
J Heuristics (2014) 20:417–452
DOI 10.1007/s10732-014-9245-2

An analysis of the velocity updating rule of the particle
swarm optimization algorithm

Mohammad Reza Bonyadi · Zbigniew Michalewicz ·
Xiaodong Li

Received: 4 February 2013 / Revised: 8 March 2014 / Accepted: 13 March 2014 /
Published online: 1 April 2014
© Springer Science+Business Media New York 2014

Abstract The particle swarm optimization algorithm includes three vectors associ-
ated with each particle: inertia, personal, and social influence vectors. The personal and
social influence vectors are typically multiplied by random diagonal matrices (often
referred to as random vectors) resulting in changes in their lengths and directions.
This multiplication, in turn, influences the variation of the particles in the swarm.
In this paper we examine several issues associated with the multiplication of per-
sonal and social influence vectors by such random matrices, these include: (1) Uncon-
trollable changes in the length and direction of these vectors resulting in delay in
convergence or attraction to locations far from quality solutions in some situations
(2) Weak direction alternation for the vectors that are aligned closely to coordinate
axes resulting in preventing the swarm from further improvement in some situations,
and (3) limitation in particle movement to one orthant resulting in premature con-
vergence in some situations. To overcome these issues, we use randomly generated
rotation matrices (rather than the random diagonal matrices) in the velocity updating

M. R. Bonyadi (B) · Z. Michalewicz
School of Computer Science, The University of Adelaide, Rm 4.52, Adelaide, SA 5005, Australia
e-mail: mohammad.bonyadi@adelaide.edu.au

Z. Michalewicz
e-mail: zbyszek@cs.adelaide.edu.au

Z. Michalewicz
Institute of Computer Science, Polish Academy of Sciences, ul. Ordona 21, 01-237 Warsaw, Poland

Z. Michalewicz
Polish-Japanese Institute of Information Technology, ul. Koszykowa 86, 02-008 Warsaw, Poland

X. Li
School of Computer Science & IT, RMIT University, Melbourne 3001, Australia
e-mail: xiaodong.li@rmit.edu.au

123

418 M. R. Bonyadi et al.

rule of the particle swarm optimizer. This approach makes it possible to control the
impact of the random components (i.e. the random matrices) on the direction and
length of personal and social influence vectors separately. As a result, all the above
mentioned issues are effectively addressed. We propose to use the Euclidean rotation
matrices for rotation because it preserves the length of the vectors during rotation,
which makes it easier to control the effects of the randomness on the direction and
length of vectors. The direction of the Euclidean matrices is generated randomly by
a normal distribution. The mean and variance of the distribution are investigated in
detail for different algorithms and different numbers of dimensions. Also, an adaptive
approach for the variance of the normal distribution is proposed which is independent
from the algorithm and the number of dimensions. The method is adjoined to several
particle swarm optimization variants. It is tested on 18 standard optimization bench-
mark functions in 10, 30 and 60 dimensional spaces. Experimental results show that
the proposed method can significantly improve the performance of several types of
particle swarm optimization algorithms in terms of convergence speed and solution
quality.

Keywords Continuous optimization · Swarm intelligence · Particle swarm
optimization · Rotation matrices

Abbreviations

ABSQ Average of Best Solution Qualities: the average of solution qualities
over 100 runs of an algorithm when it is applied to a benchmark
function

AIWPSO Adaptive Inertia Weight PSO: one of the variants of PSO
CoPSO Constriction coefficient PSO: one of the variants of PSO
Decreasing-IW Decreasing Inertia Weight: one of the variants of PSO
FE Function evaluation: the number of times that the under-process

function is evaluated during the optimization process in one run
GCPSO Guaranteed Convergence PSO: one the varients of PSO
Increasing-IW Increasing inertia weight: one of the variants of PSO
PI/SI Personal influence/social influence: personal and Social Influence

(see Eq. 2)
pPSA Perturbed particle swarm algorithm: one of the variants of PSO
PSO Particle swarm optimization
Rndm Diagonal Random Matrices: d*d diagonal matrices with randome

values uniformly distributed in [0, 1].
Rotm Rotation about the origin in all possible planes with predifined

angles (αi j) for each plane (see Eq. 10)
Rot(μ,σ) Rotation about the origin in all possible planes with random angles

for each plane normaly distributed (αi j ∼ N (μ, σ)) (see Eq. 10)
Rotm Rotation about the origin in all planes with random angles each of

which generated according to normal distribution with appropriate
variance (see Fig. 7) and μ=0

Stochastic-IW Stochastic Inertia Weight PSO: one of the variants of PSO

123

An analysis of the velocity updating rule 419

StdPSO2006 Standard PSO proposed in 2006: one of the variants of PSO
WPSO Wilke’s PSO: one of the varients of PSO

1 Introduction

In this paper we modify the Particle Swarm Optimization (PSO) algorithm to enhance
its performance for the following optimization problem:

optimize f (�x) , �x = (x1, . . . , xd) (1a)

subject to �l ≤ �x ≤ �u (1b)

where �l = (l1, . . . , ld),
−→u = (u1, . . . , ud) (1c)

In the rest of the paper, without losing generality, we consider minimization prob-
lems only.

PSO is a stochastic population-based optimization method that was developed by
Kennedy and Eberhart (1995). The algorithm has been successfully applied to many
problems such as function optimization, artificial neural network training, pattern
classification, and fuzzy system control (Engelbrecht 2005; Poli 2008), to name a few.
Due to the ease of implementation and the fast convergence to acceptable solutions,
PSO has received much more attention in recent years (Poli 2008). However, there are
still many open issues in this algorithm, e.g. selection of the topology of the swarm,
population sizing, and rotation variance (Engelbrecht 2005; Wilke 2005; Poli et al.
2007). Also, several studies have been conducted to analyze the behavior of particles
with different coefficients (Shi and Eberhart 1998a,b; Zhang et al. 2005; Jiang et al.
2007) and different topologies (Mendes et al. 2004; Clerc 2006). Moreover, some
researchers have analyzed the role of random matrices in the velocity updating rule
(Secrest and Lamont 2003; Krohling 2004; Wilke 2005; Clerc 2006; Wilke et al.
2007a,b). This study presents a more in-depth analysis over these random matrices.

Four research contributions reported in this paper are:

(1) identification of several problems caused by multiplying personal and social influ-
ence vectors by two random matrices,

(2) presentation of a new approach based on Euclidean rotation matrices with random
directions (generated by random normal distribution) for updating the velocity of
particles to address these problems,

(3) detailed investigation of the parameters of the normal distribution used in the
Euclidean rotation matrices, and

(4) experimentation with an adaptive approach that identifies values of the parameter
of the normal distribution during the run. This adaptive approach is independent
from the algorithm and the number of dimensions of the problem at hand.

The proposed Euclidean rotation is added to seven PSO variants and these extended
algorithms are compared with their original versions on 18 standard optimization
functions. Results of these experiments confirm that the proposed Euclidean rotation
enhances the performance of the PSO methods for finding better solutions.

123

420 M. R. Bonyadi et al.

The rest of the paper is organized as follows. After a brief review of the basic
components of PSO and some well-studied variants of PSO in Sect. 2, the effect of
random matrices on the trajectory of particles is investigated in Sect. 3. It is shown that
the random matrices presented in the velocity updating rule may have an uncontrollable
impact on both the length and direction of the particles’ movement. In Sect. 4 a
new approach for updating the velocity is presented and the ability of this approach
to address the identified problems is tested. This approach introduces an additional
parameter σ that is responsible for controlling the direction of particles’ movement.
The role of this parameter is investigated in Sect. 5. Then the proposed method is
incorporated into several PSO variants. These new versions of PSOs are compared with
their standard instances. The comparison shows that the proposed approach enhances
the performance of all tested PSO variants in the majority of cases. The last section
concludes the paper by summing up the advantages and disadvantages of the proposed
method.

