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Abstract The maximum a posteriori assignment for general structure Markov ran-
dom fields is computationally intractable. In this paper, we exploit tree-based meth-
ods to efficiently address this problem. Our novel method, named Tree-based Iterated
Local Search (T-ILS), takes advantage of the tractability of tree-structures embedded
within MRFs to derive strong local search in an ILS framework. The method effi-
ciently explores exponentially large neighborhoods using a limited memory without
any requirement on the cost functions. We evaluate the T-ILS on a simulated Ising
model and two real-world vision problems: stereo matching and image denoising.
Experimental results demonstrate that our methods are competitive against state-of-
the-art rivals with significant computational gain.

Keywords Iterated local search · Strong local search · Belief propagation ·Markov
random fields ·MAP assignment

1 Introduction

Markov random fields (MRFs) (Besag 1974; Geman and Geman 1984; Lauritzen
1996) are popular probabilistic representations of structured objects. For example, grid
MRF is a powerful image representation for pixels, where each site represents a pixel
state (e.g., intensity) and each edge represents local relations between neighboring
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26 T. Tran et al.

pixels (e.g., smoothness). One of the most important MRF inference problems is
maximum a posteriori (MAP) assignment. The goal is to search for the most probable
state configuration of all objects, or equivalently, the lowest energy of the model.
The problem is known to be NP-complete (Boykov et al. 2001). Given a MRF of
N objects, each of which has S states, a brute-force search must explore SN state
configurations. In image denoising, for example, N is the number of pixels, which
ranges from 104 − 107, and S is the number of pixel intensity levels, which are in the
order of 28 − 232. This calls for heuristic methods that find reasonable solutions in
practical time.

There have been numerous attempts to solve this problem. An early approach was
based on simulated annealing (SA) whose convergence is guaranteed (Geman and
Geman 1984). The main drawback of SA is low speed—it takes a long time to achieve
reasonably good solutions. Another strategy was local greedy search where the iterated
conditional mode (ICM) (Besag 1986) was the most well-known method. The ICM
climbs down local valleys by iteratively exploring small neighborhoods of size S—the
number of possible states per object. Not surprisingly, this method is prone to getting
stuck at poor local minima.

A more successful approach is belief-propagation (BP) (Pearl 1988) which exploits
the problem structure better than the ICM does. The BP maintains a set of messages
sending simultaneously along all edges of the MRF. A message carries the state infor-
mation of the source site. Any update of a target site is informed by messages from all
nearby sites. However, this method can only be guaranteed to work for a limited class
of network structures—when the network reduces to a tree. Another drawback is that
the memory requirement for the BP is high: It is proportional to the number of edges
in the network. More recently, efficient algorithms with theoretical guarantees have
been introduced based on the theory of graph cuts (Boykov et al. 2001). This class of
algorithms, while being useful in certain computer vision problems, has a limitation
in the range of problems it can solve—the energy formulation must admit a certain
metric form (Boykov et al. 2001; Szeliski et al. 2008). In effect, these algorithms are
not applicable to problems where energy functions are not known a priori.

Given this ground, it is desirable to have an approximate algorithm that is fast, con-
sumes little memory and does not have any specific requirements of network structures
or energy functions. We explore a metaheuristic known as Iterated Local Search (ILS)
(e.g. see Lourenco et al. 2003). The ILS encourages jumping between local minima,
which can be found by local search methods such as the ICM. This algorithm, how-
ever, does not exploit any problem structure. To this end, we propose a novel algorithm
called Tree-based Iterated Local Search (T-ILS), which combines strength of the BP
and the ILS. The T-ILS exploits the fact that the BP works efficiently on trees, and
thus can be effective at locating good local minima. The main difference from the
standard tree-based BP is that our trees are conditional on states of neighbor leaves.
When combined with the ILS, we have a heuristic algorithm that is less likely to get
stuck in poor local minima, and has better chance to reach high quality solutions.

We evaluate the T-ILS on three benchmark problems: finding the ground state of an
Ising model, stereo correspondence and image denoising. We empirically demonstrate
that the T-ILS finds good solutions, while requiring less training time and memory
than the loopy BP, which is one the state-of-the-arts for these problems.
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Tree-based iterated local search for Markov random fields 27

To summarize, our main contributions are the proposal and evaluation of fast and
lightweight tree-based inference methods in MRFs. Our choice of trees on N = W×H
images requires only O (2 max{W, H}) memory and two passes over all sites in the
MRF per iteration. These are much more economical than the O(4W H) memory and
many passes needed by the traditional loopy BP.

This paper is organized as follows. Section 3 describes MRFs, the MAP assignment
problem, and the belief propagation algorithm on trees. In Sect. 4, conditional trees
are defined, followed by two algorithms: the strong local search T-ICM and the global
search T-ILS. Section 5 provides empirical support for the performance of the T-ICM
and T-ILS. Sect. 6 concludes the paper.

