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Abstract We investigate the integrated production and distribution scheduling prob-
lem in a supply chain. The manufacturer’s production environment is modeled as a
parallel machine system. A single capacitated vehicle is employed to deliver prod-
ucts in batches to multiple customers. The scheduling problem can also be viewed as
either parallel machines with delivery considerations or a flexible flowshop. Different
inventory holding costs, job sizes (volume or storage space required in the transporta-
tion unit), and job priorities are taken into account. Efficient mathematical modeling
and near-optimal heuristic approaches are presented for minimizing total weighted
completion time.

Keywords Supply chain scheduling · Mathematical modeling · Greedy heuristics ·
Local search

1 Introduction

In a typical supply chain, raw materials or sub-products are procured, and then goods
are manufactured at one or more production facilities, shipped to warehouses or
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distribution centers for intermediate storage, and finally delivered to customers or
retailers. Therefore, a supply chain is the system of suppliers, manufacturers, interme-
diate distribution and storage units, retailers, and customers, as well as raw materials,
work-in-process inventory, and finished goods. Supply chain best practices should
take into account the interaction and collaboration between these different compo-
nents of the supply chain in order to achieve reduced costs and increased service
levels (Simchi-Levi et al. 2003).

Managing supply chain systems with effective planning and scheduling solutions
is one of the most challenging issues faced by both supply chain practitioners and aca-
demic researchers. In recent years, advancements in information technology—such
as warehouse management systems (WMS) and transportation management systems
(TMS)—have allowed companies to use integrated decision strategies in their produc-
tion and distribution operations to achieve reduced logistics costs and better customer
service. Traditionally, production and distribution decisions are made by different
departments of a company or by different companies in the supply chain, with each
attempting to achieve its own goals. The conflicts between these stages’ goals can
lead to excess inventory, unnecessary capacity utilization, overtime work hours, and
higher lead times. Hence, total costs generally will be higher when decisions are
made independently, as compared to decisions being coordinated for the entire sup-
ply chain. Because logistics costs can be a significant percentage of a product’s total
cost, improving supply chain processes may provide significant savings in the overall
supply chain. A well-managed system should effectively control the flow of materials
and the information sharing between these stages. We mainly focus on the coordinated
scheduling of production and distribution functions. In the most general form of the
problem, different products are scheduled in a production facility and then delivered
to various customers within a distribution network in order to satisfy demand over the
planning time horizon.

The integration of production and distribution can be handled in different ways.
One typical example is manufacturing the products and sending them directly without
any intermediate storage to retailers or customers by dedicated fleets. Each vehicle has
to return back to the production facility after deliveries. As a practical example, we
refer to the distribution of catering services, in which vehicles deliver different foods
from the production facility directly to the customers. In addition, companies such
as Tyson Foods’ Mexican Original division receive multiple orders per week from
and make multiple deliveries per week to Taco Bell warehouses. Such problems also
arise in the distribution of perishable products such as milk, vegetables, and bread.
Integrated production and distribution production strategies have been shown to be
more efficient for these types of problems (Chen and Vairaktarakis 2005 and Geismar
et al. 2008).

The basic scheduling problem is to find a feasible schedule by specifying a machine
and an execution interval on that machine for each of the tasks, which are also called
jobs, such that all constraints are met and the given objective function is optimized
(Hoogeveen 2005). In many practical situations, scheduling involves batching deci-
sions. Batch processing (both serial and parallel as identified by Hopp and Spearman
(2000)) has been widely used in production, transportation, service, and warehousing
operations to provide cheaper and faster processing of the jobs. A batch is a group of
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Fig. 1 Example problem
instance

items (jobs) that are processed simultaneously on the same machine. There are two
main decisions: allocating jobs to batches and then sequencing these batches. Since
materials and products usually travel in batches throughout the supply chain, batch
scheduling commonly occurs in supply chain scheduling management. Determining
optimal batch formation can yield substantial savings by improving the utilization of
limited resources. For example, consolidating less-than-full-truckload shipments into
full-truckload shipments can reduce transportation costs significantly. However, some
finished goods might be required to wait until all items of the corresponding batch
finish their processing in the previous stage. Consequently, systems can be faced with
increased inventory holding costs and lead times. Therefore, a solution should be found
so that a compromise is achieved between the inventory holding costs, total system
costs, service levels, and equipment utilizations.

In this paper, we study the problem of supply chain scheduling in an integrated
production and distribution system. In a typical supply chain, the existence of mul-
tiple product types and customers leads to different inventory holding costs and job
priorities. Companies generally prefer to operate with less Work-In-Process (WIP)
and respond to customer orders as fast as possible. The objective of minimizing
total weighted completion times can improve customer service levels while simul-
taneously considering the priority of different customers or product types. Com-
pletion time is defined as the delivery time of the orders to the customers. Orders
are first processed by a production facility through multiple production lines and
then delivered to the customers by a single capacitated vehicle. The system is mod-
eled as a parallel machine-scheduling problem with job delivery considerations. (See
Fig. 1 and Fig. 2 for an example problem instance and an example schedule rep-
resentation depicting both production operations and subsequent distribution by the
single vehicle.) We present a mathematical programming formulation and efficient
heuristic approaches. We show how different characteristics of the problem (job
weights, sizes, processing times, transportation times, etc.) can be handled effec-
tively and also discuss which algorithms perform better depending on the system
structure. One such example is the situation in which the transportation function is
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Fig. 2 Example schedule representation for motivating problem instance

the bottleneck, so it, rather than the production schedule, dominates the objective
value.

The remaining sections of this paper are organized as follows. Section 2 presents a
review of the literature relevant to our study. Section 3 contains the details regarding
the optimization model, and Sect. 4 describes the development of heuristic solution
approaches and a local search algorithm to further improve the performance of heuris-
tics. After presenting experimental results in Sect. 5, we summarize our research
findings and identify opportunities for further research in Sect. 6.

2 Literature review

Because the integrated production and distribution scheduling problem evolves from
different research streams, we review the literature in both batch scheduling and supply
chain scheduling.