2 Background

In this section, we present a brief background of PSO. In Sect. 2.1, the original PSO
model and its early modifications are reviewed. In Sect. 2.2, several PSO variants that
are used in our comparative study are described. These variants are selected because
they are either frequently used in literature or recently proposed. In Sect. 2.3, several
existing studies on the use of random matrices in PSO are reviewed.

2.1 Basics of PSO

Particle Swarm Optimization (PSO) was introduced by Kennedy and Eberhart (1995).
The method processes a population (referred to as swarm) of m ≥ 2 particles; each
particle is defined by three d-dimensional vectors:

• Position (�xi
t)—the position of the i th particle in the t th iteration that is used to

evaluate the particle’s quality.
• Velocity ((�vi

t))—the direction and magnitude of movement of the i th particle in the
t th iteration.

• Personal best ((�pi
t))—the best position1 that the i th particle has visited in its lifetime

(up to the t th iteration). This vector serves as a memory for keeping knowledge of
quality solutions (Eberhart and Kennedy 1995).

In the standard form of PSO (Kennedy and Eberhart 1995), the velocity vector for a
particle i is updated according to three other vectors that are the personal best position
of the i th particle ((�pi

t)), the best position found over the whole swarm (known as
(�gi

t)), and the current position of the particle ((�xi
t)). The formulation for updating the

velocity and position of the particles in the original PSO is given as Kennedy and
Eberhart (1995):

1 In general, the personal best can be a set of best positions, but all PSO types listed in this paper use a
single personal best.

123

An analysis of the velocity updating rule 421

�V i
t+1 = �V i

t + ϕ1 R1t (�pi
t − �xi

t)
︸ ︷︷ ︸

Personal in f luence (P I)

+ϕ2 R2t (�gt − �xi
t)

︸ ︷︷ ︸

Socialin f luence (SI)

(2a)

�xi
t+1 = �xi

t + �V i
t (2b)

In this equation, ϕ1 and ϕ2 are two real numbers known as acceleration coefficients,2

and p′′ and g′′ are the personal best (of particle i) and the global best vector (the best
personal best in the swarm), respectively, until iteration t (this model of PSO is usually
known as the global best model because of the usage of the global best vector). Also,
the role of P I = �pi

t (Personal Influence) and SI = �gi
t (Social Influence) vectors

is to attract the particles to move toward known quality solutions, i.e. personal and
global best. Moreover, R1t and R2t are two d × d diagonal matrices (Clerc 2006;
Oca et al. 2009), where their elements are random numbers distributed uniformly
(∼ U (0, 1))3 in [0, 1]. These matrices can be interpreted as mappings (any such
mapping is called Rndm hereafter), which are applied in order to exploit new solutions
around the global and personal best vectors and to keep the particles from moving
exactly toward them; consequently, they diversify the particles for more effective
searches. Also, these matrices are responsible for the direction diversity in the swarm
(Wilke et al. 2007a,b). Note that matrices R1t and R2t are generated at each iteration
for each particle independently. In Eberhart and Kennedy (1995), another model was
introduced in which �gi

t was determined for each particle according to a sub-set of all
particles rather than all particles in the swarm (this is called local best model).

Shi and Eberhart (1998a,b) introduced a new coefficient ω (inertia weight) in Eq. 2a
to control the influence of the previous velocity value (this component, ω �V i

t , is called
inertia) as follows:

�V i
t+1 = ω �V i

t + ϕ1 R1t (�pi
t − �xi

t)
︸ ︷︷ ︸

Personalin f luence

+ϕ2 R2t (�gt − �xi
t)

︸ ︷︷ ︸

Socialin f luence

(3)

where coefficient ω controls the influence of the previous velocity on movement (this
is called InertiaPSO throughout the paper). One of the issues in InertiaPSO (as well
as the original PSO) is that the velocity vector may grow to infinity if the value of ω,
φ1, and φ2 is not set correctly. There are many strategies to prevent the velocity from
growing to infinity (Helwig and Wanka 2007). One popular and simple strategy is to
restrict the velocity to the range [− �Vmax , �Vmax], where �Vmax is the maximum allowed
velocity. Also, in many implementations of PSO, if a particle has left the search space,
its objective value is not considered for updating personal and global best vectors.
The growth of velocity was studied by Clerc and Kennedy (2002), Trelea (2003), Van
den Bergh and Engelbrecht (2006), Poli (2009) through theoretical analysis of the

2 These two coefficients control the effect of �pi
t and �gt on the movement of particles and they play

an important role in the convergence of the algorithm. They are usually determined by a practitioner
(Oca et al. 2009) or by the dynamic of the particles’ movement (Clerc and Kennedy 2002).
3 Alternatively, these two random matrices are often considered as two random vectors (Kennedy and
Eberhart 1995). In this case, the multiplication of these random vectors by PI and SI is element-wise
(Hadamard product).

123

422 M. R. Bonyadi et al.

dynamics of particles. It was found that the convergence behavior of PSO depends on
the value of its coefficients (ω, φ1, and φ2). In fact, if these values are set correctly
(within a specific range) then particles converge to a fixed point (shown to be the
weighted average of �pi

t and �gt) in the search space (Trelea 2003). Note that this fixed
point is not guaranteed to be a quality point (Van den Bergh and Engelbrecht 2010).

In the remaining part of this section, some discussions of PSO variants (sub-section
B) together with the analysis of random matrices (R1t and R2t) in PSO are provided
(sub-section C).

2.2 PSO variants

There are numerous PSO variants based on different velocity/position updating rules
(Liang et al. 2006; Ghosh et al. 2010), different topologies (Mendes et al. 2004;
Pso 2006; Xinchao 2010), different parameter values (Clerc and Kennedy 2002; Rat-
naweera et al. 2004), different hybridizations (Huang et al. 2010; Wang et al. 2011), and
population sizing (Chen and Zhao 2009; Hsieh et al. 2009); all of these have improved
the searching ability of the standard PSO. For example, an algorithm called Constric-
tion coefficient PSO (CoPSO) was proposed (Clerc and Kennedy 2002), which defined
a new form of the velocity updating rule:4

�V i
t+1 = χ

(�V i
t + c1 R1t

(

�pi
t − �xi

t

)

+ c2 R2t

(

�gt − �xi
t

))

(4)

The parameter χ was called the constriction factor. The authors demonstrated that
tuning the values of χ , c1 andc2 can prevent the swarm from explosion5 and can lead
to better balance between exploration and exploitation within the search space. They
proved that velocity does not grow to infinity if the parameters (χ ,c1 andc2) satisfy
the following equation:

χ = 2
∣

∣

∣2 − c − √
c2 − 4c

∣

∣

∣

(5)

where c = c1 + c2 > 4.
Many researchers applied time-based (iteration-based) adaptation approaches to

the parameters of PSO. For example, a Decreasing-IW PSO was proposed (Shi and
Eberhart 1998a,b) where the value of inertia decreased along the iteration number of the
algorithm. In contrast, another approach, named Increasing-IW PSO, was proposed
(Zheng et al. 2003); this approach used the same equation with the maximum and
minimum of inertia interchanged. In another time-varying approach, called Stochastic-
IW PSO (Eberhart and Shi 2001), the value of inertia weight was considered as a
uniform random number in the interval [0.5, 1). This interval for the random inertia
weight was selected because the expected value of a uniform random number in this

4 Note that this formulation (Eq. 4) is algebraically equivalent to the one in Eq. 3.
5 This phenomenon (known also as “drunkard’s walk”) refers to the unlimited growth of velocity vectors
and happens when the control parameters are defined randomly (Clerc and Kennedy 2002).