2 Related work

The MAP assignment for MRFs as a combinatorial search problem has attracted a
great amount of research in the past decades, especially in computer vision (Li 1995)
and probabilistic artificial intelligence (Pearl 1988). The problem is NP-hard (Shimony
1994). For example, in labeling of an image of size W ×H , the problem space is SW H

large, where S is the number of possible labels per pixel.
Techniques for the MAP assignment can be broadly classified into stochastic and

deterministic classes. In early days, stochastic algorithms were based on simulated
annealing (SA) (Kirkpatrick et al. 1983). The first application of SA to MRFs with
provable convergence was the work of Geman and Geman (1984). The main drawback
of this method is slow convergence toward good solutions (Szeliski et al. 2008). Nature-
inspired algorithms were also suggested, especially the family of genetic algorithms
(Brown et al. 2002; Kim et al. 1998; Kim and Lee 2009; Maulik 2009; Tseng and Lai
1999). Some attempts using ant colony optimization and tabu-search have also been
made (Ouadfel and Batouche 2003; Yousefi et al. 2012).

Deterministic algorithms started in parallel with ICM (Besag 1986). The ICM
is a simple greedy search method that updates one label at a time. Thus it is slow
and sensitive to initialization. A more successful approach is based on Pearl’s loopy
BP (Pearl 1988). Due to its nature of using local information (called “messages”)
to update “belief” about the optimal solution, the loopy BP is also called message
passing algorithm. Although the loopy BP is not guaranteed to converge, empirical
evidences so far have indicated that it is competitive against the state-of-the-arts in
a variety of image analysis problems (Felzenszwalb and Huttenlocher 2006; Szeliski
et al. 2008). Research on improving the loopy BP is currently an active topic in
artificial intelligence, statistical physics, computer visions and social network analysis
(Duchi et al. 2007; Felzenszwalb and Huttenlocher 2006; Hazan and Shashua 2010;
Kolmogorov 2006; Meltzer et al. 2009). The most recent development centers around
convex analysis (Johnson et al. 2007; Kumar et al. 2009; Ravikumar and Lafferty 2006;
Wainwright et al. 2005; Werner 2007). In particular, the MAP is converted into linear
programming with relaxed constraints from which a mixture of convex optimization
and message passing can be used.

Another powerful class of algorithms is graph cuts (Boykov et al. 2001; Szeliski et
al. 2008). They are, nevertheless, designed with specific cost functions in mind (i.e.,
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metric and semi-metric) (Kolmogorov and Zabih 2004), and therefore inapplicable for
generic cost functions. Interestingly, it has been recently proved that graph cuts are in
fact loop BP (Tarlow et al. 2011).

It is fair to say that the deterministic approach has become dominant due to their
performance and theoretical guarantee for certain classes of problems (Kappes et al.
2014). However, the problem is still unsolved for general settings. Our approach, the
T-ILS, has both deterministic and heuristic components. It relies on the concept of
strong local search using the deterministic method of BP. The local search is strong
because it covers a significant number of sites, rather than just one, which is often found
in other local search methods such as the ICM (Besag 1986). The neighborhood size
in our method is very large (Ahuja et al. 2002). For typical image labeling problems,
the size is S0.5W H for an image of height H , width W and label size S. Standard local
search like the ICM, in contrast, only explores a neighborhood of size S at a time.
For the T-ILS, once a strong local minimum is found, a stochastic procedure based on
iterated local search (Lourenco et al. 2003) is applied to escape from the local valley
and explores a better local minimum.

The idea of exploiting trees in MRFs is not entirely new. In early days, spanning trees
were used to approximate the entire MRF (Chow and Liu 1968; Wu and Doerschuk
1995). This method is efficient but may hurt the approximation quality because the
number of edges in a tree is far less than that in the original MRF. Another way was
to build a hierarchical MRF with multiple resolutions (Willsky 2002), but this is less
applicable to flat image labeling problems. Our method differs from these efforts in
that we use trees embedded in the original graph rather than building an approximate
tree. Second, our trees are conditional—they are defined on the values of its leaves.
Third, trees are selected as the search progresses.

More recently, trees have been used in variants of loop BP to specify the orders
which messages are scheduled (Wainwright et al. 2005; Sontag and Jaakkola 2009).
Our method can also be viewed along this line but differs in the way trees are built and
messages are updated. In particular, our trees are conditional on neighbor labeling,
which is equivalent to collapsing an associated message to a single value.

Iterated Local Search, also known as basin hopping (David 1997), has been used in
related applications such as image registration (Cordón and Damas 2006) and structure
learning (Biba et al. 2008). The success of the ILS depends critically on the local search
and the perturbation strategy (Lourenço et al. 2010). In David (1997), for example, a
powerful local search based on conjugate gradients is essential for the Lennard–Jones
clusters problem. Our work builds strong local search using the tree-based BP on the
discrete spaces rather than continuous ones.

3 Markov random fields for image labeling

In this section we introduce MRFs and the MAP assignment problem with appli-
cation to image labeling. MRF is a probabilistic way to represent a discrete system
of many interacting variables (Pearl 1988). In what follows, we briefly describe the
MRF and its MAP assignment problem and focus on the minimization of model
energy.
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Tree-based iterated local search for Markov random fields 29

Formally, a MRF specifies a random field x = {xi }Ni=1 over a graph G = (V, E),
where V is the collection of N sites {i}, E is the collection of edges {(i, j)} between
sites, and xi ∈ L represents states at site i . One of the main objectives is to compute
the most probable specification, also known as MAP assignment, which is the main
focus of this paper.

