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Abstract In this paper we consider a job shop scheduling problem with blocking
(BJSS) constraints. Blocking constraints model the absence of buffers (zero buffer),
whereas in the traditional job shop scheduling model buffers have infinite capacity.
There are twoknownvariants of this problem, namely the blocking job shop scheduling
with swap allowed (BWS) and the one with no swap allowed (BNS). This scheduling
problem is receiving an increasing interest in the recent literature, and we propose an
Iterated Greedy (IG) algorithm to solve both variants of the problem. IG is a meta-
heuristic based on the repetition of a destruction phase, which removes part of the
solution, and a construction phase, in which a new solution is obtained by apply-
ing an underlying greedy algorithm starting from the partial solution. A comparison
with recent published results shows that the iterated greedy algorithm outperforms
other state-of-the-art algorithms on benchmark instances. Moreover it is conceptu-
ally easy to implement and has a broad applicability to other constrained scheduling
problems.

Keywords Job shop scheduling problem · Blocking · Swap · Iterated greedy ·
Alternative graph

1 Introduction

The job shop scheduling problem is one of the most studied problems in combinatorial
optimization. In this problem, a set of jobs must be processed on a set of machines
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and the sequence of machines for each job is prescribed. The processing of a job
on a machine is called an operation and cannot be interrupted. Each machine can
host only one job at a time, and whenever two jobs require the same machine, a
processing order must be defined between the incompatible operations. The problem
consists of scheduling all operations on all machines to minimize the completion
time of all jobs. The classical version of the problem assumes that jobs can be stored
in a buffer of infinite capacity between consecutive operations. However, there are
many practical situations in which the buffer capacity has to be taken into account.
This is the case, for example, when there is no buffer to store work-in-progress or
it is not convenient to store jobs due to economic considerations. Among industrial
applications from the literature in which these situations occur we cite the production
of concrete (Grabowski and Pempera 2000) and steel (Pacciarelli 2004; Pacciarelli
and Pranzo 2004), the management of robotic systems (Levner et al. 1997), as well as
surgical case scheduling (Pham and Klinkert 2008), container handling (Meersmans
2002), and railway traffic management (D’Ariano et al. 2007, 2010).

The blocking constraint models the complete absence of storage capacity between
consecutive machines (Hall and Sriskandarajah 1996). In this setting, a machine is
released by a job only when the subsequent machine is available for processing it.
When the subsequent machine is unavailable the job remains on the current machine,
thus blocking it, even after its operation is completed. For example, in railway traffic
management one can view a train as a job and a rail track segment between two signals
as a machine that can host at most one job at a time. A blocking constraint arises since
each train, having reached the end of a track segment can enter the next segment only
if this is empty. Otherwise it must wait, thus preventing other trains from entering its
current segment. Therefore, regulating the traffic on a train networks corresponds to
scheduling jobs on blocking machines.

Two versions of the job shop scheduling problems with blocking can be distin-
guished: the blocking with swap (BWS) and the blocking no-swap (BNS) versions.
The need to swap operations between machines arises whenever there is a circular set
of blocking operations in which each operation is waiting for a machine occupied by
another operation in the set. The only way to solve such situation is that all opera-
tions in the set swap, i.e., move simultaneously to their subsequent machines so that
all corresponding subsequent operations can start at the same time. In other words, a
circular set of mutually blocked operations can occur in the BWS case, while it must
be avoided in the BNS case, when swap is not allowed. Railway traffic management is
one example of the BNS case, since a train can start moving to the next segment only
after that this has been emptied. Mascis and Pacciarelli (2002) show that the problem
of deciding whether a feasible schedule exists, when a certain partial schedule is given,
is polynomially solvable for the BWS case and it is NP-complete for the BNS version,
while the BJSS problem of finding the minimum completion time is NP-hard in both
cases.

Despite the practical relevance of the BJSS problem, only in the last years few
algorithmic contributions on job shop scheduling problems with blockings have been
proposed in the literature. One successful approach is based on the alternative graph
formulation (Mascis and Pacciarelli 2002), which allows to model the BJSS problem
in both variants, with andwithout swaps. InMascis and Pacciarelli (2002) a branch and
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bound algorithm is proposed to sove the problem exploiting the generalization to the
blocking case of some properties holding for the traditional JSS problem with infinite
buffer capacity. In Pranzo et al. (2003) a family of heuristics (AGH) extending the ones
introduced in Mascis and Pacciarelli (2002) has been proposed and tested. Based on
the AGH heuristics, in Meloni et al. (2004) a rollout algorithm is proposed for solving
four variants of the job shop scheduling problem including, among the others, theBWS
and the BNS versions. In Liu and Kozan (2011), a constructive algorithm with local
search improvement is proposed for solving the blocking job shop scheduling problem
with parallel-machines and applied to solve a train scheduling problem.Computational
results for the BWS case are also reported.

The literature on the blocking job shop scheduling problem includes several recent
algorithmic contributions specially tailored for the BWS version of the problem.
Gröflin and Klinkert (2009) propose a tabu search algorithm in which the solution
feasibility is recovered after every move. In Gröflin et al. (2011), the neighborhood is
enlarged to take into account machine flexibility and improved results are presented. A
complete local search with memory is proposed by Zhu and Li (2011) which compares
favourably with the greedy heuristic algorithms presented in Mascis and Pacciarelli
(2002). Recently, Oddi et al. (2012) presented an iterative flattening search for the
BWS problem obtaining state-of-the-art results.

The literature for the BNS case experienced a smaller number of contributions.
Mati et al. (2001a, b) study a flexible manufacturing system and model the production
scheduling problem as a BNS job shop scheduling problem in which each operation
may require more than a resource at a time to be executed. They develop a geometric
approach to optimally solve the BNS problem with two jobs. Mati and Xie (2011)
extend the previous works to include resource flexibility. They propose an insertion
heuristic based on the geometric approach for the problem with two jobs and incor-
porate this algorithm in a tabu search framework to produce deadlock-free schedules
for the problem with n jobs.

In this paper, we discuss and apply a conceptually very simple technique, known
as Iterated Greedy (IG), which aims at improving the performance of a greedy con-
structive heuristic procedure in short computation times.

The paper is organized as follows. In Sect. 2 we formulate job shop schedul-
ing problems with blocking constraints using the alternative graph formulation. In
Sect. 3 we present our iterated greedy algorithm for solving the problem mod-
eled by means of the alternative graph formulation. Computational results on a
set of benchmark instances are presented in Sect. 4, and finally some conclusions
follow.

2 The job shop scheduling problem with blocking constraints

In the job shop scheduling problem a set of jobs J must be processed on a set of
machines M , each processing at most one job at a time. The processing of a job on
a machine is called an operation and cannot be interrupted. We let {o1, . . . , on} be
the set of all operations. The sequence of operations for each job is prescribed, while
the sequence of operations for each machine has to be determined in such a way that
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the time needed to complete all operations, called the makespan, is minimum. More
formally, the scheduling problem consists in assigning a starting time ti to operation
oi , i = 1, . . . , n, such that: (i) precedence constraints between consecutive operations
of the same job are satisfied; (i i) each machine hosts at most one job at a time; and
(i i i) the makespan is minimized.

