauses underα. The score of a variable
x is defined as score(x) = cost (F, α) − cost (F, α′), which indicates the benefit of
flipping x , where α′ is obtained from α by flipping x . A variable x is decreasing if
and only if score(x) > 0.

3 The CCTriplex variable selection heuristic

In this section, we first introduce the notion of configuration changed variables. Then,
based on this notion, we propose a new variable selection heuristic called CCTriplex,
which is more flexible than the CC strategy and is shown to be particularly effective
for weighted Max-2-SAT.

3.1 Configuration changed variables

Originally introduced in (Cai et al. 2011), configuration checking (CC) is a strategy
aiming to handle the cycling problem in local search. The intuition behind this idea is
that by reducing cycles on local structures of the candidate solution, we may reduce
cycles on the whole candidate solution.

The CC strategy is based on the concept of configuration. In the context of SAT,
the configuration of a variable refers to truth values of all its neighboring variables
(Cai and Su 2011, 2012). The definition of configuration changed variables is given
as following.

Definition 1 Given a CNF formula F , a variable x ∈ V (F) is configuration changed
if and only if after the last time x was flipped, at least one variable y ∈ N (x) has been
flipped.

To identify configuration changed variables, we employ an array con f Change,
whose element is an indicator for a variable — con f Change(x) = 1 means x is a
configuration changed variable, and con f Change(x) = 0 on the contrary. During
the search procedure, the variables with con f Change(x) = 0 are forbidden to be
flipped in the global mode, which could decrease blind unreasonable greedy search.
The con f Change array is initialized by setting all con f Change values to 1. After
that, when flipping a variable x , con f Change(x) is reset to 0, and for each variable
y ∈ N (x), con f Change(y) is set to 1.

123

An effective variable selection heuristic 437

The CC strategy for SAT allows only configuration changed decreasing variables
to be flipped in the global mode; if there are not such variables, the algorithm switches
to the focused mode (Cai and Su 2011). This strategy is not effective for weighted
Max-2-SAT, as will be shown in Sect. 6.1.

3.2 The CCTriplex heuristic

Based on the notion of configuration changed variables, we propose the CCTriplex
heuristic, which works in three levels. Before getting into the details of the CCTriplex
heuristic, we first introduce three important variable sets.

– CCD = {x |score(x) > 0 and con f Change(x) = 1}, consisting of variables that
are both decreasing and configuration changed.

– DNCC = {x |score(x) > 0 and con f Change(x) = 0}, consisting of variables
that are decreasing but not configuration changed.

– CCND = {x |score(x) ≤ 0 and con f Change(x) = 1}, consisting of variables
that are configuration changed but not decreasing.

The CCTriplex heuristic picks a variable to be flipped from one of the three variable
sets CCD, DNCC , and CCND. Obviously, there exist configuration changed vari-
ables in each search step, and thus we have CCD ∪ CCND �= ∅, which guarantees
that CCTriplex can always pick a variable successfully.

The CCTriplex heuristic works in three levels. If the CCD set is not empty,
CCTriplex selects the variable with the greatest score in the CCD set to flip. Oth-
erwise, if the DNCC set is not empty, CCTriplex selects the variable with the greatest
score in the DNCC set. If both CCD and DNCC are empty, then CCTriplex selects
the variable with the greatest score in the CCND set. Note that in CCTriplex, all ties
are broken randomly.

The CC strategy simply forbids flipping those variables which are not configuration
changed (Cai and Su 2011). In our opinion, this is too strict in the sense that there are
only a very limited number of candidate flips in each step. Different from the CC strat-
egy used in previous SLS algorithms (Cai and Su 2011, 2012), the CCTriplex heuristic
uses the concept of “configuration changed” as a property of variables, and together
with the “decreasing” property, it divides the candidate flipping variables into three
groups of different priorities. This multilevel heuristic makes a good balance between
intensification and diversification during the search. More specifically, CCD variables
correspond to the variables whose flips would lead the search in a greedy direction and
avoid revisiting recent candidate solutions as well; flipping DNCC variables would
lead the search in a pure greedy way; and finally, flipping CCND variables contributes
some more diversification.

4 The CCMaxSAT algorithm

We use the CCTriplex heuristic to develop a new SLS algorithm for weighted Max-
SAT called CCMaxSAT. As with most SLS algorithms for Max-SAT, CCMaxSAT
switches between the global mode and the focused mode. CCTriplex is used as the

123

438 S. Cai et al.

variable selection heuristic in the global mode. In order to demonstrate the efficacy
of the CCTriplex heuristic clearly, we keep the focused mode of CCMaxSAT rather
simple.

Algorithm 1: CCMaxSAT
Input: CNF-formula F , maxSteps
Output: An assignment α∗ of F
begin1

α ← randomly generated truth assignment;2
α∗ ← α;3
for step ← 1 to maxSteps do4

adjust wp;5
with probability wp begin6

c ← randomly selected unsatisfied clause;7
v ← the variable with the greatest score in c, breaking ties randomly;8

end9
otherwise begin10

if CCD �= ∅ then11
v ← x ∈ CCD with the greatest score, breaking ties randomly;12

else if DNCC �= ∅ then13
v ← x ∈ DNCC with the greatest score, breaking ties randomly;14

else15
v ← x ∈ CCND with the greatest score, breaking ties randomly;16

end17
α ← α with v flipped;18
if cost (F, α) < cost (F, α∗) then α∗ ← α;19

return α∗;20
end21

The CCMaxSAT algorithm is outlined in Algorithm 1, described as follows. In the
beginning, CCMaxSAT generates a complete assignment α randomly, and the best
solution α∗ is initialized as α. Then, in each step of the following search process,
CCMaxSAT selects a variable and flips it, trying to obtain a solution better than α∗.
Whenever CCMaxSAT finding a better solution, α∗ is updated with the new better
solution.

In each step, the algorithm works in either of the two modes, i.e., the global mode
and the focused mode. The probability of adopting the focused mode is controlled
by a noise parameter wp (walking probability), which is adjusted during the search.
For adjusting wp, we adopt the adaptive noise mechanism introduced in (Hoos 2002).
In detail, wp is initialized as 0 in the beginning. During the search procedure, each
time updatingwp, the current objective function value is stored and becomes the basis
for measuring improvement. If no improvement in objective function value has been
observed over the last θ ·m search steps, wherem is the number of clauses of the given
instance and θ = 1/6, then wp := wp + (1 − wp) · φ, where φ = 0.2; otherwise, if
an improvement in objective function value is observed, then wp := wp − wp · φ/2.

Once the wp parameter is updated, the algorithm works in the focused mode with
probability wp, and in the global mode otherwise. The focused mode is rather simple:

123

An effective variable selection heuristic 439

the algorithm first picks a random unsatisfied clause c, and then selects the variable
with the greatest score in c, breaking ties randomly. In the global mode, CCMaxSAT
works according to the CCTriplex heuristic, which has been described in Sect. 3.2.

5 Experimental evaluations

WeevaluateCCMaxSATonweightedMax-2-SAT instances, in comparisonwith state-
of-the-art solvers, including two SLS solvers and a complete solver.

