
J Heuristics (2015) 21:391–431
DOI 10.1007/s10732-015-9282-5

A hybrid genetic algorithm with solution archive
for the discrete (r| p)-centroid problem

Benjamin Biesinger · Bin Hu · Günther Raidl

Received: 3 May 2014 / Revised: 2 October 2014 / Accepted: 6 January 2015 /
Published online: 22 January 2015
© Springer Science+Business Media New York 2015

Abstract In this article we propose a hybrid genetic algorithm for the discrete (r |p)-
centroid problem. We consider the competitive facility location problem where two
non-cooperating companies enter a market sequentially and compete for market share.
Thefirst decisionmaker, called the leader,wants tomaximize hismarket share knowing
that a follower will enter the same market. Thus, for evaluating a leader’s candidate
solution, a corresponding follower’s subproblem needs to be solved, and the overall
problem therefore is a bi-level optimization problem. This problem is �P

2 -hard, i.e.,
harder than any problem in NP (if P �= NP). A heuristic approach is employed which
is based on a genetic algorithm with tabu search as local improvement procedure
and a complete solution archive. The archive is used to store and convert already
visited solutions in order to avoid costly unnecessary re-evaluations. Different solution
evaluation methods are combined into an effective multi-level evaluation scheme.
The algorithm is tested on well-known benchmark sets of both Euclidean and non-
Euclidean instances as well as on larger newly created instances. Especially on the
Euclidean instances our algorithm is able to exceed previous state-of-the-art heuristic
approaches in solution quality and running time in most cases.

Keywords Combinatorial optimization · Competitive facility location · Discrete
(r |p)-centroid problem · Metaheuristics · Solution archive · Bi-level optimization

B. Biesinger (B) · B. Hu · G. Raidl
Institute of Computer Graphics and Algorithms, Vienna University of Technology,
Favoritenstraße 9-11/1861, 1040 Vienna, Austria
e-mail: biesinger@ads.tuwien.ac.at

B. Hu
e-mail: hu@ads.tuwien.ac.at

G. Raidl
e-mail: raidl@ads.tuwien.ac.at

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-015-9282-5&domain=pdf

392 B. Biesinger et al.

1 Introduction

The (r |p)-centroid problem (RPCP) is a competitive facility location problem, in
which two decision makers compete for market share. They both want to serve cus-
tomers from a given market. There are several variants of this problem which differ
in the way facilities are opened, in the elasticity of the demand and especially in the
behaviour of the customers. In our work we consider a discrete basic variant with the
following assumptions:

– Facilities can be opened at a given finite set of possible positions. At one position
at most one facility can be located.

– Both competitors open facilities sequentially, i.e., the first decision maker, called
the leader, opens p facilities and is followed by the other decision maker, the
follower, who successively places all of his r facilities.

– Customer decision is based on distance solely, i.e., customers always choose their
serving facility to be the closest.

– Customers have a binary preference, i.e., they fulfill all of their demandby choosing
the nearest facility only.

Competitive facility location problems are known since the late 20s and were first
mentioned by Hotelling (1929). Hakimi (1983) introduced the name (r |p)-centroid
and also published the first complexity results for it.

An application of this problem is when two entrepreneurs want to start selling the
same products for the same price in a new market. The first one, the leader, who opens
her selling facilities wants to keep as much of her market share as possible even when
a competitor, the follower, enters the market. Since the leader cannot know where
her competitor will place his facilities she assumes that he places them optimally.
Considering that, the leader can determine her guaranteed (minimum) market share.

The discrete RPCP on not further constrained bipartite graphs is �P
2 -hard (Nolte-

meier et al. 2007). In short this means that under the assumption that the polynomial
hierarchy does not collapse this problem is substantially harder to solve than any
problem in NP.

In Sect. 2 we give a formal problem definition. After discussing the related work in
Sect. 3, we present different candidate solution evaluation methods in Sect. 4. A novel
hybrid genetic algorithm (GA), which incorporates a solution archive in order to store
and transform already visited solutions, as well as a local improvement component is
introduced in Sect. 5. Different concepts of how the local search method can benefit
from the solution archive are investigated in Sect. 6. An extension to the GA which
intends to lower the effort for solution evaluation by applying a multi-level strategy is
presented in Sect. 7. Finally, we discuss computational results and compare the new
method to other state-of-the-art approaches from literature in Sect. 8.

2 Problem definition

The discrete RPCP is defined on a weighted complete bipartite graph G = (I, J, E)

where I = {1, . . . ,m} represents the set of potential facility locations, J = {1, . . . , n}
the set of customers, and E = I × J is the set of edges. Let w j > 0,∀ j ∈ J be the

123

A hybrid GA for the discrete RPCP 393

weight of each customer, which corresponds to the turnover to be earned by the serving
decision maker and di j ,∀(i, j) ∈ E , be the distances between customers and potential
facility locations. The goal for the leader is to choose exactly p locations from I in
order to maximize her turnover under the assumption that the follower in turn chooses
r facilities from different locations maximizing his turnover.

Each customer j ∈ J chooses the closest facility, hence the owner of this closest
facility gains all of the turnover w j ; in case of equal distances the leader is preferred.
In the following we give a formal definition of a candidate solution and the turnover
computation. Let (X,Y) be a solution to the RPCP, where X ⊆ I, |X | = p is the
set of locations chosen by the leader and Y ⊆ I \ X, |Y | = r is the associated set
of follower locations. Further, let D(j, V) = min{d ji | i ∈ V }, ∀ j ∈ J, V ⊆ I
be the minimum distance from customer j to all facility locations in set V . Then
the set of customers which are served by one of the follower’s facilities is U f =
{ j ∈ J | D(j,Y) < D(j, X)} and the customers served by the leader is given by
U l = J \U f . The turnover of the follower is pf = ∑

j∈U f w j and the turnover of the

leader pl = ∑
j∈J w j − pf .

The problem of finding the optimal set of locations Y for the follower when
X is given is also called the (r |X p)-medianoid problem and is proven to be NP-
hard (Hakimi 1983). Noltemeier et al. (2007) showed in their work that the (r |p)-
centroid problem is �P

2 -hard. This result is strenghtened by Davydov et al. (2014b)
who proved that the problemwe consider here remains�P

2 -hard even for planar graphs
with Euclidean distances.

3 Related work

Competitive facility location models, to which the discrete RPCP belongs, are a quite
old and well-studied type of problem originally introduced by Hotelling (1929). A
recent review about several kinds of competitive location models can be found in the
work by Kress and Pesch (2012). They also mention the discrete RPCP, which was
originally introduced by Hakimi (1983) along with some first complexity results.

Laporte and Benati (1994) developed a tabu search heuristic for the RPCP. They
use an embedded second-level tabu search for solving the (r |X p)-medianoid problem.
The final solution quality is thus only approximated as the (r |X p)-medianoid problem
is not solved exactly.

Alekseeva et al. (2010) present several approaches for the discrete RPCP including
an exact procedure. The first method is a hybrid memetic algorithm (HMA) which
uses a probabilistic tabu search as local improvement procedure. It employs rather
simple genetic operators and the tabu search utilizes a probabilistic swap neighborhood
structure, which is well known from the p-median problem; see the review article by
Mladenović et al. (2007) for an overview of this problem. A neighborhood of this
structure contains elements only with a given probability to speed up the search.
They use the linear programming relaxation of a mixed integer linear programming
(MIP) model for the solution evaluation which will be described here in Sect. 4.1. The
authors observe that this approach outperforms several simpler heuristics including
an alternating heuristic originally proposed for a continuous variant of the problem

123

394 B. Biesinger et al.

(Bhadury et al. 2003). In Alekseeva and Kochetov (2013) results for the tabu search
alone are presented which are similar to the results of the HMA. They further describe
an exact method based on a single level binary integer program with exponentially
many constraints and variables. For solving this model they present an algorithm
similar to a column generation approach where new sets of locations for the follower
are iteratively added to the model which is then solved again. The optimal value of this
model defines an upper bound and by solving the follower’s problem using solutions
of the model a lower bound is obtained. If the bounds coincide the optimum has been
found. The HMA is applied for finding the initial family of follower solutions. Using
this method the authors are able to optimally solve instances with up to 100 customers
and p = r = 5.

Campos-Rodríguez et al. (2009) studied particle swarm optimization methods for
the continuous RPCP, where the facilities can be placed anywhere on the Euclidean
plane, as well as for the discrete variant (Campos-Rodríguez et al. 2012). A jumping
particle swarm optimization is used with two swarms, one for the leader and one for
the follower. The particles jump from one solution to another in dependence of its own
best position so far, the best position of its neighborhood and the best position obtained
by all particles so far, i.e, the best global position. In the experiments this algorithm
was able to solve instances with 25 customers, p = 3 and r = 2 to optimality.

Davydov et al. (2012) describe another tabu search for the RPCP. They use a prob-
abilistic swap neighborhood structure similar to the one developed by Alekseeva et
al. (2010). For the solution evaluation the follower problem is approximately solved
by Lagrangian relaxation. The method is tested on the instances from Alekseeva et al.
(2010) and additionally on some non-Euclidean instances. For many of the instances
optimal solutions are obtained.

A recent article by Davydov et al. (2014a) proposes two metaheuristics which
are both based on the swap neighborhood structure. The first one uses a variable
neighborhood search (VNS) with a disjoint partitioning of the swap neighborhood
structure into three sub-neighborhoods Fswap, Nswap, and Cswap. A neighbor from
the Fswap neighborhood is determined by closing one leader facility and opening a
facility at a location chosen by the follower. The Nswap neighborhood consists of
solution candidates that are generated by closing one leader facility and opening a
facility at a location in its vicinity. Cswap consists of all solutions that are in the
swap neighborhood but not already in Fswap or Nswap. The second method, which
is called STS, uses the probabilistic swap neighborhood which has been proposed
by Alekseeva et al. (2010). The STS uses the same neighborhood partioning as the
VNS. Additionally, a tabu list is maintained to remove elements of the neighborhood
which consist of pairs for leader facilities that have been closed and opened during
the last few iterations. Both methods use the same model for the solution evaluation
as Alekseeva et al. (2010). The authors were able to find good solutions for many
instances faster than the tabu search by Davydov et al. (2012). Moreover, they tested
their algorithms on non-euclidean instances, on which both methods, VNS and STS,
showed similar performance.

Roboredo and Pessoa (2013) developed an exact branch-and-cut algorithm for the
discrete RPCP. They use a single-level integer programming model which is similar to
the model by Alekseeva et al. (2010) but with only a polynomial number of variables.

123

A hybrid GA for the discrete RPCP 395

It consists of exponentially many constraints, one for each follower strategy, i.e., for
each set of possible facility locations of the follower. An important reason for the
success of their method is the introduction of strengthening inequalities by lifting
the exponentially many constraints. Due to the assumption that the customers are
conservative the lower bound on the leader’s solution becomes zero if the follower
chooses the same facility location. Therefore, for each facility location an alternative
location is given which is chosen if the position has already been used by the leader.
These cuts are separated either by a greedy heuristic or by solving a mixed integer
programming model. For most of the benchmark instances the authors report better
results than Alekseeva et al. (2010), i.e., they found optimal solutions in less time.
Instances with 100 customers and up to r = p = 15 facilities could be solved to
optimality. The authors also present promising results for r = p = 20 but are not able
to prove their optimality within the given time limit of 10 hours.

Alekseeva and Kochetov (2013) give an overview of recent research regarding the
discrete RPCP. They also improve their iterative exact method by using a model with
only a polynomial number of variables and by using the strengthening inequalities
introduced by Roboredo and Pessoa. This improved iterative approach is able to find
optimal solutions for instances with up to 100 customers and r = p = 15. Especially
for the instances with r = p ∈ {5, 10} optimal solutions are found significantly faster
than by the branch-and-cut algorithm from Roboredo and Pessoa (2013).

As mentioned before there are several other variants of the problem. Kochetov et al.
(2013) describe an algorithm for the RPCP with fixed costs for opening a facility and
customers splitting their demand over all facilities proportional to attraction factors.
The algorithm’s principle is similar to the alternating heuristic for the RPCP (Bhadury
et al. 2003). Another work which assumes proportional splitting of the demands is
done by Biesinger et al. (2014). There the authors employ a GA in combination with
a solution archive similar to this work to solve the problem.

Ghosh and Craig (1984) work on a competitive location model for choosing good
positions for retail convenience stores. They do not specify the number of stores
to open beforehand but determine the optimal number as part of the process and
additionally assume elastic demands, i.e., the customers may not want to fulfill their
whole demand if the store is too far away. The authors develop a heuristic enumerative
search algorithm for solving this problem.

Serra and Revelle (1994) propose a heuristic approach for a variant of the discrete
RPCPwhich is based on repeatedly solving amaximum capture (MAXCAP) problem.
The MAXCAP problem is similar to the (r |X p)-medianoid problem with the differ-
ence that it is possible to place a facility on one of the leader’s locations with the result
that the captured demand is equally shared between the two players. The algorithm is
basically a local search using the swap neighborhood structure and candidate solutions
are evaluated by solving the MAXCAP problem by means of integer programming or
by using a local search heuristic for larger instances.

Drezner (1994, 1998) and Drezner et al. (2002) use a gravity model for solving
a continuous competitive facility location problem. The gravity model assumes that
customers prefer being served by facilities proportional to an attraction factor and
inversely proportional to their distances. The authors suggest several heuristics and

123

396 B. Biesinger et al.

metaheuristics including simulated annealing for solving the problem and compare
them to each other.

4 Solution evaluation

We extend the problem definition of Sect. 2 by the following further definitions which
are adopted from Alekseeva and Kochetov (2013).

Definition 1 Semi-feasible Solution
The tuple (X,Y) is called a semi-feasible solution to the discrete RPCP iff X ⊆ I

with |X | = p,Y ⊆ I with |Y | = r and X ∩ Y = ∅.
Let pl(X,Y) be the turnover of the leader and pf(X,Y) be the turnover of the

follower where X is the set of facility locations chosen by the leader and Y is the set
of facility locations chosen by the follower. Then we define a feasible solution and an
optimal solution as follows.

Definition 2 Feasible Solution
A semi-feasible solution (X,Y ∗) is called a feasible solution to the discrete RPCP

iff pf(X,Y ∗) ≥ pf(X,Y) for each possible set of follower locations Y .

Definition 3 Optimal Solution
A feasible solution (X∗,Y ∗) is called an optimal solution to the discrete RPCP iff

pl(X∗,Y ∗) ≥ pl(X,Y) for each feasible solution (X,Y).

It is easy to find a semi-feasible solution but already NP-hard to find a feasible solu-
tion because an optimal follower solution has to be found and the (r |X p)-medianoid
problem isNP-hard. Thismeans that the solution evaluation of an arbitrary leader solu-
tion might be quite time-consuming. For practice there are several possibilities how to
evaluate such a leader solution X . In the next section we will examine a mathematical
model for the RPCP and derive different options.

4.1 Bi-Level MIP Formulation

The following bi-level MIP model has been introduced in Alekseeva et al. (2009). It
uses three types of binary decision variables. Variables xi ,∀i ∈ I, are set to one if
facility i is opened by the leader and to zero otherwise. Variables yi ,∀i ∈ I, are set
to one iff facility i is opened by the follower. Finally, variables z j ,∀ j ∈ J, are set to
one if customer j is served by the leader and set to zero if customer j is served by the
follower.

We further define the set of facilities that allow the follower to capture customer j
if the leader uses solution x(x = (xi)i∈I):

I j (x) =
{

i ∈ I | di j < min
l∈I |xl=1

dl j

}

∀ j ∈ J

123

A hybrid GA for the discrete RPCP 397

Then we can define the upper level problem, denoted as leader’s (or (r |p)-centroid)
problem, as follows:

max
x

∑

j∈J

w j z
∗
j (1)

s.t.
∑

i∈I
xi = p (2)

xi ∈ {0, 1} ∀i ∈ I (3)

where z∗ is an optimal solution to the lower level problem, denoted as follower’s (or
(r |X p)-medianoid) problem:

max
y,z

∑

j∈J

w j (1 − z j) (4)

s.t.
∑

i∈I
yi = r (5)

1 − z j ≤
∑

i∈I j (x)
yi ∀ j ∈ J (6)

xi + yi ≤ 1 ∀i ∈ I (7)

z j ≥ 0 ∀ j ∈ J (8)

yi ∈ {0, 1} ∀i ∈ I, ∀ j ∈ J (9)

The objective function for the leader’s problem (1) maximizes the leader’s turnover.
Equation (2) ensures that the leader places exactly p facilities. The objective function
for the follower’s problem (4) maximizes the follower’s turnover. Similarly as in the
leader problem, (5) ensures that the follower places exactly r facilities. Inequalities (6)
together with the objective function ensure the z j variables to be set correctly, i.e.,
decide for each customer j ∈ J from which competitor he is served. Inequalities (7)
guarantee that the follower does not choose a location where the leader has already
opened a facility. Variables z j are not restricted to binary values because in an optimal
solution they will become 0 or 1 anyway.

For the simplicity of notation, we use in the remaining paper both, the set notation
X and Y as well as the incidence vector notation x and y, to refer to leader and follower
solutions, respectively.