123

An analysis of the velocity updating rule 423

interval (0.75) is in a good agreement with the value 0.729 that is used frequently in
PSO variants for inertia weight.

In Van den Bergh and Engelbrecht (2006) the convergence of CoPSO6 was inves-
tigated and it was shown that, under some conditions, the global best position gets
stuck and does not move (this phenomenon is called stagnation). In order to address
this issue, the velocity updating rule for the global best was revised. This method was
called Guaranteed Convergence PSO (GCPSO). The authors proposed the use of local
search around the position of the global best particle and set the velocity vector for
this particle accordingly. The method was applied to several test benchmarks and the
results showed significant improvement compared with CoPSO.

In this paper, the PSO variant introduced in Pso (2006) is considered the standard
one and is called StdPSO2006 from now on. This version differs from the version
proposed in Shi and Eberhart (1998a,b) only in terms of its topology updating; the
global best vector is defined for each particle according to a restricted number of
particles (stored in a list called linki for each particle i) rather than all particles in
the swarm (this vector is called the local best vector for particle i). The length of
linki is equal for all i and is a parameter (shown by K) set by the user. At every
iteration, if a better solution was not found by the swarm at the previous iteration then
linki is updated for all particles. To update linki for particle i , K other particles are
chosen randomly and stored in linki . The best personal best among particles in the set
{linki ∪ i} is selected as the local best vector for particle i . The set linki is updated only
if no better solution was found, otherwise, it remains the same. Note that, the set linki

is selected randomly for each particle independently; thus, these sets (for all particles)
might have overlap in one iteration while have no overlap (disjoint) in another.

In 2011 an adaptive approach, called the Adaptive Inertia Weight PSO (AIWPSO),
was proposed (Nickabadi et al. 2011) where the value of inertia weight was adaptively
changed during the search process. The authors proposed a linear relation between
the inertia weight in the current iteration and the number of particles improved in
the previous iteration. Their results showed a considerable improvement in solution
qualities in comparison to other adaptive/time-varying strategies for controlling the
inertia.

There are many other variants of PSO (Tu and Lu 2004; Poli et al. 2007) that have
emerged over the past 15 years and it would be difficult to discuss all of them in detail.
However, in order to have a comprehensive test environment, we confined our tests to
nine PSO variants. The variants have been selected in this paper because:

• they have been used frequently in other papers as baselines for comparisons, or
• they have studied the rules of the random matrices in the velocity updating rule.

2.3 Investigation of random matrices

A study of the particles’ movement was presented through visualization (Secrest and
Lamont 2003). The authors claimed that in PSO (Eq. 3), φ1 R1t PI is a vector in the

6 Note that the model of PSO in that paper was formulated the same as InertiaPSO but the values of
parameters were selected according to the formulation in CoPSO.

123

424 M. R. Bonyadi et al.

direction of PI and φ1 R1t only influences the length of PI (and the same holds for
SI). Consequently, the position of each particle at the (t + 1)th iteration is somewhere
(because of the stochastic nature of the velocity caused by Rndm) across a parallel-
ogram defined by the current position, PI, and SI in the t th iteration. However, it is
unclear whether the authors used random values or random matrices for the velocity
updating rule, because the use of random values would result in getting the same value
for all dimensions, so the direction diversity would be ignored.

Two issues related to the use of random matrices were detected in Clerc (2006).
The first issue was that the summation of uniform distributions used in the velocity
updating rule for Rndm mappings was no longer uniform. The second issue was that
when personal best (�p) or global best (�g) share the same coordinate value with the
position vector (�x) for particle i , PI (or SI) loses that dimension. In this case, the
search process becomes a random line search in that dimension. In order to address
these problems, several alternative distributions for R1t and R2t were proposed and
compared (Clerc 2006).

A comparison between CoPSO and linear PSO (i.e. CoPSO where R1t and R2t are
random numbers rather than random matrices) was conducted (Wilke et al. 2007a,b).
This comparison showed that the trajectory of the movement of particles in the linear
PSO turns into a line search at the very beginning of the search process. The authors
claimed that, because of the directional diversity caused by random matrices (instead of
random values in the linear PSO), CoPSO does not suffer from this problem. However,
it was shown that, under some circumstances, the direction diversity might be lost in
CoPSO as well (Van den Bergh and Engelbrecht 2010).

The performance of CoPSO was also investigated in cases where the search space
was rotated (Wilke 2005). The authors found that CoPSO is sensitive to rotating the
search space, i.e. CoPSO is a rotation variant algorithm. In order to implement a CoPSO
model that is rotation invariant, they used random rotation matrices (rather than random
diagonal matrices) in the velocity updating rule. They used an approximation idea (an
exponential map) for generating the rotation matrices to reduce the computational
expenses arising from matrix multiplication. In the exponential map, a rotation matrix
M is generated by:

M = I +
maxi
∑

i=1

1

i !
(απ

180

(

A − AT
))i

(6)

where A is a d × d matrix with elements generated randomly in the interval [−0.5,
0.5], α is a scalar representing the rotation angle, and I is the identity matrix. The
generated matrix M is a random rotation matrix with the angle α. It is clear in Eq. 6
that the matrix M becomes a more accurate estimation of a rotation matrix with
the angle α when maxi is larger. In Wilke et al. (2007a,b) the value of maxi was
set to 1, limiting the approximation to one term of the summation only. Thus, the
approximation error of generating the random rotation matrix using the exponential
map method grows with the rotation angle (α). Also, the impact of different val-
ues of α was not discussed and the value of this parameter was set to 3. Note that
for larger values of maxi , the time complexity of generating rotation matrices grows
rapidly. The time complexity for generating and multiplying the approximated rota-
tion matrix (with maxi =1) into a vector is in O(d2), i.e. including generating the

123

An analysis of the velocity updating rule 425

Fig. 1 The results of applying
5,000 random matrices R to
vector �v. The grey area shows
the area that the original vector �v
might be mapped to

matrix (O(d2)) plus vector-matrix multiplication (O(d2)). The rotation matrix was
incorporated into CoPSO (the random diagonal matrices in CoPSO were replaced by
the random rotation matrices) to test if it could improve the performance of the algo-
rithm when the search space is rotated. The method (hereafter, we use acronym WPSO
for Wilke’s PSO) was applied to five standard optimization benchmark functions and
its results were compared to those of the standard PSO (Wilke 2005). These results
showed that the performance of WPSO was not influenced by rotating the search
space.

3 Effects of random matrices on vectors

Consider a vector �v = (x0, y0)
′ in 2-dimensional Cartesian coordinates7 and consider

a 2 dimensional mapping Rndm called R(R =
[

r11 0
0 r22

]

, r11, r22 ∼ U (0, 1)). Also,

assume that �v1 is the result of applying the mapping Rto �v, i.e. �v = R × �v(x0, y0). To
investigate the effects of applying R to an arbitrary vector, we generated 5,000 random
matrices R and applied them to a vector �v. Figure 1 shows the results of applying R.

All possible locations for the mapped vector �v′ have been represented by the grey
area in Fig. 1. Clearly, the mapping R displays some properties when it is applied to
an arbitrary vector �v, namely:

Property 1: R does not preserve the length of �v
Property 2: Applying R does not preserve the phase (direction in d dimensions)

of �v
Property 3: As �v becomes closer to one axis, the probability of θ and θ ′ (the angle

between �v and x axis and �v′ and x axis, respectively) becoming closer to each other
increases rapidly; for a vector �v that is exactly on one axis of the coordinates, no
rotation takes place for any R8

Property 4: Applying R produces vector �v in the same quadrant (orthants in mul-
tidimensional space) where �v is in (as the random values are positive)

7 For the sake of simplicity, the 2-dimensional space is considered for the presented examples. However,
the results can be generalized to d-dimensional spaces.
8 Note that this property holds for d-dimensions as well where θ and θ ’ are considered as angles between
the vector �v′ and an arbitrary axis of the coordinate.