– ITS (Palubeckis 2008), which is an SLS solver specific for weighted Max-2-SAT.
ITS significantly outperforms general SLS solvers for Max-SAT such as GWSAT
(Selman et al. 1994),GRASP (Festa et al. 2006), adaptNovelty+ (Hoos 2002), SAPS
(Hutter et al. 2002), and IRoTS (Smyth et al. 2003) on both random instances and
structured instances (Palubeckis 2008). The codes of ITS are download from its
author’s homepage.1

– ubcsat-IRoTS (Smyth et al. 2003), which is the best SLS solver in Max-SAT Eval-
uation 2012, and performs significantly better than other solvers in the weighted
random Max-SAT category.
The codes of ubcsat-IRoTS are downloaded from its author’s homepage.2

– wMaxSatz (Li et al. 2009), which is the weighted version of the famous complete
MaxSAT algorithm MaxSatz and performs very well in MaxSAT evaluations. We
adopt the latest version wMaxSATz2009 from its author’s homepage.3 We also note
that there is a more recent version of wMaxSATz namely MaxSatz2013f (version
2013), which is developed parallel to this work. According to the results ofMaxSAT
Evaluation 2013, the performance of wMaxSATz2009 and MaxSatz2013f are very
similar. Specifically, MaxSatz2013f solves 2 more weighted random instances than
wMaxSATz2009, while wMaxSATz2009 solves 2 more weighted crafted instances
thanMaxSatz2013f (there is no industrial weighted category inMaxSATEvaluation
2013).

Recently, Kroc et al. proposed a strategy for combining DPLL and SLS approaches
based on shared memory, and the hybrid solver MiniWalk (Kroc et al. 2009) made
a breakthrough in solving MaxSAT instances. However, MiniWalk is designed for
unweighted instances and cannot solve weighted instances, and thus is not included
in our experiments.

5.1 Benchmarks

We evaluate CCMaxSAT on a broad range of benchmarks, including random instances
with different ratios, hard combinatorial instances, and application instances which
are encoded from other problems.

1 http://www.proin.ktu.lt/~gintaras/wmax2sat.html.
2 http://ubcsat.dtompkins.com/downloads.
3 http://home.mis.u-picardie.fr/~cli/EnglishPage.html.

123

http://www.proin.ktu.lt/~gintaras/wmax2sat.html
http://ubcsat.dtompkins.com/downloads
http://home.mis.u-picardie.fr/~cli/EnglishPage.html

440 S. Cai et al.

For random instances, we consider those generated by the famous makewff gen-
erator4 are the most suitable random weighted Max-SAT benchmarks for evaluating
performance of MaxSAT solvers. Note that makewff is a famous weighted Max-SAT
generator which has been widely used in Max-SAT evaluations and in the literature
(Littman et al. 2001; Simons et al. 2002; Haanpää and Kaski 2005; Janhunen et al.
2006). For random weighted Max-2-SAT instances in this work, each clause weight is
an integer chosen uniformly randomly from 1 to 10, as with those used in evaluating
IRoTS (Smyth et al. 2003) and ITS (Palubeckis 2008).

For hard combinatorial instances, we adopt the Frb benchmark,5 which contains
hard instances with known optimal values of the objective function. Note that these
instances are very difficult to solve by current techniques in spite of their relative small
size. They were generated randomly in the phase transition area according to the RB
model (Xu et al. 2005). Generally, those phase-transition instances generated by RB
have been proven to be hard both theoretically and practically (Xu et al. 2007). The
Frb benchmark is extensively used in SAT competitions and Max-SAT evaluations.

For application instances, we adopt three benchmarks which are encoded from
MaxCut, MaxClique and sports scheduling problems, respectively. The first bench-
mark includes all MaxCut instances fromMaxSAT Evaluation 2012.6 The second one
consists of instances encoded from the DIMACS MaxClique benchmark.7 Note that
all instances in this benchmark are of the greatest size in their graph families, except
for C2000.9, which is well known as the hardest instance in the C family (Grosso et al.
2008; Pullan et al. 2011; Cai et al. 2011, 2013). The last application benchmark con-
sists of instances encoded from the break minimization problem in sports timetabling
(Ryuhei and Tomomi 2006), and was downloaded online.8 In many round-robin tour-
naments of professional sports, a match is held at the home of one of playing two
teams. In such a match, a team playing at home has advantage over its opponent, i.e.,
a team playing at away. It is considered undesirable that to play consecutive matches
held both at home/away for a team. An occurrence of such consecutive matches is
called a break in sports timetabling. The break minimization problem in timetabling
of a round-robin tournament is to assign home or away to eachmatch so as tominimize
the number of breaks (Ryuhei and Tomomi 2006).

5.2 Experiment preliminaries

CCMaxSAT is implemented in C++, and can be downloaded online.9 CCMaxSAT
has a parameter wp, which controls the probability of performing a step that picks
a variable from a random unsatisfied clause. However, this parameter is adjusted
dynamically during the search, and one does not need to specify it for solving an

4 ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/cotributed/selman/.
5 http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/max-sat-benchmarks.htm.
6 http://maxsat.ia.udl.cat:81/12/benchmarks/index.html.
7 ftp://dimacs.rutgers.edu/pub/challenges.
8 http://www-or.amp.i.kyoto-u.ac.jp/~yagiura/sat/max2sat/.
9 www.shaoweicai.net/MaxSAT.html.

123

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/cotributed/selman/
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/max-sat-benchmarks.htm
http://maxsat.ia.udl.cat:81/12/benchmarks/index.html
ftp://dimacs.rutgers.edu/pub/challenges
http://www-or.amp.i.kyoto-u.ac.jp/~yagiura/sat/max2sat/
www.shaoweicai.net/MaxSAT.html

An effective variable selection heuristic 441

instance. For adjusting wp, we adopt the adaptive noise mechanism introduced in
(Hoos 2002), and the parameters for the adaptive mechanism are set to the same
values as set in adaptNovelty+ (Hoos 2002) (θ = 1/6 and φ = 0.2, as described in
Sect. 4). Note that this parameter setting for the adaptivemechanism is quite robust and
we did not find other settings that lead to noticeable better performance. Indeed, this
adaptive mechanism is also used in other algorithms such as Reactive SAPS (Hutter
et al. 2002), using the same parameter setting as in adaptNovelty+. Both ITS and
ubcsat-IRoTS are executed with the default parameter values in their codes.

All experiments are carried out on 2 cores from an I7 CPU with 1.6 GHz and 8 GB
memory. For each instance, each SLS solver is performed 20 independent runs with a
cutoff time of 15 minutes (900s), while the complete solver wMaxSATz is performed
only one time with the same cutoff time.

For SLS solvers, we report the best solution quality (“best”), i.e., the minimum
unsatisfied weight, and the averaged solution quality (“average”), i.e., the mean value
of the unsatisfied weights of all 20 runs returned by each solver. For Frb and sports
scheduling benchmarks, we report for each instance the unsatisfied weight of the best
solution found by the solvers (“unsatw∗”), the success rate (“suc. rate”) of finding an
“unsatw∗” solution, and the averaged runtime (“time”) for each instance. The results
in bold indicate the best performance.

For the complete solver wMaxSATz, we report the best solution quality (“best”)
within the cutoff time, as wMaxSATz prints successively the best solution it finds so
far. When we report the run time (“time”) of wMaxSATz, we refer to the run time for
it to find the best solution.

5.3 Experimental results

In the following, we report and discuss the experimental results on each benchmark.
The results on all benchmarks illustrate the good performance and robustness of
CCMaxSAT.

5.3.1 Results on sparse random benchmark

The first random benchmark we adopt is wrand,10 which contains sparse random
weighted Max-2-SAT instances generated by the makewff generator. The clause-to-
variable ratios of these wrand instances range from 1 to 2. In our experiments, ran-
dom instances are named in the form of “V(#variables)_C(#clauses)”. Note that both
#variables and #clauses are measured in thousands. For example, the instance named
“V2k_C2.2k” has 2,000 variables and 2,200 clauses.