3.1 Image labeling as energy minimization and MAP assignment

In image labeling, an image y is a collection of pixels arranged in a particular geo-
metrical way, as defined by the graph G. Typically, we assume the grid structure over
pixels, where every inner pixel has exactly four nearby pixels. A labeling x is the
assignment of each pixel yi to a corresponding label xi for all i = 1, 2, . . . , N .

A full specification of a MRF over the labeling x can be characterized by its energy.
Assuming pairwise interaction between connected sites, the energy is the sum of local
energies as follows:

E(x, y) =
∑

i∈V
Ei (xi , y)+

∑

(i, j)∈E
Ei j (xi , x j ) (1)

The singleton energy Ei (xi , y) encodes the disassociation between the label xi and
descriptors of image y at site i . In image denoising, for example, where yi is a corrupted
pixel and xi is a true pixel we may use Ei (xi , y) = |xi − yi | as the corruption cost.
The pairwise energy Ei j (xi , x j ) captures spatial smoothness, i.e., the tendency for
two nearby pixels to be similar. For example, Ei j (xi , x j ) = λ

∣∣xi − x j
∣∣ is a cost of

difference between two labels, where λ > 0 is a problem-specific parameter.
The task is to find the optimal xmap that minimizes the energy E(x, y), which now

plays the role of a cost function:

xmap = arg min
x

E(x, y) (2)

For example, in image denoising, this translates to finding a map of intensity that
admits both the low cost of corruption and high degree of smoothness.

The formal justification for energy minimization in MRF can be found through the
probability of the labeling defined as:

P(x | y) ∝ e−E(x,y) (3)

Thus minimizing the energy is equivalent to finding the most probable labeling xmap.
As P(x | y) is often called the posterior distribution in computer vision,1 the energy
minimization problem is also referred to as MAP assignment.

1 The term posterior. comes from the early practice in computer vision in which P(y | x) is first defined
then linked to P(x | y) through the Bayes rule:

P(x | y) = P(x)P(y | x)

P(y)
.
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3.2 Local search: iterated conditional mode

Iterated conditional mode (Besag 1986) is a simple local search algorithm. It iteratively
finds the local optimal labeling for each site i as follows

x∗i = arg minxi

⎧
⎨

⎩Ei (xi , y)+
∑

j∈N (i)

Ei j (xi , x j )

⎫
⎬

⎭ (4)

where N (i) is the set of sites connected to the site i , often referred to as Markov blanket.
The Markov blanket shields a site from the long-range interactions, a phenomenon
known as Markov property, which states that probability of a label assignment at site
i depends only on the nearby assignments (Hammersley and Clifford 1971; Lauritzen
1996). The probabilistic interpretation of Eq. (4) is

x∗i = arg max
xi

P
(
xi | {x j } j∈N (i), y

)

The local update in Eq. (4) is repeated for all sites until no more improvement can be
made. This procedure is guaranteed to find a local minimum energy in a finite number
of steps. However, the solutions found by the ICM are sensitive to initialization and
often unsatisfactory for image labeling (Szeliski et al. 2008).

3.3 Exact global search on trees: belief-propagation

Belief-propagation was first proposed as an inference method on MRFs with tree-like
structures (Pearl 1988). The BP operates by sending messages between connecting
sites. For this reason, it is also called message passing algorithm. The BP is efficient
because instead of dealing with all the sites simultaneously, we only need to compute
messages passing between two local sites at a time. At each site, local information
modifies the incoming messages before sending out to neighbor sites.

3.3.1 General BP

The message sent from site j to site i is computed as follows

μ j→i (xi ) = min
x j

⎛

⎝E j (x j , y)+ Ei j (xi , x j )+
∑

k∈N ( j),k �=i

μk→ j (x j )

⎞

⎠ (5)

i.e., the outgoing message is aggregated from all incoming messages, except for the
one in the opposite direction. Messages can be initialized arbitrarily, and the procedure

Footnote 1 continued
where P(x) is called the priori. However in this paper we will work directly with P(x | y) for simplicity.
The posterior is recently called conditional random fields in machine learning (Lafferty et al. 2001; Tran
2008).
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Upward pass: collec�ng evidences Downward pass: redistribu�ng evidences

Fig. 1 Belief propagation on trees: the two-pass procedure

is guaranteed to converge after finite steps on trees (Pearl 1988). At convergence, the
optimal labeling is obtained by:

xmap
i = arg min

xi

⎛

⎝Ei (xi , y)+
∑

k∈N (i)

μk→i (xi )

⎞

⎠ (6)

3.3.2 2-pass BP

A more efficient variant of BP is a 2-pass procedure, as summarized in Fig. 1. First
we pick one particular site as root. Since the tree has no loops, there is a single path
from a site to any other site. Each site, except for the root, has exactly one parent. The
procedure consists of two passes:

– Upward pass Messages are first initiated at the leaves, and are set to 0. Then all
messages are sent upward and updated as messages converging at common parents
along the paths from leaves to the root. The pass stops when all the messages reach
the root.

– Downward pass Messages are combined and re-distributed downward from the
root back to leaves. Messages are then terminated at leaves.

The 2-pass BP procedure is a remarkable algorithm: It searches through a combina-
torial space of SN using only O

(
2N S2

)
operations and O (2N S) memory.