In the blocking job shop scheduling problem no intermediate storage is allowed
between two consecutive machines. Hence, once a job completes processing on
machine Mh it either moves to the subsequent machine Mk (if it is available) or it
remains onMh , thus blocking it (ifMk is not available). The blocking job shop schedul-
ing problem can be modeled by using the alternative graph model of Mascis and Pac-
ciarelli (2002). An alternative graph is a triple G = (N , F, A). N = {0, 1, . . . , n + 1}
is a set of nodes, and each node i ∈ N is associated to operation oi . Two additional
nodes start 0 and finish n + 1 (dummy operations o0 and on+1) model the beginning
and the completion of the schedule, i.e., o0 precedes all other operations while on+1
follows all other operations. F is a set of fixed directed arcs and fi j is the length of
the fixed arc (i, j) ∈ F . A fixed arc (i, j) represents a precedence constraint on the
starting time of operation o j , which is constrained to start at least fi j time units after
oi , i.e., t j ≥ ti + fi j . Finally, A is a set of m pairs of alternative directed arcs, and
ai j is the length of the alternative arc (i, j). If ((i, k), (h, j)) ∈ A, then arcs (i, k)
and (h, j) form an alternative pair. Alternative pairs are used to model precedence
relations between pairs of operations to be processed on the same machine. Let oi
and o j be two operations to be processed on the same machine, and let oh and ok be
the operations immediately following oi and o j in their respective jobs (see Fig. 1).
The blocking constraint states that if oi is processed before o j , operation o j can start
the processing only after the starting time of oh (i.e., when oi leaves the machine).
Hence, we represent this situation with the alternative arc (h, j). Conversely, arc (k, i)
represents operation o j preceding oi .

A selection S is a set of arcs obtained from A by choosing at most one arc from each
pair, and G(S) indicates the graph (N , F ∪ S). The selection is feasible if there are
no positive length cycles in the resulting graph G(S). In fact, a positive length cycle
represents an operation preceding itself, which is not feasible. A selected alternative
arc (i, j) represents the precedence relation t j ≥ ti + ai j .

When swaps are allowed (Fig. 1a) the length of all the alternative arcs is set to
zero. In fact given an alternative pair ((i, k), (h, j)) ∈ A, o j can start immediately
after the start of oh , i.e., ahj = 0. Note that, in this case, a cycle of alternative arcs
has total length zero, and it is therefore feasible. In the no-swap case a deadlock is
infeasible. Since a deadlock corresponds to a cycle of alternative arcs (see Fig. 2), this
infeasibility is achieved by setting the length of alternative arcs to a small positive
value ε (Fig. 1b). Positive length models the fact that an operation can start processing
on a machine strictly after that the previous operations has left it.

Given a feasible selection S, we denote the length of a longest path from i to j in
G(S) by l S(i, j) (if there is no path from i to j we assume l S(i, j) = −∞). A solution
S is a selection of |A| alternative precedence relations, exactly one from each pair in
A. A feasible solution is optimal if the length l S(0, n + 1) of a longest path from 0 to
n + 1 is minimum over all feasible solutions.
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Fig. 1 a The alternative pair of
blocking operations with swaps
allowed. b The alternative pair
of blocking operations when
swaps are not allowed
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Fig. 2 a A simple swap cycle between two operations. b The alternative graph model with swaps allowed.
c The alternative graph model when swaps are not allowed

Finally, given a feasible selection S, we define LS
i j as the length of a critical (i.e.,

longest) path passing through the alternative arc (i, j):

LS
i j = l S(0, i) + ai j + l S( j, n + 1).

LS
i j represents a rough lower bound of the longest path between 0 and n+1 (i.e., of the

makespan) in any feasible solution obtained starting from the selection S ∪ {(i, j)}.
We also make use of static implications. Two alternative pairs ((k, i), (h, j))

((d, a), (c, b)) are statically implied if there is no feasible solution in which arcs
(k, i) and (c, b) are selected or arcs (h, j) and (d, a) are selected. In other words, the
selection of arc (d, a) implies the selection of arc (k, i), and the selection of arc (h, j)
implies the selection of arc (c, b). Given an alternative arc (h, i), we define the set
I (h, j) as the set of alternative arcs statically implied by (h, j). Whenever an alterna-
tive arc pair (h, j) is selected/deselected also all arcs in I (h, i) are selected/deselected.

The following simple result allows to establish a correspondence between the selec-
tion of arcs from different alternative pairs.

Proposition 1 (Implication)Given a selection S and two unselected alternative pairs
((d, a), (c, b)) and ((h, j), (k, i)), if l S(a, h) ≥ 0 and lS( j, d) ≥ 0 then there is no
feasible solution in which arcs (d, a) and (h, j) are both selected in S.

Proposition 1 can be applied in particular with the empty selection S = ∅, when
the graph G(∅) = (N ,F) is composed of a set of chains of fixed arcs. Then, the paths
l S(a, h) ≥ 0 and l S( j, d) ≥ 0 can be composed only by fixed arcs, i.e., the paths exist
only if nodes a, h refer to a same job J1, and j, d refer to another job J2, sharing some
machines with J1. We call this implication static since it holds for any selection S.
The conditions of Proposition 1 hold for S = ∅ in the following two cases:
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Fig. 3 a Jobs passing in the same order. b Jobs passing in opposite order

Iterated Greedy
Input:

Initial solution S
begin

while stopping criterion is not fulfilled do
S′ = Destruction( S )
S′′ = Construction( S′ )
S = Acceptance Criterion( S, S′′)

end
end

Fig. 4 The pseudocode of an iterated greedy algorithm

– J1 and J2 pass both through two consecutive machines M1 and M2 in the same
order. In this case c ≡ i and d ≡ j (see Fig. 3a).

– J1 and J2 pass both through M1 and M2 consecutively, although in the opposite
order (see Fig. 3b).

Whenever one of the two above situations occurs, the selection of arc (d, a) implies
the selection of arc (k, i), and the selection of arc (h, j) implies the selection of
arc (c, b). Therefore I (d, a) = {(k, i)}, I (k, i) = {(d, a)}, I (h, j) = {(c, b)} and
I (c, b) = {(h, j)}.

Static implications can be computed off-line very efficiently and have been suc-
cessfully applied to train scheduling problems (D’Ariano et al. 2007).

3 Iterated greedy

Iterated Greedy is a conceptually very simple approach that can be used to improve
the performance of a greedy heuristic, which is used as a black box within the algo-
rithm. The basic idea is to iterate a Destruction–Construction cycle. A sketch of the
algorithm is given in Fig. 4. A Destruction–Construction cycle consists of three dif-
ferent phases, namely destruction (some components of the incumbent solution are
removed), construction (starting from the partial solution a new complete solution is
built by the greedy heuristic) and acceptance criterion (the new solution is evaluated
and possibly accepted as a new incumbent). Finally a stopping criterion is adopted to
terminate the search.

Given its simple structure, the IG algorithm has been independently developed
by different research communities under different names, such as Ruin and Recre-
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ate (2000), Adaptive Large Neighborhood Search (Shaw 1997) or Iterated Flattening
Search (Cesta et al. 2000). IG algorithms have been successfully applied to the Set
Covering Problem (Marchiori and Steenbeek 2000), to some variants of the Vehicle
Routing Problem (Ropke and Pisinger 2006a, b), to the permutation flowshop schedul-
ing in both versions without and with blocking (Ruiz and Stützle 2007, 2008; Ribas
et al. 2011) and to the BJSS problem (Oddi et al. 2012).

One of the main advantages of the iterated greedy algorithm is that it does not rely
on specific properties of the problem addressed, but all the problem specific knowledge
is embedded in the underlying heuristic solution procedure. This is particularly useful
when dealing with very general problems that suffer from a lack of specific properties
to be used in the design of efficient solution algorithms. Moreover, the framework is
easy to implement once a constructionheuristic procedure is available. In the remaining
part of this section we describe the three phases of our iterated greedy algorithm for
the blocking job shop problem with or without swaps.

3.1 Initial solution

The first incumbent solution is obtained by simply ordering the jobs from 1 to |J | and
then, for each alternative pair involving jobs Ji and job J j with i < j , selecting the arc
in which Ji precedes J j . Is it easy to show that the initial solution constructed in this
way is always feasible in the BWS and BNS cases, since a cycle in G(S)would require
at least one arc from J j to Ji , with i < j . This is relevant since, starting from a partial
selection, the problem of deciding whether a feasible solution exists is a N P-complete
problem for the BNS case (Mascis and Pacciarelli 2002). However we observe as the
solution found by this initial heuristic has typically very poor quality.

