
J Heuristics (2014) 20:643–676
DOI 10.1007/s10732-014-9260-3

A lagrangian relaxation and ACO hybrid for resource
constrained project scheduling with discounted cash
flows

Dhananjay Thiruvady · Mark Wallace ·
Hanyu Gu · Andreas Schutt

Received: 7 May 2012 / Revised: 11 August 2014 / Accepted: 18 August 2014 /
Published online: 4 September 2014
© Springer Science+Business Media New York 2014

Abstract We consider a project scheduling problem where a number of tasks need
to be scheduled. The tasks share resources, satisfy precedences, and all tasks must be
completed by a common deadline. Each task is associated with a cash flow (positive
or negative value) from which a “net present value” is computed dependent upon its
completion time. The objective is to maximize the cumulative net present value of all
tasks. We investigate (1) Lagrangian relaxation methods based on list scheduling, (2)
ant colony optimization and hybrids of (1) and (2) on benchmark datasets consisting of
up to 120 tasks. Considering lower bounds, i.e., maximizing the net present value, the
individual methods prove to be effective but are outperformed by the hybrid method.
This difference is accentuated when the integrality gaps are large.
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1 Introduction

Project scheduling has been a topic of interest for several decades. Typically, a project
consists of a number of tasks and the aim is to optimize an objective related to the
completion time/value of the tasks. In previous research, the objective has mainly
been to minimize a project duration but more recently there has also been interest in
maximizing a net present value (NPV) of the project, which is a cash flow dependent
on the task completion date (Chen et al. 2010; Vanhoucke 2010; Show 2006).

Project scheduling has been formulated in various ways (Brucker et al. 1999;
Demeulemeester and Herroelen 2002; Neumann et al. 2003). Brucker et al. (1999)
provides an overview of a number of variants. They focus on projects consisting
of tasks, shared (renewable) resources, precedences between tasks and deadlines.
Amongst methods, they discuss branch & bound, heuristic and local search approaches.
Demeulemeester and Herroelen (2002) also describes a variety of problems from this
class and detail ways in which these problems have been tackled. These include various
exact methods, heuristic schemes and meta-heuristics including genetic algorithms,
simulated annealing and tabu search. Neumann et al. (2003) examine project schedul-
ing with time windows also detailing various exact and heuristic methods.

Project scheduling is closely related to resource constrained job scheduling (Singh
and Ernst 2011; Thiruvady et al. 2012, 2014). The problem considered by these studies
have similar characteristics (e.g. precedences and resource constraints between jobs,
deadlines, etc.) with the main difference being the objective which is to minimise
the total weighted tardiness. Singh and Ernst (2011) examine a Lagrangian relaxation
based heuristic which proves to be more effective than heuristics on their own. Thiru-
vady et al. (2012, 2014) explore ant colony optimisation and hybrids with constraint
programming for a similar problem with hard deadlines.

Various studies have investigated methods (heuristic and exact) for the NPV prob-
lem (Chen et al. 2010; Vanhoucke 2010; Show 2006; Kimms 2001; Gu et al. 2013).
Chen et al. (2010) investigate an ant colony optimization approach and show that
their method outperforms other heuristic methods based on genetic algorithms, simu-
lated annealing and tabu search for instances with up to 98 tasks. Vanhoucke (2010)
also considers a heuristic scatter search approach and shows that this method is more
effective than a previously suggested branch & bound approach for the same prob-
lem (Vanhoucke et al. 2001). Gu et al. (2013) investigate a Lagrangian relaxation and
constraint programming hybrid for the same problem and show that improved good
feasible solution can be obtained with this approach. Show (2006) also investigate ant
colony optimization for a similar problem with up to 50 tasks.

Lagrangian relaxation (LR) is a well-known technique applied to integer program-
ming problems (Fisher 2004). Many computationally hard problems can be tackled by
considering a simpler version of the problem which omits (or ‘relaxes’) some compli-
cating constraints. The solution to the relaxed problem can provide useful information
about the original problem. In particular, Lagrangian relaxation methods provide an
alternative way to obtain upper bounds (for maximization problems) providing perfor-
mance guarantees. This is done by adding a cost term to the objective which is negative
when any of the relaxed constraints would have been violated. Since the objective is
to maximize, this cost drives the solution towards satisfying the constraints. In the
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A lagrangian relaxation and ACO hybrid 645

context of a NPV-based problem, Kimms (2001) showed how such a scheme could be
successful.

Ant colony optimization (ACO) is a reinforcement-based meta-heuristic based on
the foraging behavior of real ants which has been successfully applied to various
combinatorial optimization problems (Dorigo and Stűtzle 2004). This includes variants
project scheduling problems (Merkle et al. 2000; Chen et al. 2010; Show 2006). Merkle
et al. (2000) investigate the resource constrained project scheduling using makespan
as the objective. Chen et al. (2010) consider a problem where tasks can be executed in
multiple modes. Show (2006) also consider a similar problem to Vanhoucke (2010).

We investigate the resource constrained project (RCP) scheduling problem sug-
gested by Kimms (2001). The problem consists of maximizing the NPV of all the
tasks subject to precedences between some tasks and a common deadline for all the
tasks. Furthermore, all the tasks may require a number of renewable resources. There
is a maximum availability on each of these resources for every time point. The previous
study by Kimms (2001) develops a Lagrangian relaxation based heuristic and show
that this approach is effective at obtaining tight upper bounds. We further extend these
results here to show that lower bounds can be improved with the assistance of ACO.
LR and ACO can effectively be applied to the RCP problem independently. How-
ever, here we show that the hybrid of these methods, LR-ACO, proves to be the most
effective method to obtain lower bounds outperforming LR and ACO individually.

This paper is organized as follows. The RCP problem is stated formally in Sect. 2.
Section 4 describes ACO and how it has been tailored for the current problem. In
Sect. 5, the experimental details and an analysis of the results are provided. Section 7
concludes the paper.

2 Problem formulation

The RCP scheduling problem can formally be stated as follows. There are a number of
tasks T = {o1, . . . , on} with each task consisting of a duration di , i ∈ T . During the
execution of a task, there are associated cash flows. Let c fit be the cash flow of task i in
period t . The total cash flow of a task ci can be computed as

∑di
t=1 c fit eα(di−t) where

α is a discount rate. The discounted value of the task at the beginning of the project can
be computed as ci e−α(si+di ) where si is the start time of the task. Precedences between
tasks may exist and are denoted by the set P = {(i1, j1), . . . , (im, jm)}, i, j ∈ T .

The constraints to be satisfied include resource and deadline constraints. Given k
resources R = {R1, . . . , Rk} with constant availability, each task requires rik units of
the kth resource. Additionally, every task must be completed by a pre-defined deadline
δ.