We first compare the three SLS solvers on this benchmark. Obviously, Table 1
indicates that ubcsat-IRoTS performs worse than CCMaxSAT and ITS on all these
instances. So we take a further look at the comparison between CCMaxSAT and
ITS. Except for the instances with the smallest clause-to-variable ratios where both
algorithms find solutions of the same quality, CCMaxSAT always finds much better
solutions than ITS does. On average, in terms of unsatisfied weight, the averaged

10 http://www-or.amp.i.kyoto-u.ac.jp/~yagiura/sat/max2sat/.

123

http://www-or.amp.i.kyoto-u.ac.jp/~yagiura/sat/max2sat/

442 S. Cai et al.

Table 1 Comparative results on the wrand benchmark, which consists of sparse random weghted Max-2-
SAT instances

Instance CCMaxSAT ITS ubcsat-IRoTS wMaxSATz

Best Average Best Average Best Average Best

V2k_C2.2k* 5 5 5 5 10 15.15 5

V2k_C2.4k* 1 1 1 1 3 6.45 1

V2k_C2.6k* 12 12 14 16.25 19 25.9 12

V2k_C2.8k* 7 7 7 8.55 11 16.95 7

V2k_C3k* 53 53.35 59 61.55 65 75.75 53

V2k_C3.1k* 56 58.15 65 68.7 68 78.75 55

V2k_C3.2k* 58 59.95 67 70.5 77 85.15 56

V2k_C3.3k* 101 104.3 107 109.5 110 119.3 88

V2k_C3.4k* 113 115.1 120 126.55 128 141.7 101

V2k_C3.5k 119 120.1 126 130 138 147.2 125

V3k_C3k* 0 0 0 0 2 6.75 0

V3k_C3.2k* 3 3 3 3 10 22.3 3

V3k_C3.4k* 1 1 1 1 6 21.85 1

V3k_C3.6k* 2 2 2 2 7 19.3 2

V3k_C3.8k* 15 15 23 26.6 39 53.75 15

V3k_C4k* 19 19 28 34.05 49 65 19

V3k_C4.2k* 22 22.65 32 35.85 41 65.5 22

V3k_C4.4k* 39 39.85 51 56.55 67 80.5 38

V3k_C4.6k* 65 66.55 76 80.55 92 109.6 62

V3k_C4.8k 112 113.8 126 134.25 137 150.15 121

V5k_C5.1k* 0 0 0 0 20 27.9 0

V5k_C5.4k* 1 1 1 1 28 39.8 1

V5k_C5.7k* 1 1 1 1 21 33.45 1

V5k_C6k* 8 8 12 15.65 53 70.3 8

V5k_C6.3k* 6 6 10 14.6 48 71.85 6

V5k_C6.6k* 33 33 57 62.1 94 127.9 33

V5k_C6.9k* 70 71.7 100 105.6 142 168.9 54

V5k_C7.2k* 82 83.2 126 135.45 149 200.85 73

V5k_C7.5k 1,902 1,903.4 1,957 1,980.8 2,002 2,045.7 2,231

V5k_C7.8k 2,109 2,110.75 2,171 2,185.45 2,224 2,246.8 2,343

For each instance, each SLS solver is performed 20 runs, while wMaxSATz is performed one time, with a
cutoff time of 900 seconds. The instances where wMaxSATz finds an optimal solution are marked with ‘*’

quality of solutions returned byCCMaxSAT is about onefifth better than those returned
by ITS.

It is also interesting to observe that the complete solver wMaxSATz finds an opti-
mal solution for most of these sparse random instances (with only 4 exceptions).
CCMaxSAT also finds optimal solutions for most of such instances. This indicates
these random instances with ratios smaller than 2 are easy to solve. Compared to SLS
solvers, wMaxSATz finds solutions of better or equivalent quality on instances with

123

An effective variable selection heuristic 443

small ratios, but worse on 4 instanceswith big ratios, namely, V2k_C3.5k, V3k_C4.8k,
V5k_C7.5k and V5k_C7.8k, where CCMaxSAT finds the best solutions.

5.3.2 Results on dense random benchmark

The wrand benchmark contains only random weighted Max-2-SAT instances whose
clause-to-variable ratios are smaller than 2. In order to evaluate the performance of
CCMaxSAT on denser random instances, we use the makewff generator to generate
45 weighted Max-2-SAT instances with bigger clause-to-variable ratios, whose sizes
range from 2,000 to 5,000 variables. For each group of instances with the same size,
the clause-to-variable ratio ranges from 2 to 6 in increments of 1, and there are 3
instances for each ratio.

Table 2 presents the comparative performance on these dense random instances.
CCMaxSAT dominates on all these random weighted Max-2-SAT instances, and
ubcsat-IRoTS cannot rival CCMaxSAT and ITS. Also, it is clear from the table that
CCMaxSAT substantially outperforms ITS on the whole benchmark. The best solu-
tions found by CCMaxSAT are better than the ones found by ITS on all instances but
one. Furthermore, the performance of CCMaxSAT is always better than that of ITS in
terms of averaged solution quality.