3.2 Destruction

In the Destruction phase a portion of the current selection S (representing the incum-
bent solution) is deselected, and a new partial selection S′ is obtained. More precisely,
each alternative pair is randomly deselected with probability p. The probability p is
a parameter of the Destruction procedure called perturbation strength and in our test
we set it to 0.8, i.e., in the destruction phase 80% of all alternative arcs are deselected.
Recall that, since we use static implications, every time the algorithm deselects the
alternative arc (i, j) ∈ ((i, j), (h, k)) all the implied alternative arcs in I (i, j) are also
deselected. Thus the actual fraction of removed arcs is at least p.

Notice that, in our model, k operations that must be processed on the same machine
lead to k(k − 1)/2 alternative pairs. Clearly, only (k − 1) of them are necessary,
while all the others are redundant. Removing a redundant arc would not lead to
a different solution, since a redundant arc is implied by the others and construc-
tion algorithm would select it immediately. Hence, in order to reach a new solu-
tion, the destruction phase must remove a large number of arcs, most of which are
redundant.
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Constructive Heuristic
Input:

Alternative graph G = (N,F,A)
Initial Selection S
if AMCC then criterion C = max{LS

ij , L
S
hk} is maximum

if SMBP then criterion C = |LS
ij − LS

hk| is minimum
if AMSP then criterion C = LS

ij + LS
hk is maximum

begin
while A �= ∅ do

Let G = (N,F ∪ S)
Choose pair ((i, j), (h, k)) ∈ A according to criterion C and let LS

ij ≤ LS
hk.

Let S1 = S ∪ {(i, j)} ∪ I(i, j).
if G(S1) is infeasible then let S2 = S ∪ {(h, k)} ∪ I(h, k).

if G(S2) is infeasible then STOP, failed in finding a feasible solution.
else Update S = S2 and remove from A all pairs (h, k) and I(h, k) belong to.

else Update S = S1 and remove from A all pairs (i, j) and I(i, j) belong to.
end

end.

Fig. 5 Sketch of the constructive algorithm

3.3 Construction

Given a partial selection S, a constructive greedy procedure is applied to extend S at
each step with a new alternative arc (i, j), i.e., S = S ∪ {(i, j)} ∪ I (i, j), until a new
feasible solution S′ is obtained or an infeasibility is detected. The latter case arises
when there is an alternative pair ((i, j), (h, k)) such that both G(S∪{(i, j)}∪ I (i, j))
and G(S ∪ {(h, k)} ∪ I (h, k)) contain a positive cycle, and we say that S is infeasible
even if G(S′) does not contain any cycle.

As constructive heuristic we next describe a family of greedy heuristics described
in Fig. 5, differing from each other for a selection criterion C. We investigate three
criteria, named AMCC (Avoid Maximum Current Completion time), AMSP (Avoid
Max Sum Pair) and SMBP (Select Most Balanced Pair). The first is introduced in
Mascis and Pacciarelli (2002) while the others are introduced in Pranzo et al. (2003).
The rationale behind this choice is that moving from the former to the latter the prob-
ability of finding feasible schedules increase at the price of a deteriorating makespan.
The AMCC heuristic chooses at each step the alternative pair ((i, j), (h, k)) ∈ A such
that max{LS

i j , L
S
hk} is maximum over all unselected alternative pairs. In other words,

AMCC avoids the selection of the arc that would increase most the completion time of
the current partial schedule. This choice has been demonstrated to be quite effective
with different versions of the job shop scheduling problem (Laborie 2003; Gabel and
Riedmiller 2007; D’Ariano et al. 2007). The AMSP heuristic chooses at each step the
alternative pair ((i, j), (h, k)) ∈ A such that LS

i j +LS
hk is maximum over all unselected

alternative pairs, while the SMBP heuristic chooses at each step the alternative pair
((i, j), (h, k)) ∈ A such that |LS

i j − LS
hk | is minimum. Once the pair is chosen, in all

cases the heuristic selects the most promising arc of the pair, i.e., if LS
i j < LS

hk , then
(i, j) ∪ I (i, j) is selected.
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If the selection of arc (i, j) would cause a positive length cycle in the graph, then
the arc (h, k) is selected. If also the selection of (h, k) would lead to a positive length
cycle the algorithm terminates and returns the (acyclic but infeasible) partial selection.

Observe that, as stand-alone heuristic, AMCC often fails in finding a feasible solu-
tion for large instances of both the BWS and BNS case. Hence, the use of a meta-
heuristic scheme is particularly useful to achieve the feasibility of the solutions, besides
improving their quality.

3.4 Acceptance criterion

Once a candidate solution is built, the algorithm decides whether to accept it as the new
incumbent or to discard it and retain the previous incumbent. Among the acceptance
criteria defined in the literature, in our experiments we assessed the following two:

– RandomWalk (RW). When RW is adopted every feasible candidate solution gen-
erated by the constructive phase is always accepted. If the construction phase does
not terminatewith a feasible solution then the IGmaintains the previous incumbent
solution.

– Simulated Annealing like (SA). In the Simulated Annealing criterion (Ruiz and
Stützle 2007; Ropke and Pisinger 2006b) a new feasible solution S′ is always
accepted if it is not worst than the incumbent S, i.e., if Cmax (S′) ≤ Cmax (S).
If Cmax (S′) > Cmax (S), then the candidate solution S′ is accepted with proba-
bility e[Cmax (S)−Cmax (S′)]/T where T is a parameter called the temperature. In our
experiments we set T = 0.5.

3.5 Stopping criterion

Different stopping criteria can be devised, such as a time limit, a maximum number of
iterations and so on. In our tests we set a maximum time limit of computation of 60s
for each run. To avoid stagnation and to improve the performance of the algorithm we
run the IG for 10 independent runs and retain the best solution found.

4 Computational results

We tested the performance of our algorithm on the 58 benchmark instances for the
job shop scheduling problem by Fisher and Thompson (1963), Lawrence (1984),
Applegate and Cook (1991), Adams et al. (1988), adapted to the BWS and BNS
cases (for a total of 116 instances). The optimum for these instances is known only
for the 18 BWS and 18 BNS instances with 10 jobs and 10 machines (Mascis and
Pacciarelli 2002). The time needed to prove the optimality ranges from few minutes
up to 30 hours on a Pentium II at 350 MHz. In what follows we refer to this algorithm
as BB.

In this section, we first briefly discuss the preliminary test phase. Since the results
obtained in this phase often improve the best known solutions from the literature,
we show the updated best known upper bound for each instance. Then we compare
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the performance of the two selected IG configurations against the best performing
algorithms for both the BWS (Sect. 4.1) and BNS (Sect. 4.2) problems.

In a preliminary test phase, we tested 12 different parameters setting configurations,
retaining the best solution found for all the runs. More specifically we considered
three perturbation strength {0.4, 0.6, 0.8} two acceptance criteria (Random Walk and
Simulated Annealing) and two different construction phases (running the AMCC or
taking the best among three independent runs usingAMCC,AMSP and SMBPcriteria.

From this preliminary test phase we selected the two configurations exhibiting the
best performance:

– Destruction In the destruction phase we set perturbation strength equal to 0.8.
– Construction The chosen constructive greedy heuristic is the AMCC algorithm.
– Acceptance Criterion The two best configurations differ for the acceptance crite-
rion, which is RandomWalk (RW) in one configuration and Simulated Annealing
(SA) in the other.

– Stopping CriterionAs stopping criterion we use a time limit of computation equal
to 10min. After every 60s the current run is interrupted and a new independent
run is started.

We refer to these algorithms as IG.RW and IG.SA, respectively. The algorithm is
implemented in C++, uses a single thread and runs on an 3.0GHz Core Duo Intel
processor equipped with 2 Gb of RAM.

In the Appendix of the paper (Table 5) we report on the number of iterations
executed by IG in a second of computation. This value varies from more than one
thousand for the smallest (10 × 5) instances to less than ten for the largest (30 × 10)
instances. To give an idea of the dynamic behavior of IG during its execution, for the
two instances ft10 (with and without swap allowed) on average after 10,000 moves,
the percentage of failures in the construction phase (when AMCC fails in finding a
feasible solution) is about 31% for IG.SA and 44% for IG.RW, the improving moves
(new solution feasible and better than the previous incumbent) are 8% for IG.SA and
14% for IG.RW, the side-ways moves (the new incumbent has the same makespan
than the previous one) are more than 44% for IG.SA and about 32% for IG.RW, the
worsening moves are about 10% for IG.RW and 18% for IG.SA, 8% of which of the
latter are accepted.