Remark We note in passing that this procedure may be also known as min-sum or
max-product. The term max-product comes from the use of exponentials of negative
energies in Eqs. (5, 6), and turning mins into maxes and sums into products.

3.4 Approximate global search on general graphs: loopy belief-propagation

Standard MRFs in image analysis are usually not tree-structured. A common topology
is a grid in which each site represents a pixel and has four neighbors. Thus the resulting
graph has many cycles, rendering the 2-pass BP algorithm useless.

However, an approximation to the exact BP has been suggested. Using the general
BP described above, messages are sent across all edges without worrying about the
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(a) (b) (c) (d)

Fig. 2 Examples of conditional trees on grid (connecting empty sites). Filled nodes are labeled sites.
Arrows indicate absorbing direction, dashes represent unused interactions. Dotted lines in (c,d) are dummy
edge (with zeros interacting energy) that connects separate sub-trees together to form a full tree

order (Pearl 1988). At each step, messages are updated using Eq. (5). After some
stopping criteria are met, we still use Eq. (6) to find the best labeling. This procedure
is often called loopy BP due to the presence of loops in the graph. The heuristic has been
shown to be useful in several applications (Murphy et al. 1999) and this has triggered
much research on improving it (Duchi et al. 2007; Felzenszwalb and Huttenlocher
2006; Wainwright et al. 2005; Weiss and Freeman 2001; Yanover et al. 2006).

The main drawback of the loopy BP is lack of convergence guarantee. In our
simulation of Ising models (Sect. 5.1), the loop BP clearly fails in the cases where
interaction energies dominate singleton energies, that is

∣∣Ei j (xi , x j )
∣∣ � |Ei (xi , y)|

for all i, j (see Fig. 4). Another drawback is that the memory will be very demanding
for large images. For grid-image, the memory needed is O (4H W S).

4 Iterated strong local search

In this section we present a method to exploit the efficiency of the BP on trees to build
strong local search. By ‘strong’, we mean the quality of the local solution found by the
procedure is often much better than the standard greedy local search. Although a typical
MRF in computer vision is not a tree, we observe that any graph is a super-imposition
of trees. Second, due to the Markov property, described in Sect. 3.2, variables in a
tree can be shielded from other variables through the Markov blanket of the tree. This
gives rise to the concept of conditional trees, which we present subsequently.

4.1 Conditional trees

For concreteness, let us consider grid-structured MRFs. There are multiple ways
to extract a tree out of a grid, as shown in Fig. 2. In particular, we fix the labeling to
some sites, leaving the rest to form a tree. Consider a tree τ and let xτ = {xi | i ∈ τ },
and x¬τ = {xi | i /∈ τ }. Denote by N (τ ) the set of sites connecting to τ but do not
belong to τ , i.e., the Markov blanket of τ . The collection of sites (τ,N (τ )) and the
partial labeling of the neighbor sites xN (τ ), form a conditional tree. The energy of the
conditional tree can be written as:

Eτ

(
xτ , xN (τ ), y

) =
∑

i∈τ
E∗i (xi , y)+

∑

i, j∈τ
Ei j (xi , x j ) (7)
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where
E∗i (xi , y) = Ei (xi , y)+

∑

(i, j)∈E, j∈N (τ )

Ei j (xi , x j ) (8)

In other words, the interacting energies at the tree border are absorbed into the singleton
energy of the leaves. In Fig. 2, the absorbing direction is represented by an arrow.

The minimizer of this conditional tree energy can be found efficiently using the BP:

x̂τ = arg min
xτ

Eτ

(
xτ , xN (τ ), y

)
(9)

This is because that Eq. (7) has the form of Eq. (1).
One may wonder how the minima of the energy of conditional trees Eτ

(
xτ , xN (τ ), y

)

relate to the minima of the entire network E (x, y). We present here two theoretical
results. First, the local minimum found by Eq. (9) is also a local minimum of E (x, y):

Proposition 1 Finding the mode x̂τ as in Eq. (9) guarantees a local minimization of
model energy over all possible tree labelings. That is

E(x̂τ , x¬τ , y) ≤ E(xτ , x¬τ , y)

for all xτ �= x̂τ .

Proof The proof is presented in Appendix 7.2.

The second theoretical result is that the local minimum found by Eq. (9) is indeed
the global minimum of the entire system if all other labels outside the tree happen to
be part of the optimal labeling:

Proposition 2 If x¬τ ∈ xmap then x̂τ ∈ xmap.

Proof We first observe that since E(xmap, y) is the lowest energy then

E(xmap, y) ≤ E(x̂τ , x¬τ , y) (10)

Now assume that x̂τ /∈ xmap, so there must exist x′τ ∈ xmap that x̂τ �= x′τ and
E(x′τ , x¬τ , y) > E(x̂τ , x¬τ , y), or equivalently E(xmap, y) > E(x̂τ , x¬τ , y), which
contradicts with Eq. (10) 
�

The derivation in Eq. (7) from the probabilistic formulation is presented in Appen-
dix 7.1.