Table 2 Comparative results on the dense random weighted Max-2-SAT benchmark

Instance CCMaxSAT ITS Ubcsat-IRoTS wMaxSATz

Best Average Best Average Best Average Best

V2k_C4k_1 1,378 1,378 1,379 1,383.6 1,387 1,391.3 1,522

V2k_C4k_2 1,468 1,468 1,473 1,476.9 1,477 1,485.85 1,617

V2k_C4k_3 1,429 1,429 1,433 1,437.8 1,442 1,450.4 1,528

V2k_C6k_1 2,755 2,755 2,759 2,759.9 2,759 2,767.6 2,982

V2k_C6k_2 2,781 2,781 2,781 2,782.8 2,788 2,792.55 3,141

V2k_C6k_3 2,786 2,786 2,789 2,789.5 2,789 2,793.5 3,125

V2k_C8k_1 4,403 4,403 4,405 4,408 4,413 4,420.75 4,848

V2k_C8k_2 4,431 4,431 4,433 4,435.7 4,440 4,447.6 4,887

V2k_C8k_3 4,415 4,415 4,415 4,419.5 4,418 4,431.6 4,772

V2k_C10k_1 6,220 6,220 6,220 6,228.1 6,224 6,232.35 6,745

V2k_C10k_2 6,073 6,073 6,073 6,076.3 6,086 6,098.9 6,622

V2k_C10k_3 6,233 6,233 6,233 6,233.4 6,237 6,244.8 6,753

V2k_C12k_1 8,036 8,036.95 8,037 8,037.8 8,047 8,053.9 8,723

V2k_C12k_2 7,977 7,978.65 7,979 7,980.5 7,984 7,988.85 8,567

V2k_C12k_3 8,010 8,010 8,010 8,010 8,015 8,022.5 8,546

V3k_C6k_1 2,068 2,068 2,083 2,090.05 2,104 2,122.45 2,414

V3k_C6k_2 2,045 2,045.75 2,056 2,065.45 2,075 2,090.05 2,258

V3k_C6k_3 2,172 2,172.65 2,191 2,201.45 2,206 2,227.5 2,377

123

444 S. Cai et al.

Table 2 continued

Instance CCMaxSAT ITS Ubcsat-IRoTS wMaxSATz

Best Average Best Average Best Average Best

V3k_C9k_1 4,107 4,107.45 4,125 4,130.3 4,124 4,144.9 4,585

V3k_C9k_2 4,179 4,179 4,194 4,203.5 4,208 4,218.85 4,683

V3k_C9k_3 4,265 4,266.15 4,278 4,287.05 4,287 4,298.75 4,787

V3k_C12k_1 6,691 6,691 6,694 6,698.4 6,708 6,719.7 7,372

V3k_C12k_2 6,537 6,537 6,546 6,553.6 6,566 6,573.95 7,025

V3k_C12k_3 6,685 6,685 6,689 6,706.75 6,729 6,734.45 7,309

V3k_C15k_1 9,329 9,330.9 9,344 9,353 9,369 9,381.9 10,234

V3k_C15k_2 9,172 9,174.05 9,179 9,185.05 9,208 9,225.6 9,919

V3k_C15k_3 9,274 9,274 9,181 9,289.95 9,305 9,319.45 10,086

V3k_C18k_1 12,166 12,167.75 12,168 12,172.9 12,198 12,220 13,077

V3k_C18k_2 11,907 11,907.15 11,909 11,924.85 11,946 11,966.5 13,016

V3k_C18k_3 12,108 12,108 12,114 12,125.2 12,147 12,163.9 13,088

V5k_C10k_1 3,428 3,429 3,485 3,498.5 3,508 3,551.7 4,034

V5k_C10k_2 3,398 3,398.05 3,449 3,470.6 3,475 3,499.6 3,924

V5k_C10k_3 3,435 3,436.6 3,513 3,524.4 3,522 3,564.4 3,859

V5k_C15k_1 7,036 7,036.7 7,088 7,106 7,111 7,135.3 7,732

V5k_C15k_2 6,937 6,939.3 6,990 7,012.9 6,993 7,035.8 7,868

V5k_C15k_3 7,062 7,066.55 7,128 7,141.6 7,148 7,168 7,907

V5k_C20k_1 11,071 11,073.65 11,122 11,134.8 11,144 11,174.3 12,237

V5k_C20k_2 10,813 10,816.45 10,865 10,878.8 10,888 10,915.1 12,096

V5k_C20k_3 11,098 11,099.7 11,148 11,164.45 11,189 11,218.5 12,138

V5k_C25k_1 15,384 15,388 15,415 15,423.15 15,439 15,483 16,800

V5k_C25k_2 15,427 15,429.05 15,443 15,491.7 15,560 15,585.9 16,998

V5k_C25k_3 15,117 15,119.4 15,144 15,157.8 15,205 15,231.5 16,472

V5k_C30k_1 20,019 20,030.15 20,040 20,070.5 20,124 20,170.3 21,721

V5k_C30k_2 20,302 20,306.75 20,325 20,352.8 20,384 20,434.7 22,117

V5k_C30k_3 19,714 19,720.4 19,735 19,755.75 19,796 19,833.2 21,414

For each instance, each SLS solver is performed 20 independent runs, while the complete solver wMaxSATz
is performed one time, with a cutoff time of 900s

Table 2 also shows that SLS algorithms always find better solutions than the com-
plete solver wMaxSATz does. This indicates SLS is a promising approach for solving
large-sized weighted randomMax-SAT instances, especially those with big clause-to-
variable ratios.

5.3.3 Results on Frb benchmark

Comparative results on the Frb benchmark are shown in Table 3. The ubcsat-IRoTS
solver fails to find an optimal solution for any instance in this benchmark, and thus its
results are not reported in the table. For these instances, CCMaxSAT and ITS usually

123

An effective variable selection heuristic 445

Table 3 Comparative performance results on the Frb benchmark

Instance unsatw∗ CCMaxSAT ITS wMaxSATz

Suc. rate (%) Time Suc. rate (%) Time Best

frb40-19-1 720 100 26.50 100 49.10 737

frb40-19-2 720 100 217.10 35 765.95 735

frb40-19-3 720 100 28.10 100 18.25 732

frb40-19-4 720 100 99.75 70 494.55 732

frb40-19-5 720 100 312.60 25 786.85 733

frb45-21-1 900 95 206.40 100 149.60 915

frb45-21-2 900 95 339.95 95 203.65 917

frb45-21-3 900 60 597.50 20 781.15 918

frb45-21-4 900 100 116.50 100 112.45 915

frb45-21-5 900 55 575.75 65 538.55 917

frb50-23-1 1,100 35 694.30 5 894.60 1,118

frb50-23-2 1,100 5 866.40 10 849.25 1,117

frb50-23-3 1,101 100 65.75 100 290.75 1,118

frb50-23-4 1,100 100 235.30 100 148.65 1,115

frb50-23-5 1,100 50 557.85 80 404.55 1,119

frb53-24-1 1,220 85 429.45 70 423 1,240

frb53-24-2 1,219 0 900 5 894.35 1,239

frb53-24-3 1,219 30 767.70 25 769.30 1,238

frb53-24-4 1,219 0 900 10 870.10 1,238

frb53-24-5 1,219 5 886.65 25 770.40 1,240

frb56-25-1 1,345 35 695.60 10 875.10 1,494

frb56-25-2 1,345 40 729.90 25 812.30 1,368

frb56-25-3 1,345 70 588.40 65 537.90 1,365

frb56-25-4 1,344 15 821.40 20 796.80 1,361

frb56-25-5 1,344 30 842 30 745.25 1,367

frb59-26-1 1,476 30 813.35 15 811.80 1,494

frb59-26-2 1,476 20 821.20 25 763.80 1,496

frb59-26-3 1,475 5 895 0 900 1,503

frb59-26-4 1,476 35 789.35 5 861.40 1,498

frb59-26-5 1,475 25 816 65 506.25 1,494

For each instance, each SLS solver is performed 20 independent runs, while the complete solver wMaxSATz
is performed one time, with a cutoff time of 900s. The results of ubcsat-IRoTS are not reported in this table,
as it fails to find an optimal solution for any of these instances, which indicates it is essentially worse than
the other two SLS solvers on this benchmark

have the same best solution quality; moreover, the gap between their averaged solution
qualities never exceeds 1. Therefore, for this benchmark, we do not report the best
solution quality and the averaged solution quality; instead, we report the success rate
of reaching the best solution, and the averaged runtime. When comparing the two SLS
solvers, we adopt a measuring method similar to the one used in SAT competitions: A

123

446 S. Cai et al.

Table 4 Comparative results on the MaxCut benchmark

Instance CCMaxSAT ITS ubcsat-IRoTS wMaxSATz

Best Average Best Average Best Average Best

t3g3-5555.spn* 11,006,100 11,006,100 11,006,100 11,006,100 1,1006,100 11,006,100 1100610

t4g3-6666.spn* 2,275,606 2,275,606 2,275,606 2,275,606 2,275,606 2,275,606 2275606

t5g3-7777.spn* 4,241,951 4,241,951 4,241,951 4241,951 4,241,951 4,241,951 4241951

t6g3-8888.spn* 7,844,119 7,844,119 7,844,119 7,844,119 7,844,119 7,844,119 7844119

t7g3-9999.spn 11,954,769
(90,%)

11,954,786 Runtime
error

Runtime
error

11,954,769
(5,%)

11,960,597 12,961,793

For each instance, each SLS solver is performed 20 runs, while wMaxSATz is performed one time, with a
cutoff time of 900s. The instances where wMaxSATz finds an optimal solution are marked with ‘*’

solver is said to perform better than the other one if it achieves a better success rate,
or has a smaller value of the averaged runtime when the two solvers have the same
success rate.

As can be seen fromTable 3, CCMaxSAT and ITS are competitive and complemen-
tary on the Frb benchmark, as they dominate on different instances. For example, on
the two largest sized group, CCMaxSAT dominates on 6 instances, and ITS dominates
on the other 4 instances. However, the overall performance of CCMaxSAT is better
than ITS: the averaged success rate of CCMaxSAT is 54%, compared to 46.67% for
ITS. Table 3 also shows that SLS solvers find much better solutions than wMaxSATz
does on this structured benchmark.