The objective is to maximize the NPV

max .

n∑

i=1

ci e
−α(si+di ) (1)

s.t. si + di ≤ s j ∀(i, j) ∈ P (2)
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∑

i∈S(t)

rik ≤ Rk k = {1, . . . , m}, t = {1, . . . , δ} (3)

si + di ≤ δ i ∈ T (4)

where S(t) is the set of tasks executing at time t . The objective, Eq. 1, is the net present
value which is to be maximized. Constraint 2 specifies all tasks must start after their
predecessors have completed. Constraint 3 requires that all the resources are satisfied
and the final constraint requires that all the deadlines are satisfied.

An alternative way to view a solution is by considering permutation of tasks π .
Now, a scheduling scheme can take π and map it to a resource-feasible schedule
and let σ (π ) be such a mapping. Then, a feasible schedule is one that assigns start
times to all tasks by satisfying precedence and resource constraints. This schedule
has a NPV associated which each task and the cumulative NPV can be determined
trivially and is represented as f (σ (π)). The precedences may be accounted for within
a permutation, i.e., if a task i precedes task j then i appears earlier in the permutation
then j . An alternative is to allow a preceding task to appear later than its successor
in the permutation and modify the scheduling scheme σ to nevertheless generate a
feasible schedule from it in which task i precedes task j . We found the latter scheme
more effective and we therefore use this scheme in this study.

Permutations may not necessarily map to feasible schedules in terms of satisfying
the deadlines. However, this situation is avoided by specifying sufficiently large dead-
lines such that feasible solutions are easily found. Hence, constraint (4) is redundant.
Since the aim in this study is not to minimize makespan there is no issue with specify-
ing large deadlines except in the situation with negative-valued cash flow tasks which
may be scheduled later with larger deadlines.

3 Lagrangian relaxation

In this study we consider two integer programming (IP) models to implement the LR
method. The first is the one proposed by Kimms (2001) and the second is an adaptation
of a similar model used by Singh and Ernst (2011) which was originally used for a
resource constrained job scheduling problem.1 The motivation for using the latter
model is that it is a stronger formulation providing improved run-time scalability.

3.1 LR-Kimms

We provide the IP model suggested by Kimms (2001) and briefly describe the
Lagrangian function.2 Binary variables x jt are defined such that x jt = 1 if task j
completes at time t and 0 otherwise. The problem can be specified as follows.

1 This problem consists of a single renewable resource, tasks with release, processing and due times and
the objective is to minimize the total weighted tardiness. See Singh and Ernst (2011) for further details.
2 For complete details please refer to Kimms (2001).
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max .

n∑

i=1

δ∑

t=1

ci e
−αt xi t (5)

s.t.
δ∑

t=1

xit = 1 i ∈ T (6)

δ∑

t=1

t x j t −
δ∑

t=1

t xit ≥ d j ∀(i, j) ∈ P (7)

n∑

i=1

t+di−1∑

t̂=t

rik xi t̂ ≤ Rkt k ∈ R,t ∈ {1, . . . , δ} (8)

xit ∈ {0, 1} i ∈ T,t ∈ {1, . . . , δ} (9)

Equation 6 requires that all tasks complete. The precedences are incorporated via
Eq. 7 and the resource constraints via Eq. 8.

The Lagrangian relaxation of the above problem can be obtained by relaxing the
resource constraints and introducing multipliers λkt , k ∈ R, t ∈ {1, . . . , δ}. An upper
bound can be obtained by solving the Lagrangian dual

L R R(λ) = max .

n∑

i=1

δ∑

t=1

ci e
−αt xi t +

∑

k∈R

δ∑

t=1

λkt

⎛

⎝Rkt −
n∑

i=1

t+d j−1∑

t̂=t

ri t̂ xi t̂

⎞

⎠

(10)

Subject to Eqs. 6, 7 and 9. The above objective can be rearranged to obtain

L R R(λ) = max .

n∑

i=1

δ∑

t=1

xit

⎛

⎝ci e
−αt −

n∑

i=1

t∑

t̂=t−d j+1

λkt̂ ri t̂

⎞

⎠

+
(

∑

k∈R

δ∑

t=1

λkt Rkt

)

(11)

where the last term is a constant and can be ignored when optimizing.

3.2 LR-SE

The second model is adapted from the one suggested by Singh and Ernst (2011) for
multiple resources. As above, binary variables xit represent the completion time of
a task. However, unlike LR-Kimms, once a task completes it stays completed (see
Eq. 13 below).

max .

n∑

i=1

δ∑

t=2

ci e
−αt (xit − xit−1) (12)
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s.t. xit ≥ xit−1 i ∈ T,t ∈ {1, . . . , δ} (13)

xiδ = 1 i ∈ T (14)

x jt ≤ xit−d j (i, j) ∈ P,t ∈ {1, . . . , δ} (15)
n∑

i=1

rit (xit − xit−di ) ≤ Rkt k ∈ R,t ∈ {1, . . . , δ} (16)

xit ∈ {0, 1} i ∈ T,t ∈ {1, . . . , δ} (17)

Equation 13 enforces that a task stays completed once it has finished and Eq. 14
requires that all tasks complete. The precedences are enforced via Eq. 15 and the
resources constraints are specified by Eq. 16.

As above, Lagrangian multipliers λkt , k ∈ R, t ∈ {1, . . . , δ} are introduced and an
upper bound can be obtained by solving the Lagrangian dual

L R R(λ) = max .

n∑

i=1

δ∑

t=2

ci e
−αt (xit − xit−1)

+
∑

k∈R

δ∑

t=1

λkt

⎛

⎝Rkt −
n∑

i=1

t+d j−1∑

t̂=t

ri t̂ (xi t̂ − xi t̂−di
)

⎞

⎠ (18)

which can be rearranged to obtain

L R R(λ) = max .

n∑

i=1

δ∑

t=2

(xit − xit−1)

⎛

⎝ci e
−αt −

n∑

i=1

t∑

t̂=t−d j+1

λktri t̂

⎞

⎠

+
(

∑

k∈R

δ∑

t=1

λkt Rkt

)

(19)

with the last term being constant.

3.3 The lagrangian relaxation heuristic

Given both models, the high-level LR algorithm is presented in Algorithm 1. To begin
with, various parameters and the multipliers are initialized. The main loop starts at
line 5 and executes for 1,000 iterations. The gap is above a specified threshold and
γ = 2.0 is a scaling factor.3 Each procedure is described in detail below.
Solve(λi , UB): The relaxed problem is solved within this procedure. This involves
solving Lagrangian function, i.e., Eq. 11 or 20 depending on the model being used.
The upper bound UB is set to

UB = L L R(λi ) (20)

3 γ is progressively decreased to ensure the algorithm converges.
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Algorithm 1 LR for the RCP problem
1: input: An RCP instance
2: πbs := null (best solution)
3: initialize λ0

kt = 0,∀k ∈ R, ∀t ∈ {1, . . . , δ}
4: γ := 2.0, k := 0, gap := ∞, UB∗ := ∞, L B∗ := −∞
5: while γ > 0.01 & gap > 0.01 & i < 1000 do
6: ST = Solve(λi , UB)
7: π = GenerateList(ST )
8: ImproveLB(π )
9: UpdateBest(πbs ,π ,γ )
10: L B∗ = N PV (πbs )