4.2 Solution evaluation methods

In our metaheuristic approach we consider the following natural ways of evaluating a
leader solution x ; two of them use the model introduced before.

123

398 B. Biesinger et al.

4.2.1 Exact evaluation

In the exact evaluation we solve the follower’s problem (4–9) exactly using a MIP
solver. In our implementation we used the IBM ILOG CPLEX Optimizer in version
12.5.

4.2.2 Linear programming (LP) evaluation

In the LP evaluation we solve the LP relaxation of the follower’s problem exactly
using CPLEX. This will in general yield not even semi-feasible solutions because of
fractional values of some variables. For intermediate solution candidates we might,
however, only be interested in an approximate objective value of a leader’s solution
for which purpose this method may be sufficient. This approximation yields a lower
bound of the real objective value of x .

4.2.3 Greedy evaluation

In the greedy evaluation we use the following greedy algorithm for solving the fol-
lower’s problem,whichwill yield semi-feasible solutions and therefore an upper bound
to the objective value of x . Follower facilities are placed one after the other according
to the following greedy criterion: For each facility every possible remaining location
is checked how much turnover gain its selection would generate. The turnover gain is
the sum of weights of all customers that would so far be served by the leader but are
nearer to this location than to the nearest leader facility. Then the location with the
maximum turnover gain is always selected. This process is iterated until r locations
are chosen. Ties are broken randomly.

In Sect. 8.1 we will observe that among our evaluation algorithms LP evaluation
usually offers the best compromise in terms of speed and evaluation precision. How-
ever, by applying the different solution evaluation methods in a joined way within a
multi-level evaluation scheme described in Sect. 7, we will be able to significantly
improve the performance.

5 Genetic algorithm with solution archive

This section describes our genetic algorithm. The framework is a rather standard
steady-state GA with an embedded local improvement. It uses simple genetic opera-
tors, which are explained in Sect. 5.1. The local improvement procedure is based on
the swap neighborhood structure and is addressed in Sect. 5.2. Most importantly, the
GA utilizes a complete solution archive for duplicate detection and conversion, which
is detailed in Sect. 5.3.

We use the leader’s incidence vector x as solution representation for the GA. The
initial population is generated by choosing p locations uniformly at random to ensure
high diversity in the beginning. Then, in each GA iteration one new solution is derived
and always replaces the worst solution of the current population. Selecting parents for

123

A hybrid GA for the discrete RPCP 399

crossover is performed by binary tournament selection with replacement. Mutation is
applied to offsprings with a certain probability in each iteration.

5.1 Variation operators

We use the following variation operators within the GA:

Crossover operator Suppose that we have two candidate solutions X1 ⊂ I and X2 ⊂
I . An offspring X ′ is derived from its parents X1 and X2 by adopting all locations
that are opened in both, i.e., all locations from S = X1 ∩ X2 and then choosing the
remaining p − |X1 ∩ X2| locations from (X1 ∪ X2) \ S, i.e., the set of locations that
are opened in exactly one of the parents, uniformly at random.

Mutation operator Mutation is based on the swap neighborhood structure, which
is also known from the p-median problem (Mladenović et al. 2007). A swap move
closes a facility and re-opens it at a different, so far unoccupied position. Our mutation
applies μ random swap moves, where μ is determined anew at each GA-iteration by a
random sample from a Poisson distribution with mean value one so that each position
is mutated independently with probability 1

p .

5.2 Local search

Each new candidate solution derived in the GA via recombination andmutation whose
objective value is at most α% off the so far best solution value further undergoes a
local improvement, with α = 5 in our experiments presented here. Local search (LS)
is applied with the swap neighborhood structure already used for mutation. The best
improvement step function is used, so all neighbors of a solution that are reachable
via one swap move are evaluated and a best one is selected for the next iteration. This
procedure terminates with a local optimal solution when no superior neighbor can be
found.

5.3 Solution archive

Solution archives for evolutionary algorithms as introduced byRaidl andHu (2010) are
data structures that efficiently store all generated solutions in order to be able to detect
duplicate solution when they occur. Upon detecting a duplicate, an effective solution
conversion is performed, which results in a guaranteed not yet considered solution
typically in close proximity to the original (duplicate) solution. Especially when the
solution evaluation is expensive, which is the case for the RPCP at least when perform-
ing an exact evaluation, costly and unnecessary re-evaluations are avoided supposedly
resulting in an overall faster optimization. Additionally, diversity is maintained in the
population and premature convergence is reduced or avoided as well. Successful appli-
cations of this concept on various test functions including NK landscapes and Royal
Road functions and the generalized minimum spanning tree problem can be found in
Raidl and Hu (2010) and Hu and Raidl (2012), respectively.

123

400 B. Biesinger et al.

After each iteration of the genetic algorithm the newly created offspring is inserted
into the archive. If this solution is already contained in the archive, the solution con-
version is automatically performed and this adapted and guaranteed new solution is
integrated in the population of the GA. The conversion operation can therefore also be
considered as “intelligent mutation”. The data structure used for the solution archive
must be carefully selected in order to allow efficient realizations of the essential insert,
look-up and conversion operations and in particular depends on the solution represen-
tation. As suggested in Raidl and Hu (2010) a trie data structure, which is typically
used for storing a large set of strings (Gusfield 1997) like in language dictionary appli-
cations, is particularly well suited for binary representations because all the essential
operations can be performed in O(h) time, where h is the maximum string length. In
our case for the RPCP the insertion and the conversion procedure run both in O(m)

time and almost independent of the number of created / stored solutions. The next sec-
tions describe the trie data structure and the specific operations of the solution archive
we use for the RPCP in detail.

5.4 Trie structure

Our trie is a binary tree T with maximum height m, the number of possible facility
locations, see Fig. 1. On each level l = 1, . . . ,m of the trie there exist at most 2l−1

trie nodes, denoted by a rectangle in Fig. 1. Each trie node q at level l has the same

Fig. 1 Solution archive with some inserted solutions on the lefthand side and a conversion of
(0, 0, 1, 1, 0, 0, 1) into the new solution (0, 1, 1, 1, 0, 0, 0) on the righthand side

123

A hybrid GA for the discrete RPCP 401

Algorithm 1: insert(x, l, q, openFacs)
Global Variable:
devpoints = ∅ //Set of feasible deviation positions for conversion
Input: leader solution x , level l, node q,

int openFacs //Number of facilities opened until level l
Output: boolean value whether or not x is already contained in the archive
alreadyContained = false;
if l ≤ m ∧ q �= complete ∧ openFacs < p then

if xl == 1 then
if m − l < p − openFacs then

q.next[0] = complete;
openFacs = openFacs + 1;

if q.next[1 − xl] �= complete then
devpoints = devpoints ∪ {(l, p)}

if q.next[xl] == null then
q.next[xl] = new trienode(null, null);

alreadyContained = insert(x, l + 1, q.next[xl], openFacs);
if q == complete then

alreadyContained = true;

else if l > m then
q = complete;

//Pruning
else if q.next[xl] = complete ∧ q.next[1 − xl] = complete then

q = complete;
return alreadyContained;

structure consisting of two entries q.next[0] and q.next[1], denoted by the division
of a rectangle into two parts. Each entry can be either a pointer to a subtree rooted at
a successor node on level l + 1 (denoted by an arrow), a null-pointer (denoted by a
slash), or a complete-pointer (denoted by a C).

Let x = (x1, . . . , xm) be the binary vector representing a candidate leader solu-
tion. Then each node q at level l is related to variable xl and the entries q.next[0]
and q.next[1] split the solution space into two subspaces with xl = 0 and xl = 1,
respectively. In both subspaces all elements from x1 to xl−1 are fixed according to
the path from the root to node q. For example, in Fig. 1 the node on level 2 separates
the solution space into solution candidates starting with (0, 0) and (0, 1). A null-
pointer represents a yet completely unexplored subspace, while a complete-pointer
denotes that already all solutions of the corresponding subspace have been consid-
ered. Note that such a trie is somewhat related to an explicitly stored branch-and-bound
tree.

5.5 Insertion

Algorithm 1 shows how to insert a new candidate solution x = (x1, . . . , xm) into the
trie. Initially, the recursive insertion method is called with parameters (x, 1, root, 0).
We start at the root node at level 1 with the first element x1. At each level l =
1, . . . ,m of the trie we follow the pointer indexed by xl . When the p-th facility
has been encountered, i.e., openFacs = p, at some node q the procedure stops and

123

402 B. Biesinger et al.

we set q.next[1] to complete. We further check at each insertion of a “one” at trie
node q if enough facilities would still fit if instead a zero would be chosen. If this is
not the case, q.next[0] is set to complete to indicate that there is no valid candidate
solution in this subtrie. A set of feasible deviation positions, devpoints, is computed
during the insertion and needed for the potentially following conversion. This set is
cleared at the beginning of each solution insertion and contains all trie nodes visited
during insertion where both entries are not complete. When we encounter a complete-
pointer we know that this solution is already contained in the trie and it must be
converted.

If we are finished with the insertion and the solution is not a duplicate, we prune the
trie if possible to reduce its memory consumption. Pruning is performed by checking
all trie nodes that have been visited during insertion bottom up if both entries of a
trie node q are set to complete. If q.next[0] = q.next[1] = complete we prune this
trie node by setting the corresponding entry of the preceding trie node to complete.
On the left-hand side of Fig. 1 an example of a trie containing the three solutions
(0, 0, 1, 1, 0, 0, 1), (0, 1, 0, 1, 1, 0, 0), and (0, 0, 1, 0, 1, 1, 0) is given. The “C” stands
for a complete-pointer and the “/” for a null-pointer. The crossed out node at level 7 is a
demonstration of setting a “zero” entry to complete because no more feasible solution
fits in this subtrie and of the pruning that followed.

Note that no explicit look-up procedure is needed because the insertion method
sketched inAlgorithm1 integrates the functionality to checkwhether or not a candidate
solution is already contained.

5.6 Conversion

Algorithm 2: convert(x, devpoints)
Input: duplicate leader solution x , feasible deviation positions devpoints
Output: converted not yet considered solution x
q = random entry from devpoints
l = level of the trie node q
xl = 1 − xl ;
while q.next[xl] �= null do

if q.next[xl] == complete then
xl = 1 − xl ;

if q.next[xl] == null then
break;

q = q.next[xl];
l = l + 1;

openFacs = number of facilities opened in x
k = p − openFacs;
if k > 0 then

open k facilities among xl+1, . . . , xm randomly

else if k < 0 then
close |k| facilities among xl+1, . . . , xm randomly

insert(x ,l,q,openFacs);
return x ;

123

A hybrid GA for the discrete RPCP 403

When the insertion procedure detects a solution which is already contained in the
archive, a conversion into a new solution is performed. A pseudocode of this procedure
is given in Algorithm 2. In order to modify a solution, we have to apply at least two
changes: open a facility and close another one. For the first change, let devpoints
denote the set of feasible deviation points computed during insertion. A trie node q
at level l is chosen from this set uniformly at random. Should this set be empty, we
know that the whole search space has been covered and we can stop the optimization
process with the so far best solution being a proven optimum. Otherwise we set the
l-th element of the solution vector to 1− xl , which corresponds to opening or closing
a facility at position l. Now we have to apply a second (inverse) change at a later
position in order to have exactly p facilities opened. We go down the subtrie level
by level using the following strategy. For each trie node q ′ at level l ′ we prefer to
follow the original solution, i.e., the pointer q ′.next[xl ′]. If it is complete, we have no
choice but to use the pointer q ′.next[1 − xl ′] instead (which corresponds to adding
further modifications to the solution vector). As soon as we reach a null-pointer at a
trie node q ′ at level l ′, we know that the corresponding subspace has not been explored
yet, i.e., any feasible solution from this point on is a new one. Therefore, we apply
the remaining necessary changes to get a feasible solution. If the number of opened
facilities in x exceeds p, we close the appropriate number of facilities randomly among
{xl ′+1, . . . , xm}. Otherwise, if this number is smaller than p, we open the appropriate
number of facilities analogously. Finally, this new solution is inserted by applying
Algorithm 1 starting from trie node q ′ at level l ′.

On the righthand side of Fig. 1 an example of a solution conversion is shown. The
duplicate solution x = (0, 0, 1, 1, 0, 0, 1) is inserted into the trie and subsequently
converted. Node q on level 2 is chosen as the deviation point for the first change and
we set x2 = 1, resulting in solution (0, 1, 1, 1, 0, 0, 1). Since the alternative entry
at q.next[1] points to another trie node, this path is followed until a null-pointer is
reached at level 3. Then we close the facility at the randomly chosen position 7 to get
the valid solution (0, 1, 1, 1, 0, 0, 0).

5.7 Randomization of the trie

The above conversion procedure can only change values of solution elements with a
greater index than the level of the deviation position. This induces an undesirable bias
towards elements on positions with higher indices being changed more likely. In order
to counter this problem, a technique called trie randomization is employed, which
has first been suggested by Raidl and Hu (2010). For each search path of the trie we
use a different ordering of the solution variables, i.e., a trie node on level l does not
necessarily correspond to element xl of the solution vector. Instead, the index of the
element related to a trie node q is chosen randomly from the indices not already used
in the path from the root to node q. In our case this is achieved by additionally storing
the corresponding variable index at each trie node. Another possibility is to compute
the next index by a deterministic pseudo random function taking the path from the root
to node q as input. This method saves memory but needs more computational effort
and is applied in Raidl and Hu (2010). Figure 2 shows an example of a randomized

123

404 B. Biesinger et al.

Fig. 2 Candidate solutions
(0,1,1,0,0), (1,0,1,0,0), and
(0,0,0,1,1) in a randomized trie,
where the variables are randomly
associated with the levels

trie. Although this technique cannot avoid biasing completely, the negative effect is
substantially reduced.

6 Local and tabu search with solution archive

There exist several options for possibly utilizing the archive not just within the GA
but also the embedded LS, based on the original swap neighborhood structure.

6.1 Complete neighborhood

The simplest way to performLS is just to use the complete neighborhood as introduced
in Sect. 5.2 without considering the solution archive. This method will find the best
solutionwithin the swap neighborhood but there is no benefit from the solution archive.
We have to re-evaluate already visited solutions within the LS. However, all generated
solutions during the LS are inserted into the solution archive so that the variation
operators of the GA are still guaranteed to produce only not yet considered solution
candidates.

6.2 Reduced neighborhood

The second option is to skip already visited solutions in the neighborhood search.
After each swap it is checked if the new solution is already contained in the solution
archive. If this is the case the evaluation of this solution is skipped and the LS continues
with the next swap. Otherwise this solution is inserted into the solution archive. The
advantage of this method is that re-evaluations of already generated solutions are
completely avoided and the neighborhoods are usually much smaller, resulting in a
lower runtime. A downside is, however, that due to the reduced neighborhoods LS
may terminate with worse solutions that are not local optimal anymore.

6.3 Conversion neighborhood

Another possibility for a combination of the local search and the solution archive is to
perform a conversion whenever an already visited solution is generated by the local

123

A hybrid GA for the discrete RPCP 405

search. This implies that the size of this neighborhood is the same as the complete
neighborhood but instead of re-evaluating duplicates, solutions that are farther away
are considered to possibly find a better solution.

6.4 Tabu search

The fourth method we consider uses a tabu search instead of a local search where the
tabu list is realized by the solution archive. This means in particular that the search is
not stoppedwhen a neighborhood does not contain a better solution but a best neighbor
solution that has not been visited, even when worse than the current solution, is always
accepted and the search continues. In thisway, the algorithmmight escape local optima.
This strategy can be combined with either of the latter two methods. Unlike the LS,
since there is no predefined end of the tabu search, an explicit termination criterion
is needed, e.g., a time limit or a number of iterations without improvement. As final
solution, the best one encountered during the whole tabu search is returned.

7 Multi-level solution evaluation scheme

In this section we want to exploit several relationships between the solution values of
the different evaluation methods which are described in Sect. 4. Suppose that pfLP(x)
is the objective value of the follower’s problem obtained by LP evaluation for a given
leader solution x, pfexact(x) is the objective value obtained by exact (MIP-based) eval-
uation and pfgreedy(x) is the objective value of the follower’s problem when using the

greedy evaluation. Then pfLP(x) is obviously an upper bound and pfgreedy(x) a lower

bound to pfexact(x), i.e., the following relations hold:

pfgreedy(x) ≤ pfexact(x) ≤ pfLP(x) (10)

Since we compute the turnover of the leader by subtracting the turnover of the
follower from the total demand for all customers, i.e.,

plLP(x) =
∑

j∈J

w j − pfLP(x),

plexact(x) =
∑

j∈J

w j − pfexact(x),

plgreedy(x) =
∑

j∈J

w j − pfgreedy(x),

we obtain:
plLP(x) ≤ plexact(x) ≤ plgreedy(x) (11)

123

406 B. Biesinger et al.

7.1 Basic multi-level solution evaluation scheme

Based on inequalities (11)we devise amulti-level solution evaluation scheme. Suppose
that plLP(x̂) is the value of the leader’s turnover obtained by LP evaluation of the best
solution found so far x̂ . For each generated solution candidate x we evaluate it using
greedy evaluation yielding a maximum achievable turnover of plgreedy(x). Then we
distinguish two cases:

– plgreedy(x) ≤ plLP(x̂): This implies that plexact(x) ≤ plexact(x̂) and therefore x
cannot be better than the so far best solution. So we do not put more effort in
evaluating x more accurately.