5.3.4 Results on MaxCut benchmark

Comparative results on the MaxCut benchmark are shown in Table 4. Among the 5
weighted Max-2-SAT instances encoded from the MaxCut problem, 4 of them are
so easy that all solvers can find an optimal solution within just a few seconds. For
the largest-sized instance t7g3-9999.spn, CCMaxSAT obviously has the best
performance. ITS has runtime failure for this instance, and the exact solverwMaxSATz
finds a much worse solution than CCMaxSAT and ubcsat-IRoTS do. Although the
best solutions found by CCMaxSAT and ubcsat-IRoTS are of the same quality (with
the unsatisfied weight 11954769), CCMaxSAT finds such a solution in 18 out of 20
trails, while ubcsat-IRoTS does so only in one trail. This indicates the superiority of
CCMaxSAT on these instances encoded from the MaxCut problem.

5.3.5 Results on MaxClique benchmark

Table 5 presents the experimental results on the instances encoded from theMaxClique
problem. As can be seen from Table 5, CCMaxSAT finds better solutions than other
solvers on three instances. For the remaining instances, CCMaxSAT also has the best
performance (shared with ITS), except for MANN_a81, where IRoTS finds better
solutions. However, the performance of IRoTS is muchworse than that of CCMaxSAT
on all instances but MANN_a81.

123

An effective variable selection heuristic 447

Table 5 Comparative results on the DIMACS MaxClique benchmark

Instance CCMaxSAT ITS ubcsat-IRoTS wMaxSATz

Best Average Best Average Best Average Best

brock800_4 774 778.5 779 779 780 780.95 781

C2000.9 1,922 1,922.3 1,922 1,922.4 1,935 1,938.19 1,944

DSJC100.5 985 985 985 985 986 986.57 987

gen400_0.9_75 325 325 325 325 325 325.86 363

hamming10-4 984 984 984 984 988 989.33 992

keller6 3,302 3,303.2 3,304 3,306 3,318 3,320.1 3,330

MANN_a81 2,240 2,240 2,237 2,237 2,228 2,230.1 2,241

phat1500-3 1,406 1,406 1,406 1,406 1,413 1,416.81 1,416

For each instance, each SLS solver is performed 20 runs, while wMaxSATz is performed one time, with a
cutoff time of 900s

Table 6 Comparative results on the sports scheduling benchmark

Instance unsatw∗ CCMaxSAT ITS ubcsat-IRoTS wMaxSATz

Suc.
rate (%)

Time Suc.
rate (%)

Time Suc.
rate (%)

Time Time

break_16_120_224 16 100 <0.01 100 <0.01 100 <0.01 0.1

break_18_153_288 20 100 <0.01 100 <0.01 100 <0.01 4.6

break_20_190_360 24 100 <0.01 100 0.1 100 <0.01 37

break_22_231_440 29 100 <0.01 100 0.3 100 <0.01 680

For each instance, each SLS solver is performed 20 runs, while wMaxSATz is performed one time, with a
cutoff time of 900s. The optimality of unsatw∗ has been proved by wMaxSATz for all these instances

5.3.6 Results on sports scheduling benchmark

The experimental results on the minimum break problem in sports scheduling are
reported in Table 6. These instances have been used to test branch and cut algorithms
for Max-2-SAT (Ryuhei and Tomomi 2006). However, they turn out to be too easy
for SLS solvers, especially for CCMaxSAT and IRoTS, both of which find an optimal
solution in less than 0.01 second for all these instances. Unfortunately, we could not
access the generator of this benchmark and thus could not test our solver on larger
instances. Nevertheless, the results show that SLS solvers can find an optimal solution
much faster than the exact solver wMaxSATz on these sports scheduling instances.

5.3.7 Performance on Max-3-SAT and SAT instances

In this work, CCMaxSAT is tuned to perform well on weightedMax-2-SAT instances.
However, our experiments show that CCMaxSAT also exhibits good performance on
weightedMax-3-SAT instances.We have conducted an experimental study comparing
CCMaxSATwith ubcsat-IRoTS on randomweightedMax-3-SAT instances with 5000

123

448 S. Cai et al.

variables, whose clause-to-variable ratios range from 1 to 6. Our experimental results
show that CCMaxSAT is very competitive with IRoTS on these weighted Max-3-SAT
instances.We believe by adjusting CCMaxSAT carefully, we can improve it on general
Max-SAT instances, but this is beyond the scope of this paper, andwe leave it for future
work.

On the other hand, the performance of CCMaxSAT is obviouslyworse than state-of-
the-art SLS SAT solvers on SAT instances. Our experiments on random SAT instances
from SAT Competition 2011 show that CCMaxSAT performs significantly worse than
Swcc (Cai and Su 2011), as well as the winners from the random satisfiable category
of SAT Competition 2011.

6 Discussions and related work

In this section, we provide more insights about CCMaxSAT through experimen-
tal analysis, and discuss related works. Specifically, we explore the effective-
ness of the CCTriplex heuristic and whether integrating a pure random walk can
improve CCMaxSAT; we also investigate the frequencies of each type of search
steps in CCMaxSAT. Then, we discuss the differences among CCMaxSAT, ITS and
IRoTS algorithms. Finally, we discuss related works which share similar ideas with
CCMaxSAT.

6.1 Effectiveness of the CCTriplex heuristic

Wedemonstrate the effectiveness of theCCTriplexheuristic by comparingCCMaxSAT
with its alternative algorithm CCMaxSAT0. The CCMaxSAT0 algorithm applies the
CC strategy directly, just as the SAT local search algorithm Swcc (Cai and Su 2011)
does. The pickVar function in CCMaxSAT0 is outlined in Algorithm 2.

Algorithm 2: pickVar-function in CCMaxSAT0

adjust wp;1
with probability wp begin2

c ← randomly selected unsatisfied clause;3
return v ← the variable with the greatest score in c, breaking ties randomly;4

end5
otherwise begin6

if CCD �= ∅ then7
return v ← x ∈ CCD with the greatest score, breaking ties randomly;8

else9
return v ← a random variable in a random unsatisfied clause;10

end11

We compare CCMaxSAT and CCMaxSAT0 on some selected instances, includ-
ing the largest sized instances from each random benchmark, the two largest sized

123

An effective variable selection heuristic 449

Table 7 Comparative performance results of CCMaxSAT and CCMaxSAT0 on random instances

Instance CCMaxSAT CCMaxSAT0

Best Average Best Average

V5k_C5100 0 0 0 0

V5k_C5400 1 1 1 1

V5k_C5700 1 1 1 1

V5k_C6000 8 8 8 8

V5k_C6300 6 6 6 6

V5k_C6600 33 33 39 41.5

V5k_C6900 70 71.7 78 84.25

V5k_C7200 82 83.2 94 103.5

V5k_C7500 1,902 1,903.4 1,956 1,966.9

V5k_C7800 2,109 2,110.75 2,156 2,167.1

V5k_C10k_1 3,428 3,429 3,467 3,480.6

V5k_C10k_2 3,398 3,398.05 3,435 3,450.35

V5k_C10k_3 3,435 3,436.6 3,475 3,490.6

V5k_C15k_1 7,036 7,036.7 7,058 7,069.45

V5k_C15k_2 6,937 6,939.3 6,970 6,978.9

V5k_C15k_3 7,062 7,066.55 7,101 7,107.65

V5k_C20k_1 11,071 11,073.65 11,113 11,120.65

V5k_C20k_2 10,813 10,816.45 10,839 10,851.85

V5k_C20k_3 11,098 11,099.7 11,126 11,135.8

V5k_C25k_1 15,384 15,388 15,416 15,429.05

V5k_C25k_2 15,427 15,429.05 15,454 15,471.3

V5k_C25k_3 15,117 15,119.4 15,153 15,159.4

V5k_C30k_1 20,019 20,030.15 20,072 20,094.9

V5k_C30k_2 20,302 20,306.75 20,338 20,360.55

V5k_C30k_3 19,714 19,720.4 19,752 19,764.55

Each algorithm is performed 20 independent runs on each instance with a cutoff time of 900s

groups from the Frb benchmark, as well as the hardest instances from the MaxCut and
MaxClique benchmarks.