2.1 Batch scheduling

An earlier review of the batch scheduling literature can be found in Potts and Kovalyov
(2000). As related to supply chain scheduling, minimizing inventory holding costs
can be achieved by minimizing total weighted completion time, where job weights are
proportional to inventory holding costs. In this problem, a common setup time occurs
for each scheduled batch, and each job’s completion time is calculated as equal to the
batch completion time. This problem has been proven to be NP-Hard in Albers and
Brucker (1993).

In family scheduling models, only jobs belonging to the same family can be batched
together, and a setup time is not required when the machine processes a job in the same
family as its predecessor. Hence, there is only one setup per batch (Potts and Kovalyov
2000). Jobs of the same family can also be processed together simultaneously in some
batching environments. One example is to batch together only jobs to be delivered to
the same customer. Uzsoy (1995) considers a scheduling problem for a single batch
processing machine with incompatible job families wherein only jobs of the same
family can be batched together and all jobs included in a batch are processed together
at the same time. Both the dynamic job arrivals case and the static case in which all
jobs are available at the beginning of the planning horizon are considered. Cakici et
al. (2013) study the dynamic job arrivals case on parallel batch processing machines
to minimize total weighted completion time. A mathematical model and heuristics
employing local search procedures under a variable neighborhood search scheme are
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presented. We extend this study by considering the delivery of jobs via a capacitated
vehicle when the parallel machines needed for manufacturing are serial (i.e., do not
process jobs in batches).

Dobson and Nambimadom (2001) study the problem of minimizing total weighted
completion time on a single batch processing machine with jobs of different sizes.
The problem is proven to be NP-Hard and a number of heuristics are proposed
along with a lower bound achieved through an integer programming formulation. Koh
et al. (2005) extend this study by considering different objective functions including
makespan, total completion time, and total weighted completion time. Azizoglu and
Webster (2001) propose a branch and bound algorithm for the problem of minimizing
total weighted completion time in single batch machine scheduling with incompatible
job families.

Flowshop scheduling problems containing batch-processing machines are a recent
trend in the literature. Gonga et al. (2010) study a two-stage flowshop scheduling
problem. The first stage is modeled as a single batch-processing machine subject to
a blocking constraint, while the second stage contains a discrete machine with setup
times. Although the problem is shown to be NP-hard for the objective of minimizing
makespan, polynomial approximation algorithms are formulated for special cases of
the problem. Lei and Wang (2011) consider multiple batch-processing machines to
minimize maximum lateness. An effective neighborhood search algorithm is proposed
and compared with a variable neighborhood search and a genetic algorithm. Motivated
by the steel industry, Tang and Liu (2009) examine transportation between two stages of
a flowshop: a batch-processing machine is followed by a single machine; a transporter
is employed to deliver jobs to the latter. A mixed-integer programming formulation, a
heuristic, and multiple polynomial algorithms are proposed for two different cases of
the problem of interest. Finally, Behnamian (2012) investigate a three-machine flow-
shop wherein a batch-processing machine is located between two single processing
machines. There are two vehicles carrying batches of jobs between the machines. A
mixed-integer programming model and a genetic algorithm are developed to minimize
makespan.

The distribution phase of our problem is also a variation of a batch scheduling
problem in which capacitated vehicles replace the batching machines and jobs ordered
by the same customer represent jobs belonging to same family. Practical assumptions of
different job sizes (volumes) and different job priorities (weights) are also considered
in our study.

2.2 Supply chain scheduling

The distribution scheduling problem via batch deliveries is extended by incorporating
machine scheduling decisions required for the production side. Batch delivery prob-
lems require delivery considerations when scheduling the machines, so they arise in
the integrated machine and distribution scheduling in a supply chain network (Mazdeh
et al. 2007). After the processing of the jobs of a batch is complete, the batch is deliv-
ered to customers or to the next stage for further processing. Batch delivery schedul-
ing in supply chain management problems affects inventory turnover and delivery
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service levels. Ji et al. (2007) have shown that integrated scheduling problem of a
single-machine with batch delivery considerations to a single customer is NP-Hard.
The objective studied is to minimize total weighted flow times and delivery costs. A
pseudo-polynomial time dynamic programming algorithm is presented for the case in
which a limited number of batches are available, and two polynomially-solvable spe-
cial cases of the problem are presented. Wang and Cheng (2000) study batch delivery
scheduling for jobs processed on parallel machines. A dynamic programming algo-
rithm is developed to minimize total flow time and delivery cost. In both of the above
mentioned papers, delivery cost depends on number of deliveries. Different trans-
portation modes are incorporated into the model proposed by Chen and Lee (2008).
Polynomial-time algorithms are developed for special cases of the problem and an
approximation algorithm is provided for the general case. Zhong et al. (2007) consider
the amount of storage space each job requires during transportation. Two scheduling
problems are examined in which jobs are processed on either one or two machines. The
objective is to minimize the makespan, given a single capacitated vehicle and trans-
portation times. The authors present approximation algorithms with worst-case ratio
analyses.

In this paper, we focus on the distribution of products from a single source. Simi-
larly, Van Buer et al. (1999) study the newspaper delivery problem, in which vehicles
deliver newspapers from the production facility to distribution centers. The newspaper
industry is modeled as a just-in-time environment involving integrated production and
distribution scheduling decisions. Hall and Potts (2003) examine several batch deliv-
ery scheduling problems while considering different supply chain configurations. For
each problem, they either propose a dynamic programming algorithm or prove that the
problem is intractable. This study is extended in Hall and Potts (2005) by considering
transporter availability constraints. Mazdeh et al. (2007) present a branch and bound
algorithm with the objective of minimizing the sum of flow times and delivery costs. It
is assumed that there are an unlimited number of vehicles available, the transportation
time is negligible, and vehicle capacities are infinite. Jobs are processed on a single
machine and delivered in batches directly to customer locations. Selvarajah and Zhang
(2014) assume that both transportation times and job weights warrant consideration,
propose a genetic algorithm to minimize sum of total weighted flow times and deliv-
ery costs. Lee and Chen (2001) analyze the complexity of various machine scheduling
problems by considering transportation times and capacities. Chen and Vairaktarakis
(2005) consider different models in which multiple customers may be visited during
the same trip. Transportation costs are considered together with either average delivery
time or maximum delivery time. For each problem, an exact algorithm is proposed
or the problem is proved to be NP-Hard and a heuristic algorithm is presented and
worst-case performance analysis provided. Conflict and cooperation issues in supply
chain scheduling systems are studied by Dawande et al. (2006) and by Chen and Hall
(2007).