– plgreedy(x) > plLP(x̂): We do not know if plexact(x) > plexact(x̂) and therefore have
to evaluate x more accurately. We do this by performing a more accurate (i.e., LP
or exact) evaluation after the initial greedy evaluation to get a better estimate of
the quality of x .

Preliminary tests showed that during an average run of our algorithm we can avoid
the more accurate and thus more time-consuming solution evaluation for over 95% of
the solution candidates. Therefore it is likely that this method will reduce the overall
optimization time of our algorithm in comparison to always performing an accurate
evaluation. In Sect. 8.4 we will show that this multi-level solution evalution scheme
is able to improve the results significantly in terms of running time and final solution
quality.

7.2 Multi-level solution evaluation scheme and local search

For intermediate local search a modification of the multi-level evaluation scheme is
needed. Suppose that x̂ is the so far best candidate solution with an objective value of
plLP(x̂)which is obtained by LP evaluation. Furthermore let x ′ be the starting solution
of the local search which has an objective value of plLP(x

′) ≤ plLP(x̂) also obtained
by LP evaluation. Then we encounter a problem if the objective value plgreedy(x) of
a neighboring candidate solution x , which initially is obtained by greedy evaluation
lies between plLP(x

′) and plLP(x̂), i.e.,

plLP(x
′) < plgreedy(x) ≤ plLP(x̂).

Since plgreedy(x) is smaller than the best LP solution value found so far, x is not
evaluated more accurately. It is, however, greater than the LP solution value of the
starting solution of the LS so a move toward this solution is performed. This could
lead to undesirable behavior because in fact we do not know if solution x is superior
to solution x ′ and the LS would most likely perform moves towards a solution with a
good greedy value instead of a solution with a good LP or exact value.

To avoid this problem we compare the solution value obtained by the initial greedy
evaluation to the best LP solution value found so far in this local search call instead
of the global best LP solution value for determining whether or not the solution shall
be evaluated more accurately. This implies that in each iteration of the local search

123

A hybrid GA for the discrete RPCP 407

we start with a candidate solution that is evaluated using LP evaluation. This results
in a local search towards the candidate solution with the best LP value at the cost of
additional LP evaluations.

8 Computational results

In this section we present computational results of the developed methods. The
instances used in all tests are partly taken from the benchmark library of Discrete
Location Problems.1 There are two types of instances: Euclidean, where the locations
are chosen randomly on an Euclidean plane of size 7,000×7,000 andUniform where
all pairwise distances are chosen uniformly at random from the interval [1, 10000].
Customer demands are randomly selected from 1 to 200 or set to 1 for all customers.
They have in common that the customers and the possible facility locations are on the
same sites (I = J), the number of customers is n = 100 and the number of facilities to
be opened is r = p ∈ {10, 15, 20} for the Euclidean instances and r = p = {7, 25, 30}
for the Uniform instances. In addition we generated larger Euclidean instances2 with
150 and 200 customers by using the same scheme.With a total of 10 instances per cus-
tomer size and r = p = {10, 15, 20}, the Euclidean test set consists of 90 instances.
The Uniform test set only considers instances with 100 customers and contains 30
instances. All our tests were carried out on a single core of an Intel Xeon Quadcore
with 2.53 GHz and 3GB RAM. The models for the solution evaluation are solved
using the IBM ILOG CPLEX Optimizer in version 12.5.

If not stated otherwise, in all of the following tests we used the GA configuration
from Sect. 5 with a population size of 100. Local search is performed for a solution
whose objective value is within α = 5% of the overall best solution’s value with the
reduced swap neighborhood from Sect. 6 and a best improvement step function. After
the algorithm terminates, the whole population is evaluated exactly to obtain the best
feasible solution of the last population.

For all tables the following holds: InstancesCode111 toCode1011 are the instances
with n = 100 by Alekseeva et al. (2009) and instances Code123 to Code1023 are the
uniform instances also with n = 100 by Davydov et al. (2014a). The other instance
names contain either 150 or 200which stands for the number of customers. The number
right after rp corresponds to the number of facilities to place. In the first row the name
of the algorithm is listed. The second row describes the columns, where obj stands for
the average of the final leader objective value over 30 runs, sd is the corresponding
standard deviation and t∗ is the median time needed for finding the best solution in
seconds. The highest (best) value for each instance out of the different configurations
is marked in bold. All runs are terminated after 600 s to ensure comparability. First, we
tested several configurations of the proposed algorithm on the Euclidean instances.
Then, a comparison with different algorithms from the literature is presented. The
results of computational tests on Uniform instances are described in Sect. 8.6. Due to
space limitations Tables 1, 2, 3, 4, 5, 6 and 7 do not contain the numerical results of all

1 http://math.nsc.ru/AP/benchmarks/Competitive/p_med_comp_eng.html.
2 https://www.ads.tuwien.ac.at/w/Research/Problem_Instances#Competitive_Facility_Location_Problems.

123

http://math.nsc.ru/AP/benchmarks/Competitive/p_med_comp_eng.html
https://www.ads.tuwien.ac.at/w/Research/Problem_Instances#Competitive_Facility_Location_Problems

408 B. Biesinger et al.

Table 1 Results of different solution evaluation methods using the standard configuration

Greedy LP Exact

Instance obj sd t∗[s] obj sd t∗[s] obj sd t∗[s]

Code111w_rp10 4,359.00 0.00 14.80 4,361.00 0.00 130.30 4,361.00 0.00 70.60

Code111w_rp15 4,547.11 6.01 20.10 4,596.00 0.00 64.10 4,596.00 0.00 55.60

Code111w_rp20 4,508.50 6.09 253.30 4,505.47 11.22 343.30 4,502.90 11.26 217.70

Code1_150w_rp10 7,132.20 130.36 250.20 7,138.37 112.88 88.60 7,167.43 51.47 94.00

Code1_150w_rp15 7,008.63 54.17 138.40 7,077.97 35.79 341.20 7,088.83 43.99 398.50

Code1_150w_rp20 7,070.67 52.46 314.20 7,198.27 19.01 380.20 7,198.53 22.50 370.60

Code1_200w_rp10 9,349.60 69.78 406.60 9,476.17 107.30 200.60 9478.50 92.39 369.70

Code1_200w_rp15 9,814.13 185.24 351.30 10,001.40 92.78 394.40 10,000.30 82.92 475.60

Code1_200w_rp20 9,615.13 135.94 411.90 9,753.07 77.54 572.80 9,697.53 85.19 586.90

Code211w_rp10 5,309.47 2.92 26.50 5,310.00 0.00 43.50 5,310.00 0.00 46.10

Code211w_rp15 5,373.00 0.00 97.10 5,373.00 0.00 111.80 5,373.00 0.00 95.70

Code211w_rp20 5,431.57 2.37 284.50 5,404.43 29.69 291.60 5,405.63 31.19 365.20

Code2_150w_rp10 7,181.53 52.91 332.10 7,247.47 53.43 292.50 7,253.30 71.29 291.00

Code2_150w_rp15 7,590.23 92.37 154.60 7,743.20 4.70 281.40 7,742.00 5.57 358.40

Code2_150w_rp20 7,673.90 83.24 255.00 7,772.13 40.91 349.50 7,755.50 46.49 347.80

Code2_200w_rp10 9,032.00 71.74 221.20 9,231.63 75.55 249.80 9,254.53 62.00 448.00

Code2_200w_rp15 9,274.23 153.66 312.40 9,539.27 70.94 516.40 9,505.43 109.72 438.40

Code2_200w_rp20 9,381.90 138.87 475.30 9,579.83 118.18 508.00 9570.30 110.98 548.80

Code311w_rp10 4,392.47 42.88 17.80 4,483.00 0.00 25.80 4,483.00 0.00 24.50

Code311w_rp15 4,782.10 18.23 221.60 4,800.00 0.00 73.60 4,800.00 0.00 63.20

Code311w_rp20 4,853.47 8.76 100.50 4,892.80 0.61 297.90 4,892.67 0.76 250.80

Code3_150w_rp10 7,240.20 75.69 362.80 7,286.93 16.36 310.70 7,291.87 13.30 369.20

Code3_150w_rp15 7,499.30 44.12 161.60 7,589.00 18.83 285.80 7,589.27 18.01 200.50

Code3_150w_rp20 7,520.40 63.06 303.20 7,624.43 34.03 309.10 7,624.37 34.20 411.20

Code3_200w_rp10 9,224.03 52.98 202.70 9,300.23 70.30 291.70 9,287.13 74.85 362.90

Code3_200w_rp15 9,145.17 210.97 378.30 9,304.57 71.44 386.40 9,308.37 70.27 459.10

Code3_200w_rp20 8,902.30 210.90 468.70 9,197.97 155.51 516.80 9145.73 107.33 574.10

… … … … … … … … … …

Geometric mean 6,907.43 6,995.12 6,993.29

#Best results 11 53 48

#Unique best res. 6 35 31

Table 2 Results of Wilcoxon
rank sum tests with error levels
of 5% for the different solution
evaluation methods

Greedy LP Exact �

Greedy – 5 5 10

LP 75 – 6 81

Exact 73 4 – 77

123

A hybrid GA for the discrete RPCP 409

Ta
bl

e
3

R
es
ul
ts
of

di
ff
er
en
tc
on
fig

ur
at
io
ns

fo
r
th
e
G
A
:t
he

pu
re

ge
ne
tic

al
go
ri
th
m

(G
A
),
G
A
w
ith

lo
ca
ls
ea
rc
h
(G

A
+
L
S)
,G

A
w
ith

so
lu
tio

n
ar
ch
iv
e
(G

A
+
so
lA
)
an
d
G
A

w
ith

so
lu
tio

n
ar
ch
iv
e
an
d
lo
ca
ls
ea
rc
h
(G

A
+
L
S
+
so
lA
)

G
A

G
A

+
L
S

G
A

+
so
lA

G
A

+
L
S

+
so
lA

In
st
an
ce

ob
j

sd
t∗

[s]
ob
j

sd
t∗

[s]
ob
j

sd
t∗

[s]
ob
j

sd
t∗

[s]
C
od

e1
11

w
_r
p1

0
4,
33

1.
80

12
.3
2

33
8.
20

4,
34

8.
97

25
.0
0

11
3.
00

4,
33

4.
20

10
.7
5

40
2.
60

4,
36

1.
00

0.
00

14
.7
0

C
od

e1
11

w
_r
p1

5
4,
57

2.
37

21
.1
8

46
1.
10

4,
58

6.
43

16
.6
5

38
.5
0

4,
58

2.
67

6.
63

41
2.
80

4,
59

6.
00

0.
00

16
.1
0

C
od

e1
11

w
_r
p2

0
4,
45

2.
23

17
.5
0

53
8.
40

4,
47

4.
97

23
.5
2

16
2.
50

4,
46

4.
17

21
.4
2

52
1.
40

4,
50

5.
47

11
.2
2

20
9.
50

C
od

e1
_1

50
w
_r
p1

0
6,
50

3.
63

12
3.
24

53
8.
20

7,
16

3.
57

54
.7
5

11
3.
40

6,
60

6.
03

12
0.
76

53
0.
10

7,
13

8.
37

11
2.
88

29
.2
0

C
od

e1
_1

50
w
_r
p1

5
6,
82

3.
13

63
.3
6

54
9.
60

7,
02

1.
47

75
.6
4

14
9.
30

6,
87

6.
50

49
.8
3

54
6.
80

7,
07

7.
97

35
.7
9

13
3.
00

C
od

e1
_1

50
w
_r
p2

0
6,
90

0.
63

10
9.
91

55
0.
20

7,
16

3.
03

58
.6
9

18
7.
30

6,
98

0.
63

10
5.
85

56
0.
30

7,
19

8.
27

19
.0
1

24
1.
40

C
od

e1
_2

00
w
_r
p1

0
8,
81

0.
10

20
1.
26

53
1.
40

9,
44

3.
60

10
5.
48

24
6.
70

8,
92

6.
30

18
9.
46

50
9.
10

9,
47

6.
17

10
7.
30

24
3.
10

C
od

e1
_2

00
w
_r
p1

5
9,
07

9.
43

26
5.
11

57
2.
00

9,
95

6.
77

11
2.
63

34
9.
90

9,
21

2.
53

22
7.
11

55
3.
60

10
,0

01
.4

0
92

.7
8

29
7.
10

C
od

e1
_2

00
w
_r
p2

0
8,
89

9.
63

15
7.
41

56
2.
00

9,
68

3.
20

11
9.
85

47
9.
60

8,
99

6.
93

21
9.
23

56
0.
80

9,
75

3.
07

77
.5
4

46
0.
50

C
od

e2
11

w
_r
p1

0
5,
28

9.
47

25
.6
0

52
1.
20

5,
31

0.
00

0.
00

51
.2
0

5,
29

1.
13

28
.0
9

47
3.
40

5,
31

0.
00

0.
00

8.
10

C
od

e2
11

w
_r
p1

5
5,
27

9.
47

35
.1
2

54
6.
90

5,
36

2.
33

19
.7
3

42
.4
0

5,
29

4.
43

31
.3
1

49
3.
60

5,
37

3.
00

0.
00

23
.1
0

C
od

e2
11

w
_r
p2

0
5,
25

0.
03

52
.4
7

55
6.
90

5,
35

1.
80

55
.1
6

13
5.
10

5,
26

8.
93

47
.0
1

54
6.
80

5,
40

4.
43

29
.6
9

82
.4
0

C
od

e2
_1

50
w
_r
p1

0
6,
96

2.
67

46
.4
8

51
9.
90

7,
22

9.
90

89
.6
1

23
3.
40

6,
96

9.
40

43
.4
3

51
2.
40

7,
24

7.
47

53
.4
3

24
2.
70

C
od

e2
_1

50
w
_r
p1

5
7,
42

3.
00

94
.9
1

53
7.
40

7,
70

2.
23

10
3.
32

14
8.
00

7,
49

6.
67

66
.0
9

51
6.
30

7,
74

3.
20

4.
70

96
.9
0

C
od

e2
_1

50
w
_r
p2

0
7,
43

9.
37

65
.1
2

54
0.
10

7,
71

3.
43

70
.9
6

20
8.
40

7,
50

0.
33

60
.9
7

55
1.
80

7,
77

2.
13

40
.9
1

21
1.
50

C
od

e2
_2

00
w
_r
p1

0
8,
60

9.
17

15
1.
04

52
4.
40

9,
18

1.
07

12
7.
89

22
8.
80

8,
71

7.
20

13
1.
21

52
9.
70

9,
23

1.
63

75
.5
5

13
0.
10

C
od

e2
_2

00
w
_r
p1

5
8,
63

9.
43

15
9.
89

52
3.
30

9,
48

2.
17

11
9.
41

34
2.
10

8,
67

8.
77

14
4.
79

52
0.
70

9,
53

9.
27

70
.9
4

39
2.
00

C
od

e2
_2

00
w
_r
p2

0
8,
62

6.
47

11
9.
66

55
7.
10

9,
50

8.
30

11
9.
17

52
1.
50

8,
72

6.
30

11
2.
43

54
7.
80

9,
57

9.
83

11
8.
18

42
1.
30

C
od

e3
11

w
_r
p1

0
4,
47

2.
50

34
.6
5

33
1.
60

4,
48

3.
00

0.
00

21
.2
0

4,
48

3.
00

0.
00

33
6.
20

4,
48

3.
00

0.
00

8.
10

C
od

e3
11

w
_r
p1

5
4,
77

5.
93

19
.7
9

47
3.
20

4,
78

5.
40

22
.8
5

70
.4
0

4,
78

1.
13

21
.8
9

53
4.
60

4,
80

0.
00

0.
00

13
.3
0

C
od

e3
11

w
_r
p2

0
4,
83

5.
77

15
.6
2

53
4.
70

4,
87

9.
17

14
.6
1

11
6.
60

4,
84

9.
67

11
.7
0

49
5.
30

4,
89

2.
80

0.
61

65
.2
0

123

410 B. Biesinger et al.

Ta
bl

e
3

co
nt
in
ue
d

G
A

G
A

+
L
S

G
A

+
so
lA

G
A

+
L
S

+
so
lA

In
st
an
ce

ob
j

sd
t∗

[s]
ob
j

sd
t∗

[s]
ob
j

sd
t∗

[s]
ob
j

sd
t∗

[s]
C
od

e3
_1

50
w
_r
p1

0
6,
97

5.
17

75
.2
9

52
2.
30

7,
25

2.
50

69
.7
5

13
6.
20

7,
00

4.
47

71
.9
6

49
3.
00

7,
28

6.
93

16
.3
6

35
.4
0

C
od

e3
_1

50
w
_r
p1

5
7,
33

3.
73

12
4.
31

55
1.
10

7,
55

4.
00

47
.9
5

13
1.
20

7,
39

1.
33

95
.7
2

52
3.
60

7,
58

9.
00

18
.8
3

14
2.
50

C
od

e3
_1

50
w
_r
p2

0
7,
35

8.
33

70
.6
0

54
3.
60

7,
60

1.
30

45
.2
9

21
4.
80

7,
40

6.
17

50
.7
0

55
9.
40

7,
62

4.
43

34
.0
3

27
4.
00

C
od

e3
_2

00
w
_r
p1

0
8,
83

2.
40

18
1.
41

55
3.
50

9,
22

9.
40

86
.1
7

23
9.
00

8,
85

6.
23

18
5.
09

53
5.
80

9,
30

0.
23

70
.3
0

22
7.
00

C
od

e3
_2

00
w
_r
p1

5
8,
23

2.
10

26
9.
27

56
3.
40

9,
26

5.
43

98
.3
6

33
3.
10

8,
49

7.
40

20
3.
87

56
2.
00

9,
30

4.
57

71
.4
4

28
1.
90

C
od

e3
_2

00
w
_r
p2

0
8,
09

1.
83

18
8.
37

56
4.
80

9,
15

0.
37

17
4.
73

50
9.
90

8,
25

1.
03

13
4.
42

55
0.
60

9,
19

7.
97

15
5.
51

42
6.
90

…
…

…
…

…
…

…
…

…
…

…
…

…

G
eo
m
et
ri
c
m
ea
n

6,
64

3.
72

6,
96

4.
10

6,
69

1.
70

6,
99

5.
12

#B
es
tr
es
ul
ts

1
10

3
85

#U
ni
qu
e
be
st
re
s.