As can be seen from Table 7, CCMaxSAT0 performs substantially worse than
CCMaxSAT on all the selected random instances. The solutions that CCMaxSAT
finds are significantly better than those found by CCMaxSAT0, except for the 5 sparse
random instances where both solvers find solutions of the same quality.

As for the Frb benchmark, CCMaxSAT0 fails to find a solution whose total unsatis-
fiedweight is unsatw∗ for any of these instances (Table 8). Comparatively, CCMaxSAT
successfully finds an unsatw∗ solution for all Frb instances, indicating its essential
superiority over CCMaxSAT0 on these hard combinatorial instances.

123

450 S. Cai et al.

Table 8 Comparative performance results of CCMaxSAT and CCMaxSAT0 on the Frb benchmark

Instance unsatw∗ CCMaxSAT CCMaxSAT0

Suc. rate (%) Best Average Suc. rate (%) Best Average

frb56-25-1 1,345 35 1,345 1,345.65 0 1,347 1,347.7

frb56-25-2 1,345 40 1,345 1,345.6 0 1,347 1,347.9

frb56-25-3 1,345 65 1,345 1,345.35 0 1,347 1,347.5

frb56-25-4 1,344 15 1,344 1,345.25 0 1,347 1,347.6

frb56-25-5 1,344 30 1,344 1,345.05 0 1,347 1,347.5

frb59-26-1 1,476 30 1,476 1,476.7 0 1,478 1,478.8

frb59-26-2 1,476 20 1,476 1,476.8 0 1,478 1,478.9

frb59-26-3 1,475 5 1,475 1,476.7 0 1,478 1,478.9

frb59-26-4 1,476 35 1,476 1,476.65 0 1,478 1,478.85

frb59-26-5 1,475 25 1,475 1,476.35 0 1,477 1,478.7

Each algorithm is performed 20 independent runs on each instance with a cutoff time of 900s

Table 9 Comparative performance results of CCMaxSAT and CCMaxSAT0 on MaxCut and MaxClique
instances

Instance CCMaxSAT CCMaxSAT0

Best Average Best Average

t6g3-8888.spn 7,844,119 7,844,119 7,844,119 7,844,119

t7g3-9999.spn 11,954,769 11,954,786 11,970,576 11,985,764

brock800_4 774 778.5 779 779

C2000.9 1,922 1,922.3 1,930 1,935.21

keller6 3,302 3,303.2 3,304 3,304

MANN_a81 2,240 2,240 2,238 2,239

Each algorithm is performed 20 independent runs on each instance with a cutoff time of 900s

The comparative results of CCMaxSAT and CCMaxSAT0 on MaxCut and Max-
Clique instances are presented in Table 9. The results show that CCMaxSAT0 performs
worse than CCMaxSAT on all the selected instances, except for MANN_a81.

CCMaxSAT0 is implemented on the codes of CCMaxSAT, and the only difference
between CCMaxSAT and CCMaxSAT0 is that CCMaxSAT employs the CCTriplex
heuristic in the global mode, while CCMaxSAT0 utilizes the heuristic based on the
pure CC strategy. Hence we attribute the good performance of CCMaxSAT mainly to
the CCTriplex heuristic.

6.2 Integrating random walk into CCMaxSAT

An important property of local search algorithms is probabilistically approximately
complete (PAC). If a local search algorithm is PAC, then by running it long enough,
the probability of missing an existing solution can be made arbitrarily small. A way

123

An effective variable selection heuristic 451

Table 10 Comparative performance results of CCMaxSAT and CCMaxSATrw

Instance CCMaxSAT CCMaxSATrw

Best Average Best Average

frb56-25-1 1,345 1,345.65 1,344 1,345.53

frb56-25-2 1,345 1,345.6 1,345 1,345.3

frb56-25-3 1,345 1,345.35 1,345 1,345.3

frb56-25-4 1,344 1,345.25 1,344 1,345.35

frb56-25-5 1,344 1,345.05 1,344 1,345.05

t6g3-8888.spn 7,844,119 7,844,119 7,844,119 7,844,119

t7g3-9999.spn 11,954,769 11,954,786 11,954,769 11,960,858.2

brock800_4 774 778.5 774 778.5

C2000.9 1,922 1,922.3 1,923 1,923

DSJC100.5 985 985 985 985

gen400_0.9_75 325 325 325 325

hamming10-4 984 984 984 984

keller6 3,302 3,303.2 3,302 3,303.2

MANN_a81 2,240 2,240 2,240 2,240

phat1500-3 1,406 1,406 1,406 1,406

Each algorithm is performed 20 independent runs on each instance with a cutoff time of 900s

of making local search algorithms PAC is to extend them with random walk in such
a way, that for each local search step, with a fixed probability a random walk step is
performed Hoos (1999).

To see how a random walk step may improve CCMaxSAT, we modify CCMaxSAT
to make it perform a random walk (flipping a random variable in a random unsat-
isfied clause) with a fixed probability (0.01) in each step. This variant is called
CCMaxSATrw . We carry out experiments to compare CCMaxSAT and CCMaxSATrw
on structured instances, and the results are summarized in Table 10.

As shown in Table 10, CCMaxSAT and CCMaxSATrw have similar perfor-
mance on the instances. Specifically, CCMaxSATrw performs a little better than
CCMaxSAT on frb instances, while its performance degrades on a MaxCut instance
t7g3-9999.spn and a MaxClique instance C2000.9. On the other instances,
they have the same performance in terms of solution quality. This indicates that a pure
random walk step has limited impact on the performance of CCMaxSAT. However,
enhancing CCMaxSAT with a pure random walk might still be a good choice, which
makes it PAC.

6.3 Frequencies of different types of search steps

In order to better understand the run-time behaviour of CCMaxSAT, we investigate the
frequencies of each type of search steps (random/CCD/DNCC/CCND) on the bench-
marks. For our experimental study, we choose two representative instances from the

123

452 S. Cai et al.

Table 11 Frequencies of each type of search steps for CCMaxSAT on different types of instances. Each
result is based on 20 independent runs with a cutoff time of 900 seconds

Instance Random (%) CCD (%) DNCC (%) CCND (%)

V3k_C4k 16.87 39.03 15.99 28.11

V3k_C4.6k 14.26 31.34 24.58 29.82

V3k_C15k_1 17.89 42.10 18.99 21.02

V3k_C18k_1 17.80 42.03 18.82 21.34

frb50-23-1 17.32 61.60 0 21.08

frb53-24-1 17.17 61.14 0 21.69

t6g3-8888.spn 15.47 36.54 0 47.99

t7g3-9999.spn 14.87 30.98 0 54.14

brock800_4 24.25 61.62 0 14.81

C2000.9 14.57 62.06 0 23.42

keller6 16.89 60.78 0 23.11

MANN_a81 32.89 50.17 0 17.23

random and Frb benchmark, aswell as two hardest instances in theMaxCut benchmark
and four instances from different graph families in the MaxClique benchmark.