The majority of the published literature studies supply chain scheduling problems by
developing optimal algorithms for special cases. There is a need for the development
of efficient and effective heuristics for the general problem. Moreover, none of the
research discusses the practical assumptions of this paper simultaneously.

123



Scheduling parallel machines 517

3 Mathematical model

3.1 Problem statement

Globalization, increased competition, short product lifecycles, growing supply chain
complexities, and market volatilities are driving most companies forward from the
traditional “push” systems to demand-driven “pull” systems. Customers pull products
directly from manufacturers based on their needs, instead of having manufacturers
push products to customers or distribution centers. Time-sensitive fashion apparel
product manufacturing is an example of such a system. Because there is a high risk
of excess inventory in seasonal and fashionable products, manufacturers do not start
production until all orders are received.

We study a demand-driven supply chain with one manufacturer P and k customers
K = {1, . . . , k}. The manufacturer receives a set of n jobs (orders) J = {1, . . . , n}
from different customers at the beginning of the planning horizon. Then, in order to
serve customers as soon as possible at a low cost, the manufacturer has to schedule
the production and distribution operations in a coordinated and efficient manner. The
manufacturer’s production environment is modeled as a parallel machine system. Each
job has to be processed on any of the m parallel machines M = {1, . . . , m} at the
manufacturer and then is delivered to the requesting customers by a single capacitated
vehicle. Production scheduling decisions determine the assignment of jobs to machines
and the machines’ processing sequences. Distribution scheduling decisions specify the
batching of jobs into trips on the single vehicle in which maximum number of possible
trips is denoted by β and is equal to number of jobs.

We develop an integrated scheduling model such that production and distribution
decisions are made in an interconnected manner. In the distribution part, only orders
destined for the same customer can be batched together for delivery. Hence, the vehicle
can only visit one customer in each trip. However, each customer can be served by
multiple trips during the planning horizon. Jobs become available for delivery only
when all jobs in the same batch have been processed. Most of the research in the
literature either considers vehicle capacity to be infinite or assumes that every job
requires the same amount of storage and thus defines vehicle capacity as the maximum
number of jobs that can be carried simultaneously. Since this may not be the case in
many supply chains, our problem involves different job sizes q j (space or capacity
required while delivering jobs). Split deliveries and preemption are not allowed. In
order to account for different job priorities or inventory holding costs, weight w j is
introduced for every job j = 1, . . . , n. Finally, processing and transportation times
are assumed to be deterministic.

3.2 Model formulation

This problem is formulated as a mixed-integer programming problem. First, a dummy
job 0 is introduced whose processing time, ready time, and weight are each set equal
to 0. In the network formulation of the parallel machine scheduling problem, job 0 is
required to be both the first and the last job processed on each machine in order to
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indicate both the starting and finishing of job processing on each machine. In other
words, there are m in and out arcs for node 0, whereas all other nodes are associated
with only one in and out arc. Binary decision variable xi j is defined to assist with job
sequencing such that xi j = 1 if job i ∈ J immediately precedes job j ∈ J on the same
machine; otherwise, xi j = 0. To keep track of the vehicle assignments and batching,
binary decision variable yib is introduced, where yib = 1 if job i ∈ J is included in
batch b ∈ B; otherwise, yib = 0.

�i is the customer with which job i ∈ J is associated with. The vehicle has capacity
δ, and t j is the transportation time required to deliver job j ∈ J . The time at which
job j ∈ J finishes its required processing is denoted by C j , and the time job j ∈ J
finishes its delivery is denoted by D j . The batches (trips) are numbered in ascending
order of their delivery starting times Sb and denoted by B = {1, . . . , β}. At this stage
the customer served by each trip is not known and transportation times associated with
trips depend on jobs assigned to them through mathematical model results. Therefore,
a decision variable υb is defined as the time required to deliver batch b ∈ B whereas
transportation times required to deliver jobs are known parameters. The objective
function is to minimize the sum of total weighted delivery time (TWD) of all jobs,
where T W D = ∑

j : j∈J w j D j . Jobs are assigned to one of the m available production
machines, subject to each machine starting and ending its schedule with job 0:

∑

j∈J : j �=0

x0 j ≤ m (1)

∑

j∈J : j �=0

x j0 ≤ m (2)

Each job has a unique predecessor and a unique successor:

∑

j∈J : j �=i

x ji = 1 ∀i ∈ J : i �= 0 (3)

∑

j∈J : j �=i

xi j = 1 ∀i ∈ J : i �= 0 (4)

In order to process job j immediately after job i on the same machine, job i ∈ J
completes p j time units before job j ∈ J :

C j ≥ Ci + p j − M(1 − xi j ) ∀i ∈ J,∀ j ∈ J : j �= 0, i �= j (5)

In constraint (5), M ≥ ∑
j∈J p j .

Constraints (6)–(12) address the distribution part of the problem. Firstly, each job
should be assigned to a batch: ∑

b∈B

yib = 1 ∀i ∈ J (6)

The transportation time required to deliver a batch depends on the jobs included in
that batch and a batch does not have a transportation time if no job is assigned to it:
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υb ≥ ti − M (1 − yib) ∀i ∈ J,∀b ∈ B : i �= 0 (7)

Di is the delivery start time plus the delivery time:

Di ≥ Sb + υb − M (1 − yib) ∀i ∈ J,∀b ∈ B : i �= 0 (8)

Batch delivery starts after the preceding batch completes its delivery and returns:

Sb+1 ≥ Sb + 2υb ∀b ∈ B : b < β (9)

A vehicle cannot start its delivery until all jobs to be delivered in the corresponding
batch have finished their processing:

Sb ≥ Ci − (1 − yib)M ∀i ∈ J,∀b ∈ B : i �= 0 (10)

In constraints (7) and (9), M ≥ ∑
j∈J p j + ∑

j∈J 2t j .
A delivery can serve at most one customer:

yib + y jb ≤ 1 ∀i ∈ J, j ∈ J, b ∈ B : �i �= � j (11)