0
5

0
80

123

A hybrid GA for the discrete RPCP 411

Table 4 Results of Wilcoxon
rank sum tests with error levels
of 5% for the different
configurations of the GA

GA GA + LS GA + solA GA + LS + solA �

GA – 0 0 0 0

GA + LS 85 – 84 0 169

GA + SA 56 0 – 0 56

GA + LS + SA 87 60 87 – 234

of the 90 Euclidean instances but only a representative selection. The full result tables
can be found online.2 In addition, the geometric mean, the number of best results and
the number of unique best results are shown over all instances.

In most of the following sections there is a second table after the main results table.
These tables display the results of pairwise Wilcoxon rank sum tests of the different
configurations with error levels of 5%. The value in the cell at line i and row j gives
the number of instances for which configuration i yields significantly better results
than configuration j . The rightmost column lists the sums over all numbers in the
corresponding rows.

8.1 Solution evaluation on euclidean instances

In the following testswe compare three types of solution evaluation schemes according
to Sect. 4: greedy evaluation, LP evaluation and exact evaluation. The aim of these tests
is to find out which runtime/solution accuracy tradeoff is suitable for this problem.

Table 1 shows the results. As we can see, although each greedy evaluation is 4–5
times faster than the LP evaluation, the results for the greedy evaluation are rather
poor because the solution with the highest greedy value often does not correspond
to an optimal solution according to the exact evaluation. In contrast, the results for
evaluating solutions using the LP evaluation are similiar to those obtained by using
the exact evaluation. In many cases the root LP relaxation of the follower’s problem
is already integral and no branching has to be performed, hence the similar results.
Therefore, for the remaining tests we primarily use the LP evaluation method.

8.2 Genetic algorithm on Euclidean instances

Now, we analyze different configurations of the GA. The GA was tested with and
without the local search and with and without the solution archive. The aim was to see
the impact of using the different techniques on the average solution quality and speed.
Table 3 shows the computational results.We canmake several interesting observations:
As expected, the GA alone performs not very well, neither regarding solution quality
nor convergence speed, but its performance is substantially improved by executing
intermediate local searches. By adding the solution archive (solA) to the pure GA we
were also able to significantly improve the results. The benefit of the local search seems
to be greater than the benefit of the solution archive because the relative difference of
the geometric mean of GA + LS and the GA is about 5% while the difference of GA +
SA and GA is only about 0.7%. Adding both, LS and solA, to the GA clearly further
improves the performance. For this combined approval not only the solution quality

123

412 B. Biesinger et al.

Ta
bl

e
5

R
es
ul
ts
of

us
in
g
di
ff
er
en
tn

ei
gh

bo
rh
oo

d
(N

B
)
st
ru
ct
ur
es

fo
r
in
te
rm

ed
ia
te
lo
ca
l/

ta
bu

se
ar
ch

(T
S)

C
om

pl
et
e
N
B

R
ed
uc
ed

N
B

C
on
ve
rs
io
n
N
B

T
S
w
ith

re
du
ce
d
N
B

In
st
an
ce

ob
j

sd
t∗

[s]
ob
j

sd
t∗

[s]
ob
j

sd
t∗

[s]
ob

j
sd

t∗
[s]

C
od

e1
11

w
_r
p1

0
4,

36
1.

00
0.
00

13
3.
80

4,
36

1.
00

0.
00

13
0.
30

4,
36

1.
00

0.
00

72
.2
0

4,
36

1.
00

0.
00

47
.0
0

C
od

e1
11

w
_r
p1

5
4,

59
6.

00
0.
00

44
.9
0

4,
59

6.
00

0.
00

64
.1
0

4,
59

6.
00

0.
00

79
.4
0

4,
59

6.
00

0.
00

55
.1
0

C
od

e1
11

w
_r
p2

0
4,
48

8.
20

22
.4
2

29
9.
50

4,
50

5.
47

11
.2
2

34
3.
30

4,
49

7.
93

14
.6
9

34
3.
60

4,
50

6.
23

8.
39

26
8.
70

C
od

e1
_1

50
w
_r
p1

0
7,
15

7.
07

89
.9
6

11
3.
60

7,
13

8.
37

11
2.
88

88
.6
0

7,
17

1.
30

47
.6
5

13
7.
40

7,
18

0.
00

0.
00

11
8.
00

C
od

e1
_1

50
w
_r
p1

5
7,
05

5.
70

39
.7
1

24
0.
40

7,
07

7.
97

35
.7
9

34
1.
20

7,
07

0.
77

45
.7
9

33
9.
40

7,
14

3.
30

31
.6
3

33
7.
00

C
od

e1
_1

50
w
_r
p2

0
7,
18

7.
87

22
.5
9

28
9.
30

7,
19

8.
27

19
.0
1

38
0.
20

7,
19

0.
87

24
.8
4

40
0.
70

7,
22

1.
50

27
.7
5

45
5.
20

C
od

e1
_2

00
w
_r
p1

0
9,
47

1.
80

85
.4
2

28
6.
70

9,
47

6.
17

10
7.
30

20
0.
60

9,
50

8.
00

67
.2
9

40
0.
10

9,
53

2.
50

56
.1
0

35
0.
30

C
od

e1
_2

00
w
_r
p1

5
9,
95

9.
17

13
3.
66

48
3.
60

10
,0

01
.4

0
92

.7
8

39
4.
40

9,
98

8.
87

10
0.
51

46
1.
90

9,
98

6.
13

99
.4
3

50
0.
60

C
od

e1
_2

00
w
_r
p2

0
9,
70

6.
37

70
.2
7

53
0.
90

9,
75

3.
07

77
.5
4

57
2.
80

9,
72

0.
67

74
.2
9

52
1.
80

9,
76

0.
10

69
.6
7

60
0.
00

C
od

e2
11

w
_r
p1

0
5,

31
0.

00
0.
00

85
.5
0

5,
31

0.
00

0.
00

43
.5
0

5,
31

0.
00

0.
00

29
.0
0

5,
31

0.
00

0.
00

33
.1
0

C
od

e2
11

w
_r
p1

5
5,
36

7.
60

8.
39

62
.4
0

5,
37

3.
00

0.
00

11
1.
80

5,
37

3.
00

0.
00

10
0.
40

5,
37

3.
00

0.
00

16
2.
80

C
od

e2
11

w
_r
p2

0
5,
38

6.
77

37
.4
2

29
1.
80

5,
40

4.
43

29
.6
9

29
1.
60

5,
40

4.
13

30
.6
2

43
9.
50

5,
42

7.
37

9.
90

20
0.
00

C
od

e2
_1

50
w
_r
p1

0
7,
23

4.
77

55
.5
4

30
3.
70

7,
24

7.
47

53
.4
3

29
2.
50

7,
26

5.
53

58
.7
2

21
6.
00

7,
29

0.
17

48
.8
1

40
1.
10

C
od

e2
_1

50
w
_r
p1

5
7,
73

8.
40

13
.7
5

30
6.
10

7,
74

3.
20

4.
70

28
1.
40

7,
74

2.
30

5.
53

36
7.
50

7,
74

1.
60

6.
29

34
2.
30

C
od

e2
_1

50
w
_r
p2

0
7,
73

7.
80

51
.8
7

36
0.
50

7,
77

2.
13

40
.9
1

34
9.
50

7,
77

1.
40

39
.2
9

39
0.
40

7,
77

4.
13

59
.6
1

31
7.
60

C
od

e2
_2

00
w
_r
p1

0
9,
21

4.
43

10
2.
90

26
6.
60

9,
23

1.
63

75
.5
5

24
9.
80

9,
23

0.
23

94
.5
3

39
5.
30

9,
25

2.
07

89
.1
0

37
6.
50

C
od

e2
_2

00
w
_r
p1

5
9,
52

5.
37

92
.8
6

41
9.
00

9,
53

9.
27

70
.9
4

51
6.
40

9,
51

8.
10

93
.2
3

43
9.
20

9,
56

1.
30

83
.0
8

59
1.
40

C
od

e2
_2

00
w
_r
p2

0
9,
54

2.
93

10
6.
14

54
9.
80

9,
57

9.
83

11
8.
18

50
8.
00

9,
54

9.
43

10
1.
89

54
9.
80

9,
61

9.
70

67
.3
3

60
0.
00

C
od

e3
11

w
_r
p1

0
4,

48
3.

00
0.
00

25
.4
0

4,
48

3.
00

0.
00

25
.8
0

4,
48

3.
00

0.
00

23
.8
0

4,
48

3.
00

0.
00

31
.1
0

C
od

e3
11

w
_r
p1

5
4,

80
0.

00
0.
00

85
.9
0

4,
80

0.
00

0.
00

73
.6
0

4,
80

0.
00

0.
00

50
.8
0

4,
80

0.
00

0.
00

49
.2
0

C
od

e3
11

w
_r
p2

0
4,
89

0.
63

3.
95

18
3.
30

4,
89

2.
80

0.
61

29
7.
90

4,
89

2.
67

0.
76

26
4.
90

4,
89

2.
73

0.
69

21
3.
90

C
od

e3
_1

50
w
_r
p1

0
7,
28

5.
67

15
.7
6

11
3.
40

7,
28

6.
93

16
.3
6

31
0.
70

7,
29

3.
10

12
.1
0

31
4.
30

7,
29

9.
00

0.
00

13
0.
90

123

A hybrid GA for the discrete RPCP 413

Ta
bl

e
5

co
nt
in
ue
d

C
om

pl
et
e
N
B

R
ed
uc
ed

N
B

C
on
ve
rs
io
n
N
B

T
S
w
ith

re
du
ce
d
N
B

In
st
an
ce

ob
j

sd
t∗

[s]
ob
j

sd
t∗

[s]
ob
j

sd
t∗

[s]
ob
j

sd
t∗

[s]
C
od

e3
_1

50
w
_r
p1

5
7,
56

7.
03

34
.6
8

19
3.
00

7,
58

9.
00

18
.8
3

28
5.
80

7,
58

9.
90

18
.8
6

28
6.
60

7,
58

3.
77

20
.3
8

19
2.
40

C
od

e3
_1

50
w
_r
p2

0
7,
60

5.
33

47
.9
0

29
8.
50

7,
62

4.
43

34
.0
3

30
9.
10

7,
62

7.
93

26
.4
9

33
1.
80

7,
62

0.
67

46
.2
1

42
9.
70

C
od

e3
_2

00
w
_r
p1

0
9,
26

5.
97

10
2.
41

24
7.
40

9,
30

0.
23

70
.3
0

29
1.
70

9,
27

5.
87

85
.7
9

32
0.
20

9,
33

9.
97

76
.4
6

37
5.
40

C
od

e3
_2

00
w
_r
p1

5
9,
27

9.
60

91
.0
5

38
3.
20

9,
30

4.
57

71
.4
4

38
6.
40

9,
30

1.
60

68
.8
0

43
8.
00

9,
31

7.
83

66
.4
0

49
6.
10

C
od

e3
_2

00
w
_r
p2

0
9,
14

9.
43

11
8.
80

51
8.
40

9,
19

7.
97

15
5.
51

51
6.
80

9,
14

7.
50

11
5.
48

51
7.
80

9,
22

0.
97

10
5.
33

60
0.
00

…
…

…
…

…
…

…
…

…
…

…
…

…

G
eo
m
et
ri
c
m
ea
n

6,
98

3.
65

6,
99

5.
12

6,
99

2.
38

7,
00

6.
53

#B
es
tr
es
ul
ts

13
27

22
74

#U
ni
qu
e
be
st
re
su
lts

0
9

7
55

123

414 B. Biesinger et al.

Table 6 Results of Wilcoxon rank sum tests with error levels of 5% for the different local search neigh-
borhood structures and tabu search

Complete NB Reduced NB Conversion NB TS with reduced NB �

Complete NB – 1 0 0 1

Reduced NB 31 – 5 0 36

Conversion NB 23 3 – 0 26

TS with reduced NB 54 21 32 – 107

is the best among the configurations but these solutions in most of the cases are also
found faster.

8.3 Neighborhoods of the local search and tabu search on Euclidean instances

Table 5 shows the results of using the different strategies for utilizing the solA within
LS and tabu search (TS), respectively (c.f. Sect. 6). As expected the complete neigh-
borhood strategy performed worst because of the overhead of re-evaluating already
visited solutions but on some of the smaller test instances it is able to produce equally
good results. Among all tested LS neighborhoods, reduced neighborhood yields the
best results, so it is chosen for all further tests. While on the smaller test instances with
100 customers the conversion and the complete neighborhood can keep up with the
reduced neighborhood in terms of mean objective value, on larger instances the perfor-
mance gap increases. The differences in the objective value of the conversion neigh-
borhood and the reduced neighborhood are small and the conversion neighborhood
even finds the best solution in less time for some instances, e.g., Code111w_rp10 and
Code211w_rp10. However, this difference vanisheswhen considering larger instances,
where the reduced neighborhood consistently finds better solutions. Apparently, for
these instances conversion moves were too rarely able to improve the starting solution.
The largest improvement of the overall results could be achieved by using a tabu search
with the reduced neighborhood. In none of our benchmark instances any other con-
figuration was able to find solutions with a statistical significant better mean objective
value.

8.4 Multi-level evaluation scheme on Euclidean instances

The computational results for testing the multi-level evaluation scheme (ML-ES) con-
firms the hypothesis that it is able to speed up the algorithm significantly. We further
tested if the local search using the local best LP solution (improved LS) as described
in Sect. 7.2 actually improves the solution quality. Finally we investigated the tabu
search approach (improved TS), which is explained in Sect. 6.4 in combination with
the reduced NB. For the TS we also used the adaptation for the improved LS in a
straightforward way and set a termination criterion of five iterations without improve-
ment.

123

A hybrid GA for the discrete RPCP 415

Ta
bl

e
7

R
es
ul
ts
fo
r
th
e
m
ul
ti-
le
ve
le
va
lu
at
io
n
sc
he
m
e
an
d
th
e
lo
ca
l/t
ab
u
se
ar
ch

im
pr
ov
em

en
tc
om

pa
re
d
to

th
e
st
an
da
rd

L
P
so
lu
tio

n
ev
al
ua
tio

n

G
A

+s
ol
A

+L
P

+L
S

G
A

+s
ol
A

+M
L
-

E
S

+L
S

G
A

+s
ol
A

+M
L
-

E
S

+i
m
pr
ov
ed

L
S

G
A

+s
ol
A

+M
L
-

E
S

+i
m
pr
ov
ed

T
S

In
st
an
ce

ob
j

sd
t∗

[s]
ob
j

sd
t∗

[s]
ob
j

sd
t∗

[s]
ob
j

sd
t∗

[s]
C
od

e1
11

w
_r
p1

0
4,

36
1.

00
0.
00

13
0.
30

4,
36

1.
00

0.
00

13
.0
0

4,
36

1.
00

0.
00

12
.7
0

4,
36

1.
00

0.
00

14
.7
0

C
od

e1
11

w
_r
p1

5
4,

59
6.