123

426 M. R. Bonyadi et al.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60
Histogram for ||v||/||v'||

||v||/||v'||

N
u

m
b

er

-60 -40 -20 0 20 40
0

10

20

30

40

50

Histogram for - '
v=(-1, 0.7)

- '

N
u

m
b

er

80 100 120 140 160 180
0

10

20

30

40

50

Histogram for '
v=(-1,0.7)

'

N
u

m
b

er

θ

θ

θθ

θ θ

(a)

(b) (c)

Fig. 2 The effect of 5,000 random mapping R on a the length of �v, b the changes of the direction of �v
c the direction of �v

Let us analyze the behavior of ‖�v′‖ and θ−θ ′ to visualize the effects of applying R to
�v. To illustrate the listed properties, an arbitrary two-dimensional vector �v = (−1, 0.7)

chosen randomly only for experimental purposes, is mapped 5,000 times by randomly
generated matrices R. The histograms of ‖�v′‖/‖�v‖, θ ′, and θ − θ ′ have been shown
in Fig. 2a–c, respectively. Clearly, the length of �v (Fig. 2a) is less than or equal to
the length of v′′ (Property 1). Considering ‖�v′‖

‖�v‖ as a random variable, the probability
distribution for this random variable is different with changes of the vector �v. As an
example, P(

‖�v′‖
‖�v‖ < 0.2) ≈ 0.2 for vector �v = (−1, 0.007), while this value for vector

�v = (−1, 0.7) is around 0.06. Clearly, scaling the length of vector �v by applying
R is vector-dependent. Although the probability distribution for each element of �v is
uniform, there is no guarantee that the length of �v has a uniform distribution. Thus, it is
not possible to assume that applying R has a uniform effect on the length of any vector
in the d-dimensional case, and this assumption (having uniform effect on a vector) is
correct only in one-dimensional space. Our simulations showed that this distribution
is close to uniform for the vectors that are closer to axes of the coordinates while it is
not uniform otherwise.

123

An analysis of the velocity updating rule 427

Fig. 3 The effect of Rndm on
the PI and SI in PSO. The grey
areas are the areas to which the
personal and global best vectors
might be mapped using the
Rndm

Applying R changes the direction (Property 2) of the vector �v (Fig. 2b). The dis-
tribution of this change is not the same for all vectors and it might be quite different
for different vectors. Indeed, the P(|θ − θ ′| < γ) (probability of rotating the vector
�v less than γ degrees when it is mapped by an R) depends on the vector �v and is not
controllable.

For example, the value of P
(∣

∣θ − θ ′∣∣ < 10◦) ≈ 0.31 when �v = (−1, 0.7), while
this value is around 0.14 when �v is (−1, 0.07). Also, as the vector �v becomes closer to
the axes of the coordinates, the probability P(

∣

∣θ − θ ′∣∣ ≤ γ) is rapidly increased. For
example, for �v, the probability P(

∣

∣θ − θ ′∣∣ ≤ 5◦) is around 0.16 while this probability
for v′′ is around 0.997 (Property 3). This increment in probability continues until v′′
is exactly on one of the axes. In this case, P

(∣

∣θ − θ ′∣∣ ≤ ε
) = 1 for any non-negative

ε. This means no rotation can take place and these random mappings operate as a
random scaling factor. Figure 2.c shows that the angle between the horizontal axis and
all vectors �v is in the interval [90◦, 180◦]. This shows that all vectors �v are placed in
the second quadrant, that is, where vector �v is found (Property 4).

Now let us look at the general case of PSO. In the velocity updating rule (Eq. 3),
the vectors PI and SI are mapped by two Rndm, R1t and R2t . Figure 3 shows possible
results of such mapping in a particular instance (with φ1 = φ2 = 1.49).

In Fig. 3, the greyed rectangles represent the areas in which the mapped versions
of PI and SI may be found. Clearly, by applying Rndm to PI and SI, the resulting
vectors may be dramatically different from the original ones. So, “the knowledge
of quality solutions” (Eberhart and Kennedy 1995) is radically affected and this may
cause undesirable behaviors in particles’ movement, especially in terms of exploitation
of the area around the personal and global bests.

To summarize, we have identified three main problems which are present in the
velocity updating rule of PSO when Rndm is used.

Problem 1: Uncontrollable changes of the length and direction of PI and SI (Prop-
erties 1 and 2) which results in inefficient exploitation for better solutions in the area
around personal and global best.9

Problem 2: When PI and SI are close to an axis (assume that the position of the
particle is in the center of the coordinates), the direction freedom offered by the random

9 Note that, although the changes that result from applying Rndms may help the algorithm to jump out of
local optima, the controllable changes are more desirable because the exploration/exploitation balance in
the algorithm is adjustable.

123

428 M. R. Bonyadi et al.

mappings Rndm is very small and limited, hence the exploitation would not be very
effective (Property 3).10

Problem 3: By applying any Rndm to PI and SI, there is no chance for them to
be mapped to other quadrants (Property 4). In fact, the random matrices may confine
the exploitation of personal and global bests to just one quadrant which may result in
trapping the particles in that quadrant.

To illustrate the issue that Problem 2 may cause, consider the problem of finding
the minimum of function f (x, y) = x2 + y2 (the optimum solution is at(0, 0) and
f (0, 0) = 0). We experimented with StdPSO2006 using four particles in order to find
the optimum solution with the following initialization assumptions:

(1) The position of particles was initialized as a uniform random value in the interval
[3.99, 4.01]. The values for the first dimension were randomly generated in the
defined function’s boundaries.

(2) The second dimension for the velocity vector for all particles was initialized close
to 0 (a random value in the interval [−0.01, 0.01]).11

Our simulation showed that, in this situation, in 97 % of 2,000 runs (each run with
four particles and 1,000 function evaluations), the best solution found by the algorithm
was around the point(0, 4). This shows that the value for the second dimension could
not be changed by the algorithm, which confirms the second identified problem. In
fact, in this situation the Rndm cannot maintain direction diversity of the movement
of particles to guide them to explore the search space.

To illustrate the problem that might be caused by the Problem 3, assume that we
want to find the minimum of the following 2-dimensional function:

f (x, y) = (x + 1)(y + 1)

((x + 1)2 + 1)((y + 1)2 + 1)
, x, y ∈ [−5, 5] (7)

For this function, there is an asymptote with the value of zero when both x and y
increased to positive infinity. However, this is actually a local optimum while the best
point which minimizes f (x, y) is (x, y) = (−2, 0) with f (−2, 0) = −0.25. Consider
that all particles are initialized with positive values for their positions and velocities.
For the reasons given in the previous paragraph, i.e., the random matrices confine PI
and SI to one quadrant, there is a small chance for the particles to find the optimal
point and they can easily be trapped in the local optima. Our simulation showed that,
by initializing the positions and velocities of four particles as positive numbers and
using the StdPSO2006 for optimization in 25 iterations, the process converges to the
local optima in 75 of 100 runs.

To sum up, it is apparent that the mapping Rndm significantly influences the search
process. In the following section, an approach is proposed to overcome the abovemen-
tioned problems. As reported in Van den Bergh and Engelbrecht (2010), meaningful
investigations of the exploration/exploitation abilities of PSO are not possible without

10 A special case of this issue occurs when one of the elements of PI or SI is zero (�x and �p or �x and �g have
equal values for one of their dimensions). In this case, the search becomes a random scale in that dimension
(Clerc 2006; Spears et al. 2010; Van den Bergh and Engelbrecht 2010).
11 Note that this situation may happen with non-zero probability.