The results of this experimental study are reported in Table 11, fromwhich we have
the following observations:

– The proportion of random steps is quite stable (varies from 14 to 17%) on random
instances, as well as Frb and MaxCut instances;

– CCD and CCND steps are the two most often executed steps. Particularly, more
than half steps are CCD steps for Frb and MaxClique instances.

– A particular feature of CCMaxSAT’s behaviour is that it never executes DNCC
steps when solving structured instances, which means all decreasing variables are
configuration changed for these instances.

6.4 More comments on CCMaxSAT, ITS and IRoTS

Both ITS and IRoTS algorithms are Iterated Local Search (ILS) algorithms and alter-
nate between two phases: local search and so-called solution perturbation. The latter
phase takes the search away from the local optimum reached by the local search phase.
Also, both ITS and IRoTS algorithms utilize the tabu method (Glover 1989) to diver-
sify the search. However, they are rather different in the perturbation phase.While ITS
makes use of large neighborhood steps (i.e., flipping several variables in one step) to
perturb the local optima, IRoTS employs the same tabu search procedure in both local
search and perturbation phases and adopts a larger tabu tenure for the perturbation
phase.

CCMaxSAT differs significantly from ITS and IRoTS in two aspects. First, instead
of adopting the ILS scheme, CCMaxSAT switches between the global mode and the
focused mode according to an adaptive noise parameter. Secondly and more impor-

123

An effective variable selection heuristic 453

tantly, CCMaxSAT diversifies the search by (mainly) the CC strategy, while both ITS
and IRoTS algorithms do so by the tabu method.

6.5 Related work

In this section,we present some relatedworks. In particular, we discuss the relationship
between CCD variables and promising decreasing variables, and discuss the adaptive
noise mechanism and the greedy component in WalkSAT.

6.5.1 CCD variables versus promising decreasing variables

In the following, we discuss the relationship between CCD variables and promising
decreasing variables (Li and Huang 2005). The concept of promising decreasing vari-
ables has been widely used to improve the global mode of SLS algorithms for SAT.
Particularly, all awarded SLS solvers in SAT competitions 2007, 2009 and 2011 switch
between the greedy and focusedmodes depending on the existence or not of promising
decreasing variables.

First, we would like to recall some concepts:

– A variable x is decreasing iff score(x) > 0, and increasing iff score(x) < 0.
– A configuration changed decreasing (CCD) variable is a decreasing variable that
con f Change(x) = 1.

– Li and Huang (2005) Let x be a variable which is not decreasing. If it becomes
decreasing after another variable y is flipped, then we say that x is a promising
decreasing variable after y is flipped. For a promising decreasing variable x , it
remains promising as long as it is decreasing after one or more other flips.

For the relationship between CCD variables and promising decreasing variables,
we have the following conclusions.

Proposition 1 For a given variable x, if x is a promising decreasing variable, then x
is a CCD variable.

Proof The proof is given by induction.
(a)Becoming a promising decreasing variable. If x becomes a promising decreasing

variable after flipping another variable y, then we conclude y ∈ N (x). Otherwise, y
is independent of x and flipping y does nothing to score(x). Since y ∈ N (x), along
with flipping y, con f Change(x) would be set to 1. As x is a decreasing variable and
con f Change(x) = 1, x is a CCD variable by definition.

(b) Remaining a promising decreasing variable. For a promising decreasing vari-
able x , if x remains promising decreasing, then x has not been flipped after the last
time it became a promising decreasing variable. Otherwise, because x is decreasing,
i.e., score(x) > 0, flipping x would make score(x) < 0 (flipping x would make
score(x) be its opposite number). But this means x is no longer a decreasing variable,
and thus not a promising decreasing variable. Recalling that only flipping x can set
con f Change(x) to 0, we conclude that con f Change(x) remains 1. Thus, x remains
a CCD variable. �

123

454 S. Cai et al.

Remark 1 The reverse of Proposition 1 is not necessarily true.

Proof For a variable x to be CCD, it suffices that one of its neighboring variable is
flipped and score(x) > 0. To be promising, one or several neighboring variables
should be flipped to make its score positive. When an increasing variable is flipped,
it is CCD as soon as one of its neighboring variables is flipped and its score remains
positive. However, it cannot be promising until its neighboring variables are flipped
to make its score non-positive and then positive. �

To sum up, our analysis shows that promising decreasing variables are a subset
of CCD variables. In some sense, CCD variables and promising decreasing variables
may be two extremities, and there may be an intermediate notion more effective to be
investigated in the future.

6.5.2 Adaptive noise and WalkSAT

The adaptive noise mechanism used in our algorithm is the one proposed by Hoos
etal. in the adaptNovelty+ algorithm (Hoos 2002). This significant adaptive noise
mechanism has also been successfully used in other SLS algorithms for SAT, such as
adaptG2WSAT and adaptadaptG2WSAT+p (Li et al. 2007).

In the focusedmode, CCMaxSAT picks a variable from a random unsatisfied clause
c. Instead of picking a random variable, it selects the variable with the greatest score in
c, which is greedy to some extend. This mixed random step in some sense resembles
the “greedy” component of the WalkSAT algorithm (Selman et al. 1994), i.e., picking
the variable with the minimum break value from a random unsatisfied clause.

7 Conclusions and future work

Inspired by the configuration checking (CC) strategy for SAT local search algorithms,
we proposed a new variable selection heuristic called CCTriplex for Max-SAT local
search algorithms. CCTriplex is a three-level heuristic based on the notion of config-
uration changed variables. Compared to the CC heuristic, CCTriplex is more flexible
and can make a better balance between intensification and diversification.

We utilized the CCTriplex heuristic to develop a new SLS algorithm for weighted
Max-SAT called CCMaxSAT, which exhibits very good performance in solving
weighted Max-2-SAT instances. We compared CCMaxSAT against two state-of-
the-art SLS solvers namely ITS and ubcsat-IRoTS and the famous complete solver
wMaxSATz. Experimental results show that CCMaxSAT significantly outperforms
ITS and and ubcsat-IRoTS on random instances and the structured benchmark Frb.
Also, CCMaxSAT show better performance on application instances encoded from
several problems. Additionally, the solutions that CCMaxSAT finds are always better
or as good as those found by the exact algorithmwMaxSATz on all the tested instances,
except for a few sparse random instances.

To some extent, CCMaxSAT seems too greedy as a local search procedure. For
example, it picks the variable with the greatest score from an unsatisfied clause even
when it gets stuck in local optima.We believe by introducing more diversification may

123

An effective variable selection heuristic 455

further improve the performance of the algorithm. However, this requires adjusting not
only the focused mode, but also the global mode, in order to make them work well as
a whole. We also plan to improve the CCMaxSAT algorithm for general (unweighted
and weighted) Max-SAT problems.

Acknowledgments We would like to thank the anonymous reviewers for their valuable comments,
which helped to improve the quality of this article. This work is supported by China National 973 project
2014CB340301, ARC Future Fellowship FT0991785, and National Natural Science Foundation of China
61370072 and 61472369.

References

Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell. 196, 77–105 (2013)
Cai, S., Su, K.: Local search with configuration checking for SAT. In: Proceeding of the ICTAI-11, pp.

59–66 (2011)
Cai, S., Su, K.: Configuration checking with aspiration in local search for SAT. In: Proceedings of the

AAAI-12, pp. 434–440 (2012)
Cai, S., Su, K.: Local search for Boolean satisfiability with configuration checking and subscore. Artif.