00
0.
00

64
.1
0

4,
59

6.
00

0.
00

22
.2
0

4,
59

6.
00

0.
00

12
.2
0

4,
59

6.
00

0.
00

16
.1
0

C
od

e1
11

w
_r
p2

0
4,
50

5.
47

11
.2
2

34
3.
30

4,
50

7.
77

4.
15

18
1.
80

4,
51

1.
47

1.
38

23
1.
30

4,
51

1.
87

0.
73

20
9.
50

C
od

e1
_1

50
w
_r
p1

0
7,
13

8.
37

11
2.
88

88
.6
0

7,
18

0.
00

0.
00

23
.5
0

7,
18

0.
00

0.
00

33
.7
0

7,
18

0.
00

0.
00

29
.2
0

C
od

e1
_1

50
w
_r
p1

5
7,
07

7.
97

35
.7
9

34
1.
20

7,
08

0.
23

45
.9
2

11
0.
30

7,
13

0.
97

36
.6
7

29
1.
60

7,
15

3.
93

0.
25

13
3.
00

C
od

e1
_1

50
w
_r
p2

0
7,
19

8.
27

19
.0
1

38
0.
20

7,
19

8.
70

23
.3
9

26
4.
90

7,
20

8.
13

18
.9
7

28
2.
50

7,
24

7.
27

7.
97

24
1.
40

C
od

e1
_2

00
w
_r
p1

0
9,
47

6.
17

10
7.
30

20
0.
60

9,
51

5.
23

54
.6
5

20
1.
80

9,
55

8.
83

37
.2
6

29
8.
50

9,
59

4.
00

10
.3
7

24
3.
10

C
od

e1
_2

00
w
_r
p1

5
10

,0
01

.4
0

92
.7
8

39
4.
40

10
,0
26

.2
3

67
.1
7

13
4.
20

10
,0
77

.1
0

42
.9
6

28
9.
20

10
,0

95
.0

0
37

.0
2

29
7.
10

C
od

e1
_2

00
w
_r
p2

0
9,
75

3.
07

77
.5
4

57
2.
80

9,
74

2.
10

93
.2
0

22
5.
20

9,
80

7.
57

74
.6
7

46
0.
80

9,
83

1.
97

56
.3
5

46
0.
50

C
od

e2
11

w
_r
p1

0
5,

31
0.

00
0.
00

43
.5
0

5,
31

0.
00

0.
00

8.
60

5,
31

0.
00

0.
00

8.
30

5,
31

0.
00

0.
00

8.
10

C
od

e2
11

w
_r
p1

5
5,

37
3.

00
0.
00

11
1.
80

5,
37

3.
00

0.
00

37
.0
0

5,
37

3.
00

0.
00

17
.8
0

5,
37

3.
00

0.
00

23
.1
0

C
od

e2
11

w
_r
p2

0
5,
40

4.
43

29
.6
9

29
1.
60

5,
42

7.
80

10
.5
3

25
2.
60

5,
43

2.
00

0.
00

16
5.
70

5,
43

1.
57

2.
37

82
.4
0

C
od

e2
_1

50
w
_r
p1

0
7,
24

7.
47

53
.4
3

29
2.
50

7,
27

6.
70

61
.7
4

98
.6
0

7,
32

8.
97

23
.9
1

16
6.
70

7,
33

7.
00

0.
00

24
2.
70

C
od

e2
_1

50
w
_r
p1

5
7,
74

3.
20

4.
70

28
1.
40

7,
73

5.
93

9.
15

60
.3
0

7,
74

4.
00

3.
81

10
2.
90

7,
74

5.
00

0.
00

96
.9
0

C
od

e2
_1

50
w
_r
p2

0
7,
77

2.
13

40
.9
1

34
9.
50

7,
75

9.
60

40
.5
9

18
1.
30

7,
78

9.
27

28
.7
1

17
7.
00

7,
80

2.
03

15
.7
9

21
1.
50

C
od

e2
_2

00
w
_r
p1

0
9,
23

1.
63

75
.5
5

24
9.
80

9,
23

8.
23

78
.8
1

58
.3
0

9,
30

7.
13

53
.1
1

23
6.
50

9,
32

1.
13

26
.2
8

13
0.
10

C
od

e2
_2

00
w
_r
p1

5
9,
53

9.
27

70
.9
4

51
6.
40

9,
47

1.
07

78
.2
1

11
9.
40

9,
59

3.
53

53
.4
0

34
5.
90

9,
62

6.
67

17
.3
4

39
2.
00

C
od

e2
_2

00
w
_r
p2

0
9,
57

9.
83

11
8.
18

50
8.
00

9,
59

9.
40

88
.0
2

24
1.
50

9,
64

3.
80

80
.4
7

40
2.
70

9,
66

6.
37

52
.7
2

42
1.
30

C
od

e3
11

w
_r
p1

0
4,

48
3.

00
0.
00

25
.8
0

4,
48

3.
00

0.
00

5.
90

4,
48

3.
00

0.
00

7.
90

4,
48

3.
00

0.
00

8.
10

C
od

e3
11

w
_r
p1

5
4,

80
0.

00
0.
00

73
.6
0

4,
80

0.
00

0.
00

13
.5
0

4,
80

0.
00

0.
00

19
.8
0

4,
80

0.
00

0.
00

13
.3
0

C
od

e3
11

w
_r
p2

0
4,
89

2.
80

0.
61

29
7.
90

4,
88

9.
33

6.
19

10
0.
10

4,
89

3.
00

0.
00

10
3.
30

4,
89

3.
00

0.
00

65
.2
0

123

416 B. Biesinger et al.

Ta
bl

e
7

co
nt
in
ue
d

G
A

+s
ol
A

+L
P

+L
S

G
A

+s
ol
A

+M
L
-

E
S

+L
S

G
A

+s
ol
A

+M
L
-

E
S

+i
m
pr
ov
ed

L
S

G
A

+s
ol
A

+M
L
-

E
S

+i
m
pr
ov
ed

T
S

In
st
an
ce

ob
j

sd
t∗

[s]
ob
j

sd
t∗

[s]
ob
j

sd
t∗

[s]
ob
j

sd
t∗

[s]
C
od

e3
_1

50
w
_r
p1

0
7,
28

6.
93

16
.3
6

31
0.
70

7,
29

2.
50

13
.3
8

62
.9
0

7,
29

6.
83

8.
33

64
.1
0

7,
29

9.
00

0.
00

35
.4
0

C
od

e3
_1

50
w
_r
p1

5
7,
58

9.
00

18
.8
3

28
5.
80

7,
58

0.
97

23
.6
0

45
.6
0

7,
59

7.
77

13
.8
0

20
7.
80

7,
60

3.
10

2.
75

14
2.
50

C
od

e3
_1

50
w
_r
p2

0
7,
62

4.
43

34
.0
3

30
9.
10

7,
60

5.
77

60
.4
7

11
1.
10

7,
63

6.
47

15
.2
8

28
9.
20

7,
64

6.
87

4.
32

27
4.
00

C
od

e3
_2

00
w
_r
p1

0
9,
30

0.
23

70
.3
0

29
1.
70

9,
32

0.
53

62
.7
2

16
4.
60

9,
35

8.
97

48
.6
6

28
3.
30

9,
37

4.
30

28
.1
5

22
7.
00

C
od

e3
_2

00
w
_r
p1

5
9,
30

4.
57

71
.4
4

38
6.
40

9,
31

0.
33

71
.2
2

19
2.
00

9,
35

3.
33

39
.2
9

38
8.
40

9,
36

5.
97

17
.1
9

28
1.
90

C
od

e3
_2

00
w
_r
p2

0
9,
19

7.
97

15
5.
51

51
6.
80

9,
26

5.
93

10
7.
10

25
2.
20

9,
28

5.
73

81
.4
7

41
6.
80

9,
29

6.
67

70
.9
6

42
6.
90

…
…

…
…

…
…

…
…

…
…

…
…

…

G
eo
m
et
ri
c
m
ea
n

6,
99

5.
12

7,
00

0.
54

7,
01

9.
37

7,
02

7.
16

#B
es
tr
es
ul
ts

19
24

43
85

#U
ni
qu
e
be
st
re
su
lts

0
0

5
47

123

A hybrid GA for the discrete RPCP 417

Table 8 Results of Wilcoxon rank sum tests with error levels of 5% for the multi-level evaluation scheme
configurations

GA+ solA
+LP+LS

GA+ solA+ML-
ES+LS

GA+ solA+ML-
ES+ imp. LS

GA+ solA+ML-
ES+ imp. TS

�

GA+ solA+
LP + LS – 10 0 0 10

GA+ solA+
ML-ES + LS 17 – 1 2 18

GA+ solA+
ML-ES + imp. LS 60 55 – 1 115

GA+ solA+
ML-ES + imp. TS 63 59 29 – 151

Table 7 shows the results of these tests. We observe that the multi-level evaluation
scheme is able to improve the solution quality for some instances, especially the larger
ones with 200 customers. The largest improvement could be made in the time needed
for finding the best solution. It is in generalmuch lower thanwhenusing only the simple
LP evaluation, e.g., for instanceCode111w_rp10 the time could be decreased by about
90%.With the improved local search the mean solution quality gets better in 65 of the
(mostly larger) instances, while it is equal on most of the other ones. Our best setup
turned out to be GA+solA+ML-ES+ improved TS, when we switched from a local
search to a tabu search. We have a low standard deviation of the results and achieved
a better mean objective value than the local search in 47 instances. The improvements
are again mostly on the larger instances with 150 and 200 customers because, as we
see in Sect. 8.5, we could find optimal solutions for many of the instances with 100
customers. In total, our best configurations of the multi-level evaluation scheme was
able to produce statistically better results in 63 out of 90 instances (Table 8).

8.5 Comparison to results from the literature on Euclidean instances

In this section we compare the results of our best configuration to the state-of-the-art in
the literature. Since themetaheuristic approaches ofAlekseeva et al. (2010), Alekseeva
and Kochetov (2013), and Davydov et al. (2014a) are the best heuristic approaches so
far we compare with them. For this purpose both the probabilistic tabu search (TSAl)
(Alekseeva et al. 2010) and the hybrid memetic algorithm (HMA) (Alekseeva and
Kochetov 2013) were re-implemented in C++. Our re-implementations were verified
to exhibit nearly equal performance as published in the respective original papers. The
results of the STS are taken from Davydov et al. (2014a), where they presented the
objective values of single runs (obj1). Although they developed two metaheuristics
here we only compare with STS because the other one, the VNS, performed worse on
Euclidean instances.

Table 9 shows the results of their approaches compared to our algorithm
(GA+solA+ML-ES+ imp. TS) with n = 100. Additionally, Tables 10 and 11 show

123

418 B. Biesinger et al.

Table 9 Comparison to results from the literature with a runtime of 600s and n = 100

TSAl HMA STS GA+ solA+ML-
ES+ imp.TS

Instance obj sd t∗[s] obj sd t∗[s] obj1 t∗[s] obj sd t∗[s]

Code111w_rp10 4,361.00 0.00 118.0 4,361.00 0.00 92.3 4,361.00 63.7 4,361.00 0.00 14.7

Code111w_rp15 4,596.00 0.00 38.6 4,596.00 0.00 106.8 4,596.00 173.3 4,596.00 0.00 16.1

Code111w_rp20 4,506.87 6.96 92.1 4,510.60 2.03 393.6 4,484.00 118.1 4,511.87 0.73 209.5

Code211w_rp10 5,310.00 0.00 11.9 5,310.00 0.00 26.6 5,310.00 23.5 5,310.00 0.00 8.1

Code211w_rp15 5,373.00 0.00 115.5 5,373.00 0.00 121.9 5,373.00 88.9 5,373.00 0.00 23.1

Code211w_rp20 5,428.13 6.01 167.1 5,430.67 3.40 287.2 5,432.00 289.2 5,431.57 2.37 82.4

Code311w_rp10 4,483.00 0.00 11.6 4,483.00 0.00 45.1 4,483.00 33.8 4,483.00 0.00 8.1

Code311w_rp15 4,800.00 0.00 71.3 4,799.77 1.28 122.5 4,800.00 91.1 4,800.00 0.00 13.3

Code311w_rp20 4,892.73 0.69 94.7 4,892.60 0.81 297.8 4,893.00 211.3 4,893.00 0.00 65.2

Code411w_rp10 4,994.00 0.00 11.7 4,994.00 0.00 24.0 4,994.00 19.3 4,994.00 0.00 7.9

Code411w_rp15 5,063.20 2.07 139.0 5,063.80 1.10 201.0 5,064.00 121.3 5,064.00 0.00 48.8

Code411w_rp20 5,209.00 0.00 105.6 5,208.93 0.25 275.5 5,209.00 288.9 5,209.00 0.00 39.6

Code511w_rp10 4,906.00 0.00 38.8 4,906.00 0.00 81.1 4,906.00 27.2 4,906.00 0.00 8.9

Code511w_rp15 5,123.00 0.00 104.1 5,127.00 4.07 263.1 5,131.00 216.2 5,123.00 0.00 63.4

Code511w_rp20 5,327.30 13.81 231.5 5,329.93 7.26 219.5 5,334.00 133.2 5,334.00 0.00 76.0

Code611w_rp10 4,595.00 0.00 82.7 4,595.00 0.00 93.3 4,595.00 44.5 4,595.00 0.00 17.7

Code611w_rp15 4,881.00 0.00 47.3 4,881.00 0.00 67.0 4,881.00 114.8 4,881.00 0.00 15.7

Code611w_rp20 4,951.73 1.46 137.0 4,951.20 2.44 225.5 4,944.00 198.1 4,952.00 0.00 96.0

Code711w_rp10 5,586.00 0.00 48.9 5,586.00 0.00 78.9 5,586.00 101.0 5,586.00 0.00 8.7

Code711w_rp15 5,827.00 0.00 155.5 5,826.27 4.02 160.9 5,827.00 210.9 5,827.00 0.00 31.6

Code711w_rp20 5,884.37 15.92 53.7 5,892.30 2.74 216.4 5,893.00 254.3 5,893.00 0.00 29.8

Code811w_rp10 4,609.00 0.00 70.5 4,609.00 0.00 169.6 4,609.00 27.2 4,609.00 0.00 21.6

Code811w_rp15 4,674.47 1.38 158.4 4,674.87 0.73 233.9 4,675.00 123.4 4,675.00 0.00 41.6

Code811w_rp20 4,857.63 2.01 154.6 4,854.60 6.59 271.3 4,858.00 118.8 4,858.00 0.00 24.4

Code911w_rp10 5,302.00 0.00 28.8 5,302.00 0.00 37.2 5,302.00 19.2 5,302.00 0.00 7.5

Code911w_rp15 5,157.63 1.13 204.7 5,156.90 2.01 284.7 5,158.00 157.8 5,157.93 0.25 220.6

Code911w_rp20 5,458.67 1.03 178.7 5,457.50 1.78 208.9 5,455.00 202.2 5,459.00 0.00 92.5

Code1011w_rp10 5,003.67 7.30 66.7 5,004.10 4.93 104.4 5,005.00 103.5 5,005.00 0.00 18.2

Code1011w_rp15 5,194.47 2.29 233.2 5,194.23 3.52 223.6 5,195.00 48.2 5,195.00 0.00 29.2

Code1011w_rp20 5,399.00 0.00 49.0 5,399.00 0.00 261.8 5,399.00 184.4 5,399.00 0.00 60.8

Geometric mean 5,043.99 5,044.47 5,043.74 5,044.90

#Best results 16 13 27 27

#Un. best res. 0 0 3 3

The Tabu search (TSAl), the hybrid memetic algorithm (HMA), and the STS approach by Alekseeva et al.
(2010), Alekseeva and Kochetov (2013), and Davydov et al. (2014a), respectively, compared to our best
configuration GA+solA+ML-ES+ improved TS

123

A hybrid GA for the discrete RPCP 419

Table 10 Comparison to results from the literature with a runtime of 600s and n = 150

TSAl HMA GA+ solA+ML-
ES+
improved TS

Instance obj sd t∗[s] obj sd t∗[s] obj sd t∗[s]

Code1_150w_rp10 7,180.00 0.00 40.10 7,180.00 0.00 118.50 7,180.00 0.00 29.20

Code1_150w_rp15 7,152.23 5.02 207.00 7,132.60 32.10 428.80 7,153.93 0.25 133.00

Code1_150w_rp20 7,247.77 7.45 368.60 7,211.07 26.63 353.10 7,247.27 7.97 241.40

Code2_150w_rp10 7,321.07 23.97 146.70 7,325.57 16.59 334.60 7,337.00 0.00 242.70

Code2_150w_rp15 7,736.87 8.36 174.60 7,732.87 11.63 335.90 7,745.00 0.00 96.90

Code2_150w_rp20 7,796.43 14.76 386.30 7,770.07 25.08 510.10 7,802.03 15.79 211.50

Code3_150w_rp10 7,299.00 0.00 103.90 7,299.00 0.00 267.90 7,299.00 0.00 35.40

Code3_150w_rp15 7,596.47 12.06 252.60 7,593.07 16.98 231.70 7,603.10 2.75 142.50

Code3_150w_rp20 7,610.47 63.78 217.80 7,630.60 14.08 242.60 7,646.87 4.32 274.00

Code4_150w_rp10 7,306.17 39.97 157.00 7,307.63 19.12 298.00 7,318.00 0.00 38.30

Code4_150w_rp15 7,406.73 7.08 180.10 7,392.30 18.53 259.10 7,409.00 0.00 71.30

Code4_150w_rp20 7,926.00 5.19 227.30 7,917.87 10.70 244.00 7,927.50 2.74 251.30

Code5_150w_rp10 6,972.50 5.19 173.70 6,968.90 8.56 202.40 6,975.00 0.00 32.90

Code5_150w_rp15 7,154.77 19.25 370.60 7,135.10 26.72 459.90 7,139.97 26.56 214.60