Vehicle capacity cannot be exceeded:
∑

i∈J

qi yib ≤ δ ∀b ∈ B (12)

In order to improve the tractability of the network formulation, constraints (13)–(16)
are additional valid inequalities that can be added to the model in concert with the
introduction of another binary decision variable ei j , where ei j = 1 if job i ∈ J finishes
its processing before job j ∈ J starts its processing at the same machine; otherwise,
ei j = 0. Valid inequalities are valid for feasible regions of the problem studied and can
lead faster solutions basically by cutting down the feasible region of the LP relaxation.
Constraint (16) ensures that completion time of a job is at least the total processing
times of the jobs scheduled earlier on the same machine and processing time of itself:

xi j ≤ ei j ∀i ∈ J, ∀ j ∈ J : j �= 0, i �= 0, i �= j (13)

eki ≤ ek j + (
1 − xi j

) ∀i ∈ J, ∀ j ∈ J,∀k ∈ J : j �= 0, i �= 0, k �= 0, i �= j, j �= k, k �= i

(14)

ek j ≤ eki + (
1 − xi j

) ∀i ∈ J, ∀ j ∈ J, ∀k ∈ J : j �= 0, i �= 0, k �= 0, i �= j, j �= k, k �= i

(15)

Ci ≥ pi +
∑

j∈J :i �= j

p j
(
e ji

) ∀i ∈ J : i �= 0 (16)

3.3 Problem complexity

By assuming the transportation time to be t j = 0, j ∈ J , the problem reduces to the
parallel machine problem Pm‖∑w j C j

in the scheduling notation scheme of Graham
et al. (1979), which is NP hard even if preemptions are allowed (Bruno et al. 1974
and Lenstra et al. 1977). Therefore, we develop heuristics to produce near-optimal
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solutions in a reasonable amount of computation time. The optimization model above
is used to assess our heuristics’ solution quality for small problem instances.

4 Heuristics

The distribution part of the problem can be viewed as scheduling a single batch-
processing machine with incompatible job families, where the objective is to min-
imize total weighted completion times. Dobson and Nambimadom (2001) and Koh
et al. (2005) study this problem by considering the different job sizes and proposing
heuristic approaches. Our problem also involves the production part, which is a parallel
machine environment. The problem can be decomposed into sub-problems: machine
scheduling, batch assignment and batch sequencing. Since only one vehicle exists,
batch assignment and sequencing have a great impact on the production schedules.
Therefore, heuristic approaches follow these steps:

1. Batch (Trip) Assignment: Building delivery batches for each customer
2. Batch Sequencing: Sequencing the delivery batches
3. Job Sequencing: Assigning jobs to machines and sequencing them

In such a back-to-front approach, batch assignment and scheduling provide due
dates for the production scheduling. On the other side, in a front to back approach,
production-scheduling decisions supply ready times for the delivery-batching problem
if production decisions are made before distribution decisions.

4.1 Batch (trip) assignment

Five different heuristics are used to assign jobs to batches:

1. Greedy: As in greedy heuristic proposed in Dobson and Nambimadom (2001),
jobs are sorted in non-increasing order of their weight-to-size ratio, then each
job is assigned to the first available batch of its customer that has enough space
to accommodate it. If no batches are available, a new batch is created for the
corresponding customer.

2. Knapsack: Another method is developed by Dobson and Nambimadom (2001).
Through the standard dynamic programming algorithm of Nemhauser and Wolsey
(1998), a knapsack problem is solved to form each batch. The weight of the first
batch is maximized and then, to maximize the weight of the next batch, the knap-
sack problem is solved with the remaining jobs until all jobs are assigned to a
batch.

3. BWFBWS (Biggest weight, first fit batching, and batch weighted shortest): In Koh
et al. (2005), the greedy heuristic of Dobson and Nambimadom (2001) is slightly
changed so that jobs are sorted in non-increasing order of their weight instead of
weight-to-size ratio.

4. BA1: In order to examine the impact of job processing times on heuristic per-
formances for the overall problem, jobs are sorted in non-increasing order of
weight-to-processing time ratio. All other steps remain the same as the greedy
heuristic.
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5. BA2: While sorting jobs, it can be also useful to consider both processing times
and job sizes concurrently. With this in mind, a new sorting index is introduced:

wi(
qi∑

j∈Ai
q j

+ pi∑
j∈Ai

p j

)

In this index, pi∑
j∈Ai

p j
is the normalized processing time of job i ∈ J , where j ∈ Ai

denotes that job j ∈ J and job i ∈ J are ordered by the same customer. Note that
the total normalized processing time of jobs ordered by each customer is 1. Likewise,

qi∑
j∈Ai

q j
is the normalized size of job i ∈ J .

4.2 Batch sequencing

First, notation is introduced for the heuristic approaches of this phase. For convenience,
let

ωk Total weight of the jobs delivered in batch (trip) k
Tk Transportation time to deliver batch k and return to the plant
Pk Sum of the processing times of the jobs in batch k
�k Longest processing time of the jobs in batch k
η Number of identical parallel machines in the production environment

Batches are sequenced in four different ways:

1. BS1: Both Dobson and Nambimadom (2001) and Koh et al. (2005) sequence the
batches by weighted shortest processing time of the batch in their studies. This is
adapted to our problem as non-increasing order of ωk/Tk

The following three heuristics also consider processing times to order batches.

2. BS2: Sequence batches in non-increasing order of ωk/(Tk + Pk)

3. BS3: Sequence batches in non-increasing order of ωk/
(

Tk + Pk
η

)

4. BS4: Sequence batches in non-increasing order of ωk/(Tk + �k)

4.3 Job sequencing

Once batches are formed and sequenced, all jobs should be processed as soon as
possible in order to make batches ready for delivery. Since batches become available for
delivery only if all jobs in the same batch have been processed, one reasonable choice
is to apply the longest processing time (LPT) algorithm, which yields good solutions
quickly for the problem of minimizing makespan on parallel machines (Akyol and
Bayhan 2006):

LPT Steps:

1. Sequence jobs of the next batch in non-increasing order of their processing time.
2. Assign the first job in the list to the first available machine and remove the job

from the list.