11: UpdateMult(λi , L B∗, UB∗, ST , γ )

12: gap = |UB∗|−|L B∗|
|UB∗|

13: i← i + 1
14: end while
15: output: πbs

which is minimized to provide tight upper bounds. The procedure returns a set of start
times for the tasks (ST ) representing the optimal relaxed solution.
GenerateList(ST ): The start times obtained are transformed into a list of tasks. This
is done by selecting the earliest start time, appending the corresponding task to π and
continuing in the same way with the remaining tasks. In case of ties, tasks with higher
NPV values are chosen first. The procedure returns a complete list of tasks (π ).
ImproveLB(π ): π can be mapped to a feasible schedule as will be seen in Sect. 4.1.
This provides a lower bound to the optimal NPV. However, this lower bound may be
improved further with the assistance of an alternative method resulting in a modified
permutation π . The hybrid method is obtained by using ACO here.
UpdateBest(πbs ,π ,γ ): πbs = π if f (σ (π)) > f (σ (πbs)). Additionally, if πbs has not
been updated in the last five iterations, γ ← γ ÷ 2.
UpdateMult(λi , L B∗, UB∗, ST, γ ): The multipliers are updated for all time periods
t ∈ {1, . . . , δ}, k ∈ R

λi+1
k,t = max

(

0, λi
k,t +

γ (UB∗ − L B∗)Δkt
∑

k∈R
∑δ

t̂=1 Δ2
kt̂

)

(21)

where in the case of LR-Kimms

Δkt =
n∑

i=1

t+d j−1∑

t̄=t

rik xi t̄ − Rkt (22)

The above equation can be modified for the LR-SE model as follows

Δkt =
n∑

i=1

t+d j−1∑

t̄=t

ri t̄ (xi t̄ − xi t̄−di
)− Rkt (23)
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4 Ant colony optimization

ACO was first suggested by Dorigo (1992) for combinatorial optimization. When
looking for food, ants will leave their nests and mark the paths that they use to a food
source with pheromone. Other ants looking for food will follow these trails based on
the amount of pheromone deposits on the paths. They, in turn, deposit pheromones
on these paths. Thus, paths with more pheromone receive more ants which in turn
deposit more pheromone leading to a positive feedback loop. This mechanism leads
the colony to converge on better food sources over time (Camazine et al. 2001).

In the context of the RCP problem, we consider a pheromone model that is based
on learning an ideal permutation of the tasks. Here, the aim is to learn permutations of
the tasks which are then mapped to a schedule using a scheduling scheme (discussed
later). We consider the model suggested by den Besten et al. (2000) who examine
an ACO algorithm for the single machine problem with the total weight tardiness
objective. The pheromones T consist of pheromone values τi j for each task j and
variable i or position in the sequence. The motivation to use this model is that in the
absence of any obvious dependencies4 selecting a task for a variable is the simplest
model.

Algorithm 2 ACS for the RCP problem
1: input: An RCP instance
2: πbs := null (global best)
3: initialize T
4: πbs = ACSImproveLb(T )
5: output: πbs

Two popular variants of ACO are ant colony system (Dorigo and Gambardella
1997) (ACS) and Max-Min ant system (Stűtzle and Hoos 2000). Initial experiments
with both variants showed that ACS was better suited to this problem. Thus, for all
experiments in this study we used ACS.

The ACS algorithm is presented in Algorithm 2 and Algorithm 3. In Algorithm 2
we see the high level ACO procedure. The global best ant (πbs) and the pheromone
trails T (τi j = 1/n, ∀i, j) are first initialised. Now Algorithm 3 is called with T as the
input. A best solution (πbs) is also maintained by this algorithm and runs until some
terminating criteria is met (line 3) such as number of iterations or time limit. Within
each iteration, na ants construct permutations (line 6) which are mapped to schedules
(line 7).
ConstructSolution(T ): A permutation π of tasks is constructed by selecting a task
for each variable5 starting at π1. A complete solution obtains a permutation where

4 For example, in the travelling salesman problem selecting a city based on the next one is important (Dorigo
and Gambardella 1997) and hence ti j represents the desirability of selecting city j given that city i was the
previously selected city.
5 π consists of n variables where each variable is to be assigned to a task. We also tested the sum rule often
used in scheduling applications (Dorigo and Stűtzle 2004) but found no advantage using this method but
was slightly worse overall (see Appendix Table 8).
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Algorithm 3 ACSImproveLb
1: input: T
2: πbs := null (best)
3: while termination conditions not satisfied do
4: Siter := ∅
5: for j = 1 to na do
6: π j := ConstructSolution(T )
7: ScheduleTasks(π j )
8: Siter := Siter ∪ {π j }
9: end for
10: π ib := argmin{ f (π)|π ∈ Siter }
11: Update(π ib ,πbs )
12: PheromoneUpdate(T ,πbs )
13: cf := ComputeConvergence(π ib)
14: if c f = true then initialize T end if
15: end while
16: output: πbs

all variables have unique tasks assigned to them. A task is selected with one of two
schemes, either deterministic or probabilistic. First, a random number q ∈ (0, 1] is
generated and compared with a pre-defined parameter q0 in order to select a task at
πi . If q < q0, k is deterministically selected according to

k = maxk∈J \{π1,...,πi−1}{τikη
β
k } (24)

otherwise, k is probabilistically selected from the following distribution

P(πi = k) = τikη
β
k

∑
j∈J \{π1,...,πi−1}

(
τi jη

β
j

) (25)

where ηk is heuristic information that may be used to bias the search and β is a factor
that determines the contribution of the heuristic information. We attempted various
heuristics, such as favouring positive-valued cash flow tasks to be placed early in the
sequence, but found no obvious advantage with any of them. Hence, β = 0 was used
which effectively rules out heuristic information.

When a task j at variable i is selected, the pheromones are updated as follows:

τi j = τi j × ρ + τmin (26)

which is called a local pheromone update, where ρ is a learning rate parameter which
is chosen to gradually reduce the levels of pheromone associated with task j at variable
i . This favours diversity by allowing other tasks to be assigned to the same variable
during future solution constructions. τmin = 0.001 is a lower limit which does not
allow the probability of selection of a task to reduce to 0.
ScheduleTasks(): Once a sequence for the current solution has been specified the
schedule σ(π) is determined. This is done using a scheduling scheme (see Sect. 4.1)
and depending on whether the permutation is precedence feasible the scheduling
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scheme satisfies precedences and resource constraints or only resource constraints.
This scheme always generates resource feasible schedules given infinite time.
Update(π ib,πbs): The procedure sets πbs to π ib if f (σ (π ib)) > f (σ (πbs)) where
f (σ (π ib)) is the NPV of the iteration best solution.
PheromoneUpdate(T ,πbs): All components (i, j) appearing in πbs are used to update
the corresponding components in the pheromone matrix:

τi j = τi j × ρ +Δ (27)

where Δ = 0.01 is a reward amount set to be a constant value. While different reward
factors may be used here it was found that reward amount based on the NPV did
not provide any improvements over this constant reward on a subset of the instances.
Hence, for the sake of simplicity, a constant reward was used. ρ is the learning rate as
specified earlier and is defined to be 0.1 for this study.
ComputeConvergence(π ib): As a convergence measure we use the iteration best solu-
tion and a history of the past θ iteration best solutions to determine if the pheromones
have converged. If sampling the pheromones repeatedly produces the same solution,
the pheromones are considered to have converged. A list of the past θ solutions, lπ ib ,
in the form of a queue is maintained. Every time a new iteration best is generated it
is appended to the end of this list while the first solution in the list is removed. The
quality of the current iteration best π ib is compared to the quality of all the solutions
in the list. If they all have the same objective value the pheromones are re-initialized:
f (π ib) = f (k), k ∈ lπ ib ⇒ τi j = 1/n ∀i, j . The list is also re-initialized where all
previous solutions are removed.