4.1 Performance analysis on blocking with swap

In this section, we compare our results with the best known solutions available in
the literature. As a benchmark for the BWS case, we consider two tabu search algo-
rithms (Gröflin and Klinkert 2009; Gröflin et al. 2011), a rollout algorithm (Meloni et
al. 2004), a complete local search with memory (Zhu and Li 2011), simple heuristic
techniques reported in Pranzo et al. (2003), Liu and Kozan (2011) and the recent algo-
rithms presented in Oddi et al. (2012). The best performing algorithms described in
these papers are the tabu search algorithm by Gröflin and Klinkert (2009) and Gröflin
et al. (2011) (denoted as GK and GPB respectively), the iterated flattening scheme
algorithm (Oddi et al. 2012) denoted as IFS and the CP-OPT constraint programming
solver of IBM Ilog (Oddi et al. 2012) which implements the approach described in
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Laborie andGodard (2007). Note that the two latter algorithms have the same structure
of the IG, as they both repeat a destruction–construction cycle, although with different
components. Specifically, in Oddi et al. (2012) two destruction criteria are analyzed,
namely a random selection of the relaxed activities and a slack-based destruction
procedure, which restricts the pool of relaxable activities to the subset containing
those activities that are closer to the critical path. The construction component has
the same structure of our constructive heuristic, but the criterion C is different from
the ones used by AMCC, SMBP, AMSP. Finally, a solution is then accepted only if
it improves the current best solution. Laborie and Godard (2007) use a portfolio of
destruction and construction components. At each destruction–construction iteration,
a learning algorithm chooses the specific component to use by taking into account
the quality of the improvements and the computation times attained in the previous
iterations.

In Table 1 we compare the results found by our IG against the best known solu-
tions from the literature. The first two columns report the instance name and size
(number of jobs × number of machines). The reference to the paper and the best
known solution for each instance are shown in Column 3 and 4, respectively. Finally,
in Column 5 we show the best result found by all the tested configurations of IG,
highlighted in bold when some configuration of the IG improves or attains the best
known solution.

The overall CPU time required for each instance by the 12 configurations of IG to
obtain the results in Table 1 is 7,200 s on a 3.0 GHz processor. The CPU times required
by the other best performing algorithms are as follows. GK performs 5 independent
runs of 1,800s each on a 2.8GHz processor, for a total of 9,000s. IFS requires two
runs of 1,800s each. Since 16 configurations of IFS are presented in Oddi et al. (2012)
and Table 1 shows the best result, the total computation time required by IFS for one
instance is 16 hours of computation. CP-OPT performs a single run of 1,800s. Both
the IFS and CP-OPT run on a AMD Phenom II X4 Quad 3.5GHz.

The 12 configurations of IG presented in this paper are able to attain or to improve
the best solution known in the literature in 42 over 58 benchmark instances. Over the
40 instances for which a proven optimum is not known, IG finds a new best known
in 19 cases. Among the other 18 instances for which the optimum is given in Mascis
and Pacciarelli (2002), IG achieves the optimum in 17 cases.

Table 2 compares the results of the two best configurations of IG with the three
best performing algorithms from the literature: GPB, IFS and CP-OPT.We restrict the
comparison to the 40 BWS instances of the Lawrence benchmark, the only instances
for which a published result is available for all the three benchmark algorithms. Under
IFS we report the results of the best performing configuration among the 16 proposed
variants presented inOddi et al. (2012), namely theoneusing the slack-basedprocedure
and with γ = 0.5.

In Table 2, columns from 1 to 4 show the instance name, size, the value of the best
known solution from Table 1 and the paper in which the solution has been presented,
respectively. Columns 5, 6 and 7 report the results obtained by GBP, IFS and CP-OPT,
respectively. Finally, Columns 8 and 9 report the results achieved by two Iterated
Greedy configurations IG.RW and IG.SA. The bold values in the table show the IG
configuration attaining the new best known result. For each algorithm we present, in
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Table 2 Performance of IG.RW and IG.SA compared to the best known solutions (Column 3) and the
best performing algorithms [GPB Gröflin et al. (2011), CP-OPT and IFS Oddi et al. (2012)] for BWS on
Lawrence instances

Instance |J | × |M | Best known Reference GPB CP-OPT IFS IG.RW IG.SA

la01 (10 × 5) 793 CP-OPT - IFS 820 793 793 793 793

la02 (10 × 5) 793 IFS 817 815 793 793 793

la03 (10 × 5) 715 IFS 740 790 740 715 715

la04 (10 × 5) 743 IFS 764 784 776 743 743

la05 (10 × 5) 664 CP-OPT - IFS 666 664 664 664 664

la06 (15 × 5) 1,064 IFS 1,180 1,131 1,112 1,102 1,120

la07 (15 × 5) 1,038 IFS 1,084 1,106 1,081 1,062 1,040

la08 (15 × 5) 1,062 IFS 1,125 1,129 1,135 1,089 1,093

la09 (15 × 5) 1,185 IFS 1,223 1,267 1,257 1,192 1,192

la10 (15 × 5) 1,110 IFS 1,203 1,168 1,158 1,140 1,151

la11 (20 × 5) 1,466 IFS 1,584 1,520 1,501 1,550 1,529

la12 (20 × 5) 1,272 IFS 1,391 1,308 1,321 1,342 1,332

la13 (20 × 5) 1,465 IFS 1,541 1,528 1,471 1,531 1,523

la14 (20 × 5) 1,506 CP-OPT 1,620 1,506 1,567 1,538 1,545

la15 (20 × 5) 1,517 IFS 1,630 1,571 1,547 1,593 1,575

la16 (10 × 10) 1,060 BB 1,142 1,150 1,086 1,060 1,060

la17 (10 × 10) 929 BB 977 996 1,000 930 930

la18 (10 × 10) 1,025 BB 1,078 1,135 1,120 1,040 1,061

la19 (10 × 10) 1,043 BB 1,093 1,108 1,077 1,043 1,068

la20 (10 × 10) 1,060 BB 1,154 1,119 1,166 1,080 1,080

la21 (15 × 10) 1,521 IFS 1,545 1,579 1,521 1,514 1,490

la22 (15 × 10) 1,379 CP-OPT 1,458 1,379 1,490 1,368 1,390

la23 (15 × 10) 1,497 CP-OPT 1,570 1,497 1,538 1,445 1,473

la24 (15 × 10) 1,498 IFS 1,546 1,523 1,498 1,434 1,498

la25 (15 × 10) 1,424 IFS 1,499 1,561 1,424 1,422 1,473

la26 (20 × 10) 2,035 CP-OPT 2,125 2,035 2,179 2,013 2,012

la27 (20 × 10) 2,104 IFS 2,175 2,155 2,172 2,044 2,017

la28 (20 × 10) 2,027 IFS 2,071 2,062 2,132 2,039 2,155

la29 (20 × 10) 1,898 CP-OPT 1,990 1,898 1,963 1,928 1,860

la30 (20 × 10) 2,095 IFS 2,097 2,147 2,125 2,137 2,085

la31 (30 × 10) 2,921 CP-OPT 3,137 2,921 3,771 3,095 3,115

la32 (30 × 10) 3,237 CP-OPT 3,316 3,237 3,852 3,415 3,420

la33 (30 × 10) 2,844 CP-OPT 3,061 2,844 3,741 2,970 2,958

la34 (30 × 10) 2,848 CP-OPT 3,146 2,848 3,796 3,016 3,057

la35 (30 × 10) 2,923 CP-OPT 3,171 2,923 3,818 3,193 3,169

la36 (15 × 15) 1,793 IFS 1,919 1,952 1,891 1755 1764

la37 (15 × 15) 1,952 CP-OPT 2,029 1,952 1,983 1,870 1,884

la38 (15 × 15) 1,708 IFS 1,828 1,880 1,708 1,728 1,720

la39 (15 × 15) 1,783 IFS 1,882 1,813 1,848 1,731 1,752
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Table 2 continued

Instance |J | × |M | Best known Reference GPB CP-OPT IFS IG.RW IG.SA

la40 (15 × 15) 1,777 IFS 1,925 1,928 1,831 1,743 1,771

Error (%) 0.00 5.48 3.84 6.69 1.25 1.62

the last row of Table 2, the relative percentage error over the best known solutions
(error = 100× ( f ound − best)/best) from the literature. The computation times of
the algorithms are as follows:GPBuses 5 independent runs of 1,800s eachon a3.0GHz
processor. IFS’12 requires two runs of 1,800s each on a 3.5GHz processor. CP-OPT
performs a single run of 1,800s on a 3.5GHz processor. Finally, the computation time
of the IG.RW and IG.SA is 600s for both algorithms, obtained with 10 independent
runs of 60 s each on a 3.0GHz processor.