123

An analysis of the velocity updating rule 429

considering all parts of the velocity updating equation. However, for simplicity (see
also Spears et al. 2010), the inertia component can be excluded from the analysis of
the behavior of particles when one of the main three problems (discussed earlier in
this section) is studied. In fact, according to Eq. 3, there is no coefficient incorporated
to ω�vt for controlling/changing its direction (Problem 1). Thus, once the value for one
of the dimensions of the inertia becomes close to zero, it cannot affect the bearing
of movement in that dimension in the next iteration. By setting SI and PI (Problem
2) to small values for that dimension, no further changes in the bearing of movement
in following iterations can take place (see earlier example for Problem 2). Also, as
was exemplified, by initializing the velocity vector parallel to SI and PI, the inertia
component cannot play an effective role during the following iterations (as was shown
in the example for Problem 3).

4 Proposed approach

In order to address all issues identified in the previous section, a new form of the
velocity updating rule is proposed; it uses a rotation mapping rather than a random
mapping for PI and SI (similar to the WPSO approach, see Wilke 2005), but with
some modifications). The new formula (based on the concept of Euclidean rotation)
is defined for the velocity updating rule:

�V i
t+1 = ω �V i

t + ϕ1r1t Rotmt (σ1)
(

�pi
t − �xi

t

)

+ ϕ2r2t Rotmt (σ2)
(

�gi
t − �xi

t

)

(8)

where Rotmt (σ1) and Rotmt (σ2) are two rotation matrices (replacing the random matri-
ces R1t and R2t that were used in earlier PSO variants) and r1t and r2t are two real
random numbers, uniformly distributed in [0, 1], which are used to control the mag-
nitude of movement.

The concept of rotation matrices is used to address the identified issues with Rndms.
A rotation matrix is a d × d orthogonal matrix where its determinant is equal to 1. In
this paper we use the Euclidean rotation matrix defined as follows (Duffin and Barrett
1994):

Rota,b (α) =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

ri, j |

ra,a = rb,b = cos (α)

ra,b = − sin (α)

rb,a = sin (α)

r j, j = 1, j �= a, j �= b
ri, j = 0, elsewhere

⎫

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎭

(9)

As an example, in a two dimensional case, this matrix becomes

[

cos(α) sin(α)

−sin(α) cos(α)

]

.

Note that the Euclidean rotation matrix preserves the length of the vectors dur-
ing rotation and only changes the direction of the vectors. The random compo-
nents r1t and r2t are responsible for the changes of the length of the vectors
in Eq. 8.

Rota,b(α) rotates a vector in the xa xb plane by angle α about the origin while
it preserves its length (Chow 2000). To rotate a vector in all possible planes, all

123

430 M. R. Bonyadi et al.

corresponding rotation matrices are multiplied by each other. We define Rot (μ, σ)

as follows:
Rot (μ, σ) =

∏

1≤i< j≤d

Roti, j
(

αi, j
)

(10)

where Rot(μ, σ) is a rotation matrix which rotates a vector in all planes xi x j about the
origin with the angle αi, j that is a normally distributed random number, with the mean
μ, and standard deviation σ , i.e. {αi j ,∀i, j} ∼ N (μ, σ). In this paper we set μ = 0,
and by this setting, the direction changes caused by rotation are centralized around
the direction of the original vector. We use also the following notation: Rotm(σ) =
Rot(0, σ). By multiplying a vector �v with this rotation matrix, the vector is rotated
around the origin while its length remains unchanged.

Note that Eq. 10 forces some computational overhead on the velocity calculations
(see Eq. 11) arising from matrix multiplication. This overhead depends on the number
of matrices (in our case, d(d − 1)/2 which is the number of possible planes in a d
dimensional space). In fact, the time complexity for generating Rotm(σ) is O(d5).
However, the implementation proposed in this paper reduces the time complexity
to O(d2), which is the same as generating a d by d matrix (which is used in the
standard PSO), while calculations are still accurate (see “Appendix III” for details on
this implementation).

Because of this computational overhead, one can consider selecting only one ran-
dom plane in each iteration for each particle and conducting the rotation only in that
plane rather than all possible planes (it is called RotmP throughout the paper). This
method is faster than Rotm in terms of computational complexity. In fact, the com-
plexity of selecting one of the planes and rotation in that plane is O(d). We compare
these two approaches (Rotm and RotmP) in the experimental results section.

The proposed approach differs from WPSO in several aspects. First, WPSO uses an
approximation method for generating rotation matrices, which causes inaccuracy in
rotating the vectors, whereas the proposed approach can accurately generate the rota-
tion matrices in the same order of complexity. Second, the exponential map method
used in WPSO for generating rotation matrices does not preserve the length of move-
ment (due to the usage of approximation) when rotating the vectors, whereas the pro-
posed method keeps the length unchanged. Third, in WPSO, the error of the approxi-
mation of the rotation matrices grows with the angle of rotation, whereas the proposed
method is accurate for any value of rotation angles (this has been pointed out as a
drawback of the exponential map method for generating rotation matrices in Wilke et
al. (2007a,b)).

As mentioned earlier, the lengths of the vectors which are mapped by Rotm(σ) are
not changed. Also, rotation of the vector is independent from the orientation of the
coordinate axes. Based on the properties of a normal distribution, 99.7 % of changes in
the vector’s angles are in the interval [−3σ, 3σ] in each plane. Indeed, the P(|θ −θ ′| <

γ) (the probability of rotating the vector less than γ degrees) is the same for all vectors,
and it is calculable and also controllable, by σ .

To exemplify these claims, consider the vector �v = (−1, 0.7) from Sect. 3, i.e. �v.
Figure 4a shows vector �v and all other vectors (the vectors in the grey area) are the

result of applying Rotm (4) to �v in 5,000 observations (compare Fig. 1, 4a). Figure 4b

123

An analysis of the velocity updating rule 431

-15 -10 -5 0 5 10 15
0

20

40

60

80

100

120

140

160

180

 - '

N
u

m
b

er

Histogram of - '

160 165 170 175 180 185 190 195
0

10

20

30

40

50

60

70

80

90

Histogram for θ

θ θ

'
v=(-1, 0.007)

'

N
u

m
b

er

125 130 135 140 145 150 155 160 165
0

10

20

30

40

50

60

70

80

90

'

N
u

m
b

er

Histogram for '
v=(-1, 0.7)

θ

θ θ

θ

θ(a) (b)

(c) (d)

Fig. 4 The effects of 5,000 generated Rotm(4) on a vector �v = (1, 0.7), b the changes of direction of
�v = (1, 0.7), c direction of v′′, and d direction of �v = (1, 0.007), �v = (1, 0.7) is a random sample

shows the histogram for θ − θ ’, where θ and θ ’ are the angle between �v and x axis
and �v and x axis, respectively. The figure indicates that the angle (direction) has been
changed between −15◦ and 15◦. Moreover, the rotation matrices have changed the
angles more than 10 degrees in just 0.8 % of observations (P(|θ−θ ′| < 10) is 99.2 %).
Our experiments showed that this value is the same for the vector �v = (−1, 0.007),
which was not the case when the Rndm mapping was used (see Fig. 2). Figure 4c
shows that by applying the rotation matrix to a vector that is close to some coordinate
axes, e.g. �v = (−1, 0.007), the quadrant may be changed (the angle of the mapped
version can be more than 180◦). Figure 4d shows the histogram of θ ’ when 5,000
rotation matrices Rotm(4) were applied to the vector �v = (−1, 0.7).