4.2 Tree-based ICM (T-ICM): conditional trees for strong local search

As conditional trees can be efficient to estimate the optimal labeling, we propose a
method in the spirit of the simple local search ICM (Besag 1986) (Sect. 3.2). First of
all, a set of conditional trees T is constructed. At each step, a tree τ ∈ T is picked
according to a predefined update schedule. Using the 2-step BP, we find the optimal
labeling for τ using Eq. (9). As this method includes the ICM as a special case when
the tree is reduced to a single site, we call it the tree-based ICM (T-ICM) algorithm,
which is presented in pseudo-code in Algorithm 1.
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Algorithm 1 Tree-based iterated conditional mode (T-ICM).
Function: T-ICM()
Input:

• Graph G = (V, E).
• Local cost/energy functions Ei (xi , y) and Ei j (xi , x j ).
• A set of trees T , and an update schedule.
• Maximum number of iterations T .
• Initial labeling x0.

Procedure:
For t = 1, 2, . . . , T

1. Pick a conditional tree τ from the tree set T according to the update schedule.
2. Absorb neighboring energies according to Eq. (8).
3. Run 2-pass BP on the conditional tree (Section 3.3): xt

τ ← B P(xt−1
τ ).

4. Update the labeling of the tree: xt
τ ← xt−1

τ .

5. Stop if Eτ

(
xt
τ , xt

N (τ )
, y

)
no longer decreases for all trees τ ∈ T .

Output: A local optimal labeling.

4.2.1 Specification of T-ICM

Tree set and update schedule For a given graph, there are exponentially many ways to
build conditional trees, and thus defining the tree set is itself a nontrivial task. However,
for grids used in image labeling with height H and width W , we suggest two simple
ways:

– The set of H rows and W columns. The neighborhood size is H SW +W SH .
– The set of 2 alternative rows and 2 alternative columns (Fig. 2c, d). Since alternative

rows (or columns) are separated, they can be connected by dummy edges to form
a tree (e.g., see Fig. 2c, d). A dummy edge has the interacting energy of zero, thus
does not affect search operations on individual components. The neighborhood
size is 4S0.5H W .

These two sets lead to an efficient T-ICM compared to the standard ICM which only
covers the neighborhood of size SH W using the same running time. Once the set has
been defined, the update order for trees can be a fixed sequence (e.g., rows from-top-
to-bottom then columns from-left-to-right), or entirely random.

4.2.2 Properties of T-ICM

Due to Proposition 1, at each step of Algorithm 1, either the total energy E(x, y) will
be reduced or the algorithm will terminate. Since the model is finite and the energy
reduction is discrete (hence non-vanishing), the algorithm is guaranteed to reach a
local minimum after finite steps.

Although the T-ICM only finds local minima, we expect the quality to be better than
those found by the original ICM because each tree covers many sites. For example,
as shown in Fig. 2a, b, a tree in the grid can account for a half of all the sites, which
is overwhelmingly large compared to a single site used by the ICM. The number of
configurations of the tree τ , or equivalently the neighborhood size, is SNτ , where Nτ
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Tree-based iterated local search for Markov random fields 35

is the number of sites on the tree τ . The neighborhood size of the ICM, on the other
hands, is just S.

For the commonly used 4-neighbor grid MRF in image labeling, and the tree set of
alternative rows and columns, the BP takes O(4H W ) time to pass messages, each of
which costs 3S2 time to compute. Thus, the time complexity per iteration of the T-ICM
is only S times higher than that of the ICM and about the same as that of the loop BP
(Sect. 3.4). However, the memory in our case is still O (2×max{H, W }), which is
much smaller than the O(4H W ) memory required by the loopy BP. In addition, each
step in the T-ICM takes exactly 2 passes, while the number of iterations of the loopy
BP, if the method does converge at all, is unknown and parameter dependent.

4.3 Tree-based ILS: global search

Algorithm 2 Tree-based iterated local search (T-ILS)
Function: T-ILS()
Input:

• Max jump step-size: ρmax ∈ (0, 100).
• Max number of iterations Touter ; max number of iterations for the inner T-ICM Tinner .
• Max number of backtracks Tbacktrack .

Procedure:
Initialize some labelings: x̃0.

Find the first local minimum: x1 ← T-ICM
(

x̃0, Tinner

)
.

Initialize variables: n = 0; β = 1.
For t = 1, 2, ..., Touter

1. Jump to a new place: x̃t ← xt by randomly resetting U (0, ρmax ) % of labels.
2. Find a local minimum: x̂t+1 ← T-ICM

(
x̃t , Tinner

)
.

3. Accept: xt+1 ← x̂t+1 with probability of

a = min
{

1, exp
(
−β

{
E(x̂t+1, y)− E(xt , y)

})}

otherwise backtrack: xt+1 ← xt .
4. Adjust the temperature:

n← n + 1 if xt+1 = x̂t+1;

r ← 0.9n/t + 0.1I

[
xt+1 = x̂t+1

]
;

if r < 0.45 then β ← 0.8β else if r > 0.55 then β ← β/0.8.
5. Stop if number of backtracks Tbacktrack has been reached.

Output: A near global optimal labeling.

As the T-ICM is still a local search procedure, inherent drawbacks remain: (i) it is
sensitive to initialization, and (ii) it can get stuck in suboptimal solutions. To escape
from the local minima, global search strategies must be employed. We can consider
the entire T-ICM as a single super-move in an exponentially large neighborhood.