123



522 E. Cakici et al.

4.4 Improving batch assignment using an accept/reject rule

Batch assignment approaches are developed with the idea of continuously adding
jobs to the first available batch (trip) with enough capacity and to make the batches
as large as possible in order to minimize the number of batches. However, in some
cases this may cause unnecessary delays in job deliveries. A not-fully-loaded batch
can be delivered earlier by not waiting a long time for the next job to complete its
processing, and thus the truck can also be available earlier for the delivery of the next
batch. Therefore, an accept/reject rule is presented to evaluate the quality of the batch
in terms of the transportation and processing times required to process and deliver the
jobs included. This rule is similar in purpose to the extended greedy ratio (EXGR)
heuristic of Uzsoy (1994).

Before adding each job to the batch, it is ensured that doing so would improve batch
quality, which is defined by the index used to sort batches in the Batch Sequencing
phase. For example, adding a job can slightly increase the total weight of the batch,
whereas the total waiting times can be increased significantly. Therefore, the batch-
sequencing index based on the ratio of the total weight to the sum of transportation
and processing times is not improved. A batch assignment approach can be modified
as follows by applying an accept/reject check:

Batch Assignment with Accept/Reject Rule Steps:

1. Sort jobs in non-increasing order of a given index.
2. Assign the job to the first available batch of its customer only if the batch-

sequencing index is improved by adding the job to the batch; otherwise, reject
to be evaluated for a later batch and evaluate the next job in the list.

Due to the structure of the dynamic programming algorithm of the knapsack approach,
the accept/reject rule cannot be applied to batch assignments using this method. On the
other hand, job index BS1 (ωk/Tk) is always improved when a new job is added to the
batch. Therefore, any job will be accepted if there is enough capacity in the batch, and
applying the accept/reject check will not have any impact on the performance. Prelim-
inary experiments were conducted to assess the impact of including this accept-reject
rule where applicable. On average a 5.1% improvement in objective function value is
achieved by applying the rule before assigning jobs to batches with available capacity.
As a result, we include the rule where applicable in the 20 heuristics approaches to be
examined in Table 1.

4.5 Post-processing for improved solution quality via local search

An efficient O(n2) local search heuristic is developed to search for optimal/near-
optimal solutions within a pre-specified neighborhood. The neighborhood is defined
as adjacent pairwise interchanges of the batch sequencing orders. The search is started
with a batch located in a later position of the schedule and aims to move that batch
forward as long as an improvement is achieved in terms of TWD. Since batches are
already sequenced effectively in the initial phase and considering the transitivity of
the outcomes for the interchanges with batches ordered earlier, the local search is
terminated for the associated batch when a move does not improve the solution. If a
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Table 1 Heuristic descriptions

Heuristic Batch (Trip) Assignment Accept/reject rule? Batch sequencing Job sequencing

H1 Greedy No BS1 LPT

H2 Greedy Yes BS2 LPT

H3 Greedy Yes BS3 LPT

H4 Greedy Yes BS4 LPT

H5 Knapsack No BS1 LPT

H6 Knapsack No BS2 LPT

H7 Knapsack No BS3 LPT

H8 Knapsack No BS4 LPT

H9 BWFBWS No BS1 LPT

H10 BWFBWS Yes BS2 LPT

H11 BWFBWS Yes BS3 LPT

H12 BWFBWS Yes BS4 LPT

H13 BA1 No BS1 LPT

H14 BA1 Yes BS2 LPT

H15 BA1 Yes BS3 LPT

H16 BA1 Yes BS4 LPT

H17 BA2 No BS1 LPT

H18 BA2 Yes BS2 LPT

H19 BA2 Yes BS3 LPT

H20 BA2 Yes BS4 LPT

move reduces TWD, the new order is kept and the search procedure continues with
the same individual for the next preceding position.

Local Search Procedure

1. Initialization. Let k denote the position of the candidate batch and 	 denote the
total number of batches (trips) to be considered. Select an initial sequence using
any heuristic described earlier, and set k = 2 and ρ = k. ρ is used to keep track
of every iteration where the local search is started. Thus, if the search terminates,
it will restart from the next candidate.

2. Batch selection. Select the batches in the positions k and k − 1 for interchange.
3. Move. Swap the position of the selected batches, leaving all other batches‘ positions

alone.
4. Objective function assessment. If the objective function value resulting from the

proposed swap is better than the best objective value found so far, then update the
best schedule accordingly and go to Step 5. Otherwise, go to Step 6.

5. Position update. If k �= 2, then set k = k − 1, else k = ρ + 1. If k > 	, then
STOP. Otherwise, go to Step 2.

6. Candidate update. Set k = ρ + 1. If k > 	, then STOP. Else, go to Step 2.

Given this local search procedure, each of the 20 heuristics in Table 1 can be modified
to include local search as a post-processing procedure; we designate this by appending
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Table 2 Experimental design
Factors Levels Level description

Number of machines 2 2, 3

Number of customers 2 3, 5

Job weights 2 DU[1,5], DU[1,10]

Job sizes 2 DU[1,25], DU[1,50]

Job processing times 2 DU[1,5] * Job Size,
DU[1,10] * Job Size

Size of delivery area 2 50 × 50, 100 × 100 square

Number of jobs 4 10, 25, 50, and 100

Total 256

the heuristic name with “_L”. This procedure results in 40 total heuristics for evaluation
(i.e., H1, H1_L, H2, H2_L, etc.). In the results section that follows, we report solution
quality for the proposed heuristics both with and without the benefit of the post-
processing local search procedure.

5 Computational study

5.1 Experimental design

Hall and Posner (2007) highlight the importance of understanding the relationship
between problem characteristics and the performance of solution procedures. There-
fore, the heuristics’ performances are tested on an extensive range of problem instances
(Table 2). First, we consider two different levels for the number of customers (3 and
5). The customer locations for each data set are randomly generated from a two-
dimensional discrete uniform distribution of equal length and width (50 × 50 or
100 × 100). The plant is located in the center of this square. Similar to Dobson and
Nambimadom (2001), batch capacity is set as 50 and two different levels of job sizes
are generated from a discrete uniform distribution by using different ranges. Ranges
for the two levels are [1, 25] and [1, 50]. Job processing times are generated propor-
tional to job sizes. A random integer is generated on the interval [1, v], v ∈ {5, 10},
and multiplied by the job sizes in order to generate job-processing times. Experiments
also are performed for both two and three machines operating in parallel. Furthermore,
two different levels of job weights are randomly assigned as discrete uniform integer
values on [1, 5] and [1, 10]. Finally, four different numbers of job levels are examined
in the experimental design: 10 jobs, 25 jobs, 50 jobs, and 100 jobs.