4.1 Scheduling schemes

Given a permutation, the tasks are scheduled using a serial scheduling scheme. The
scheme is similar to the one used by Li and Willis (1992) and a similar modified
scheme by Kimms (2001). The permutation is split into two sets, N = N+ ∪ N−. N+
consists of all tasks with positive cash flows which are independent of other tasks or
those tasks whose cash flow is positive and greater than the cumulative cash flow of
its dependent tasks:

N+ =
⎧
⎨

⎩
t : c f (t)−

∑

t ′∈S(t)

c f (t ′) > 0

⎫
⎬

⎭
(28)

where S(t) is the set of direct and indirect successors of t . N− is the remaining set of
tasks, i.e. N\N+.

We consider two ways of scheduling tasks given a permutation (see Fig. 1). Consider
the permutation π in Fig. 1a where the problem consists of 7 tasks with precedences
between two of them (task 3 must finish before task 4 commences). N− consists of
tasks 5 and 7 have negative-valued cash flows. There is a single resource R and the
heights of the tasks specify the amount of resource needed. As the permutation shows,
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(a)

(b)

(c)
Fig. 1 This figure demonstrates how a permutation of tasks (without precedences) may be mapped to a
schedule. There are 7 tasks requiring a single resource and task 3 precedes task 4. Additionally, tasks 5 and
7 have negative-valued cash flows. There are R units of resource available and the height of a task is the
amount of resource needed. The time horizon starts at t0 and finishes at td which is the deadline for the
tasks. a This is a permutation of the 7 tasks. Note that although task 3 must start before task 4, task 4 is
allowed to appear ahead of task 3 in the permutation. b The positive-valued cash flow tasks are placed as
early as possible given the available resource. c The negative valued cash flow tasks are placed starting at
the end of the schedule. Tasks are successively chosen from the end of the permutation

precedences are not maintained when constructing the permutation. Figure 1b shows
the placement scheme. Here, positive-valued tasks are placed as early as possible,
satisfying the resource constraints. If a task appears which has a predecessor that is
not scheduled, it is placed on a waiting list π̂ . Once the predecessor is placed (task 3)
the task on the waiting list is also immediately placed.

Figure 1c demonstrates how negative-valued cash flow tasks are scheduled. Here,
tasks are considered from the end of the permutation and starting at the deadline,
tasks are placed in a greedy fashion similar to how the positive-valued cash flows are
placed at the beginning of the schedule. Note that the negative valued cash flow tasks
do not have to appear at the end of the sequence. If they happen to be in-between
positive-valued tasks they are still placed starting at the deadline.

Precedences are not considered when constructing permutations in the above
scheme, however, this is trivially accounted for at the scheduling stage. We have
attempted to ensure precedences are satisfied within the permutation but found
improved results when we ignore them in the permutations.
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4.2 LR-ACO

ACO can be incorporated in a straightforward manner into Algorithm 1. In Algo-
rithm 1, ImproveLB(π ) can be replaced with Algorithm 3. The basic idea is to seed
ACO with π to improve the lower bound. π is used as the global best solution for
the ACO procedure which biases the search towards this solution. Note that there are
no changes with respect to the manner in which schedules are generated. Lagrangian
relaxation with or without ACO uses the same scheme described in the previous sec-
tion. There are two variants of LR-ACO that we consider. LR-Kimms-ACO is the LR
model originally suggested by Kimms (2001) with ACO and LR-SE-ACO is the more
efficient LR model also combined with ACO.

5 Experiments and results

5.1 Algorithm settings

Experiments were conducted with LR, ACO, LR-ACO where the LR components
make use of the model of Kimms 3.1. The following parameter settings were chosen
by conducting tests on a subset of the instances. To choose the number of solutions
per iteration, na, {5, 10, 20, 30} solutions were tested and it was found that 10 was the
most effective. Similarly, q0 = 0.9 was determined from {0.3, 0.5, 0.7, 0.9, 1.0}. This
amounts to high deterministic selection. ρ = 0.1 was selected from {0.1, 0.01} and
while this is a relatively high learning rate it is justified given that the pheromones are
re-initialized when ACO converges to a single solution. Note that the same settings
were used for ACO or all algorithms using an ACO component. In the case where
LR is combined with ACO, we have allowed the ACO search 500 iterations. This was
not determined in any systematic way but rather selected based on conducted as few
“meaningful” iterations as possible. Thus 500 iterations provides a reasonable number
of updates to the pheromones in a relatively short time-frame.

The LR algorithm of Kimms (2001) is deterministic and was run once for every
instance. All the runs were given at most 15 minutes of execution time. The thresholds
were set to gap < 0.01 or λ < 0.01 below any of which the algorithm will terminate.
The experiments were conducted on the Monash Sun Grid and the Enterprisegrid with
Nimrod/G (Abramson et al. 2000).

5.2 Benchmark sets

The first set of instances were obtained from the project scheduling problem
library (Kolisch and Sprecher 1997) which were also the instances used by Kimms
(2001). These include a large number of instances with varying degrees of network
complexities, resource factors and resource strengths. We first conduct a number of
experiments on all the problems instances with 120 tasks to confirm that similar results
are being achieved to Kimms (2001) and also to show that LR-Kimms-ACO provides
improved results compared to LR and ACO independently. Additionally, we conduct
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a number of experiments with a subset of the instances (60 and 120 tasks) which are
detailed in Sect. 6.

These instances are categorized in terms of three measures. Firstly, network com-
plexities indicate the proportion of precedences incorporated in the instance with a
larger value implying a larger number of precedences. The second measure is the
resource factor which specifies how many resources are required by an activity in
proportion to the total number of resources available. Finally, the resource strengths
measure scarceness of resources with low values implying that resource constraints
are tight.

The deadlines δ were determined in a similar manner to Kimms (2001) so that
feasible solutions are found easily. Note that in this study we do not aim to minimize
makespan so the deadlines chosen here are larger than the previous study. For a task j , a
latest start time (ls j ) is determined by recursively considering all preceding tasks, i.e.,
ls j ≥ lsi + di ∀(i, j) ∈ P . Then, δ = 3.5× max j ls j . The cash flows are determined
exactly like Kimms (2001) by selecting ci = [−500, 1, 000] uniformly randomly.
We examine two discount rates α. The first is determined like Kimms (2001) where
α = 52

√
1+ 0.05− 1 and the second is α = 0.01.