Since it is not our intention to create a totally new escaping heuristic, we draw
from the rich pool of metaheuristics in the literature and adapt to the domain of image
labeling. In particular, we choose an effective heuristic, commonly known as ILS
(Lourenco et al. 2003) for escaping from the local minima. The ILS advocates jumps
from one local minimum to another. If a jump fails to lead to a better solution, it can
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T-ICM

T-ICM

Jump

ICM

The surrogate energy landscape of T-ICM/T-ILS

The original energy landscape

∆Energy

Fig. 3 Search behavior of T-ICM and T-ILS. The use of T-ICM creates a smoother energy landscape for
T-ILS (the surrogate dotted curve). ICM gets stuck on the first local minimum it finds, but T-ICM could
find a much better solution by operating on an exponentially large neighborhood

still be accepted according to an acceptance scheme, following the spirit of simulated
annealing (SA). However, we do not decrease the temperature as in the SA, but rather,
the temperature is adjusted so that on average the acceptance probability is roughly
0.5. The process is repeated until the stopping criteria are met. We term the resulting
metaheuristic the Tree-based Iterated Local Search (T-ILS) whose pseudo-code is
presented in Algorithm 2, and behavior is illustrated in Fig. 3. In what follows we
specify the algorithm in more details.

4.3.1 Specification of T-ILS

Jump The jump step-size has to be large enough to successfully escape from the basin
that traps the local search. In this study, we design a simple jump by randomly changing
labels of ρ% of sites. The step-size ρ is drawn randomly in the range (0, ρmax ), i.e.,
ρ ∼ U (0, ρmax ), where ρmax is an user-specified parameter.

Acceptance After a jump, the local search is invoked, followed by an acceptance deci-
sion to accept or reject the jump. We consider the following acceptance probability:

a = min {1, exp(−βΔE)}

where ΔE = E(x̂t+1, y)− E(xt , y) is the change in energy between two consecutive
minima, and β > 0 is the adjustable “inverse temperature”. A large β lowers the
acceptance rate but a small β increases it. This fact will be used to adjust the acceptance
rate, as detailed below.

Adjusting inverse temperature We wish to maintain an average acceptance probability
of 0.5, following the success of David (1997). However, unlike the work in David
(1997), we do not change the step-size, but rather adjusting the inverse temperature.
The estimation of acceptance rate is r ← r/t , where n is the total number of accepted
jumps up to step t . To introduce short-term effect, we use the last event:
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r ← 0.9r + 0.1I

[
xt+1 = x̂t+1

]

If the acceptance rate is within the range [0.45, 0.55] we do nothing. A rate below
0.45 will decrease of the inverse temperature: β ← 0.8β, and a rate above 0.55 will
increase it: β ← β/0.8.

4.3.2 Properties of T-ILS

Figure 3 illustrates the behavior of the T-ILS. Through the T-ICM component, the
energy landscape is smoothed out, helping the T-ICM to locate good local minima.
When the jump is not large, the search trajectory can be tracked to avoid self-crossing
walks. If the jump is far enough (with large ρmax ), the resulting algorithm will behave
like multistart procedures.

When the inverse temperature β is set to 0, the acceptance behavior becomes deter-
ministic, that is, we only accept the jump if it improves the current solution. In other
words, the T-ILS becomes a greedy algorithm. Alternatively, when β is sufficiently
large, we would accept all the jumps, allowing a memoryless foraging behavior.

5 Experiments

In this section, we evaluate our proposed algorithms on a simulated Ising model and
two benchmark vision labeling problems: stereo correspondence and image denois-
ing. In all settings, we employ MRFs with the grid-structure (e.g., each inner pixel
is connected to exactly 4 nearby pixels). Trees are composed of rows and columns
as specified in Sect. 4.2.1. The tree update schedule starts with rows (top to bot-
tom) followed by columns (left to right). Unless specified otherwise, the initial label-
ing is randomly assigned. The max step-size is ρmax = 10 % (Sect. 4.3.1). For the
T-ILS, the inner loop has Tinner = 1, i.e., full local minima may not be reached by the
T-ICM, as this setting does not seem to hurt the final performance. The outer loop has
Touter = 1, 000 and Tbacktrack = 1, 000.

5.1 Simulated Ising model

In this subsection, we validate the robustness of our proposed algorithms on Ising
models, which have wide applications in magnetism, lattice gases, and neuroscience
(McCoy and Wu 1973). Within the MRF literature, Ising lattices are often used as a
benchmark to test inference algorithms (e.g., see Wainwright et al. 2005). Following
Wainwright et al. (2005), we simulate a 500×500 grid Ising model where labels
are binary spin orientations (up or down): xi ∈ ±1, and local energy functions are:
Ei (xi ) = θi xi ; Ei j (xi , x j ) = λθi j xi x j . The parameter θi specifies the influence of
external field on the spin orientation and θi j specifies the interaction strength and
direction (attractive or repulsive) between sites. The parameters

{
θi , θi j

}
are set as

follows
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Fig. 4 Performance of T-ILS and loopy BP algorithm in minimizing Ising energy with λ = 0.5 (left) and
λ = 1.0 (right).

θi , θi j ∼ U(−1, 1)

where U(−1, 1) denotes the uniform distribution in the range (−1, 1). The parameter
λ > 0 specifies the interaction strength. When λ is small, the interaction is weak,
and thus the external field has more effect on the spin arrangement. However, when
λ is large, the spin arrangement depends more on the interacting nature. A stable
arrangement would be of the minimum energy.