A total of 10 problem instances are generated for each of the 26(4) = 256 experi-
mental combinations, thereby resulting in a total of 2,560 problem instances that will
be evaluated by each of the 40 proposed heuristics.

5.2 Experimental results

Each heuristic’s objective value is compared with the best-known solution for each
instance. All algorithms are implemented in Visual Basic for Applications and run on
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Table 3 10-Job case heuristic performance ratios as compared to optimal

Level No local search With local search

Best PR Avg PR Worst PR Best heur Best PR Avg PR Worst PR Best heur

# of Customers

3 1.104 1.205 1.388 H14 1.056 1.130 1.236 H16_L

5 1.100 1.200 1.403 H18 1.051 1.107 1.198 H16_L

# of Machines

2 1.090 1.192 1.387 H18 1.053 1.117 1.220 H16_L

3 1.111 1.213 1.403 H16 1.054 1.120 1.215 H16_L

Plant Locations

50 × 50 1.103 1.229 1.466 H18 1.061 1.143 1.270 H16_L

100 × 100 1.097 1.177 1.324 H16 1.046 1.094 1.164 H16_L

Job Sizes (q)

DU[1,25] 1.105 1.220 1.406 H14 1.059 1.140 1.246 H16_L

DU[1,50] 1.098 1.185 1.387 H16 1.048 1.097 1.190 H16_L

Job Proc Times

q*DU[1,5] 1.102 1.171 1.307 H16 1.052 1.095 1.165 H16_L

q*DU[1,10] 1.099 1.234 1.483 H14 1.055 1.142 1.270 H16_L

Job Weights

DU[1,5] 1.106 1.207 1.405 H16 1.054 1.120 1.220 H16_L

DU[1,10] 1.098 1.198 1.385 H14 1.053 1.117 1.215 H16_L

Overall Averages 1.101 1.203 1.395 1.054 1.119 1.217

a PC with an Intel Pentium Dual-Core Processor (2.93 GHz CPU speed) and 2GB
RAM. Every instance is solved by the heuristics within a couple of seconds.

5.2.1 Comparing heuristics to optimal solutions: 10 job problem instances

The optimization model of Sect. 3.2 is implemented in AMPL and solved by CPLEX
11.1 in order to evaluate the best solution obtained from any of the heuristics in
small sized (10-jobs) problem instances. Let T W D(O) be the optimal objective value
obtained via our mathematical programming formulation and T W D(B∗) be the best
value obtained over all of the heuristics. The performance ratio, P R(B∗) = T W D(B∗)

T W D(O)
,

is computed to assess the solution quality of the best heuristic in small-sized instances.
In Table 3, we summarize the results for 10-job problem instances, presenting both
the without and with local search summary statistics.

The best non-local search-aided heuristic’s individual performance across all
instances was by heuristic H14, whose solutions averaged 10.2% above optimal for
the 10 job cases. When each of the 20 heuristics’ solutions are then post-processed
via the proposed local search procedure, the best heuristic becomes H16_L with an
average solution performance of 5.4% above optimal for the 10 job instances. It is
interesting to note that the only significant difference between these two heuristics lies
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in the batch-sequencing rule followed—they both use the same batch assignment rule
and both employ the proposed accept/reject rule. This strong performance of heuristic
H16_L is further verified when one considers that if the best heuristic’s solution for
each 10-job problem instance was chosen, the resulting average performance ratio is
only a 2% improvement over using H16_L alone. Finally, additional experiments with
15 job cases for which the optimal solution is attainable suggest that the performance
of these heuristics scales with problem size, as the optimal solutions were also obtained
by a number of the heuristics.

5.2.2 Comparing heuristic solutions for larger problem instances

Now define heuristic ratio H R(H) = T W D(H)
T W D(B∗) ; this is computed to assess the solution

quality of each of the heuristics listed in Table 1 across all instances, where T W D(H)

is the total weighted delivery time value achieved by heuristic H . The average perfor-
mance ratio value computed with respect to the best heuristic for each experimental
factor combination (see Table 2) is given in Table 4. Heuristics incorporating job
weights with processing times while assigning jobs to a trip improve substantially
upon the heuristics suggested in the literature that do not consider the processing
times of the jobs for the batch assignment phase.

RuleBA1 (jobs are sorted in non-increasing order of weight-to-processing time
ratio) is the best performing batch assignment rule. Among the batch sequencing
rules, BS2 (batches are sequenced by ωk/(Tk + Pk)) yields better results than the
other approaches overall. As the production environment causes fewer bottlenecks
by an increased number of machines or decreased processing times, the heuristic
considering longest processing times instead of total processing times in the batch
sequencing phase performs better (H16). Similarly, when the distribution environment
can be the bottleneck due to large transportation times, the best performance is achieved
by giving more emphasis to transportation times by batch sequencing in which the
total of the processing times is divided by the number of machines (H15). All the
heuristics generally perform better when there are more consolidation opportunities
due to a larger number of jobs, fewer customers, or smaller job sizes. On the other
side, scheduling becomes more challenging when processing times are drawn from
a narrow range and more machines are employed (see Appendix 1 for more details).
Overall, heuristic H14 produces schedules that are better than all other heuristics in
terms of TWD. In H14, BA1 forms the batches and then BS2 sequences them with an
accept-reject evaluation.

When the local search procedure is seeded with the schedule from the initial heuris-
tics, all solutions are achieved within a minute, even for large instances. For example,
the average computational time for 100-job instances increases from 0.21 seconds
for H14 to 22.88 seconds for H14_L.For an added slight computational expense, the
average TWD performance ratio improves from 13.1 % above best to 7.9 % above
best. Heuristic H14 with local search is still the best performing heuristic; it found
the best solution in 994 instances out of 2,560 problem instances. The local search
procedure improves the performance ratio of H14 from 5.2 to 2.2 % for H14_L.