Vanhoucke (2010) also had a number of project scheduling instances with similar
characteristics as those tested by Kimms (2001). We consider all the instances with
100 tasks. The major difference between these two studies is that Vanhoucke (2010)
uses tight deadlines whereas the schedules generated by Kimms (2001) are always
deadline feasible. We use similar settings as those used by Vanhoucke (2010) in terms
of deadlines and these experiments are discussed in more detail in Sect. 5.4.

5.3 Results for Kimms’ instances with 120 tasks

We consider the datasets from the project scheduling problem library with all instances
consisting of 120 tasks. Figure 2a shows the average results across all instances with
120 tasks. The gap is defined as (ub− lb)/ub. For ACO, we have used the LR upper
bound to determine its gap. We see that the average gap of 2 % for LR is similar
to what was seen by Kimms (2001). The average gap obtained by LR-Kimms-ACO
is significantly lower than LR and ACO and proves to be the best option. ACO is
effective, but repairing solutions provided by LR are slightly more effective.

We now examine the results by resource strength (RS), resource factor (RF) and
network complexity (NC). See Fig. 2b, c and d. The first observation is that LR-Kimms-
ACO is always the best performing algorithm always providing average lower gaps
than any of the two methods on their own. For the more tightly constrained problems,
LR is superior to ACO (large resource factors and low resource strength). This is
expected since LR is designed to deal with constraints effectively, whereas ACO and
meta-heuristics in general often struggle to deal with hard constraints (Meyer and Ernst
2004). The resource factor shows that as far as network complexity is concerned, ACO
is always marginally worse than LR which, in turn, is worse than LR-Kimms-ACO.

Table 1 shows the breakdown of the results discussed in Fig. 2. The table shows
lower and upper bounds for each algorithm broken down by resource factors, net-
work complexity and resource strengths. The row Mean shows the average across
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Fig. 2 The results of each algorithm for all the problem instances 120 tasks. a An average of all the tasks, b
Tasks split by resource strengths, c Tasks split by resource factors and d Tasks split by network complexity

all instances. The following rows show the averages for each measure. The LR-based
algorithms are always superior to ACO concerning the lower bounds. Here, LR-ACO
is generally superior to LR whereas LR is more effective on 4 out of the 12 mea-
sures. Interestingly, ACO assists to improve the upper bounds quite significantly by
outperforming LR across all measures.

5.4 Results for Vanhoucke’s Instances with 100 Tasks

For this experiment, we consider the instances from Vanhoucke (2010) who also used
tight deadlines. We consider the largest instances of 100 tasks or more. Gu et al.
(2013) examine a Lagrangian relaxation and constraint programming (CP-LR) hybrid
for the same set of instances, however they do not extend deadline to allow feasible
solutions. Similar to our results, the CP-LR provides feasibility on more than 99 % of
the instances with 100 tasks. More interestingly however, the CP-LR algorithm focuses
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on project scheduling whereas the proposed LR-ACO is applicable to domains beyond
scheduling.6

Firstly, we examine deadlines of 20 % beyond the minimum project deadline. The
results are presented in Table 2 and Fig. 3 for instances with all tasks having positive
cash flows (100–0), 20, 40, 60, 80 negative cash flows to 100 % negative cash flows.
The figure shows the gaps whereas the table shows a breakdown into lower and upper
bounds. Since the deadlines are hard, feasible solutions may not always be found and
in this case we extend the deadlines to allow feasibility. Note that this was required
for less that 1 % of the instances.

We see that for mainly positive cash flows (0 and 20 % negative cash flows),
LR-ACO is the best algorithm. This is mainly sure to the upper bounds being very
tight. For these instances, LR is most effective in finding lower bounds. Beyond 40
% negative cash flows, the scatter search is the best lower bounding method. While
the tight deadlines can be attributed for this effect, we looked more closely at the
individual runs of these methods. We find that even the relaxed problems of the LR
require significant solving time which increase with negative cash flow tasks. Thus,
in the presence of very tight deadlines, much larger run-times are needed to provide
a reasonable number of iterations for the algorithm to converge. Hence, the scatter
search is more effective since it is able to generate a large number of solutions (lower
bounds) in reduced time-frames.

The conclusion above shows that when there are a large number of negative cash
flows (≥40) and tight deadlines, the scatter search is a more effective algorithm. Hence,
we investigated tighter deadlines to see if the scatter search will eventually be effective
on the 0 and 20 % instances. These results are also present in Table 2. We see that
with increasing tightness of deadlines, the scatter search is more effective even for the
positive cash flow instances.

6 Investigating algorithms

From among the problem instances of Kimms (2001), we selected 12 instances with 60
and 120 activities with a total of 24 instances.7 Our aim is to measure the performance
of the algorithms on tightly constrained problems and the instances we have chosen
reflect this. Thirty runs per instance were conducted for ACO and LR-ACO and each
algorithm was given 15 min of execution time.

All of the selected instances have a network complexity value of 2.1. Resource
factors were chosen from 0.5 and 1.00 where, in the first case, the tasks require half
the number of resources available. In the second case the tasks require all the resources
available. Resource strengths with values 0.2 or 0.5 were chosen reflect a wide range
of resource strengths.

6 Both CP and ACO have the potential to improve solutions from LR, however, ACO is more straight-
forward to customize and implement.
7 We only chose to select a subset of the instances since ACO is stochastic and hence requires several runs
on the same instance in order to obtain statistically valid results.
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Fig. 3 A comparison of Scatter search Vanhoucke (2010), ACO, LR-ACO and LR+ACO. The x-axis
represents the proportion of negative cash flow tasks. 100–0 consists of only positive cash flow tasks
whereas 100–100 consist of only negative cash flow tasks

Table 3 Instances selected for comparing the algorithms

NC RF RS Tasks

37 2.1 0.5 0.2 60

38 2.1 0.5 0.5 60

45 2.1 1.0 0.2 60

46 2.1 1.0 0.5 60

47 2.1 0.5 0.2 120

50 2.1 0.5 0.5 120

57 2.1 1.0 0.2 120

60 2.1 1.0 0.5 120

We present the results of the algorithms on the 24 selected instances (see Table 3).
There are four categories of instances, each category consisting of three instances,
with 60 and 120 tasks each. The table specifies network complexities (NC), resource
factors (RF) and resource strengths (RS). The tables to follow highlight statistically
significant results (p = 0.05) with italics and boldface. Additionally, the best result
achieved on any instance is marked only in boldface. The best, mean and standard
deviations (sd) for lower bounds (lb) and upper bounds (ub) including gaps where
applicable are also reported. In the case of ACO, the gap is reported to the upper
bound obtained by LR-SE-ACO.