To summarize, the rotation matrix approach preserves the length of the vector �v
while it rotates �v according to a predefined rotation angle. This angle can be a random
variable normally distributed with a mean 0 and standard deviation σ (by setting μ=0,
the mapped vectors will be distributed around the original vector following a Gaussian
distribution).

The application of the mapping Rotm(σ) has the following properties:
Property 1: The lengths of PI and SI are not changed by Rotm(σ) and they are

controlled by φ1r1t and φ2r2t , respectively.

123

432 M. R. Bonyadi et al.

Fig. 5 The effect of Rotm(4.6)
on the personal and global bests
vectors in PSO. The grey areas
are the areas to which the
personal and global best vectors
might be mapped to using this
rotation

Property 2: Direction of PI and SI is controlled by σ .
Property 3: The rotation of a vector is independent of the orientation of the coor-

dinate axes.
Property 4: The Rotm(σ) can rotate the PI and SI to a new quadrant.
In the velocity updating rule given by Eq. 8, the direction of each part is changed in

all planes according to σ while the effects of the length of each part are controlled only
by φ and r . Figure 5 shows an instance when Rotm(4.6) is used in the PSO updating
rules (4.6 has been chosen only for the example purposes).

In Fig. 5, the shadowed areas are the possible areas to which the PI and SI might be
mapped after applying Rotm(σ) (while φ1= φ2 = 1.49 and σ1= σ2 = 4.6). Also, the
shaded spectrum of these areas shows the probability of mapping the original vector
to the area, i.e., the darker the area is, the higher the probability that the mapped vector
will be in that area.

In the rest of the paper we use a simpler version of Eq. 8, where σ1= σ2= σ :

�V i
t+1 = ω �V i

t + Rotmt (σ)
(

ϕ1r1t

(

�pi
t − �xi

t

)

+ ϕ2r2t

(

�gt − �xi
t

))

(11)

Note that this approach can be used in the velocity updating rule of other types of
PSO as well, by simply replacing any Rndm with Rotm. Hereafter, any type of PSO
(PSO*) that uses the approach of rotation matrices is called PSO*-Rotm, e.g., when
the proposed approach is used in CoPSO we call the method CoPSO-Rotm.

To show that this approach can effectively address Problem 2 of the velocity updat-
ing rule identified in the previous section, we applied the StdPSO2006-Rotm (with
σ = 20, which was determined experimentally) to function f (x, y) = x2 + y2. Also,
we initialized all four particles through the same procedure described in the previous
section. In this situation, the algorithm could find optimal solutions in 99 % of 2,000
runs; this shows that the algorithm can offer better direction diversity in comparison
to the StdPSO2006.

Now, let us return to the optimization problem given by Eq. 7. StdPSO2006-Rotm
(with σ = 20) was trapped in the local optima in only 23 out of 100 runs (as opposed to
75 in the original version of StdPSO2006). Also, by considering σ = 28, the algorithm
failed in only 10 out of 100 runs (see Sect. 5.3 for the details of setting of the parameter
σ).

123

An analysis of the velocity updating rule 433

Thus rotation matrices address all problems related to the velocity updating rule
identified in the previous section; further, the introduction of rotation matrices makes
PSO rotation invariant, as already reported in Wilke (2005).

In the following section, the new velocity updating rule based on Rotm(σ) rather
than Rndm is tested on several well-studied PSO variants and the results are reported.
These experiments show that the proposed approach improves the overall ability of the
PSO to explore better solutions in the search space. The only parameter that has been
added to the algorithm is σ , and it is investigated in more detail. For this parameter, a
sensitivity analysis is performed to set its value for different algorithms. Also, a simple
adaptive method is proposed to make the algorithm less problem-dependent.

5 Experimental results

In the following four subsections we describe the experimental setup, discuss the
benchmark functions selected for experimentation, provide a sensitivity study of the
parameter σ , and report on experimental results.

5.1 Experimental setup

All variants were implemented under the MatlabR2011a environment. Due to the
stochastic nature of the PSO-based methods, the reported results for each algorithm
are the averages over 100 runs. We analyze the effect of the parameter σ on the
performance of different PSO-based methods. After that, in order to show the efficiency
of the proposed rotation matrix approach, three sets of comparisons are considered.

• In the first set of comparisons, the proposed approach (including Rotm and RotmP)
is incorporated into CoPSO (i.e. CoPSO-Rotm and CoPSO-RotmP) and compared
with two other methods CoPSO-Rndm (Clerc and Kennedy 2002), WPSO (Wilke
2005). The purpose of this test is to find which type of random matrices (Euclidean
rotation in all planes, Euclidean rotation in one plane, uniform, or exponential map
rotation) is more effective. Also, to have a fair comparison among these methods,
in this test Rotm and RotmP are incorporated to CoPSO because WPSO is an
extension of CoPSO. Moreover, the parameter σ for Rotm and RotmP is fixed to
a single value as this parameter is fixed in WPSO as well.

• We continue the comparisons by incorporating Rotm into several well-known
PSO algorithms, namely CoPSO, StdPSO2006, Decreasing-IW, Increasing-IW,
Stochastic-IW, AIWPSO, and GCPSO (Shi and Eberhart 1998a,b; Eberhart and
Shi 2001; Clerc and Kennedy 2002; Zheng et al. 2003; Pso 2006; Van den Bergh
and Engelbrecht 2010; Nickabadi et al. 2011). They are then compared with their
corresponding original versions. The purpose of this test is to show the effect of the
usage of rotation matrices on well-known PSO algorithms. In this test, all parame-
ters are kept the same as the original parameters for each type while the proposed
approach is incorporated into these methods. These PSO algorithms were selected
for comparison purposes because they provide quality results and they have been
frequently used by other researchers in their experiments.

123

434 M. R. Bonyadi et al.

Table 1 The parameters used for the selected methods for comparison

Algorithm name Velocity updating

CoPSO (Clerc and Kennedy 2002) Equation 4, c1 = c2 = 2.05

Increase-IW (Zheng et al. 2003) Equation 3, ω = 0.4 → 0.9, φ1 = φ2 = 2

Decrease-IW (Shi and Eberhart 1998a,b) Equation 3, ω = 0.9 → 0.4, φ1 = φ2 = 2

Stochastic-IW (Eberhart and Shi 2001) Equation 4, ω = [0.5, 1], c1 = c2 = 2.05

AIWPSO (Nickabadi et al. 2011) Equation 3, ω = adaptive, φ1 = φ2 = 1.492

StdPSO2006 (PSO 2006) Equation 3, ω = 1
2ln(2)

, φ1 = φ2 = 0.5 + ln(2), K=3

GCPSO (Van den Bergh and Engelbrecht 2010) Equation 4, c1 = c2 = 2.05

WPSO (Wilke et al. 2007a,b) Equation 4, c1 = c2 = 2.05

These values have been extracted from the original papers

• In the last set of comparisons, the proposed adaptive approach is tested when it is
used to set the value of σ in StdPSO2006-Rotm and AIWPSO-Rotm. The aim of
this test is to evaluate the proposed adaptive approach for the variable σ .

These tests are conducted on several standard optimization functions that are intro-
duced in Sect. 5.2. A performance metric called ABSQ (Average of Best Solution
Quality) is reported for each test. ABSQ is the average of objective values that
an algorithm achieves in a predefined number of function evaluations (FE) over
100 runs. The maximum allowed number of FEs is fixed (104 in all experiments,
unless it is specified in the test), the algorithm is run, and the best found solution
in this time frame is recorded as BSQ. This procedure is repeated 100 times and
the average is reported as ABSQ. The parameters used for each method are listed in
Table 1.