Code5_150w_rp20 7,322.50 6.30 272.60 7,316.13 13.54 457.00 7,326.50 3.29 227.30

Code6_150w_rp10 7,047.27 7.02 182.50 7,043.60 10.88 323.50 7,050.00 0.00 36.90

Code6_150w_rp15 7,184.83 4.49 183.80 7,172.50 16.84 409.60 7,186.00 0.00 71.60

Code6_150w_rp20 7,378.10 14.45 338.40 7,333.67 39.97 500.50 7,386.00 0.00 133.90

Code7_150w_rp10 6,247.10 3.59 264.10 6,248.17 2.57 397.90 6,248.10 0.55 190.10

Code7_150w_rp15 6,839.60 2.19 107.20 6,834.33 9.36 175.60 6,840.00 0.00 82.90

Code7_150w_rp20 7,284.37 18.24 129.50 7,275.30 20.64 341.10 7,290.83 14.02 203.10

Code8_150w_rp10 7,732.00 0.00 159.20 7,732.00 0.00 232.20 7,732.00 0.00 28.70

Code8_150w_rp15 7,658.23 7.54 237.50 7,650.80 20.36 443.60 7,662.00 0.00 103.10

Code8_150w_rp20 7,848.80 8.38 164.50 7,836.40 18.38 428.80 7,846.73 11.06 188.20

Code9_150w_rp10 6,855.00 0.00 182.20 6,853.47 5.84 309.40 6,855.00 0.00 55.50

Code9_150w_rp15 6,881.30 5.52 297.90 6,878.13 7.77 350.70 6,883.40 0.93 148.40

Code9_150w_rp20 7,177.90 19.76 230.80 7,145.17 35.49 453.60 7,160.40 41.30 299.90

Code10_150w_rp10 6,715.00 0.00 88.80 6,715.00 0.00 209.40 6,715.00 0.00 30.20

Code10_150w_rp15 7,009.07 13.99 231.00 7,008.07 16.87 405.10 7,014.00 0.00 104.30

Code10_150w_rp20 7,201.07 13.43 320.00 7,181.53 24.32 489.10 7,203.40 10.21 175.30

Geometric mean 7,260.27 7,251.42 7,263.31

#Best results 9 5 25

#Unique best res. 4 1 20

The Tabu search (TSAl) and the hybridmemetic algorithm (HMA) byAlekseeva et al. (2010) andAlekseeva
and Kochetov (2013), respectively, compared to our best configuration GA+solA+ML-ES+ improved TS

123

420 B. Biesinger et al.

Table 11 Comparison to results from the literature with a runtime of 600s and n = 200

TSAl HMA GA+ solA+ML-
ES+ improved TS

Instance obj sd t∗[s] obj sd t∗[s] obj sd t∗[s]

Code1_200w_rp10 9,545.43 35.14 402.30 9,505.07 57.16 348.50 9,594.00 10.37 243.10

Code1_200w_rp15 10,076.73 49.31 337.60 10,051.83 59.42 348.30 10,095.00 37.02 297.10

Code1_200w_rp20 9,837.17 53.95 405.50 9,767.93 58.96 365.60 9,831.97 56.35 460.50

Code2_200w_rp10 9,324.50 50.20 279.80 9,217.80 58.07 455.30 9,321.13 26.28 130.10

Code2_200w_rp15 9,578.77 46.03 370.60 9,514.93 51.54 286.20 9,626.67 17.34 392.00

Code2_200w_rp20 9,667.17 32.12 386.70 9,602.20 38.63 258.70 9,666.37 52.72 421.30

Code3_200w_rp10 9,367.07 32.45 237.10 9,329.37 53.93 350.40 9,374.30 28.15 227.00

Code3_200w_rp15 9,355.93 18.85 323.80 9,310.30 44.48 317.70 9,365.97 17.19 281.90

Code3_200w_rp20 9,286.17 67.10 358.20 9,253.50 63.57 313.00 9,296.67 70.96 426.90

Code4_200w_rp10 8,882.03 18.31 259.60 8,877.13 22.02 460.40 8,888.47 14.39 115.60

Code4_200w_rp15 9,169.93 18.46 279.30 9,116.27 68.57 365.90 9,179.03 32.68 241.30

Code4_200w_rp20 9,439.13 34.47 393.30 9,402.23 55.74 248.50 9,404.70 89.41 388.50

Code5_200w_rp10 9,227.30 48.62 294.60 9,240.40 52.15 304.80 9,273.10 27.45 268.20

Code5_200w_rp15 9,242.57 64.44 382.50 9,237.70 41.65 325.90 9,252.03 42.10 320.90

Code5_200w_rp20 9,498.80 38.81 364.40 9,422.63 52.81 379.40 9,512.10 42.91 345.90

Code6_200w_rp10 9,825.20 35.02 402.10 9,808.13 39.34 330.50 9,850.53 5.58 197.50

Code6_200w_rp15 10,119.03 52.39 401.30 10,095.73 41.17 269.30 10,148.23 27.71 326.70

Code6_200w_rp20 10,283.10 83.09 438.90 10,210.53 59.37 270.30 10,261.53 91.67 452.50

Code7_200w_rp10 9,225.70 42.60 356.90 9,183.77 55.95 382.20 9,270.30 20.44 222.80

Code7_200w_rp15 9,556.13 39.65 424.40 9,496.63 59.54 267.30 9,580.30 35.03 283.90

Code7_200w_rp20 9,902.20 43.20 430.40 9,860.03 52.13 221.80 9,943.10 33.88 361.90

Code8_200w_rp10 9,088.17 9.62 269.40 9,046.43 34.70 345.10 9,092.57 2.37 170.60

Code8_200w_rp15 9,047.13 47.40 413.80 8,987.20 41.46 244.00 9,063.10 41.76 357.90

Code8_200w_rp20 9,329.67 29.32 368.20 9,248.07 59.96 302.60 9,342.90 23.35 484.30

Code9_200w_rp10 9,009.53 3.68 381.70 8,950.47 59.78 324.80 9,011.40 8.76 182.90

Code9_200w_rp15 9,124.70 66.93 341.00 9,086.47 65.56 297.60 9,168.20 23.40 335.40

Code9_200w_rp20 9,438.00 17.91 383.40 9,404.67 42.67 300.90 9,452.57 16.55 416.80

Code10_200w_rp10 9,382.67 25.28 388.00 9,365.40 46.44 498.60 9,411.00 0.00 151.70

Code10_200w_rp15 9,290.80 49.24 408.10 9,240.83 57.79 252.70 9,312.40 51.91 434.30

Code10_200w_rp20 9,741.20 35.77 467.60 9,683.63 50.92 328.30 9,688.73 74.95 460.40

Geometric mean 9,456.10 9,411.33 9,470.05

#Best results 6 0 24

#Unique best res. 6 0 24

The Tabu search (TSAl) and the hybridmemetic algorithm (HMA) byAlekseeva et al. (2010) andAlekseeva
and Kochetov (2013), respectively, compared to our best configuration GA+solA+ML-ES+ improved TS

the results of it compared to TSAl and HMAwith n = 150 and n = 200. It can be seen
that especially for larger instances our algorithm achieves the best results among all
three tested algorithms (see Table 12). For the instances with 100 customers the algo-

123

A hybrid GA for the discrete RPCP 421

Table 12 Results of Wilcoxon
rank sum tests with error levels
of 5% for the algorithms of the
literature and the GA

TS HMA GA+ solA+ML-
ES+ improved TS

�

TS – 45 3 57

HMA 4 – 1 7

GA+solA+

ML-ES + improved TS 38 56 – 123

rithm described in this work gets better or equally good results than TSAl and HMA
in all but one instances, although the differences in the mean objective value is rather
small. Compared to STS both algorithms get better objective values on 3 instances and
equally good solutions on the remaining 24 instances. However, the time needed to
find these solutions is much lower for most instances when using our algorithm. The
differences in the objective value become larger when considering larger instances.
On all instances with n = 200 our algorithm obtains better results than HMA and on
24 out of 30 instances it also gets better mean objective values than TSAl.

We observe that because of the time-consuming local searches in the creation of the
initial population the HMAwas not able to finish the initialization within the timelimit
for some instances, sowemade further tests with an increased timelimit of 1,800s. The
results of these tests can be found in Table 13 for n = 100 and Table 14 for n = 150
and n = 200. In Table 13 we also show the results of the modified iterative exact
method (MEM) by Alekseeva and Kochetov (2013) and the results of the branch-and-
cut by Roboredo and Pessoa (2013). For more than 100 customers no results of exact
methods are published in the literature. From Table 13 we conclude that our algorithm
is able to find optimal solutions to all but one instance, with n = 100 but in much less
time than the exact algorithms. Tables 14 and 15 shows that the described approach is
still superior and exceeds the HMA in most instances. The HMA can compete with
the GA on some of the instances with n = 150 and even gets better mean objective
values for 3 instances, e.g., Code5_150w_rp15. However, the differences are rather
small and for n = 200 the GA is better in 28 out of 30 instances with a much lower
standard deviation on most instances.

It is interesting that although our algorithm did not find the optimal solution for
instance Code511 with r = p = 15 it always terminated with the same suboptimal
solution. This is due to its solution evaluation method because even though the opti-
mal value of the LP relaxation and the optimal value to the follower problem often
coincide, it is not the case here. During our runs the algorithm might have visited the
optimal solution but it was not able to identify it because its objective value is only
approximated by the LP evaluation and was therefore discarded later.

8.6 Uniform instances

Next, we tested our algorithm on the Uniform instances and compared the results
with the VNS and STS by Davydov et al. (2014a), who tested their algorithms on
a Pentium Intel Core Dual with 2.66 GHz. They published only the result of one
single run (obj1). Since we perform 30 runs, it is not straightforward to compare these

123

422 B. Biesinger et al.

Ta
bl

e
13

C
om

pa
ri
so
n
of

th
e
re
su
lts

fr
om

in
st
an
ce
s
w
ith

n
=

10
0
of

th
e
so

fa
rb

es
te
xa
ct
m
et
ho

ds
M
E
M

by
K
oc
he
to
v
et
al
.(
20

13
)a
nd

B
&
C
by

R
ob

or
ed
o
an
d
Pe

ss
oa

(2
01

3)
,

th
e
so

fa
r
be
st
he
ur
is
tic

m
et
ho
ds

H
M
A
an
d
ST

S
by

A
le
ks
ee
va

an
d
K
oc
he
to
v
(2
01

3)
an
d
D
av
yd
ov

et
al
.(
20

14
a)
,r
es
pe
ct
iv
el
y,
an
d
ou
r
G
A

+s
ol
A

+M
L
-E
S

+i
m
p

B
&

C
M
E
M

H
M
A

ST
S

G
A

+s
ol
A

+M
L
-E
S

+i
m
p.

T
S

In
st
an
ce

ob
j

t∗
[s]

ob
j

t∗
[s]

ob
j

sd
t∗

[s]
ob

j 1
t∗

[s]
ob
j

sd
t∗

[s]
C
od

e1
11

w
_r
p1

0
4,

36
1.

00
10

,2
17

.0
4,

36
1.

00
3,
60

0.
0

4,
36

1.
00

0.
00

97
.4

4,
36

1.
00

63
.7

4,
36

1.
00

0.
00

11
.2

C
od

e1
11

w
_r
p1

5
4,

59
6.

00
9,
75

2.
0

4,
59

6.
00

4,
32

0.
0

4,
59

6.
00

0.
00

11
8.
4

4,
59

6.
00

17
3.
3

4,
59

6.
00

0.
00

16
.3

C
od

e1
11

w
_r
p2

0
4,

51
2.

00
>
36

,0
00

4,
51

2.
00

a
60

.0
4,
51

1.
47

1.
38

49
2.
9

4,
48

4.
00

11
8.
1

4,
51

2.
00

0.
00

15
9.
4

C
od

e2
11

w
_r
p1

0
5,

31
0.

00
9,
48

8.
8

5,
31

0.
00

2,
52

0.
0

5,
31

0.
00

0.
00

34
.6

5,
31

0.
00

23
.5

5,
31

0.
00

0.
00

8.
1

C
od

e2
11

w
_r
p1

5
5,

37
3.

00
80

,9
56

.4
5,

37
3.

00
23

0,
70

0.
0

5,
37

3.
00

0.
00

11
6.
1

5,
37

3.
00

88
.9

5,
37

3.
00

0.
00

18
.0

C
od

e2
11

w
_r
p2

0
5,

43
2.

00
>
36

,0
00

5,
43

2.
00

a
11

,1
00

.0
5,

43
2.

00
0.
00

28
4.
0

5,
43

2.
00

28
9.
2

5,
43

2.
00

0.
00

75
.4

C
od

e3
11

w
_r
p1

0
4,

48
3.

00
19

,0
71

.3
4,

48
3.

00
8,
76

0.
0

4,
48

3.
00

0.
00

38
.8

4,
48

3.
00

33
.8

4,
48

3.
00

0.
00

8.
2

C
od

e3
11

w
_r
p1

5
4,

80
0.

00
27

,7
07

.3
4,

80
0.

00
23

,7
00

.0
4,

80
0.

00
0.
00

12
0.
5

4,
80

0.
00

91
.1

4,
80

0.
00

0.
00

18
.9

C
od

e3
11

w
_r
p2

0
4,

89
3.

00
>
36

,0
00

4,
89

3.
00

a
14

,8
80

.0
4,
89

2.
93

0.
37

29
7.
7

4,
89

3.
00

21
1.
3

4,
89

3.
00

0.
00

85
.4

C
od

e4
11

w
_r
p1

0
4,

99
4.

00
13

,7
43

.9
4,

99
4.

00
1,
98

0.
0

4,
99

4.
00

0.
00

34
.1

4,
99

4.
00

19
.3

4,
99

4.
00

0.
00

8.
0

C
od

e4
11

w
_r
p1

5
5,

06
4.

00
84

,1
40

.1
5,

06
4.

00
73

,3
80

.0
5,

06
4.

00
0.
00

20
6.
9

5,
06

4.
00

12
1.
3

5,
06

4.
00

0.
00

54
.5

C
od

e4
11

w
_r
p2

0
5,

20
9.

00
>
36

,0
00

5,
20

9.
00

a
30

0.
0

5,
20

9.
00

0.
00

25
9.
6

5,
20

9.
00

28
8.
9

5,
20

9.
00

0.
00

46
.8

C
od

e5
11

w
_r
p1

0
4,

90
6.

00
80

,4
13

.8
4,

90
6.

00
23

,9
40

.0
4,

90
6.

00
0.
00

75
.1

4,
90

6.
00

27
.2

4,
90

6.
00

0.
00

11
.4

C
od

e5
11

w
_r
p1

5
5,

13
1.

00
79

,0
99

.6
5,

13
1.

00
12

7,
20

0.
0

5,
13

0.
67

1.
49

57
9.
1

5,
13

1.
00

21
6.
2

5,
12

3.
00

0.
00

58
.2

C
od

e5
11

w
_r
p2

0
5,

33
4.

00
>
36

,0
00

5,
33

4.
00

a
6,
60

0.
0

5,
33

4.
00

0.
00

27
4.
4

5,
33

4.
00

13
3.
2

5,
33

4.
00

0.
00

60
.9

C
od

e6
11

w
_r
p1

0
4,

59
5.

00
51

,5
83

.2
4,

59
5.

00
8,
58

0.
0

4,
59

5.
00

0.
00

15
4.
6

4,
59

5.
00

44
.5

4,
59

5.
00

0.
00

21
.6

C
od

e6
11

w
_r
p1

5
4,

88
1.

00
28

,3
42

.7
4,

88
1.

00
13

7,
58

0.
0

4,
88

1.
00

0.
00

52
.5

4,
88

1.
00

11
4.
8

4,
88

1.
00

0.
00

17
.2

C
od

e6
11

w
_r
p2

0
4,

95
2.

00
>
36

,0
00

4,
95

2.
00

a
11

,4
00

.0
4,

95
2.

00
0.
00

28
1.
6

4,
94

4.
00

19
8.
1

4,
95

2.
00

0.
00

58
.1

C
od

e7
11

w
_r
p1

0
5,

58
6.

00
20

,3
52

.7
5,

58
6.

00
4,
38

0.
0

5,
58

6.
00

0.
00

10
8.
3

5,
58

6.
00

10
1.
0

5,
58

6.
00

0.
00

9.
2

C
od

e7
11

w
_r
p1

5
5,

82
7.

00
48

,6
00

.5
5,

82
7.

00
79

,2
00

.0
5,

82
7.

00
0.
00

17
2.
6

5,
82

7.
00

21
0.
9

5,
82

7.
00

0.
00

33
.8

C
od

e7
11

w
_r
p2

0
5,

89
3.

00
>
36

,0
00

5,
89

3.
00

a
5,
82

0.
0

5,
89

3.
00

0.
00

16
8.
7

5,
89

3.
00

25
4.
3

5,
89

3.
00

0.
00

21
.5

123

A hybrid GA for the discrete RPCP 423

Ta
bl

e
13

co
nt
in
ue
d

B
&

C
M
E
M

H
M
A

ST
S

G
A

+s
ol
A

+M
L
-E
S

+i
m
p.

T
S

In
st
an
ce

ob
j

t∗
[s]

ob
j

t∗
[s]

ob
j

sd
t∗

[s]
ob

j 1
t∗

[s]
ob
j

sd
t∗

[s]
C
od

e8
11

w
_r
p1

0
4,

60
9.

00
26

,8
08

.0
4,

60
9.