Table 5 illustrates the 95 % confidence intervals for H R(H) for all 40 possible
heuristic solution approaches, sorted according to non-decreasing lower confidence
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Table 5 95 % Confidence intervals of performance ratios for heuristics (H R(H))

Heuristic 10 Jobs Heuristic 25 Jobs Heuristic 50 Jobs Heuristic 100 Jobs

LCL UCL LCL UCL LCL UCL LCL UCL

H16_L 1.016 1.022 H14_L 1.025 1.031 H14_L 1.017 1.021 H14_L 1.013 1.016

H20_L 1.018 1.023 H16_L 1.026 1.031 H16_L 1.022 1.025 H18_L 1.018 1.021

H4_L 1.021 1.027 H18_L 1.028 1.034 H15_L 1.022 1.026 H15_L 1.019 1.022

H14_L 1.022 1.029 H20_L 1.029 1.034 H18_L 1.023 1.027 H16_L 1.020 1.024

H18_L 1.023 1.030 H15_L 1.032 1.037 H20_L 1.029 1.033 H20_L 1.028 1.030

H2_L 1.026 1.033 H2_L 1.037 1.043 H19_L 1.032 1.036 H19_L 1.028 1.031

H15_L 1.034 1.043 H19_L 1.038 1.045 H2_L 1.033 1.037 H14 1.034 1.041

H19_L 1.035 1.043 H4_L 1.039 1.045 H14 1.041 1.048 H2_L 1.034 1.038

H3_L 1.039 1.049 H10_L 1.052 1.060 H4_L 1.042 1.046 H15 1.034 1.038

H12_L 1.042 1.052 H3_L 1.055 1.063 H15 1.043 1.047 H18 1.040 1.046

H10_L 1.043 1.053 H14 1.057 1.065 H18 1.048 1.055 H16 1.043 1.048

H11_L 1.053 1.066 H12_L 1.060 1.068 H16 1.050 1.055 H19 1.044 1.047

H14 1.061 1.071 H18 1.061 1.070 H3_L 1.051 1.057 H4_L 1.047 1.051

limit (LCL)in order to evaluate the variance of performance as discussed in Hall and
Posner (2007). The bolded cells in Table 5 denote the best heuristic performance
and those that are statistically indistinguishable from the best performance (i.e. those
with overlapping of the confidence intervals). Heuristic H14_L is the best, and its
overlap with other heuristics’ confidence intervals is quite small. Furthermore, H14
(without local search) performs better than some heuristics that use local search. In 10-
job instances, H16_L outperforms H14_L and produces promising solutions for other
problem instances as well. Both heuristics use the same batch assignment rule (BA1—
jobs sorted in non-increasing order of weight-to-processing time ratio, assigned to first
available trip) with an accept-reject evaluation and consider production times together
with transportation times in the batch-sequencing phase.

We further evaluate heuristic performances by employing multiple heuristics simul-
taneously (see Table 6). Substantial improvements can be achieved when a small
number of the best heuristics are selected either with local search or not. The top four
heuristics with no local search produce solutions 3.1 % above the best. When all heuris-
tics without local search are selected, a performance ratio similar to the best heuristic
with local search can be achieved, but with less computational effort. However, as
more heuristics with local search are selected substantial performance ratio improve-
ments are also achieved. Simultaneously employing the two best heuristics with local
search improves the performance ratio from 2.2 to 1.3 %. An average performance
ratio within 1 % of the best solution can be achieved by the top three heuristics with
local search. However, Table 6 suggests that while good solutions can be achieved
quite quickly by applying multiple (if not all) heuristics without local search, the extra
time spent performing local search can prove beneficial (see Fig. 3 for a summary plot
in objective space). A decision maker can evaluate how to make the tradeoff between
computational effort and quality of the actual schedule.

123



Scheduling parallel machines 529

Table 6 Performance ratios of simultaneously selected heuristics

H14 or All H14_L or

H14 or H18 or Heuristics, H14_L or H16_L or

H14 or H18 or H15 or No Local H14_L or H16_L or H18_L or

Levels H14 H18 H15 H16 Search H14_L H16_L H18_L H15_L

Number of jobs

10 1.066 1.063 1.050 1.039 1.032 1.025 1.009 1.008 1.005

25 1.061 1.055 1.040 1.035 1.023 1.028 1.017 1.013 1.009

50 1.044 1.038 1.028 1.027 1.017 1.019 1.013 1.009 1.008

100 1.037 1.032 1.024 1.023 1.014 1.015 1.012 1.008 1.007

Number of customers

3 1.047 1.041 1.033 1.028 1.019 1.021 1.011 1.008 1.007

5 1.058 1.053 1.038 1.034 1.024 1.023 1.014 1.011 1.008

Number of machines

2 1.039 1.035 1.029 1.025 1.019 1.016 1.009 1.007 1.005

3 1.065 1.059 1.042 1.037 1.025 1.028 1.016 1.013 1.009

Plant locations

50 × 50 1.035 1.032 1.027 1.022 1.019 1.012 1.005 1.003 1.002

100 × 100 1.069 1.062 1.044 1.039 1.024 1.032 1.021 1.016 1.012

Job sizes(q)

25 1.050 1.043 1.034 1.028 1.018 1.023 1.013 1.009 1.006

50 1.055 1.051 1.037 1.034 1.025 1.020 1.012 1.011 1.008

Job processing times

5 1.066 1.058 1.043 1.039 1.025 1.029 1.019 1.014 1.011

10 1.039 1.035 1.028 1.023 1.019 1.014 1.007 1.005 1.003

Job weights

5 1.053 1.048 1.036 1.032 1.022 1.023 1.013 1.010 1.008

10 1.052 1.046 1.035 1.030 1.021 1.021 1.012 1.009 1.007

Avg performance ratio 1.052 1.047 1.036 1.031 1.022 1.022 1.013 1.010 1.007

Avg comp time (in s) 0.130 0.261 0.391 0.521 2.865 8.532 16.839 25.509 33.144

5.2.3 Worst performance ratios: empirical observations

In order to see how badly heuristics can perform for the general case, we summarize
the worst performance ratios achieved by each heuristic across all problem instances
(Appendix-2). As the number of jobs increases, the worst performance ratios decrease.
H16_L and H20_L have the smallest worst performances (1.239). Each heuristic with
local search generates solutions with a worst performance ratio that is less than 2.
In addition, if we assume that an assignment of jobs to batches has been made, it
follows that the worst possible result when using BS2 (weighted sum of processing
and transportation times) to schedule the batches is bounded by m times the opti-
mal, where m is the number of machines at the factory (Kyparisis and Koulamas
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Fig. 3 Objective space comparison of heuristic solution approaches from Table 6

2001). Such poor performance may occur when a batch has a single big job contained
in it.