Note that the same parameters were used in both versions of each method (PSO*
and PSO*-Rotm); the number of particles for all methods is set to 20 in all tests. Also,
velocity clamping was used to limit the value of each dimension of the velocity vector
in all experiments (the value for Vmax for each dimension i was set to max(|li |,|vi |)

2).
Moreover, the objective value for a particle is not updated if the particle is in the
infeasible region (out of the boundaries). This bound handling technique is known as
Infinity bound handling technique (Helwig et al. 2013). Note that, the Infinity bound
handling together with velocity clamping is frequently used in the literature, however,
it is not the best possible choice for handling particles which are out of the boundaries,
see Helwig et al. (2013) for detailed analysis.

In some tests, the percentage of improvement (impairment) has been reported. This
percentage is calculated by the following formula:

z∗ − z

z∗ ∗ 100 (12)

where z* and z are the averages of ABSQ over a set of functions for two under-
comparison algorithms, respectively and z∗ > z.

123

An analysis of the velocity updating rule 435

Table 2 Functions used for tests

Function name F Rotated F Global optimum f(x) Search range

Rosenbrock f1 f10 [1, 1, …, 1] 0 [−2.048, 2.048]d
Rastrigin f2 f11 [0, 0, …, 0] 0 [−5.12, 5.12]d
Ackely f3 f12 [0, 0, …, 0] 0 [−32.768, 32.768]d
Weierstrass f4 f13 [0, 0, …, 0] 0 [−0.5, 0.5]d
Griewank f5 f14 [0, 0, …, 0] 0 [−600, 600]d
Sphere f6 f15 [0, 0, …, 0] 0 [−100, 100]d
Non-continuous Rastrigin f7 f16 [0, 0, …, 0] 0 [−5.12, 5.12]d
Quadratic (Hyper-Ellipsoid) f8 f17 [0, 0, …, 0] 0 [−100, 100]d
Generalized Penalized f9 f18 [1, 1, …, 1] 0 [−50, 50]d

5.2 Test functions

In order to compare the proposed approach to other methods, some benchmark opti-
mization problems were used. This benchmark includes 9 well-studied functions
selected from Yao et al. (1999), Tu and Lu (2004), Suganthan et al. (2005) and their
rotated versions. The formula for all functions can be found in “Appendix I”. Due to
the fact that some of these test functions are solvable by d one-dimensional searches,
Salomon’s method (Salomon 1995) is applied to rotate them. This procedure is real-
ized by generating an orthogonal matrix M that is multiplied by the input variables
x to get the rotated variable y = M ∗ x . The new variable y is used to determine
the objective value for particles. This type of rotation increases the complexity of the
function so they will not be solvable by a simple search.

Table 2 shows the bounds for all functions. In addition, the location for the best
solution and the best objective value for all functions are reported in this table. f1−9
are the basis functions while f10−18 are their rotated versions (expressions for these
functions can be found in “Appendix I”).

The optimal solution for most of these functions is in the center of coordinates. To
test the performance of the algorithms when the optimal solution is not on the center,
we add a vector o to shift these functions so that their optimal solutions are not on the
center. This shift only takes place for the last set of tests in this paper. The vector o
was generated randomly for each function separately in such a way that the optimal
solution is still in the search range. The vector o was generated once for each function
and it was fixed for each function for all tests.

5.3 Parameter setting

The standard deviation of the rotation angle in the proposed rotation matrix (Rotm)
is the only parameter that has been added to the PSO algorithms. In this section, a
method for finding the best value for this parameter is discussed.

The setting of parameters is a challenging issue whenever algorithms are com-
pared. Parameters for algorithms need to be either tuned for each algorithm or the use

123

436 M. R. Bonyadi et al.

10 15 20 25 30 35 40 45 50 55 60
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Number of dimensions

B
es

t
fo

u
n

d
 v

al
u

e
fo

r
σ

CoPSO
Increase−IW
Decrease−IW
Stochastic−IW
AIWPSO
StPSO2006
GCPSO

Fig. 6 Setting the parameter σ for seven various types of PSO

of identical parameters needs to be justified. Because seven PSO variants are consid-
ered for extension by using the proposed rotation matrices, the value of σ should be
investigated for all of these algorithms independently. Also, several parameters such
as population size remain the same across algorithms in all tests. Furthermore, since
the focus of the paper is not the comparison of algorithms, but to show that different
algorithms can benefit from the new rotation matrix, the individual parameter settings
(apart from σ) for each algorithm don’t matter as much.

Also, in order to have a valid setting procedure, two standard functions, a unimodal
(Sphere) and a multimodal (Griewank) function were selected for this purpose. To
set the parameter σ for each algorithm, we incorporated the proposed rotation matrix
into the algorithm, fixed the number of dimensions and applied the method to both
functions (Griewank and Sphere) to find the best performance for various values of σ .

Our investigations showed that the best values for σ are in the interval [0, 7] for
all of these methods. Hence, we changed the value of σ in this interval with a step
size 0.01 (701 steps overall). In each run, one of the algorithms was applied to the
under-process function (two mentioned functions) 50 times (for a fixed number of
dimensions, 701 × 50 × 2 tests were done). This process was done for 10, 20, 30,
40, 50, and 60 dimensional problems. In total, for each algorithm, 701 × 50 × 2 × 6
tests were run to find the best value for σ . The results for all setting procedures for
all methods are shown in Fig. 6. Note that because the best values for both functions
were very close, the average of the objective values is considered to be the most likely
determiner of the best value of σ . Figure 6 presents this average of best values for
σ for seven PSO variants. It is obvious that the best value is different for different
methods and for different numbers of dimensions. Hereafter, the selected values for
σ in all tests are the ones that have been presented in Fig. 6.

One of the reasons behind the reduction of the best σ when increasing the number
of dimensions can be related to the overall angle changes in the higher dimensions.
In fact, by increasing the number of dimensions, the number of planes in the space is
increased. As the rotation of the velocity vector is applied to each plane independently

123

An analysis of the velocity updating rule 437

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Function number

Im
pr

ov
em

en
t

R
at

e
(i

r)

CoPSO
Increment-IW
Decrement-IW
Stochastic-IW
AIWPSO
StdPSO 2007

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Function number

Im
p

ro
ve

m
en

t R
at

e
(ir

)

CoPSO
Increment-IW
Decrement-IW
Stochastic-IW
AIWPSO
StdPSO 2006

(a) (b)

Fig. 7 The average improvement rate (ir) of six PSOs when they are applied to 9 standard benchmark
functions in Table 2. a 10 dimensional cases, b 30 dimensional cases

(see Eq. 8), the overall applied rotation to this vector is increased by the number of
dimensions. Thus, a smaller rotation is needed as the number of dimensions increases.
Also, Fig. 6 indicates that the best values of σ for different algorithms are different,
especially for AIWPSO. Although the reason behind this phenomenon is not clear,
our experiments show that, in each algorithm, the best value of σ is correlated with
the improvement rate of the particles (ir), defined as the number of improved particles
divided by the population size. In order to find the relation between σ and ir, we
recorded the average of ir in 10,000 function evaluations for each algorithm (six PSO
variants) when they were applied to f1−9 (Table 2) over 100 runs for each function.
Figure 7 shows the results.

Figure 7 The average improvement rate (ir) of six PSOs when they are applied to 9
standard benchmark functions in Table 2. (a) 10 dimensional cases, (b) 30 dimensional
cases

A simple comparison between the improvement rate ir of the methods (Fig. 7) and
the corresponding σ (Fig. 6) indicates a positive correlation between these variables.
For example, the algorithm AIWPSO, which has the largest σ in Fig. 6, has also the
largest value for ir on average (Fig. 7).

Based on the correlation between σ and ir and d, a simple adaptive approach (Eiben
et al. 1999) is proposed for σ to make the algorithm independent of the problem and
the number of dimensions. According to Figs. 6 and 7, we can assume that the value
of σ is dependent on the number of dimensions d and the current improvement rate
(irt).12 Therefore, we can say that σt = h(irt , d) where h is a function that relates the
value of σ at iteration t to the number of dimensions (d) as well as ir at iteration t .