00
9,
12

0.
0

4,
60

9.
00

0.
00

13
9.
2

4,
60

9.
00

27
.2

4,
60

9.
00

0.
00

18
.8

C
od

e8
11

w
_r
p1

5
4,

67
5.

00
11

5,
18

3.
5

4,
67

5.
00

27
4,
20

0.
0

4,
67

5.
00

0.
00

26
6.
8

4,
67

5.
00

12
3.
4

4,
67

5.
00

0.
00

52
.1

C
od

e8
11

w
_r
p2

0
4,

85
8.

00
>
36

,0
00

4,
85

8.
00

a
34

,2
00

.0
4,

85
8.

00
0.
00

37
0.
3

4,
85

8.
00

11
8.
8

4,
85

8.
00

0.
00

22
.9

C
od

e9
11

w
_r
p1

0
5,

30
2.

00
2,
37

7.
9

5,
30

2.
00

36
0.
0

5,
30

2.
00

0.
00

30
.6

5,
30

2.
00

19
.2

5,
30

2.
00

0.
00

7.
5

C
od

e9
11

w
_r
p1

5
5,

15
8.

00
>
36

,0
00

5,
15

8.
00

>
36

,0
00

5,
15

8.
00

0.
00

33
8.
8

5,
15

8.
00

15
7.
8

5,
15

8.
00

0.
00

24
0.
1

C
od

e9
11

w
_r
p2

0
5,

45
9.

00
>
36

,0
00

5,
45

9.
00

a
9,
90

0.
0

5,
45

8.
90

0.
55

35
0.
6

5,
45

5.
00

20
2.
2

5,
45

9.
00

0.
00

14
6.
2

C
od

e1
01

1w
_r
p1

0
5,

00
5.

00
33

,7
65

.1
5,

00
5.

00
5,
82

0.
0

5,
00

5.
00

0.
00

12
0.
0

5,
00

5.
00

10
3.
5

5,
00

5.
00

0.
00

15
.0

C
od

e1
01

1w
_r
p1

5
5,

19
5.

00
72

,0
34

.4
5,

19
5.

00
>
36

,0
00

5,
19

5.
00

0.
00

22
3.
8

5,
19

5.
00

48
.2

5,
19

5.
00

0.
00

28
.2

C
od

e1
01

1w
_r
p2

0
5,

39
9.

00
>
36

,0
00

5,
39

9.
00

a
7,
80

0.
0

5,
39

9.
00

0.
00

18
8.
4

5,
39

9.
00

18
4.
4

5,
39

9.
00

0.
00

28
.0

G
eo
m
et
ri
c
m
ea
n

5,
04

5.
18

5,
04

5.
18

5,
04

5.
15

5,
04

3.
74

5,
04

4.
92

#B
es
tr
es
ul
ts

30
30

26
27

29

#U
ni
qu
e
be
st
re
su
lts

0
0

0
0

0

T
S
w
ith

a
ru
nt
im

e
of

1,
80
0
s

a
T
im

e
ne
ed
ed

fo
r
fin

di
ng

so
lu
tio

ns
th
at
ar
e
w
ith

in
5
%

of
th
e
op

tim
um

,i
.e
.,
th
e
op

tim
al
ity

is
no

tp
ro
ve
n

123

424 B. Biesinger et al.

Ta
bl

e
14

C
om

pa
ri
so
n
of

th
e
re
su
lts

fr
om

in
st
an
ce
s
w
ith

n
=

15
0
an
d
n

=
20

0
of

H
M
A
an
d
ou

r
G
A

+s
ol
A

+M
L
-E
S

+i
m
p.
T
S
w
ith

a
ru
nt
im

e
of

1,
80
0
s

H
M
A

G
A

+s
ol
A

+M
L
-

E
S

+i
m
p.
T
S

H
M
A

G
A

+s
ol
A

+M
L
-

E
S

+i
m
p.
T
S

In
st
an
ce

ob
j

sd
ob
j

sd
In
st
an
ce

ob
j

sd
ob
j

sd

C
od

e1
_1

50
w
_r
p1

0
7,

18
0.

00
0.
00

7,
18

0.
00

0.
00

C
od

e1
_2

00
w
_r
p1

0
9,
57

5.
27

24
.6
2

9,
59

8.
00

0.
00

C
od

e1
_1

50
w
_r
p1

5
7,
15

3.
90

0.
31

7,
15

4.
00

0.
00

C
od

e1
_2

00
w
_r
p1

5
10

,1
07

.7
3

31
.0
2

10
,1

30
.0

0
0.
00

C
od

e1
_1

50
w
_r
p2

0
7,
24

9.
70

0.
47

7,
24

9.
90

0.
31

C
od

e1
_2

00
w
_r
p2

0
9,
85

8.
93

31
.2
2

9,
89

4.
33

24
.1
9

C
od

e2
_1

50
w
_r
p1

0
7,

33
7.

00
0.
00

7,
33

7.
00

0.
00

C
od

e2
_2

00
w
_r
p1

0
9,
32

5.
33

40
.5
6

9,
33

3.
80

35
.4
2

C
od

e2
_1

50
w
_r
p1

5
7,
74

4.
10

3.
45

7,
74

5.
00

0.
00

C
od

e2
_2

00
w
_r
p1

5
9,
61

5.
30

23
.2
0

9,
63

3.
80

6.
57

C
od

e2
_1

50
w
_r
p2

0
7,
80

4.
90

8.
76

7,
80

9.
40

3.
29

C
od

e2
_2

00
w
_r
p2

0
9,
68

5.
57

27
.1
0

9,
70

2.
27

20
.6
0

C
od

e3
_1

50
w
_r
p1

0
7,

29
9.

00
0.
00

7,
29

9.
00

0.
00

C
od

e3
_2

00
w
_r
p1

0
9,
37

8.
57

10
.8
5

9,
38

2.
00

0.
00

C
od

e3
_1

50
w
_r
p1

5
7,
60

3.
40

2.
28

7,
60

4.
00

0.
00

C
od

e3
_2

00
w
_r
p1

5
9,
36

2.
63

11
.7
8

9,
37

1.
00

0.
00

C
od

e3
_1

50
w
_r
p2

0
7,

64
8.

00
0.
00

7,
64

7.
47

2.
92

C
od

e3
_2

00
w
_r
p2

0
9,
33

4.
60

39
.8
9

9,
35

2.
00

58
.9
8

C
od

e4
_1

50
w
_r
p1

0
7,

31
8.

00
0.
00

7,
31

8.
00

0.
00

C
od

e4
_2

00
w
_r
p1

0
8,
89

3.
73

9.
19

8,
89

7.
00

0.
00

C
od

e4
_1

50
w
_r
p1

5
7,

40
9.

00
0.
00

7,
40

9.
00

0.
00

C
od

e4
_2

00
w
_r
p1

5
9,
17

4.
73

14
.6
4

9,
18

5.
00

0.
00

C
od

e4
_1

50
w
_r
p2

0
7,
92

7.
00

3.
81

7,
92

8.
00

0.
00

C
od

e4
_2

00
w
_r
p2

0
9,
45

8.
97

23
.7
9

9,
47

3.
83

6.
39

C
od

e5
_1

50
w
_r
p1

0
6,

97
5.

00
0.
00

6,
97

5.
00

0.
00

C
od

e5
_2

00
w
_r
p1

0
9,
26

6.
47

28
.8
4

9,
28

1.
27

9.
49

C
od

e5
_1

50
w
_r
p1

5
7,

16
2.

13
8.
99

7,
15

8.
93

15
.7
6

C
od

e5
_2

00
w
_r
p1

5
9,

28
6.

63
30

.7
0

9,
25

9.
57

52
.7
7

C
od

e5
_1

50
w
_r
p2

0
7,
32

4.
87

4.
01

7,
32

6.
77

2.
87

C
od

e5
_2

00
w
_r
p2

0
9,
54

1.
27

23
.0
4

9,
55

6.
00

0.
00

C
od

e6
_1

50
w
_r
p1

0
7,
04

9.
67

1.
83

7,
05

0.
00

0.
00

C
od

e6
_2

00
w
_r
p1

0
9,
84

7.
47

8.
89

9,
85

2.
00

0.
00

C
od

e6
_1

50
w
_r
p1

5
7,

18
6.

00
0.
00

7,
18

6.
00

0.
00

C
od

e6
_2

00
w
_r
p1

5
10

,1
41

.6
3

18
.5
4

10
,1

55
.2

7
9.
03

C
od

e6
_1

50
w
_r
p2

0
7,
38

3.
83

6.
61

7,
38

6.
00

0.
00

C
od

e6
_2

00
w
_r
p2

0
10

,3
33

.6
3

30
.5
5

10
,3

50
.8

3
39

.8
1

C
od

e7
_1

50
w
_r
p1

0
6,

25
0.

30
1.
29

6,
24

8.
00

0.
00

C
od

e7
_2

00
w
_r
p1

0
9,
25

2.
13

33
.5
9

9,
27

7.
00

0.
00

C
od

e7
_1

50
w
_r
p1

5
6,

84
0.

00
0.
00

6,
84

0.
00

0.
00

C
od

e7
_2

00
w
_r
p1

5
9,
57

0.
43

16
.9
2

9,
58

8.
00

0.
00

C
od

e7
_1

50
w
_r
p2

0
7,
29

5.
77

6.
76

7,
29

7.
00

0.
00

C
od

e7
_2

00
w
_r
p2

0
9,
93

0.
83

31
.8
5

9,
95

2.
33

17
.2
9

C
od

e8
_1

50
w
_r
p1

0
7,

73
2.

00
0.
00

7,
73

2.
00

0.
00

C
od

e8
_2

00
w
_r
p1

0
9,
09

2.
77

4.
93

9,
09

3.
00

0.
00

123

A hybrid GA for the discrete RPCP 425

Ta
bl

e
14

co
nt
in
ue
d

H
M
A

G
A

+s
ol
A

+M
L
-

E
S

+i
m
p.
T
S

H
M
A

G
A

+s
ol
A

+M
L
-

E
S

+i
m
p.
T
S

In
st
an
ce

ob
j

sd
ob
j

sd
In
st
an
ce

ob
j

sd
ob
j

sd

C
od

e8
_1

50
w
_r
p1

5
7,

66
2.

00
0.
00

7,
66

2.
00

0.
00

C
od

e8
_2

00
w
_r
p1

5
9,
06

9.
63

21
.6
1

9,
08

5.
80

21
.1
2

C
od

e8
_1

50
w
_r
p2

0
7,
85

0.
77

1.
28

7,
85

1.
00

0.
00

C
od

e8
_2

00
w
_r
p2

0
9,
32

6.
77

30
.9
5

9,
34

8.
77

18
.6
4

C
od

e9
_1

50
w
_r
p1

0
6,

85
5.

00
0.
00

6,
85

5.
00

0.
00

C
od

e9
_2

00
w
_r
p1

0
9,
01

2.
60

1.
04

9,
01

3.
00

0.
00

C
od

e9
_1

50
w
_r
p1

5
6,
88

3.
30

1.
21

6,
88

3.
80

0.
61

C
od

e9
_2

00
w
_r
p1

5
9,
16

0.
20

20
.1
3

9,
17

4.
07

10
.5
9

C
od

e9
_1

50
w
_r
p2

0
7,
18

5.
30

4.
67

7,
18

7.
00

3.
81

C
od

e9
_2

00
w
_r
p2

0
9,
45

0.
97

13
.2
6

9,
46

2.
67

1.
83

C
od

e1
0_

15
0w

_r
p1

0
6,

71
5.

00
0.
00

6,
71

5.
00

0.
00

C
od

e1
0_

20
0w

_r
p1

0
9,
40

6.
97

4.
80

9,
41

1.
00

0.
00

C
od

e1
0_

15
0w

_r
p1

5
7,

01
4.

00
0.
00

7,
01

4.
00

0.
00

C
od

e1
0_

20
0w

_r
p1

5
9,
32

3.
43

34
.2
6

9,
35

3.
80

25
.0
2

C
od

e1
0_

15
0w

_r
p2

0
7,
20

5.
13

2.
73

7,
20

6.
00

0.
00

C
od

e1
0_

20
0w

_r
p2

0
9,

75
1.

03
18

.4
2

9,
74

2.
53

30
.8
6

G
eo
m
et
ri
c
m
ea
n

7,
26
5.
37

7,
26

5.
68

9,
47

8.
43

9,
49

0.
76

#B
es
tr
es
ul
ts

16
27

2
28

#U
ni
qu
e
be
st
re
s.

3
14

2
28

123

426 B. Biesinger et al.

Table 15 Results of Wilcoxon
rank sum tests with error levels
of 5% for HMA and the GA
with longer runtime for all 90
Euclidean test instances

HMA GA+ solA+ML-
ES+ improved TS

�

HMA – 3 3

GA+solA+

ML-ES + improved TS 31 – 31

approaches. Therefore we list for our algorithm the average objective value (obj) and
the objective value of the best run (obj∗).

When using the configuration that performed best in the Euclidean instances
(GA+solA+ML-ES+ imp. TS) we see in Table 16 that for the instances where
r = p = 7 the algorithm quickly converges to a non-optimal solution. We observed
that on Uniform instances the case occurs more frequently where a good LP value does
not necessarily lead to a good (or optimal) solution. To further investigate this issue
we modified the ML-ES to solve the follower’s problem exactly instead of only using
the LP evaluation (GA+solA+ML-ES(EE) + imp. TS). Indeed, although the runtime
increases, with this modification the GA was able to find the same solutions as STS
for all but one instances with r = p = 7. Compared to the VNS, better solutions were
found for five of ten instances but more time was required. STS performed excellent
on these instances and was able to find equally good or better solutions in less time.
However, the best of the 30 runs for GA + solA + ML-ES(EE) + imp. TS identifies a
better or equally good solution for each instance.

When considering the instances where w j = 1, ∀ j ∈ J and r = p = 25, 30 the
modification of ML-ES is apparently not beneficial because the runtime increases and
the average objective value is often equal but sometimes even worse. The results in
Table 16 confirm the observation of Davydov et al. (2014a) that when r and p increase
at least for these instances the problem gets easier since GA+solA+ML-ES+ imp. TS
obtains equally good results as the VNS with a low standard deviation. For instances
with r = p = 25 we observe the largest deviation of the objective values. While the
results of the GA are often within 3% of the VNS results in 9 out of 10 instances, they
are generally worse and in one case it is equally good. However, also for these cases
the best run for each instance found a solution that is equally good or better.

From these results we conclude that especially for the Uniform instances the search
order of the neighborhoods is important to speed up the algorithm. It seems that it
is often unnecessary to search through the whole swap neighborhood but to consider
promisingmoves first. An interesting extension to the presented algorithmwould be to
incorporate the VNS into a hybrid GA, e.g., we could replace the swap neighborhood
for the TS with the neighborhoods of the VNS. The combination of the strengths of
both the special neighborhood structure of the VNS and STSwith the hybrid GA could
potentially lead to an algorithm that performs well on both Euclidean and Uniform
instances.

8.7 Distribution of facilities

Finally, we want to investigate how solutions to the problem may look like and what
properties they might have. Although we cannot make general statements that apply

123

A hybrid GA for the discrete RPCP 427

Ta
bl

e
16

C
om

pa
ri
so
n
of

re
su
lts

fr
om

U
ni
fo
rm

in
st
an
ce
s
of

V
N
S
an
d
ST

S
by

D
av
yd
ov

et
al
.(
20

14
a)
w
ith

ou
ra
lg
or
ith

m
G
A

+s
ol
A

+M
L
-E
S

+i
m
p.
T
S
an
d
ou

rm
od

ifi
ca
tio

n
M
L
-E
S(
E
E
)

V
N
S

ST
S

G
A

+s
ol
A

+M
L
-E
S

+i
m
p.

T
S

G
A

+s
ol
A

+M
L
-E
S(
E
E
)+

im
p.