Intell. 204, 75–98 (2013)
Cai, S., Su, K., Sattar, A.: Local search with edge weighting and configuration checking heuristics for

minimum vertex cover. Artif. Intell. 175(9–10), 1672–1696 (2011)
Cai, S., Su, K., Luo, C., Sattar, A.: NuMVC: an efficient local search algorithm for minimum vertex cover.

J. Artif. Intell. Res. 46, 687–716 (2013)
Dimitropoulos, X., Krioukov, D., Fomenkov, M., Huffaker, B., Hyun, Y., Claffy, K., Riley, G.: As relation-

ships: inference and validation. Comput. Commun. Rev. 37(1), 29–40 (2007)
Festa, P., Pardalos, P., Pitsoulis, L., Resende, M.: GRASP with path relinking for the weighted Max-SAT

problem. ACM J. Exp. Algorithmics (11) (2006)
Glover, F.: Tabu search—part I. INFORMS J. Comput. 1(3), 190–206 (1989)
Gramm, J., Hirsch, E., Niedermeier, R., Rossmanith, P.: Worst-case upper bounds for MAX-2-SAT with an

application to MAX-CUT. Discret. Appl. Math. 130(2), 139–155 (2003)
Grosso,A., Locatelli,M., Pullan,W.: Simple ingredients leading to very efficient heuristics for themaximum

clique problem. J. Heuristics 14(6), 587–612 (2008)
Haanpää, H., Kaski, P.: The near resolvable 2-(13, 4, 3) designs and thirteen-player whist tournaments. Des.

Codes. Cryptogr. 35(3), 271–285 (2005)
Heras, F., Bañeres, D.: The impact of Max-SAT resolution-based preprocessors on local search solvers. J.

Satisf. Boolean Model. Comput. 7, 89–126 (2010)
Heras, F., Larrosa, J., Oliveras, A.: MiniMax-SAT: an efficient weighted max-sat solver. J. Artif. Intell. Res.

(JAIR) 31, 1–32 (2008)
Hoos, H.H.: On the Run-time Behaviour of Stochastic Local Search Algorithms for SAT. In: Proceedings

of the AAAI-99, pp. 661–666 (1999)
Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: Proceedings of the AAAI-02, pp. 655–660

(2002)
Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Elsevier, Amsterdam (2004)
Hutter, F., Tompkins, D.A.D., Hoos, H.H.: Scaling and probabilistic smoothing: efficient dynamic local

search for SAT. In: Proceedings of the CP-02, pp. 233–248 (2002)
Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding partiality and disjunctions in stable

model semantics. ACM Trans. Comput. Log. 7(1), 1–37 (2006)
Kastner, R., Bozorgzadeh, E., Sarrafzadeh, M.: Pattern routing: use and theory for increasing predictability

and avoiding coupling. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, pp. 233–248 (2002)

Kochenberger, G., Glover, F., Alidaee, B., Lewis, K.: Using the unconstrained quadratic program to model
and solve Max-2-SAT problems. Int. J. Oper. Res. 1, 89–100 (2005)

Kroc, L., Sabharwal, A., Gomes, C., Selman, B.: Integrating systematic and local search paradigms: a new
strategy for MaxSAT. In: Proceedings of the IJCAI-09, pp. 544–551 (2009)

123

456 S. Cai et al.

Li, C., Huang, W.: Diversification and determinism in local search for satisfiability. In: Proceedings of the
SAT-05, pp. 158–172 (2005)

Li, C., Manyà, F., Planes, J.: New inference rules for Max-SAT. J. Artif. Intell. Res. (JAIR) 30, 321–359
(2007)

Li, C., Manyà, F., Mohamedou, N., Planes, J.: Exploiting cycle structures in Max-SAT. In: Proceedings of
the SAT-09, pp. 467–480 (2009)

Li, C.,Wei,W., Zhang,H.:Combining adaptive noise and look-ahead in local search for SAT. In: Proceedings
of the SAT-07, pp. 121–133 (2007)

Lin, H., Su, K., Li, C.: Within-problem learning for efficient lower bound computation in max-sat solving.
In: Proceedings of the AAAI-08, pp. 351–356 (2008)

Littman, M.L., Majercik, S.M., Pitassi, T.: Stochastic boolean satisfiability. J. Autom. Reason. 27(3), 251–
296 (2001)

Luo, C., Su, K., Cai, S.: Improving local search for random3-SATusing quantitative configuration checking.
In: Proceedings of the ECAI-12, pp. 570–575 (2012)

Luo, C., Cai, S., Wu, W., Su, K.: Focused random walk with configuration checking and break minimum
for satisfiability. In: Proceedings of the CP-13, pp. 481–496 (2013)

Palubeckis, G.: Solving the weightedMax-2-SAT problemwith iterated tabu search. J. Inf. Technol. Control
37, 275–284 (2008)

Pullan,W.,Mascia, F., Brunato,M.: Cooperating local search for themaximum clique problem. J. Heuristics
17(2), 181–199 (2011)

Ryuhei, M., Tomomi, M.: Semidefinite programming based approaches to the break minimization problem.
Comput. OR 33, 1975–1982 (2006)

Selman, B., Kautz, H., Cohen, B.: Noise strategies for improving local search. In: Proceedings of the
AAAI-94, pp. 337–343 (1994)

Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artif. Intell.
138(1–2), 181–234 (2002)

Smyth, K., Hoos, H.H., Stützle, T.: Iterated robust tabu search for MAX-SAT. In: Proceedings of the
Canadian Conference on AI, pp. 129–144 (2003)

Staub, R., Prautzsch, H.: Creating optimized cutout sheets for paper models from meshes. In: Ninth SIAM
Conference on Geometric Design and Computing (2005)

Wu, Z., Wah, B.W.: An efficient global-search strategy in discrete lagrangian methods for solving hard
satisfiability problems. In: Proceedings of the AAAI-00, pp. 310–315 (2000)

Xu, K., Boussemart, F., Hemery, F., Lecoutre, C.: A simple model to generate hard satisfiable instances. In:
Proceedings of the IJCAI-05, pp. 337–342 (2005)

Xu, K., Boussemart, F., Hemery, F., Lecoutre, C.: Random constraint satisfaction: easy generation of hard
(satisfiable) instances. Artif. Intell. 171(8–9), 514–534 (2007)

123

	An effective variable selection heuristic in SLS for weighted Max-2-SAT
	Abstract
	1 Introduction
	2 Definitions and notations
	3 The CCTriplex variable selection heuristic
	3.1 Configuration changed variables
	3.2 The CCTriplex heuristic

	4 The CCMaxSAT algorithm
	5 Experimental evaluations
	5.1 Benchmarks
	5.2 Experiment preliminaries
	5.3 Experimental results
	5.3.1 Results on sparse random benchmark
	5.3.2 Results on dense random benchmark
	5.3.3 Results on Frb benchmark
	5.3.4 Results on MaxCut benchmark
	5.3.5 Results on MaxClique benchmark
	5.3.6 Results on sports scheduling benchmark
	5.3.7 Performance on Max-3-SAT and SAT instances

	6 Discussions and related work
	6.1 Effectiveness of the CCTriplex heuristic
	6.2 Integrating random walk into CCMaxSAT
	6.3 Frequencies of different types of search steps
	6.4 More comments on CCMaxSAT, ITS and IRoTS
	6.5 Related work
	6.5.1 CCD variables versus promising decreasing variables
	6.5.2 Adaptive noise and WalkSAT

	7 Conclusions and future work
	Acknowledgments
	References