From Table 2, it turns out that both IG.RW and IG.SA outperform on average the
other algorithms in terms of solution quality and computation time. More in detail,
when considering the aggregated performance of each algorithm over the instances of
the same size (see Table 6 in the Appendix), we observe a less consistent behavior. IFS
is the best performing algorithm over the (20×5) instances, while CP-OPT is the best
performing algorithm over the (30 × 10) instances. With all the other instances both
versions of IG outperform the other algorithms. In fact, both the computation time of
IG.RWand its average distance from the best known is one third of the best performing
algorithm from the literature (CP-OPT), i.e., 600 against 1,800s and 1.25% against
3.84%, respectively.Moreover, the two IGs are able to improve the best known solution
in 11 out of 40 benchmark instances (the values are shown in bold in the table).

In the Appendix of the paper (Table 7) we provide additional details on the per-
formance of the two IG algorithms across the ten repetitions on each BWS instance
(average, best, worst results and standard deviation). From Table 7, it can be noticed
that even a single one-minute run of the IG yields similar average performance com-
pared to GPB and IFS.

4.2 Performace analysis on blocking no swap

In this section we focus on the BNS case. As in the previous section, we first compare
the overall performance of the 12 configurations of IGwith the current state-of-the-art.
We next compare the two best performing configurations against the best algorithm
for JSP with blocking and no swaps. To the best of our knowledge, besides the exact
approach inMascis and Pacciarelli (2002) referred to as BB, the only available heuris-
tic results on JSP in the BNS case are a tabu search algorithm by Mati and Xie (2011)
referred to as MX, a rollout algorithm (Meloni et al. 2004) and simple heuristic tech-
niques (Pranzo et al. 2003). Among these approaches the tabu search of Mati and
Xie (MX) is the best performing algorithm. Thus we omit the other approaches in the
comparison.

In Table 3 we show the current state-of-the-art performance on BNS instances of
JSP. The instance name and its size are reported in the first two columns. The best

123



602 M. Pranzo, D. Pacciarelli

Ta
bl
e
3

C
om

pa
ri
so
ns

be
tw

ee
n
th
e
be
st
kn

ow
n
so
lu
tio

ns
fo
r
B
N
S
fr
om

th
e
lit
er
at
ur
e
an
d
th
e
be
st
so
lu
tio

ns
fo
un

d
by

IG

In
st
an
ce

|J
|×

|M
|

R
ef
er
en
ce

B
es
tk

no
w
n

B
es
tI
G

In
st
an
ce

|J
|×

|M
|

R
ef
er
en
ce

B
es
tk

no
w
n

B
es
tI
G

ab
z5

(1
0

×
10

)
B
B
—

M
as
ci
s
an
d
Pa
cc
ia
re
lli

(2
00

2)
1,
64

1
1,
64

1
ab
z6

(1
0

×
10

)
B
B
—

M
as
ci
s
an
d
Pa
cc
ia
re
lli

(2
00

2)
1,
24

9
1,
24

9

ft
10

(1
0

×
10

)
B
B
—

M
as
ci
s
an
d
Pa
cc
ia
re
lli

(2
00

2)
1,
15

8
1,
15

8

la
01

(1
0

×
5)

M
X
—

M
at
ia
nd

X
ie
(2
01

1)
88

1
88

1
la
21

(1
5

×
10

)
M
X
—

M
at
ia
nd

X
ie
(2
01

1)
1,
70

0
1,
62

7

la
02

(1
0

×
5)

M
X
—

M
at
ia
nd

X
ie
(2
01

1)
90

0
90

0
la
22

(1
5

×
10

)
M
X
—

M
at
ia
nd

X
ie
(2
01

1)
1,
51

9
1,
42

6

la
03

(1
0

×
5)

M
X
—

M
at
ia
nd

X
ie
(2
01

1)
80

8
80

8
la
23

(1
5

×
10

)
M
X
—

M
at
ia
nd

X
ie
(2
01

1)
1,
73

1
1,
57

4

la
04

(1
0

×
5)

M
X
—

M
at
ia
nd

X
ie
( 2
01

1)
86

2
85

9
la
24

(1
5

×
10

)
M
X
—

M
at
ia
nd

X
ie
(2
01

1)
1,
63

3
1,
50

2

la
05

(1
0

×
5)

M
X
—

M
at
ia
nd

X
ie
(2
01

1)
74

2
73

2
la
25

(1
5

×
10

)
M
X
—

M
at
ia
nd

X
ie
(2
01

1)
1,
65

5
1,
53

3

la
06

(1
5

×
5)

M
X
—

M
at
ia
nd

X
ie
(2
01

1)
1,
24

3
1,
22

5
la
26

(2
0

×
10

)
M
X
—

M
at
ia
nd

X
ie
(2
01

1)
2,
31

0
2,
14

6

la
07

(1
5

×
5)

M
X
—

M
at
ia
nd

X
ie
(2
01

1)
1,
19

4
1,
13

3
la
27

(2
0

×
10

)
M
X
—

M
at
ia
nd

X
ie
(2
01

1)
2,
36

2
2,
19

1

la
08

(1
5

×
5)

M
X
—

M
at
ia
nd

X
ie
(2
01

1)
1,
21

6
1,
21

9
la
28

(2
0

×
10

)
M
X
—

M
at
ia
nd

X
ie
(2
01

1 )
2,
29

1
2,
24

5

la
09

(1
5

×
5)

M
X
—

M
at
ia
nd

X
ie
(2
01

1)
1,
34

9
1,
31

1
la
29

(2
0

×
10

)
M
X
—

M
at
ia
nd

X
ie
(2
01

1)
2,
18

4
2,
03

0

la
10

(1
5

×
5)

M
X
—

M
at
ia
nd

X
ie
(2
01

1)
1,
27

0
1,
23

7
la
30

(2
0

×
10

)
M
X
—

M
at
ia
nd

X
ie
(2
01

1)
2,
31

2
2,
24

2

la
11

(2
0

×
5)

M
X
—

M
at
ia
nd

X
ie
(2
01

1)
1,
72

5
1,
64

1
la
31

(3
0

×
10

)
M
X
—

M
at
ia
nd

X
ie
(2
01

1)
3,
40

3
3,
21

9

la
12

(2
0

×
5)

M
X
—

M
at
ia
nd

X
ie
(2
01

1)
1,
47

9
1,
46

5
la
32

(3
0

×
10

)
M
X
—

M
at
ia
nd

X
ie
(2
01

1)
3,
70

1
3,
56

7

la
13

(2
0

×
5)

M
X
—

M
at
ia
nd

X
ie
(2
01

1)
1,
68

3
1,
62

7
la
33

(3
0

×
10

)
M
X
—

M
at
ia
nd

X
ie
(2
01

1)
3,
36

3
3,
20

1

la
14

(2
0

×
5)