6.1 Comparing LR-SE-ACO and LR-Kimms-ACO

The first set of results are presented in Table 4 with the aim of determining which
of the two models (LR-SE-ACO or LR-Kimms-ACO) is more effective. This table
clearly shows that for several instances LR-SE-ACO is more effective considering the
lower bound. This is mainly due to the LR-SE model being a stronger formulation,

123



A lagrangian relaxation and ACO hybrid 661

Ta
bl

e
4

T
he

re
su

lts
of

L
R

-S
E

-A
C

O
an

d
L

R
-K

im
m

s-
A

C
O

L
R

-S
E

-A
C

O
L

R
-K

im
m

s-
A

C
O

lb
-b

es
t

lb
-m

ea
n

sd
ub

-b
es

t
ub

-m
ea

n
sd

ga
p

lb
-b

es
t

lb
-m

ea
n

sd
ub

-b
es

t
ub

-m
ea

n
sd

ga
p

37
-3

18
66

3.
30

18
65

6.
52

6.
63

18
95

9.
50

18
96

2.
11

6.
63

0.
02

18
66

3.
30

18
64

6.
16

9.
92

18
98

5.
80

18
99

1.
97

9.
92

0.
02

37
-5

14
99

6.
50

14
99

5.
30

0.
94

15
20

3.
10

15
20

3.
85

0.
94

0.
01

14
99

6.
50

14
99

4.
22

1.
53

15
20

4.
30

15
20

4.
95

1.
53

0.
01

37
-8

12
13

8.
60

12
13

5.
45

1.
79

12
30

3.
30

12
30

4.
76

1.
79

0.
01

12
13

8.
60

12
13

4.
21

1.
80

12
30

4.
50

12
30

5.
01

1.
80

0.
01

38
-3

11
57

5.
50

11
57

5.
50

0.
00

11
88

2.
20

11
88

2.
30

0.
00

0.
03

11
57

5.
50

11
57

5.
50

0.
00

11
88

1.
60

11
88

1.
89

0.
00

0.
03

38
-5

76
07

.4
6

76
07

.3
5

0.
04

76
86

.8
9

76
86

.8
9

0.
04

0.
01

76
07

.3
4

76
07

.3
4

0.
00

76
86

.3
6

76
86

.5
9

0.
00

0.
01

38
-8

17
97

2.
20

17
96

5.
32

5.
19

18
11

9.
40

18
11

9.
40

5.
19

0.
01

17
97

2.
00

17
96

2.
16

7.
08

18
11

9.
40

18
11

9.
40

7.
08

0.
01

45
-3

13
05

8.
80

13
05

1.
80

2.
77

13
48

9.
00

13
48

9.
63

2.
77

0.
03

13
06

0.
80

13
05

0.
51

4.
54

13
49

0.
80

13
49

2.
52

4.
54

0.
03

45
-5

15
88

8.
10

15
88

5.
36

1.
80

16
09

3.
30

16
09

5.
01

1.
80

0.
01

15
88

8.
30

15
88

3.
18

4.
23

16
09

7.
70

16
10

0.
46

4.
23

0.
01

45
-8

13
12

8.
00

13
11

8.
80

3.
86

13
25

4.
80

13
25

6.
31

3.
86

0.
01

13
12

4.
10

13
11

2.
11

6.
55

13
26

3.
90

13
27

1.
04

6.
55

0.
01

46
-3

16
61

4.
90

16
60

6.
03

7.
39

16
66

7.
40

16
66

7.
40

7.
39

0.
00

16
61

4.
10

16
60

4.
59

8.
48

16
66

7.
40

16
66

7.
40

8.
48

0.
00

46
-5

15
97

1.
60

15
97

0.
91

0.
92

16
25

2.
90

16
25

3.
56

0.
92

0.
02

15
97

1.
50

15
96

9.
24

1.
57

16
25

5.
50

16
25

6.
13

1.
57

0.
02

46
-8

13
17

6.
70

13
17

5.
18

0.
69

13
40

2.
00

13
40

2.
27

0.
69

0.
02

13
17

6.
10

13
17

4.
51

1.
01

13
40

1.
80

13
40

2.
30

1.
01

0.
02

47
-3

28
30

2.
00

28
27

6.
53

12
.4

2
28

97
7.

40
28

97
8.

94
12

.4
2

0.
02

28
22

3.
50

28
18

7.
23

17
.7

1
29

03
1.

10
29

04
9.

22
17

.7
1

0.
03

47
-5

36
05

9.
10

36
01

9.
83

17
.3

7
36

60
7.

70
36

61
4.

20
17

.3
7

0.
02

36
01

8.
20

35
97

3.
26

24
.1

2
36

72
6.

00
36

74
4.

61
24

.1
2

0.
02

47
-8

25
29

4.
10

25
25

0.
33

15
.1

9
25

86
5.

40
25

87
0.

71
15

.1
9

0.
02

25
23

7.
60

25
17

9.
97

22
.4

8
26

08
4.

20
26

09
6.

96
22

.4
8

0.
04

50
-3

28
58

3.
00

28
57

7.
66

2.
71

29
10

9.
30

29
11

0.
22

2.
71

0.
02

28
57

8.
50

28
57

1.
33

3.
90

29
11

2.
30

29
11

2.
98

3.
90

0.
02

50
-5

26
63

0.
50

26
60

3.
72

9.
92

26
80

0.
70

26
80

0.
70

9.
92

0.
01

26
64

1.
30

26
60

6.
17

12
.6

1
26

80
0.

70
26

80
0.

70
12

.6
1

0.
01

50
-8

30
24

2.
10

30
23

5.
03

2.
99

30
64

7.
80

30
64

8.
25

2.
99

0.
01

30
23

2.
00

30
21

9.
72

5.
88

30
65

4.
90

30
65

6.
68

5.
88

0.
01

57
-3

29
83

5.
60

29
78

6.
93

15
.8

5
30

54
9.

70
30

56
0.

40
15

.8
5

0.
03

29
77

3.
20

29
71

6.
14

34
.6

3
30

92
0.

50
30

99
2.

64
34

.6
3

0.
04

57
-5

26
88

6.
70

26
84

0.
91

28
.0

6
27

41
1.

80
27

41
6.

08
28

.0
6

0.
02

26
75

3.
80

26
66

3.
62

34
.7

3
27

77
4.

70
27

82
0.

41
34

.7
3

0.
04

57
-8

26
62

7.
80

26
60

1.
45

12
.6

7
27

10
8.

60
27

11
0.

54
12

.6
7

0.
02

26
52

6.
40

26
45

1.
24

20
.6

6
27

27
2.

10
27

35
8.

73
20

.6
6

0.
03

123



662 D. Thiruvady et al.

Ta
bl

e
4

co
nt

in
ue

d

L
R

-S
E

-A
C

O
L

R
-K

im
m

s-
A

C
O

lb
-b

es
t

lb
-m

ea
n

sd
ub

-b
es

t
ub

-m
ea

n
sd

ga
p

lb
-b

es
t

lb
-m

ea
n

sd
ub

-b
es

t
ub

-m
ea

n
sd

ga
p

60
-3

38
13

2.
80

38
08

9.
72

21
.5

5
38

43
9.