6 Conclusions and future research

This paper is practically motivated by the critically important problem of supply chain
scheduling systems in which the production facility is modeled as a parallel machine
environment and a single capacitated vehicle is used for delivery of products to dif-
ferent customer locations. Such a system can be found in many industries. To the best
of our knowledge, no previous research has studied this problem with the practical
assumptions discussed here. Because most previous studies in the area of supply chain
scheduling involve polynomial or pseudo-polynomial algorithms developed for spe-
cial cases of the problem, there is a need for research that develops efficient heuristics
to handle more general large-sized and practically motivated problems (Chang and
Lee 2004; Qi 2005; Ji et al. 2007; Hall and Potts 2005; Li et al. 2005). This study
expands on existing assumptions described in the literature and develops mathematical
programming and heuristic solution approaches.

We have shown via the accept/reject rule that it is not necessarily the best choice to
fill trucks as much as possible in an integrated production and distribution environment.
Since there is only one truck employed, that truck can be more efficiently utilized by
eliminating unnecessary waiting times for loading. The accept-reject rule improves
the quality of the job batches that are loaded in terms of weight, size, and required
production times, by considering the impact of adding a new job to the next delivery.
Heuristics incorporating job weights with processing times while assigning jobs to a
trip improve substantially upon the heuristics suggested in the literature that do not
consider the processing times of the jobs for the batch assignment phase. Results also
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suggest that after forming the job batches for delivery, both transportation times and
required production times should be considered while sequencing the trips. Schedules
produced by heuristics are further improved through the use of a local search procedure.
The combination of BA1 (jobs sorted in non-increasing order of weight-to-processing
time ratio, assigned to first available trip) and BS2 (batches sequenced by weighted
shortest sum of required transportation and processing time), modified with an accept-
reject rule and local search, yields results that are only 2.2 % (on average) above the best
for the problem of interest. We have also presented performance ratio improvements
through selecting multiple heuristics simultaneously. A user can decide on employing
several heuristics at the same time in order to improve solution qualities with the
expense of increased computational effort. Different batch forming and sequencing
rules can also be preferred, depending on the problem characteristics (i.e., giving more
emphasis to transportation times when the distribution part is the bottleneck).

The solution approaches proposed in this study are fast, intuitive, practical, and easy
to understand and implement. They attempt to optimize the overall system by consid-
ering all components of the problem simultaneously in an interconnected manner. For
example, the accept-reject check employed in the batch assignment rule evaluate show
adding a job to a batch will affect the batch’s position that was determined in batch
sequencing phase. Because starting solutions generally have significant impact on the
solution quality of algorithms (Naderi et al. 2008),good initial solutions are found via
simple dispatching rules are used for assigning jobs to batches and for sequencing
these batches. With the adaptation of accept-reject rule, high quality batches are built,
and local search is effectively applied to re-sequence batches that are already well
sequenced based on the different properties of the jobs included.

There is still a vast area of research opportunities for studying supply chain schedul-
ing. Specifically, effective heuristic solution procedures are needed because of the
complexity of the problems and the prevalence of practical applications requiring fast
solutions. The problem studied in this paper can be extended by considering multiple
vehicles and routing decisions allowing multiple customer visits in the same trip. Dif-
ferent objective functions and multi-objective supply chain scheduling problems can
be investigated. Another important extension would include the raw material supply
to the manufacturer in order to study a three-stage supply chain.

Appendix 1

See Tables 7 and 8.
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Table 8 95 % Confidence intervals of performance ratios for batch sequencing rules (in heuristics without
local search)

Batch sequencing

BS1 BS2 BS3 BS4

Number of jobs

10 [1.315,1.331] [1.093,1.101] [1.124,1.133] [1.099,1.107]

25 [1.253,1.264] [1.090,1.095] [1.104,1.110] [1.100,1.105]

50 [1.214,1.222] [1.071,1.075] [1.082,1.087] [1.084,1.087]

100 [1.201,1.209] [1.063,1.067] [1.072,1.076] [1.077,1.081]

Number of customers

3 [1.233,1.242] [1.079,1.083] [1.098,1.102] [1.090,1.094]

5 [1.260,1.269] [1.081,1.084] [1.095,1.099] [1.091,1.095]

Number of machines

2 [1.251,1.259] [1.070,1.074] [1.087,1.091] [1.089,1.093]

3 [1.242,1.251] [1.090,1.094] [1.106,1.111] [1.092,1.096]

Plant locations

50 × 50 [1.290,1.298] [1.073,1.077] [1.099,1.104] [1.092,1.096]

100 × 100 [1.204,1.212] [1.087,1.090] [1.094,1.098] [1.089,1.093]

Job sizes (q)

DU[1,25] [1.251,1.260] [1.088,1.092] [1.110,1.115] [1.102,1.107]

DU[1,50] [1.243,1.251] [1.072,1.076] [1.083,1.086] [1.079,1.082]

Job processing times

q*DU[1,5] [1.194,1.201] [1.082,1.086] [1.090,1.094] [1.086,1.089]

q*DU[1,10] [1.301,1.309] [1.078,1.082] [1.102,1.107] [1.095,1.100]

Job weights

DU[1,5] [1.248,1.257] [1.081,1.085] [1.098,1.102] [1.091,1.095]

DU[1,10] [1.245,1.254] [1.079,1.083] [1.095,1.099] [1.090,1.094]

Overall [1.248,1.254] [1.080,1.083] [1.097,1.100] [1.091,1.094]

Appendix 2

See Tables 9 and 10
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