M
X
—

M
at
ia
nd

X
ie
(2
01

1)
1,
74

5
1,
68

6
la
34

(3
0

×
10

)
M
X
—

M
at
ia
nd

X
ie
(2
01

1)
3,
38

0
3,
20

2

la
15

(2
0

×
5)

M
X
—

M
at
ia
nd

X
ie
(2
01

1)
1,
74

9
1,
68

0
la
35

(3
0

×
10

)
M
X
—

M
at
ia
nd

X
ie
(2
01

1)
3,
37

3
3,
49

4

la
16

(1
0

×
10

)
B
B
—

M
as
ci
s
an
d
Pa
cc
ia
re
lli

(2
00

2)
1,
14

8
1,
14

8
la
36

(1
5

×
15

)
M
X
—

M
at
ia
nd

X
ie
(2
01

1)
2,
02

6
1,
83

5

la
17

(1
0

×
10

)
B
B
—

M
as
ci
s
an
d
Pa
cc
ia
re
lli

(2
00

2)
96

8
96

8
la
37

(1
5

×
15

)
M
X
—

M
at
ia
nd

X
ie
(2
01

1)
2,
17

7
1,
93

1

la
18

(1
0

×
10

)
B
B
—

M
as
ci
s
an
d
Pa
cc
ia
re
lli

(2
00

2)
1,
07

7
1,
07

7
la
38

(1
5

×
15

)
M
X
—

M
at
ia
nd

X
ie
(2
01

1)
1,
96

8
1,
81

3

la
19

(1
0

×
10

)
B
B
—

M
as
ci
s
an
d
Pa
cc
ia
re
lli

(2
00

2)
1,
10

2
1,
10

2
la
39

(1
5

×
15

)
M
X
—

M
at
ia
nd

X
ie
(2
01

1)
1,
99

2
1,
81

1

123



An iterated greedy metaheuristic 603

Ta
bl
e
3

co
nt
in
ue
d

In
st
an
ce

|J
|×

|M
|

R
ef
er
en
ce

B
es
tk

no
w
n

B
es
tI
G

In
st
an
ce

|J
|×

|M
|

R
ef
er
en
ce

B
es
tk

no
w
n

B
es
tI
G

la
20

(1
0

×
10

)
B
B
—

M
as
ci
s
an
d
Pa
cc
ia
re
lli

(2
00

2)
1,
11

8
1,
11

8
la
40

(1
5

×
15

)
M
X
—

M
at
ia
nd

X
ie
(2
01

1)
1,
95

8
1,
81

5

or
b0

1
(1
0

×
10

)
B
B
—

M
as
ci
s
an
d
Pa
cc
ia
re
lli

(2
00

2)
1,
25

6
1,
25

6
or
b0

6
(1
0

×
10

)
B
B
—

M
as
ci
s
an
d
Pa
cc
ia
re
lli

(2
00

2)
1,
26

6
1,
27

5

or
b0

2
(1
0

×
10

)
B
B
—

M
as
ci
s
an
d
Pa
cc
ia
re
lli

(2
00

2)
1,
14

4
1,
14

9
or
b0

7
(1
0

×
10

)
B
B
—

M
as
ci
s
an
d
Pa
cc
ia
re
lli

(2
00

2)
52

7
52

7

or
b0

3
(1
0

×
10

)
B
B
—

M
as
ci
s
an
d
Pa
cc
ia
re
lli

(2
00

2)
1,
31

1
1,
31

1
or
b0

8
(1
0

×
10

)
B
B
—

M
as
ci
s
an
d
Pa
cc
ia
re
lli

(2
00

2)
1,
13

9
1,
13

9

or
b0

4
(1
0

×
10

)
B
B
—

M
as
ci
s
an
d
Pa
cc
ia
re
lli

(2
00

2)
1 ,
24

6
1,
24

6
or
b0

9
(1
0

×
10

)
B
B
—

M
as
ci
s
an
d
Pa
cc
ia
re
lli

(2
00

2)
1,
13

0
1,
13

0

or
b0

5
(1
0

×
10

)
B
B
—

M
as
ci
s
an
d
Pa
cc
ia
re
lli

(2
00

2)
1,
20

3
1,
20

3
or
b1

0
(1
0

×
10

)
B
B
—

M
as
ci
s
an
d
Pa
cc
ia
re
lli

(2
00

2)
1,
36

7
1,
36

7

123



604 M. Pranzo, D. Pacciarelli

known solution from the literature is shown in Column 3, while Column 4 shows the
paper reporting first the best solution. Finally, in Column 5 (Best IG) we report the
best solution found by the 12 IG configurations. In bold are highlighted the new best
values. The proposed IG configurations are able to attain or to improve the best known
solution in all but 3 instances. For the 40 instances for which a proven optimum is not
known, IG finds a new best known solution in 29 cases. Moreover, for the 18 known
optima, IG attains the optimum in 16 cases. Regarding the CPU times, the algorithm
MX described inMati and Xie (2011) requires a shorter CPU time since the results are
obtained after 2,000s on a 2.8GHz processor, while the 12 IG configurations require
in total 2h on a 3GHz processor.

In Table 4 we compare the performance obtained by the two best configurations
of IG, namely IG.RW and IG.SA, against that of MX over the 40 BNS instances
of the Lawrence benchmark. Columns 1 and 2 show the instance name and size,

Table 4 Performance of IG.RW and IG.SA compared to the best known solutions (Column 3)and the best
performing algorithm (MX Mati and Xie (2011)) for BNS on Lawrence instances

Instance |J | × |M | Best known Reference MX IG.RW IG.SA

la01 (10 × 5) 881 MX 881 919 881

la02 (10 × 5) 900 MX 900 906 900

la03 (10 × 5) 808 MX 808 808 808

la04 (10 × 5) 862 MX 862 859 859

la05 (10 × 5) 742 MX 742 732 732

la06 (15 × 5) 1,243 MX 1,243 1,247 1,257

la07 (15 × 5) 1,194 MX 1,194 1,173 1,143

la08 (15 × 5) 1,216 MX 1,216 1,224 1,213

la09 (15 × 5) 1,349 MX 1,349 1,311 1,341

la10 (15 × 5) 1,270 MX 1,270 1,237 1,277

la11 (20 × 5) 1,725 MX 1,725 1,683 1,684

la12 (20 × 5) 1,479 MX 1,479 1,525 1,524

la13 (20 × 5) 1,683 MX 1,683 1,695 1,642

la14 (20 × 5) 1,745 MX 1,745 1,701 1,686

la15 (20 × 5) 1,749 MX 1,749 1,728 1,682

la16 (10 × 10) 1,148 BB 1,205 1,148 1,186

la17 (10 × 10) 968 BB 1,020 968 979

la18 (10 × 10) 1,077 BB 1,156 1,077 1,099

la19 (10 × 10) 1,102 BB 1,191 1,124 1,124

la20 (10 × 10) 1,118 BB 1,204 1,164 1,164

la21 (15 × 10) 1,700 MX 1,700 1,653 1,627

la22 (15 × 10) 1,519 MX 1,519 1,435 1,435

la23 (15 × 10) 1,731 MX 1,731 1,574 1,628

la24 (15 × 10) 1,633 MX 1,633 1,584 1,530

la25 (15 × 10) 1,655 MX 1,655 1,558 1,569

la26 (20 × 10) 2,310 MX 2,310 2,159 2,164
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Table 4 continued