60
38

44
7.

00
21

.5
5

0.
01

38
13

9.
10

38
08

6.
12

19
.1

0
38

43
8.

30
38

44
7.

03
19

.1
0

0.
01

60
-5

24
98

8.
50

24
97

0.
89

6.
57

25
21

1.
50

25
21

8.
77

6.
57

0.
01

24
94

3.
30

24
92

6.
82

7.
68

25
23

4.
00

25
23

7.
71

7.
68

0.
01

60
-8

28
64

5.
40

28
63

7.
71

3.
71

29
02

9.
80

29
03

0.
23

3.
71

0.
01

28
61

9.
90

28
61

1.
31

3.
76

29
03

9.
10

29
04

0.
46

3.
76

0.
01

M
ea

n
0.

02
0.

02

T
he

be
st

,
m

ea
n

an
d

st
an

da
rd

de
vi

at
io

ns
fo

r
th

e
lo

w
er

bo
un

d
(l

b)
an

d
up

pe
r

bo
un

d
(u

b)
fo

r
ea

ch
al

go
ri

th
m

re
po

rt
ed

.
T

he
ga

p
is

de
te

rm
in

ed
as

(u
b
−

lb
)/

u
b.

St
at

is
tic

al
ly

si
gn

ifi
ca

nt
re

su
lts

at
p
=

0.
05

ar
e

ita
lic

iz
ed

an
d

m
ar

ke
d

in
bo

ld
fa

ce
.T

he
be

st
re

su
lts

ob
ta

in
ed

fo
r

an
y

in
st

an
ce

ar
e

m
ar

ke
d

in
bo

ld
fa

ce

123



A lagrangian relaxation and ACO hybrid 663

thus solving the relaxed proble more quickly leading to improved results. Thus LR-
SE-ACO proves to be the superior model and we therefore make use of this model for
further comparisons.

6.2 Comparing ACO, LR-SE and LR-SE-ACO

The second comparison is between ACO, LR-SE and LR-SE-ACO. The results are
shown in Table 5. Considering the lower bounds, we see that LR-SE-ACO is the best
performing method across most instances, especially for the instances with 60 tasks.
ACO is also effective and in some cases obtains the best results (e.g. for instance 50 -
5). LR-SE is generally worse, however, by small margins. For the instances with 120
tasks, a select number of instances in categories 57 and 60 shows that LR-SE is as
good or better than the other algorithms on average. However, the best results of LR-
SE-ACO and ACO are still superior, with LR-SE-ACO performing best. Additionally,
there are no significant differences with the upper bounds and gaps obtained are also
of similar levels.

We explain LR-SE-ACO’s improved performance by the following. The LR algo-
rithm obtains optimal start times for the tasks given the relaxed problem. The relaxed
problem approaches the original problem overtime through the penalties, leading to
start times for the tasks close to that of the optimal. ACO is able to use these start times
to further explore surrounding regions of the search space effectively through the use
of high learning rates. This leads to improvements on most occasions. Where there
are no improvements or worse performance by LR-SE-ACO compared to LR-SE, the
ACO component has not effective. Here the time spent on the ACO component has
not been as useful but where LR iterations may have been.

Table 6 show results for two other variants of LR-SE with ACO. The first one is
where the LR solution information is used to bias the ACO selection via the heuristic
information (η) referred to as LR-ACO (heur). The second scheme is one where
ACO is run with a partially converged pheromone matrix after LR has completed
(LR+ACO). These results are presented in Table 6. LR-ACO (heur) is almost always
more effective. Comparing with LR-ACO, LR-ACO (heur) performs worse on the
small problems while it is slightly more effective on larger instances.

Now we compare the algorithms with a discount rate of α = 0.01. The results are
shown in Table 7. As a result of this new discount rate, the gaps obtained are not as
close as before in the previous comparisons. In this situation, the advantage gained by
LR-SE-ACO is accentuated, providing the best lower bounds across all instances with
60 tasks. For the problems with 120 tasks LR-SE-ACO is still the best performing
method, however, its advantage is reduced. Here, ACO is able to outperform LR-SE-
ACO occasionally. It is worth noting that even when this is the case, LR-SE-ACO
always performs better on average.

The upper bounds obtained by both algorithms are closely matched with LR-
SE having a slight advantage. However, observing the gaps shows us that in all
cases LR-SE-ACO is superior except for two instances 50-3 and 60-5. This is easily
explained by the advantage LR-SE-ACO obtains from ACO improvement to the lower
bounds.
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Fig. 4 A comparison of mean normalized lower bounds (NPV) of four algorithms over 15 min. The results
across the 30 runs are first mean normalized by instance. These results are averaged across all algorithms
and the difference to the average is shown for each algorithm

To summarize the results presented above, LR-SE-ACO is the most effective algo-
rithm to obtain lower bounds. Specifically, the LR component provides a very good
seed for the ACO component which is quick to improve the solutions found. Clearly
either algorithm, ACO or LR-SE, on their own are not as effective, whereas the hybrid
method is best suited for this problem.

6.3 Convergence of lower bounds

We further analyze the performance of the algorithms concerning lower bounds.8 We
consider the instances with 120 tasks and report results by averaging their performance
across the categories and across all instances. As we have done earlier, 30 runs per
instance for ACO and LR-SE-ACO have been conducted the results are mean nor-
malized so that we can compare across instances. The first comparison is of the lower
bounds obtained by all the algorithms over 15 min and seen in Fig. 4. Here, the results
for every instance and for all 30 runs per instance are first mean normalized. The mean
normalized results are averaged and the difference of each algorithm to the average is
reported.

Figure 4 shows that LR-SE-ACO overall is the best performing algorithm. ACO
and LR-SE-ACO have a significant advantage at the initial stages. LR-SE improves
gradually until 100 seconds, however, at this stage it outperforms ACO. The trend

8 Note that there were not many significant differences with the upper bounds obtained by the LR algorithms
and are hence not analyzed here.
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Fig. 5 A comparison of mean normalized lower bounds (NPV) of four algorithms by category over 15
min. Left–right and top–bottom we have the results for instance categories 47, 50, 57, 60. The results across
the 30 runs are first mean normalized by instance. These results are then averaged across all algorithms in
a category. The difference to the average by category is shown for each algorithm

shows that ACO and LR-SE-ACO continue to improve over time whereas LR-SE and
LR-SE-ACO (heur) reach a point after which its performance stagnates. These results
split by category are shown in Fig. 5. Here a similar picture as that of the overall
average performance can be seen. However, we note that when the resource factor is
less (instances 47 and 50) LR-SE-ACO has an advantage early. LR-SE-ACO always
has the initial advantage, but with large resource factors (instances 57 and 60) the
algorithms are more closely matched until 200 seconds. From this point LR-SE-ACO
re-gains its advantage.