The result of minimizing energy is shown in Fig. 4. When the interaction is weak
(e.g., λ = 0.5), the loopy BP performs well, but when the interaction is strong (e.g.,
λ = 1.0), the T-ILS has a clear advantage. Thus the T-ILS is more robust since it is
less sensitive to λ.

5.2 Stereo correspondence

Stereo correspondence is to estimate the depth of field (DoF) given two or more 2D
images of the same scene taken from two or more cameras arranged horizontally. This
is used in 3D reconstruction of a scene using standard 2D cameras. The problem is often
translated into estimating the disparity between images—how much two images differ
and this reflects the depth at any pixel locations. For simplicity, we only investigate
the two-cameras setting. In the MRF-based stereo framework, a configuration of x ∈
N

W×H realizes the disparity map. The disparity set (or the label set) is predefined.
For example, of the two benchmark datasets 2 used in this experiment, the Tsukuba
has 16 labels (Fig. 5), and the Venus has 20 (Fig. 6).

The singleton energy Ei (xi , y) at each pixel location measures the dissimilarity in
pixel intensity between the left/right images, and the interaction energy Ei j (xi , x j )

measures the discontinuity in the disparity map. We use a simple linear Potts cost
model as in Scharstein and Szeliski (2002). Let y = (I l , I r ) where I l and I r are
intensities of the left and right images respectively, and i = (iX , iY ) where iX and

2 Available at: http://vision.middlebury.edu/stereo/.
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Fig. 5 Stereo results on the Tsukuba dataset. (Top-left) left image, (top-middle) right image, (top-right)
groundtruth; (bottom-left) scan-line, (bottom-middle) loop BP, and (bottom-right) T-ILS (initialized from
scan-line)

Fig. 6 Stereo results on the Venus dataset. (Top-left) left image, (top-middle) right image, (top-right)
groundtruth; (bottom-left) scan-line, (bottom-middle) loop BP, and (bottom-right) T-ILS (initialized from
scan-line)

iY are horizontal and vertical coordinates of pixel i . The local energies are defined as
(Scharstein and Szeliski 2002):

Ei (xi , y) = ΔI (i, xi )

Ei j (xi , x j ) = λ× I[xi �= x j ]

where I[·] is the indicator function, λ > 0 is the smoothness parameter, and
ΔI (i, xi ) =

∣∣I l(iX , iY )− I r (iX − xi , iY )
∣∣ is the difference in pixel intensity in two

images when pixel positions are xi pixels apart in the horizontal direction. A small
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Table 1 Stereo energy found by algorithms (SL = Scan-line)

Method Tsukuba Venus

SL(ν = 1.0) 814,121 1,362,067

SL(ν = 0.4) 658,946 1,198,324

Random→T-ICM(T = 1) 739,370 1,048,587

SL(ν = 0.4)→T-ICM(T = 1) 427,860 669,973

Loopy BP(T = 1, 000) 413,269 640,385

SL(ν = 0.4)→T-ILS(Touter = 1, 000) 403,129 635,305

xi would result in large ΔI (i, xi ) if the true DoF is small. Thus by minimizing the
singleton energy with respect to xi , a small DoF leads to stronger reduction of xi than
a large DoF does. We choose λ = 20 following Scharstein and Szeliski (2002) and
implement algorithms based on the software framework of Szeliski et al. (2008). 3

There is a wide range of techniques available for stereo estimation, and the loopy
BP is one of the winning methods (Scharstein and Szeliski 2002; Szeliski et al. 2008).
Fast methods like scan-line (SL) optimization are widely used for real-time imple-
mentation. The scan-line is equivalent to taking independent 1D rows and running the
chain BP. Since the SL does not admit the original 2D structure, we need to adapt the
singleton energy as Ēi (xi , y) = νEi (xi , y), where ν ∈ [0, 1], to account for the lack
of inter-row interactions.

Table 1 shows the effect of changing from ν = 1.0 to ν = 0.4 in term of reducing
2D energy. The result, however, has the inherent horizontal ‘streaking’ effect since no
2D constraints are ensured (Figs. 5, 6, bottom-left). The randomly initialized T-ICM
with one iteration (T = 1 in Algorithm 1) performs comparably with the best of SL
(ν = 0.4). The performance of the T-ICM improves significantly by initializing from
the result of SL. The T-ILS initialized from the SL finds a better energy than the loopy
BP given the same number of iterations, as shown in Fig. 7.

5.3 Image denoising

In image denoising, the task is to reconstruct the original image from a corrupted
source. We use the 122 × 179 noisy gray Penguin image 4 (Fig. 8). The labels of
the MRF correspond to S = 256 intensity levels (8 bits depth). Similar to the stereo
correspondence problem, we use a simple truncated Potts model as follows

Ei (xi , y) = min {|xi − yi |, τ }
Ei j (xi , x j ) = λ× δ[xi �= x j ]

where the truncation at τ = 100 prevents the effect of extreme noise, and λ = 25 is
the smoothness parameter, following Szeliski et al. (2008). In addition, the optimized

3 The C++ code is available at http://vision.middlebury.edu/MRF/.
4 Available at: http://vision.middlebury.edu/MRF/.
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Fig. 8 Penguin images a noisy, b restored with T-ILS, c restored with loopy BP; d running time. Algorithms
stop after 5 unsuccessful iterations

loopy BP for Potts models from Felzenszwalb and Huttenlocher (2006) is used. Fig. 8b,
c demonstrates that the T-ILS runs faster than the optimized loopy BP, yielding a lower
energy and a smoother restoration.