Instance |J | × |M | Best known Reference MX IG.RW IG.SA

la27 (20 × 10) 2,362 MX 2,362 2,211 2,191

la28 (20 × 10) 2,291 MX 2,291 2,280 2,319

la29 (20 × 10) 2,184 MX 2,184 2,074 2,054

la30 (20 × 10) 2,312 MX 2,312 2,263 2,342

la31 (30 × 10) 3,403 MX 3,403 3,482 3,405

la32 (30 × 10) 3,701 MX 3,701 3,649 3,576

la33 (30 × 10) 3,363 MX 3,363 3,326 3,255

la34 (30 × 10) 3,380 MX 3,380 3,306 3,352

la35 (30 × 10) 3,373 MX 3,373 3582 3,522

la36 (15 × 15) 2,026 MX 2,026 1,835 1,894

la37 (15 × 15) 2,177 MX 2,177 1974 1,931

la38 (15 × 15) 1,968 MX 1,968 1,813 1,831

la39 (15 × 15) 1,992 MX 1,992 1,820 1,811

la40 (15 × 15) 1,958 MX 1,958 1,818 1,815

Error (%) 0.00 0.84 −2.11 −2.25

respectively. The best known solutions are shown in Column 3. Except for the 5
instances with 10 jobs and 10machines for which a proven optimum is known (Mascis
and Pacciarelli 2002), the best known is given byMX. In columns 4, 5 and 6 we report
the results for MX, IG.RW and IG.SA. The bold values in the table show the IG
configuration attaining the new best known result. For each algorithm, the last row of
Table 4 report the relative percentage error (error = 100 × ( f ound − best)/best)
over the best known solution from the literature. A negative value corresponds to a
performance improving on average the best known solutions. The computation times
of the algorithms are as follows: MX performs 10 independent runs of 200 s on a
2.8GHz processor, for a total of 2,000s, while the IG is the best over 10 independent
runs of 60 s on a 3.0 GHz processor, for a total of 600s.

The results show that IG clearly outperforms MX both in terms of computation
time and quality of the solutions. In particular, the two IG algorithms improve the best
known solutions 28 times out of the 35 instances for which the proven optimum is not
known. The best average results are attained by the IG.SA (−2.25% on average).

In the Appendix of the paper (Table 9) we provide additional details on the per-
formance of the two IG algorithms across the ten repetitions on each BNS instance
(average, best, worst results and standard deviation). Table 6 shows that also when
considering the aggregated performance of each algorithm over the instances of the
same size, both versions of IG clearly outperform MX.

5 Conclusions

In this paper we developed an Iterated Greedy metaheuristic to solve the job shop
scheduling problem with blocking constraints, in the two variants with and without
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swaps. Themain advantages of the iterated greedy algorithm are the ease of implemen-
tation and the independence of the framework from specific properties of the problem
addressed.

Even if the proposed approach is conceptually very simple and easy to implement,
the performance obtained clearly outperforms all the previously published algorithms
from the literature. A new best known solution has been found for 20 BWS instances
and for 29 BNS instances. It is also important to notice that the Iterated Greedy has a
broad applicability since it can be easily applied to any complex scheduling problem
modeled by means of the alternative graph formulation.

Future research directions should address the study of local search based approaches
for the blocking job shop scheduling problem and the adaptation of the IG algorithms
to real world applications with more complex constraints.

6 Appendix

See Tables 5, 6, 7, 8 and 9.

Table 5 Speed of the proposed IG algorithms

Instance size Number of alternative
pairs

Speed (iterations per second)

|J | × |M | BWS BNS

IG.RW IG.SA IG.RW IG.SA

(10 × 5) 225 1,237.52 1,221.44 1,441.32 1,458.79

(10 × 10) 450 333.43 351.38 376.52 387.83

(15 × 5) 525 307.05 314.21 361.95 362.99

(15 × 10) 1,050 81.94 85.38 92.76 95.67

(20 × 5) 950 114.07 120.45 133.45 138.83

(20 × 10) 1,900 29.74 31.49 33.41 34.81

(30 × 10) 4,350 6.92 7.59 8.82 9.01

(15 × 15) 1,575 36.11 37.58 38.87 40.33

In each row the average over the 5 Lawrence instances of the same size are reported. The instance size
is expressed in terms of number of jobs and machines and in terms of number of alternative pairs in the
associated alternative graph. The speed is expressed in number of iterations per second on the different
instance sizes. When swaps are not allowed (BNS) the algorithm is faster because it is more difficult to
obtain a feasible solution and the constructive phase is halted as soon as an unfeasibility is detected, thus
speeding up the computation
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Table 6 Comparisons focused on different instance sizes between GPB, CP-OPT, IFS, IG.RW and IG.SA
algorithms for the BWS

|J | × |M | GPB CP-OPT IFS IG.RW IG.SA

(10 × 5) 2.61 3.76 1.59 0.00 0.00

(15 × 5) 6.57 6.26 5.19 2.34 2.53

(20 × 5) 7.52 2.87 2.54 4.57 3.88

(10 × 10) 6.35 7.65 6.52 0.69 1.58

(15 × 10) 4.13 3.02 2.16 −1.83 0.12

(20 × 10) 2.98 1.33 4.07 0.05 −0.29

(30 × 10) 7.28 0.00 28.71 6.20 6.41

(15 × 15) 6.38 5.82 2.75 −2.00 −1.29

The table shows the relative error compared to the best known solutions from the previous literature. In
each row the average performance over the 5 Lawrence instances of the same size are reported. It can be
observed that IG.RW and IG.SA attain the best results for most of the instances, while CP-OPT performs
best on the largest 30 × 10 instances, though exploiting a larger computation time
The bold values highlight the best performing algorithm

Table 7 Details on the performance of the IG algorithms for the BWS case on the Lawrence testbed

Instance |J | × |M | IG.RW IG.SA

Min Avg Max StdDev Min Avg Max StdDev

la01 (10 × 5) 793 795.5 815 6.52 793 821 878 24.51

la02 (10 × 5) 793 795.8 800 3.43 793 807.1 824 10.97

la03 (10 × 5) 715 715 715 0.00 715 722.4 747 9.21

la04 (10 × 5) 743 743 743 0.00 743 751.9 766 9.10

la05 (10 × 5) 664 668.1 677 4.44 664 677.5 689 6.61

la06 (15 × 5) 1,102 1,160 1,183 23.26 1,120 1,156.6 1,218 24.96

la07 (15 × 5) 1,062 1,086.5 1,113 16.55 1,040 1,073.1 1,090 14.07

la08 (15 × 5) 1,089 1,131.8 1,172 28.12 1,093 1,127 1,142 17.00

la09 (15 × 5) 1,192 1,259 1,286 25.14 1,192 1,250.9 1,292 25.91

la10 (15 × 5) 1,140 1,185.2 1,223 22.95 1,151 1,175.7 1,205 21.00

la11 (20 × 5) 1,550 1,625.1 1,699 39.37 1,529 1,575.8 1,615 27.52

la12 (20 × 5) 1,342 1,406.5 1,452 36.01 1,332 1,401.3 1,459 36.08

la13 (20 × 5) 1,531 1,602.2 1,670 38.17 1,523 1,568 1,634 36.06

la14 (20 × 5) 1,538 1,621.8 1,672 41.38 1,545 1,577.3 1,617 23.73

la15 (20 × 5) 1,593 1,680.6 1,723 36.78 1,575 1,634.6 1,681 30.04

la16 (10 × 10) 1,060 1086.1 1,118 20.34 1,060 1,121.5 1,153 24.77

la17 (10 × 10) 930 932.5 937 2.80 930 964.6 976 12.63

la18 (10 × 10) 1,040 1,056.2 1,070 10.43 1,061 1,073.4 1,122 17.84

la19 (10 × 10) 1,043 1,072.5 1,096 15.81 1,068 1,084 1,122 20.20

la20 (10 × 10) 1,080 1,086.5 1,093 5.39 1,080 1,142.2 1,174 25.90

la21 (15 × 10) 1,514 1,574.4 1,712 51.45 1,490 1,554.1 1,614 36.79

la22 (15 × 10) 1,368 1,406.3 1,476 33.43 1,390 1,424.3 1,490 32.25
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Table 7 continued