T
S

In
st
an
ce

ob
j 1

t∗
[s]

ob
j 1

t∗
[s]

ob
j∗

ob
j

sd
t∗

[s]
ob

j∗
ob
j

sd
t∗

[s]
12

3C
om

p-
U
ni
f_
rp
7

5,
00

9.
00

30
4.
17

5,
00

9.
00

65
.0
9

4,
90

4.
00

4,
90

4.
00

0.
00

54
.1
0

5,
00

9.
00

5,
00

9.
00

0.
00

50
4.
00

22
3C

om
p-
U
ni
f_
rp
7

5,
45

9.
00

18
2.
91

5,
45

9.
00

63
.1
8

5,
45

9.
00

5,
45

9.
00

0.
00

38
.4
0

5,
45

9.
00

5,
45

9.
00

0.
00

24
5.
50

32
3C

om
p-
U
ni
f_
rp
7

5,
00

9.
00

14
5.
01

5,
01

9.
00

54
.6
9

5,
00

3.
00

5,
00

3.
00

0.
00

53
.1
0

5,
01

9.
00

5,
01

9.
00

0.
00

44
5.
40

42
3C

om
p-
U
ni
f_
rp
7

4,
90

8.
00

29
6.
63

4,
90

8.
00

14
5.
22

4,
84

6.
00

4,
84

6.
00

0.
00

58
.8
0

4,
90

8.
00

4,
90

8.
00

0.
00

64
1.
80

52
3C

om
p-
U
ni
f_
rp
7

5,
19

8.
00

29
2.
05

5,
20

8.
00

22
.6
3

5,
20

6.
00

5,
20

6.
00

0.
00

57
.9
0

5,
20

8.
00

5,
20

8.
00

0.
00

37
4.
10

62
3C

om
p-
U
ni
f_
rp
7

5,
03

2.
00

29
6.
52

5,
03

2.
00

19
7.
08

5,
03

2.
00

5,
03

2.
00

0.
00

51
.0
0

5,
03

2.
00

5,
02

8.
50

19
.1
7

38
6.
70

72
3C

om
p-
U
ni
f_
rp
7

5,
05

5.
00

28
6.
04

5,
05

5.
00

62
.2
3

4,
96

2.
00

4,
96

2.
00

0.
00

46
.8
0

5,
05

5.
00

5,
05

5.
00

0.
00

44
6.
10

82
3C

om
p-
U
ni
f_
rp
7

4,
86

0.
00

29
5.
77

4,
95

1.
00

74
.4
9

4,
84

7.
00

4,
84

7.
00

0.
00

83
.3
0

4,
95

1.
00

4,
95

1.
00

0.
00

44
1.
30

92
3C

om
p-
U
ni
f_
rp
7

5,
06

0.
00

21
7.
70

5,
12

7.
00

11
1.
27

5,
12

7.
00

5,
12

7.
00

0.
00

80
.2
0

5,
12

7.
00

5,
12

7.
00

0.
00

82
5.
00

10
23

C
om

p-
U
ni
f_
rp
7

5,
06

7.
00

32
2.
48

5,
08

4.
00

27
8.
18

5,
00

0.
00

5,
00

0.
00

0.
00

55
.2
0

5,
08

4.
00

5,
08

4.
00

0.
00

51
0.
70

w
j
=

1.
∀j

∈
J

12
3C

om
p-
U
ni
f_
rp
25

62
.0
0

16
.1
2

62
.0
0

30
.2
7

62
.0
0

61
.2
0

1.
27

89
.9
0

62
.0
0

61
.3
0

1.
09

15
4.
90

22
3C

om
p-
U
ni
f_
rp
25

62
.0
0

15
7.
40

62
.0
0

38
.8
4

61
.0
0

60
.7
0

0.
47

96
.4
0

62
.0
0

60
.7
7

0.
57

16
0.
30

32
3C

om
p-
U
ni
f_
rp
25

61
.0
0

34
.6
0

61
.0
0

47
.4
8

61
.0
0

60
.2
0

1.
30

10
6.
60

61
.0
0

59
.5
0

1.
83

17
2.
70

42
3C

om
p-
U
ni
f_
rp
25

59
.0
0

25
.5
9

59
.0
0

17
.2
6

59
.0
0

58
.6
0

0.
89

11
2.
90

59
.0
0

58
.8
0

0.
48

15
5.
00

52
3C

om
p-
U
ni
f_
rp
25

63
.0
0

70
.9
1

63
.0
0

41
.0
0

63
.0
0

61
.9
0

0.
92

95
.0
0

63
.0
0

61
.9
0

0.
84

16
4.
80

62
3C

om
p-
U
ni
f_
rp
25

62
.0
0

16
.3
9

61
.0
0

35
.6
1

62
.0
0

60
.1
3

1.
48

91
.0
0

62
.0
0

60
.0
7

1.
26

14
8.
00

72
3C

om
p-
U
ni
f_
rp
25

66
.0
0

15
.6
9

66
.0
0

19
.4
2

66
.0
0

65
.8
7

0.
73

11
0.
40

66
.0
0

65
.8
7

0.
73

17
2.
90

82
3C

om
p-
U
ni
f_
rp
25

60
.0
0

32
.9
8

60
.0
0

19
.3
8

60
.0
0

58
.2
0

1.
16

91
.6
0

60
.0
0

58
.4
3

1.
07

14
5.
00

92
3C

om
p-
U
ni
f_
rp
25

63
.0
0

18
.9
6

63
.0
0

17
.4
3

63
.0
0

61
.7
0

1.
18

98
.6
0

63
.0
0

61
.4
3

1.
38

16
4.
60

10
23

C
om

p-
U
ni
f_
rp
25

65
.0
0

15
.4
9

65
.0
0

21
.5
8

65
.0
0

65
.0
0

0.
00

91
.9
0

65
.0
0

65
.0
0

0.
00

15
3.
70

12
3C

om
p-
U
ni
f_
rp
30

70
.0
0

15
.7
3

69
.0
0

50
.9
7

70
.0
0

70
.0
0

0.
00

11
6.
50

70
.0
0

70
.0
0

0.
00

18
2.
30

123

428 B. Biesinger et al.

Ta
bl

e
16

co
nt
in
ue
d

V
N
S

ST
S

G
A

+s
ol
A

+M
L
-E
S

+i
m
p.

T
S

G
A

+s
ol
A

+M
L
-E
S(
E
E
)+

im
p.

T
S

In
st
an
ce

ob
j 1

t∗
[s]

ob
j 1

t∗
[s]

ob
j∗

ob
j

sd
t∗

[s]
ob

j∗
ob
j

sd
t∗

[s]
22

3C
om

p-
U
ni
f_
rp
30

65
.0
0

15
.8
1

65
.0
0

67
.8
7

65
.0
0

65
.0
0

0.
00

10
3.
40

65
.0
0

65
.0
0

0.
00

16
7.
30

32
3C

om
p-
U
ni
f_
rp
30

65
.0
0

15
.8
2

65
.0
0

86
.9
2

65
.0
0

65
.0
0

0.
00

11
4.
10

65
.0
0

65
.0
0

0.
00

17
4.
40

42
3C

om
p-
U
ni
f_
rp
30

65
.0
0

16
.0
9

65
.0
0

91
.1
3

65
.0
0

65
.0
0

0.
00

11
9.
40

65
.0
0

65
.0
0

0.
00

19
7.
00

52
3C

om
p-
U
ni
f_
rp
30

69
.0
0

15
.5
8

69
.0
0

76
.3
1

69
.0
0

69
.0
0

0.
00

11
4.
80

69
.0
0

69
.0
0

0.
00

18
5.
20

62
3C

om
p-
U
ni
f_
rp
30

69
.0
0

15
.9
4

69
.0
0

78
.4
4

69
.0
0

69
.0
0

0.
00

11
1.
70

69
.0
0

69
.0
0

0.
00

17
9.
90

72
3C

om
p-
U
ni
f_
rp
30

72
.0
0

15
.6
4

72
.0
0

74
.2
0

72
.0
0

72
.0
0

0.
00

11
3.
40

72
.0
0

72
.0
0

0.
00

18
2.
80

82
3C

om
p-
U
ni
f_
rp
30

62
.0
0

15
.6
4

62
.0
0

80
.5
6

62
.0
0

62
.0
0

0.
00

91
.3
0

62
.0
0

61
.7
7

0.
73

14
6.
20

92
3C

om
p-
U
ni
f_
rp
30

68
.0
0

15
.4
2

68
.0
0

59
.3
6

68
.0
0

68
.0
0

0.
00

10
7.
50

68
.0
0

68
.0
0

0.
00

17
0.
00

10
23

C
om

p-
U
ni
f_
rp
30

73
.0
0

15
.4
2

71
.0
0

12
6.
19

73
.0
0

73
.0
0

0.
00

11
5.
20

73
.0
0

73
.0
0

0.
00

17
6.
30

G
eo
m
et
ri
c
m
ea
n

27
7.
42

27
7.
24

27
6.
76

27
5.
48

27
7.
78

27
6.
24

123

A hybrid GA for the discrete RPCP 429

Fig. 3 Optimal solutions for instanceCode311wwith different r and p values.a r = p = 10.b r = p = 15.
c r = p = 20

to all problem instances, we show in Fig. 3 the graphical representation of optimal
solutions for one instance with 100 customers (Code311w) with different r and p
values. The circles are customer locations, the filled points stand for locations chosen
by the leader and the rectangles represent facilities of the follower. The size of the
symbols depends on the demand of the corresponding location, i.e., the larger the
symbol the higher the demand.

In Fig. 3 it seems that the leader tends to choose locations that are more or less
evenly spreaded across the whole region with a focus on the more crowded areas. The
follower then appears to prefer locations in the vicinity of a leader’s facility. Another
interesting observation is that while some locations are picked each time by the leader
for different r and p values, some other locations are not always chosen. Visualizations
on other instances reveal similar patterns, but as said before it is hard to draw precise
general conclusions.

123

430 B. Biesinger et al.

9 Conclusions

In this work we proposed a genetic algorithm for the discrete RPCP with several
enhancements. First of all, a trie-based solution archive was used to reduce the num-
ber of unnecessary solution evaluations and to overcome premature convergence. This
led to a significant efficiency gain. Another important part of the algorithm was the
embedded local improvement procedure. Several ways of combining the local search
with the solution archive were investigated, and the reduced neighborhood was iden-
tified to work best in practice. Different solution evaluation methods were considered
and we found an effective way to combine them, which led to the multi-level evalua-
tion scheme. Finally we improved the results of our algorithm by using a tabu search
for local improvement.

Extensive tests showed that the performance on Euclidean instances is very good
but for Uniform instances STS/VNS is better since they often obtain better results
than our algorithm in average in less time. For many of the commonly used Euclidean
instances GA + solA +ML-ES + improved TS is able to exceed previous state-of-the-
art heuristic approaches and scales well to larger instances that cannot be solved with
today’s exact methods anymore.

We considered here only one variant of a competitive facility location problem.
For future work it would be interesting if our approach will also succeed when some
problem parameters are changed, e.g., if the demand of the customers is proportional
to the distance to the facilities or if it is inelastic. Further research also includes other
applications of the solution archive, which is expected to improve the performance of
algorithms for problems that have a compact solution representation and an expensive
evaluation method. The tree structure of the solution archive might also be exploited
further, e.g., by computing bounds on partial solution in order to cut off subspaces,
that cannot contain better solutions.

Acknowledgments This work is supported by the Austrian Science Fund (FWF) under Grant P24660-
N23.

References

Alekseeva, E., Kochetov, Y.: Matheuristics and exact methods for the discrete (r |p)-centroid problem. In:
Talbi, E.G. (ed.)Metaheuristics for Bi-Level Optimization, Studies in Computational Intelligence, vol.
482, pp. 189–219. Springer, Berlin (2013)

Alekseeva, E., Kochetova, N., Kochetov, Y., Plyasunov, A.: A hybrid memetic algorithm for the competitive
p-median problem. In: Bakhtadze, N., Dolgui, A. (eds.) Information Control Problems in Manufac-
turing, vol. 13, pp. 1533–1537. International Federation of Automatic Control, Salvador (2009)

Alekseeva, E., Kochetova, N., Kochetov, Y., Plyasunov, A.: Heuristic and exact methods for the discrete
(r |p)-centroid problem. In: Cowling, P., Merz, P. (eds.) Evolutionary Computation in Combinatorial
Optimization, LNCS, vol. 6022, pp. 11–22. Springer, Berlin (2010)

Bhadury, J., Eiselt, H., Jaramillo, J.: An alternating heuristic for medianoid and centroid problems in the
plane. Comput. Oper. Res. 30(4), 553–565 (2003)

Biesinger, B., Hu, B., Raidl, G.: An evolutionary algorithm for the leader-follower facility location problem
with proportional customer behavior. In: Pardalos, P.M., Resende, M.G., Vogiatzis, C., Walteros,
J.L. (eds.) Learning and Intelligent Optimization, Lecture Notes in Computer Science, pp. 203–217.
Springer, Berlin (2014)

123

A hybrid GA for the discrete RPCP 431

Campos-Rodríguez, C., Moreno-Pérez, J., Noltemeier, H., Santos-Peñate, D.: Two-swarm pso for compet-
itive location problems. In: Krasnogor, N., Melián-Batista, M., Pérez, J., Moreno-Vega, J., Pelta, D.
(eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2008), Studies in Computa-
tional Intelligence, vol. 236, pp. 115–126. Springer, Berlin (2009)

Campos-Rodríguez, C., Moreno-Pérez, J.A., Santos-Peñate, D.: Particle swarm optimization with two
swarms for the discrete (r |p)-centroid problem. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia,
A. (eds.) Computer Aided Systems Theory (EUROCAST 2011), LNCS, vol. 6927, pp. 432–439.
Springer, Berlin (2012)

Davydov, I., Kochetov, Y., Carrizosa, E.: VNS heuristic for the centroid problem on the plane. Electron.
Notes Discret. Math. 39, 5–12 (2012)

Davydov, I., Kochetov, Y., Mladenovic, N., Urosevic, D.: Fast metaheuristics for the discrete (r |p)-centroid
problem. Autom. Remote Control 75(4), 677–687 (2014a)

Davydov, I., Kochetov, Y., Plyasunov, A.: On the complexity of the (r |p)-centroid problem in the plane.
TOP 22(2), 614–623 (2014b)

Drezner, T.: Optimal continuous location of a retail facility, facility attractiveness, and market share: an
interactive model. J. Retail. 70(1), 49–64 (1994)

Drezner, T.: Location of multiple retail facilities with limited budget constraints in continuous space. J.
Retail. Consum. Serv. 5(3), 173–184 (1998)

Drezner, T., Drezner, Z., Salhi, S.: Solving the multiple competitive facilities location problem. Eur. J. Oper.
Res. 142(1), 138–151 (2002)

Ghosh, A., Craig, C.: A location allocation model for facility planning in a competitive environment. Geogr.
Anal. 16(1), 39–51 (1984)

Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology.
Cambridge University Press, New York (1997)

Hakimi, S.: On locating new facilities in a competitive environment. Eur. J. Oper. Res. 12(1), 29–35 (1983)
Hotelling, H.: Stability in competition. Econ. J. 39(153), 41–57 (1929)
Hu, B., Raidl, G.: An evolutionary algorithm with solution archives and bounding extension for the gener-

alized minimum spanning tree problem. In: Soule, T. (ed.) Proceedings of the 14th annual conference
on genetic and evolutionary computation (GECCO), pp. 393–400. ACM Press, Philadelphia (2012)

Kochetov, Y., Kochetova, N., Plyasunov, A.: A matheuristic for the leader-follower facility location and
design problem. In: Lau H, Van Hentenryck P, Raidl G (eds) Proceedings of the 10th metaheuristics
international conference (MIC 2013), Singapore, pp 32/1–32/3 (2013)

Kress, D., Pesch, E.: Sequential competitive location on networks. Eur. J. Oper. Res. 217(3), 483–499 (2012)
Laporte, G., Benati, S.: Tabu search algorithms for the (r |xp)-medianoid and (r |p)-centroid problems.

Locat. Sci. 2, 193–204 (1994)
Mladenović, N., Brimberg, J., Hansen, P., Moreno-Pérez, J.A.: The p-median problem: A survey of meta-

heuristic approaches. Eur. J. Oper. Res. 179(3), 927–939 (2007)
Noltemeier, H., Spoerhase, J., Wirth, H.C.: Multiple voting location and single voting location on trees.

Eur. J. Oper. Res. 181(2), 654–667 (2007)
Raidl, G., Hu, B.: Enhancing genetic algorithms by a trie-based complete solution archive. In: Cowling,

P., Merz, P. (eds.) Evolutionary Computation in Combinatorial Optimization, LNCS, vol. 6022, pp.
239–251. Springer, Berlin (2010)

Roboredo,M., Pessoa, A.: A branch-and-cut algorithm for the discrete (r |p)-centroid problem. Eur. J. Oper.
Res. 224(1), 101–109 (2013)

Serra, D., Revelle, C.: Competitive location in discrete space. In: Economicsworking papers 96, Department
of Economics and Business, University of Pompeu Fabra, Spain, Technical Report (1994)

123

	A hybrid genetic algorithm with solution archive for the discrete (r|p)-centroid problem
	Abstract
	1 Introduction
	2 Problem definition
	3 Related work
	4 Solution evaluation
	4.1 Bi-Level MIP Formulation
	4.2 Solution evaluation methods
	4.2.1 Exact evaluation
	4.2.2 Linear programming (LP) evaluation
	4.2.3 Greedy evaluation

	5 Genetic algorithm with solution archive
	5.1 Variation operators
	5.2 Local search
	5.3 Solution archive
	5.4 Trie structure
	5.5 Insertion
	5.6 Conversion
	5.7 Randomization of the trie

	6 Local and tabu search with solution archive
	6.1 Complete neighborhood
	6.2 Reduced neighborhood
	6.3 Conversion neighborhood
	6.4 Tabu search

	7 Multi-level solution evaluation scheme
	7.1 Basic multi-level solution evaluation scheme
	7.2 Multi-level solution evaluation scheme and local search

	8 Computational results
	8.1 Solution evaluation on euclidean instances
	8.2 Genetic algorithm on Euclidean instances
	8.3 Neighborhoods of the local search and tabu search on Euclidean instances
	8.4 Multi-level evaluation scheme on Euclidean instances
	8.5 Comparison to results from the literature on Euclidean instances
	8.6 Uniform instances
	8.7 Distribution of facilities

	9 Conclusions
	Acknowledgments
	References