6 Discussion

We have proposed a fast method for inference in Markov random fields by exploit-
ing conditional trees embedded in the network. We introduced a strong local search
operator (T-ICM) based on Belief-Propagation and a global stochastic search operator
T-ILS based on the iterated local search framework. We have shown in both sim-
ulation and two real-world image analysis tasks (stereo correspondence and image
denoising) that the T-ILS is competitive against state-of-the-art algorithms. We have
demonstrated that by exploiting the structure of the domains, we can derive strong
local search operators which can be exploited in a metaheuristic strategy such as the
ILS.
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6.1 Future work

The line of the current work could be extended in several directions. First, we could
adapt the T-ILS for certain cost functions. Currently, the T-ILS is designed as a generic
optimization method, making no assumptions about the nature of the optimal solu-
tion. In contrast, label maps in vision are often smooth almost everywhere except for
sharp boundaries. Second, Markov random fields may offer a more informative way
to perform the jump steps, e.g., by relaxing the messages in the local edges or by
keeping track of the hopping trajectories. Third, we have limited the T-ILS to uniform
distribution of step-sizes, but it needs not be the case. One useful heuristic is Lévy
flights (Tran et al. 2004) in which the step-size ρ is drawn from the power-law distri-
bution: ρ−α for α > 0. This distribution allows occasional big jumps (which might
behave like a total restart). Fourth, other metaheuristics are applicable. For example,
we can use genetic algorithms in conjunction with the conditional trees as follows.
Each individual in the population can be represented by a string of N characters, each
of which has one of S values in the label alphabet. For each individual, we run the
2-pass BP to obtain a strong local solution. Then the crossover operator can be applied
character-wise on a selected subset to generate a new population. Finally, although
we have limited ourselves to applications in image analysis, the proposed algorithm
is generic to any problems where MRFs are applicable.

Appendix: Distribution over conditional trees

We provide the derivation of Eq. (7) from a probabilistic argument. Recall that N (τ )

is the Markov blanket of the tree τ , that is, the set of sites connecting to τ . Due to the
Markov property

P
(
xτ | xN (τ ), y

) = P (xτ | x¬τ , y)

∝ exp
{−Eτ

(
xτ , xN (τ ), y

)}

where

Eτ

(
xτ , xN (τ ), y

) =
∑

i∈τ
Ei (xi , y)+

∑

(i, j)∈E |i, j∈τ
Ei j (xi , x j )

+
∑

(i, j)∈E |i∈τ, j∈N (τ )

Ei j (xi , x j ) (11)

Equation (7) can be derived from the energy above by letting:

E∗i (xi , y) = Ei (xi , y)+
∑

(i, j)∈E, j∈N (τ )

Ei j (xi , x j ) (12)

Thus finding the most probable labeling of the tree τ conditioned on its neighborhood
is equivalent to minimizing the conditional energy in Eq. (9):
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x̂τ = arg max
xτ

P
(
xτ | xN (τ ), y

)
(13)

The equivalence can also be seen intuitively by considering the tree τ as a mega-site,
so the update in Eq. (9) is analogous to that in Eq. (4).

Proof of Proposition 1

Recall that the energy can be decomposed into singleton and pairwise local energies
(see Eq. 1)

E(xτ , x¬τ , y) =
∑

i∈τ
Ei (xi , y)+

∑

i /∈τ
Ei (xi , y)+

∑

(i, j)∈E |i, j∈τ
Ei j (xi , x j )+

+
∑

j∈N (τ )|(i, j)∈E
Ei j (xi , x j )+

∑

(i, j)∈E |i, j /∈τ
Ei j (xi , x j )

where:

–
∑

i∈τ Ei (xi , y) is the data energy belonging to the tree τ ,
–

∑
i /∈τ Ei (xi , y) is the data energy outside τ ,

–
∑

(i, j)∈E |i, j∈τ Ei j (xi , x j ) is the interaction energy within the tree,
–

∑
j∈N (τ )|(i, j)∈E Ei j (xi , x j ) is the interaction energy between the tree and its

boundary, and
–

∑
(i, j)∈E |i, j /∈τ Ei j (xi , x j ) is the interaction energy outside the tree.

By grouping energies related to the tree and the rest, we have

E(xτ , x¬τ , y) = Eτ

(
xτ , xN (τ ), y

)+
∑

(i, j)∈E |i, j /∈τ
Ei j (xi , x j )

where Eτ

(
xτ , xN (τ ), y

)
is given in Eq. (11) for all i ∈ τ . This leads to:

E(x̂τ , x¬τ , y) = Eτ

(
x̂τ , xN (τ ), y

)+
∑

(i, j)∈E |i, j /∈τ
Ei j (xi , x j )

≤ Eτ

(
xτ , xN (τ ), y

)+
∑

(i, j)∈E |i, j /∈τ
Ei j (xi , x j )

= E(xτ , x¬τ , y)

This completes the proof 
�
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