Instance |J | × |M | IG.RW IG.SA

Min Avg Max StdDev Min Avg Max StdDev

la23 (15 × 10) 1,445 1,491.4 1,573 33.54 1,473 1,500.3 1,561 25.93

la24 (15 × 10) 1,434 1,498.2 1,561 43.32 1,498 1,536.9 1,625 41.08

la25 (15 × 10) 1,422 1,485.6 1,583 42.31 1,473 1,523.9 1,633 40.93

la26 (20 × 10) 2,013 2,130 2,223 74.20 2,012 2,087.4 2,198 45.85

la27 (20 × 10) 2,044 2,172.8 2,290 64.04 2,017 2,109.8 2,194 55.51

la28 (20 × 10) 2,039 2,189.9 2,288 66.80 2,155 2,171.1 2,231 24.64

la29 (20 × 10) 1,928 2,017.7 2,101 53.17 1,860 1,933.7 1,992 36.92

la30 (20 × 10) 2,137 2,205.4 2,256 42.94 2,085 2,184.5 2,294 71.47

la31 (30 × 10) 3,095 3,345.3 3,521 129.55 3,115 3,209.4 3,385 87.06

la32 (30 × 10) 3,415 3,675.9 3,899 114.76 3,420 3,482.6 3643 65.60

la33 (30 × 10) 2,970 3,266.5 3,415 111.05 2,958 3,166 3,307 106.36

la34 (30 × 10) 3,016 3,321.8 3,476 131.39 3,057 3,221.4 3,338 80.87

la35 (30 × 10) 3,193 3,384.6 3,604 131.23 3,169 3,387.2 3629 127.81

la36 (15 × 15) 1,755 1,833 1,883 41.24 1,764 1,819.4 1,904 36.69

la37 (15 × 15) 1,870 1,979.9 2,063 49.36 1,884 1,954 2,033 43.24

la38 (15 × 15) 1,728 1,837.3 1,936 63.24 1,720 1,774 1,863 46.85

la39 (15 × 15) 1,731 1,811.3 1,881 44.73 1,752 1,811.4 1955 55.45

la40 (15 × 15) 1,743 1,837.2 1,975 72.01 1,771 1,792.2 1851 29.05

Error (%) 1.25 5.59 9.43 1.62 4.99 9.11

For the two configurations we present the minimum, average, maximum and standard deviation over ten
one-minute runs. When comparing the relative error of the one-minute runs with the results of GPB and
IFS (Table 2) it turns out that IG is already competitive after a single one-minute run

Table 8 Comparisons focused on different instance sizes between MX, IG.RW, IG.SA algorithms for the
BNS

|J | × |M | MX IG.RW IG.SA

(10 × 5) 0.00 0.66 −0.34

(15 × 5) 0.00 −1.24 −0.69

(20 × 5) 0.00 −0.47 −1.80

(10 × 10) 6.69 1.22 2.52

(15 × 10) 0.00 −5.25 −5.46

(20 × 10) 0.00 −4.11 −3.40

(30 × 10) 0.00 0.76 −0.59

(15 × 15) 0.00 −8.48 −8.23

The table shows the relative error compared to the best known solutions from the previous literature. In
each row the average performance over the 5 Lawrence instances of the same size are reported. It can be
observed that IG.SA is able to consistently improve the MX results
The bold values highlight the best performing algorithm
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Table 9 Details on the performance of the IG algorithms for the BNS case on the Lawrence testbed

Instance |J | × |M | IG.RW IG.SA

Min Avg Max StdDev Min Avg Max StdDev

la01 (10 × 5) 919 919 919 0.00 881 943.8 983 30.53

la02 (10 × 5) 906 910.5 924 5.95 900 915.1 941 12.58

la03 (10 × 5) 808 808 808 0.00 808 821.2 869 21.35

la04 (10 × 5) 859 859 859 0.00 859 860.1 862 1.14

la05 (10 × 5) 732 732 732 0.00 732 745.2 769 14.33

la06 (15 × 5) 1,247 1,280.4 1,318 24.96 1,257 1,303.3 1,341 23.10

la07 (15 × 5) 1,173 1,195 1,220 13.98 1,143 1,204.8 1,238 25.78

la08 (15 × 5) 1,224 1,252.6 1,283 21.06 1,213 1,274.4 1,305 25.67

la09 (15 × 5) 1,311 1,384.8 1,414 27.33 1,341 1,405.3 1,463 33.12

la10 (15 × 5) 1,237 1,325.9 1,368 32.98 1,277 1,298 1,326 16.51

la11 (20 × 5) 1,683 1,760.8 1,829 43.60 1,684 1,738.7 1,808 33.75

la12 (20 × 5) 1,525 1,591.4 1,664 42.23 1,524 1,577.6 1,626 37.20

la13 (20 × 5) 1,695 1,771.6 1,834 35.60 1,642 1,718.1 1,766 32.13

la14 (20 × 5) 1,701 1,790.9 1,875 41.54 1,686 1,754.5 1,797 30.77

la15 (20 × 5) 1,728 1,829.9 1,924 53.41 1,682 1,768.5 1,867 50.44

la16 (10 × 10) 1,148 1,179.1 1,212 22.49 1,186 1,217.4 1,255 23.58

la17 (10 × 10) 968 968 968 0.00 979 1,024.1 1,074 36.90

la18 (10 × 10) 1,077 1,108 1,122 15.14 1,099 1,178.2 1,235 35.68

la19 (10 × 10) 1,124 1,124.9 1,131 2.12 1,124 1,171.7 1,230 41.68

la20 (10 × 10) 1,164 1,168.6 1,194 9.72 1,164 1,251.3 1,285 33.67

la21 (15 × 10) 1,653 1,693.4 1,741 32.02 1,627 1,743.9 1,849 60.73

la22 (15 × 10) 1,435 1,524.7 1,613 50.53 1,435 1,528 1,593 45.39

la23 (15 × 10) 1,574 1,636.6 1,682 28.92 1,628 1,710.4 1803 51.52

la24 (15 × 10) 1,584 1,656.9 1,704 35.68 1,530 1,661.4 1,765 71.67

la25 (15 × 10) 1,558 1,602.4 1,693 44.47 1,569 1,626.9 1,715 42.82

la26 (20 × 10) 2,159 2,318.6 2,476 92.56 2,164 2,257.5 2,338 48.74

la27 (20 × 10) 2,211 2,346.7 2,471 83.82 2,191 2,320.4 2,418 62.19

la28 (20 × 10) 2,280 2,433.7 2,534 81.58 2,319 2,389.5 2,466 57.69

la29 (20 × 10) 2,074 2,143.6 2,222 51.39 2,054 2,111.6 2,167 41.20

la30 (20 × 10) 2,263 2,373.7 2,561 99.40 2,342 2,380.9 2,449 41.52

la31 (30 × 10) 3,482 3,671.8 3,884 123.38 3,405 3,523.6 3,673 86.78

la32 (30 × 10) 3,649 4,038.7 4,420 196.44 3,576 3,863.5 4,195 167.38

la33 (30 × 10) 3,326 3,601.4 3,809 170.55 3,255 3,424.8 3,656 113.60

la34 (30 × 10) 3,306 3,682.8 3,862 158.28 3,352 3,560.9 3,786 128.95

la35 (30 × 10) 3,582 4,103.7 4,537 247.47 3,522 3,879.4 4309 237.51

la36 (15 × 15) 1,835 1,936.7 2,057 60.46 1,894 1,924.3 1,999 34.39

la37 (15 × 15) 1,974 2,067.1 2,152 61.74 1,931 2,076 2,140 59.28
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Table 9 continued

Instance |J | × |M | IG.RW IG.SA

Min Avg Max StdDev Min Avg Max StdDev

la38 (15 × 15) 1,813 1,902.4 2,009 59.79 1,831 1,905.3 1,959 40.71

la39 (15 × 15) 1,820 1,898.4 2,006 50.78 1,811 1,876.3 1,990 51.36

la40 (15 × 15) 1,818 1,926 2,026 54.30 1,815 1,909.1 2,015 48.11

Error (%) −2.11 2.16 6.13 −2.25 2.23 6.62

For the two configurations we present the minimum, average, maximum and standard deviation over ten
one-minute runs. When comparing the relative error of the one-minute runs with the results of MX (Table
4) it turns out that MX performs better at a price of a larger CPU time
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