The initial difference is attributable to ACO’s ability to improve a starting solution
effectively. However, overtime ACO’s influence is reduced but still assists LR-SE-
ACO. This leads to the divergence of LR-SE-ACO and LR-SE curves gradually. ACO’s
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Fig. 6 A comparison of mean normalized lower bounds (NPV) of four algorithms over 100 iterations.
The results across the 30 runs are first mean normalized by instance. These results are averaged across all
algorithms and the difference to the average is shown for each algorithm

initial result is very good and it gradually improves but not enough to keep pace with
the LR-base algorithms.

Interestingly LR-SE-ACO (heur) follows LR-SE despite using heuristic informa-
tion. For these runs with α = 0.01, the heuristic information seems to make no
significant difference unlike the results seen in Table 6. In contrast, LR-SE-ACO is
always more effective. Thus, depending on the learning rate, providing a bias via a
solution (LR-SE-ACO) which is a stronger form of bias, is more effective than a subtle
bias through the heuristic information. Larger discount rates require a stronger bias.

The next comparison of interest is to consider iterations as opposed to time. Since
a single iteration of LR-SE-ACO is more expensive than that of LR-SE, the aim here
is to identify if it converges more quickly compared to LR-SE given the same number
of relaxed problems solved. We consider 100 iterations and comparisons made based
on mean normalized data (see Fig. 6). LR-SE-ACO is overall the best performing
algorithm. This is not surprising given the results previously seen, however, we find
that both LR algorithms converge to a point (about 50 iterations) after which they
diverge gradually. This explanation is similar to the one provided earlier where ACO
provides large improvements initially but its influence eventually reduces. ACO is the
least expensive method per iteration and, not surprisingly, this can be seen across the
iterations where ACO is significantly worse. Over 100 iterations we also see that LR-
SE-ACO (heur) does not provide significant improvements over LR-SE-ACO which
follows a similar trend to what was seen in the long runs.

A break down by category (Fig. 7) shows a similar trend. However, category 57
with high resource factor and low resource strength shows that the initial advantage
provided by ACO is lost, but gained again across iterations.
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Fig. 7 A comparison of mean normalized lower bounds (NPV) of four algorithms by category over 100
iterations. Left–right and top–bottom we have the results for instance categories 47, 50, 57, 60. The results
across the 30 runs are first mean normalized by instance. These results are then averaged across all algorithms
in a category. The difference to the average by category is shown for each algorithm

7 Conclusion

In this study we have shown that hybrids of a Lagrangian relaxation based heuristic with
ACO can be effectively applied to a resource constrained project scheduling problem.
We show through comparisons based on CPU time that LR-SE-ACO outperforms
LR-SE (Lagrangian relaxation with list scheduling) and ACO on their own when
maximizing NPV. The complementary advantages of each algorithm assist the hybrid
to improve upon either on their own. This study shows that improvements can be
made with respect to lower bounds. While the upper bounds may already be very
good, improving them still warrants further research and is currently being addressed.

We find that if the project deadlines are tight, the hybrid LR-ACO is not as effective.
This is mainly due to the increased solve time of the sub-problems. In this direction,
improvements in the original formulation could potentially help to allow the algorithm
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to execute more quickly in reduced time-frames thereby allowing more iterations and
improvements to the lower and upper bounds.

ACO has been shown to assist the LR algorithm, however, other methods may be
substituted for ACO effectively. In particular, local search methods may prove effective
here to essentially explore the surrounding regions of the search space suggested by the
start times provided by the LR algorithm. Additionally, further feedback from ACO
to the LR components can provide more effective bounds and also help the algorithm
converge more quickly.

Given these results, extending all of these algorithms to significantly larger problems
should provide interesting results. In fact, we are currently exploring data for a problem
obtained from the Australian mining industry with up to 11,000 tasks with promising
initial results.

Appendix 1: ACO using sum rule

Table 8 shows ACO with the default model compared with ACO with the sum rule.
The default model consists of a distribution for each position or variable from which
a task is selected. In the sum rule, a task is selected by summing over the pheromone
values of that task over the preceding positions:

P(πi = k) = [∑i
l=1 τlk]ηβ

k
∑

j∈J \{π1,...,πi−1}
(
[∑i

l=1 τl j ]ηβ
j

) (29)

Table 8 ACO using default model and ACO using sum rule.

ACO ACO - sum rule

lb-best lb-mean sd gap lb-best lb-mean sd gap

37-3 11236.00 11114.76 56.43 0.12 11209.70 11116.43 51.05 0.12

37-5 10149.20 10132.05 16.02 0.10 10149.20 10122.62 22.50 0.10

37-8 8948.59 8880.20 29.65 0.08 8918.20 8873.02 39.60 0.08

38-3 8251.25 8247.52 15.58 0.11 8251.25 8242.17 25.69 0.11

38-5 4851.04 4848.58 2.58 0.07 4851.04 4847.78 3.06 0.07

38-8 13779.30 13760.38 23.07 0.04 13779.20 13758.29 26.13 0.04

45-3 10451.40 10372.40 39.09 0.11 10499.50 10370.21 48.60 0.11

45-5 11754.20 11693.75 77.16 0.08 11750.30 11678.64 85.16 0.08

45-8 8747.83 8658.62 68.23 0.08 8747.83 8664.89 62.50 0.08

46-3 12838.40 12810.09 21.14 0.02 12834.50 12810.6 13.69 0.02

46-5 11454.50 11402.72 42.68 0.08 11454.50 11406.23 38.54 0.08

46-8 9825.68 9766.61 34.43 0.07 9814.29 9767.94 33.81 0.07

47-3 19092.00 18878.74 137.40 0.12 19094.80 18850.93 152.27 0.12

47-5 21419.90 20860.28 209.92 0.12 21158.00 20830.91 177.95 0.12

47-8 14315.90 13953.90 179.18 0.16 14082.10 13775.73 185.72 0.17

50-3 19688.90 19590.18 66.58 0.07 19735.80 19571.53 73.26 0.07
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Table 8 continued

ACO ACO - sum rule

lb-best lb-mean sd gap lb-best lb-mean sd gap

50-5 17192.20 16916.95 116.15 0.04 17052.40 16873.05 122.04 0.05

50-8 21729.20 21644.96 48.25 0.05 21709.00 21602.4 56.39 0.05

57-3 13647.40 13398.09 192.22 0.17 13732.70 13398.8 183.47 0.17

57-5 14376.70 13992.62 179.85 0.14 14239.10 13929.36 190.91 0.14

57-8 15093.40 14871.42 152.32 0.14 15162.00 14797.14 174.33 0.14

60-3 26169.50 25993.54 117.81 0.04 26221.70 25919.52 128.21 0.04

60-5 15903.30 15674.06 133.58 0.06 15941.00 15698.72 113.42 0.06

60-8 20933.20 20819.81 80.76 0.06 20910.50 20774.98 66.73 0.06

Mean 0.09 0.09

The best, mean and standard deviations for the lower bound (lb) for each algorithm reported. Statistically
significant results at p = 0.05 are italicized and marked in boldface. The best results obtained for any
instance are marked in boldface
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