As reported in Fig. 6, appropriate values for σ become smaller as the number of
dimensions grows. Hence, it is safe to assume that there is a negative correlation
between these variables. Also, the appropriate value of σ becomes bigger when the
used algorithms have a higher average value for ir (Fig. 7). Obviously, function h
can be defined in many ways to reflect the discovered correlations. In this paper,

12 Note that these are the parameters that have been considered in this paper and there might be some others
that have an effect on the value of σ .

123

438 M. R. Bonyadi et al.

we defined h as follows:

h (irt , d) = α ∗ irt√
d

+ β (13)

In this formula, α and β are two constants, which bound the value of σ to the
interval[β, α√

d
+ β]. By using this equation the correlations between σ and d as

well as irt are taken into account. The value of β prevents σ from becoming 0. Also,
the square root of d in the denominator of the formula reduces the speed of reduction
by d(as was observed in Fig. 6).

Our experiments showed that α = 30 and β=0.01 works appropriately for our cases.
This adaptive approach is added to some PSO variants and its results are reported.

5.4 Results analysis

The algorithms are compared in terms of their ABSQ. To provide an accurate com-
parison among these algorithms, the Wilcoxon’s test (Wilcoxon 1945) with 5 % level
of significance is conducted. The p value of the test has been used in order to show
the significance of the differences in results in each case. To make a fair comparison,
all parameters/coefficients for all algorithms are the ones taken from their original
versions (see Table 1), regardless of the random matrices they use.

In the first test, the proposed rotation matrices (both Rotm and RotmP) are compared
with two other methods, CoPSO-Rndm and WPSO. Table 3 shows the results of
applying these methods to eighteen 10-dimensional test functions. In order to have a
fair comparison among these methods, Rotm and RotmP are incorporated into CoPSO
and their results are compared with WPSO and CoPSO-Rndm (recall that WPSO
is an extension of CoPSO). Moreover, the value of σ is kept constant (σ = 2) as
WPSO used a constant value for σ . Also, the number of FEs was set to 200,000.
Each algorithm has been compared with the others based on the Wilcoxon’s test. The
result of an algorithm that is significantly better than the result of another algorithm
is indicated by the superscript letters R, P, N, or W for CoPSO-Rotm, CoPSO-RotmP,
CoPSO-Rndm, and WPSO, respectively.

The performance of CoPSO-Rotm is significantly better than CoPSO-RotmP in 10
functions while it is significantly worse in 8 functions. Thus, it seems it is slightly
beneficial to conduct rotation in all planes (Rotm) rather than only one plane (RotmP)
randomly. Hence, from here on, we only experiment with Rotm approach to test if it can
improve the performance of the other PSO variants. Also, CoPSO-Rotm is significantly
better than WPSO in 16 functions out of 18. This shows that the proposed Rotm offers
better performance compared to the exponential map approach proposed in Wilke
et al. (2007a,b). In addition, CoPSO-Rotm performs better than CoPSO-Rndm in 14
functions out of all 18. Thus, it is clear that the proposed Rotm is more effective than
other tested methods for generating random rotation matrices for PSO variants. Note
that, because the parameters of WPSO have been taken from the literature and they have
not been set for the used benchmark set, this comparison between different algorithms
has limited validity. In order to have a fair comparison, we have set all parameters for
both methods (rotation angle, acceleration coefficients, and inertia weight) to equal
values and the base methods are also identical.

123

An analysis of the velocity updating rule 439

Table 3 Results from comparison between CoPSO-Rotm (the CoPSO that uses the rotation matrices),
CoPSO-RotmP, WPSO, CoPSO-Rndm

Function CoPSO-Rotm CoPSO-RotmP WPSO CoPSO-Rndm

Non-rotated functions

f 1 12.01 0.1993CWN 11.9 9.93CW

f 2 3.55E−17PWN 9.68E−15 7.12E−15 8.39E−17PW

f 3 6.77E−15PWN 2.77E−14N 5.45E−14N 1.33E−13

f 4 19.12W 4.898CWN 21.04 19.28W

f 5 1.11E−16PWN 4.72E−16WN 2.91E−15N 8.21E−15

f 6 4.35E−195PWN 2.3E−181WN 3.75E−172N 3.87E−109W

f 7 0.13914PWN 0.4770WN 2.014 0.92W

f 8 1.19E−43WN 1.9E−132CWN 1.01E−42N 8.32E−18

f 9 13.07WN 2.952CWN 47.55 14.45W

Rotated functions

f 10 12.08N 0.1993CWN 11.71CN 17.6

f 11 8.88E−17PWN 1.81E−14 5.50E−15P 4.27E−15

f 12 5.06E−15PWN 3.36E−14 8.65E−14 9.25E−15PW

f 13 20.08WN 4.827CWN 21.46 22.27

f 14 1.31E−16PWN 4.22E−16WN 3.35E−15N 9.34E−15

f 15 8.92E−196PWN 1.2E−184WN 6.61E−172N 2.49E−131

f 16 0.1632PWN 0.2915W 1.457 0.2347

f 17 2.44E−44WN 8.3E−131CWN 4.90E−43N 1.66E−12

f 18 14.51W 5.61CWN 36.32 9.21CW

This test was done with 20 particles and 200,000 FEs. The values are ABSQ. Superscripts show that the
significance level (p value) of Wilcoxon’s test between the two methods was less than 0.05 (p < 0.05).
The best result among all three methods has been bolded

Several variants of PSO (Shi and Eberhart 1998a,b; Eberhart and Shi 2001; Clerc
and Kennedy 2002; van den Bergh and Engelbrecht 2002; Zheng et al. 2003; Pso 2006;
Nickabadi et al. 2011) were tested when they used random matrices (Rndm) or the
proposed rotation matrices (Rotm(σ) with σ taken from Fig. 6) in their velocity updat-
ing rule (Eq. 11). Note that in each test the only change incorporated into each method
was the replacement of the Rndm with Rotm while all other parameters (acceleration
coefficients, inertia weight, population size, etc) have been left untouched.

Table 4 shows the results of applying StdPSO2006 to 18 benchmark problems
(introduced in Table 2) in 10, 30, and 60 dimensions. The best results reported in Table 4
have been bolded. Those which were significantly better based on the Wilcoxon’s test
(p < 0.05) have also been marked by an asterisk. The StdPSO2006-Rotm performs
significantly better in 14 out of 18 10-dimensional problems. Moreover, the algorithms
perform almost the same for one problem (f9) and, for the 3 remaining problems (f4,
f13, and f18), StdPSO2006 performs better. On the other hand, the performance of
StdPSO2006-Rotm is significantly better than StdPSO2006 in all functions of 30 and

123

440 M. R. Bonyadi et al.

Table 4 Results of applying StdPSO2006 and StdPSO2006-Rotm to 18 benchmarks with a different number
of dimensions

Function 10 Dimensions 30 Dimensions 60 Dimensions

Rndm Rotm Rndm Rotm Rndm Rotm

Non-rotated functions

f 1 4.68E+00 2.99E+00* 3.39E+01 2.82E+01* 8.99E+02 6.00E+01*

f 2 7.174E−14 0* 2.46E−02 2.07E−06* 2.01E+01 1.85E−02*

f 3 1.426E−06 1.39E−09* 6.51E−01 5.56E−03* 9.82E+00 4.13E−01*

f 4 3.82E−03* 2.5E−01 9.47E+00 7.75E+00* 5.48E+01 2.74E+01*

f 5 3.42E−13 4.63E−18* 9.57E−02 6.39E−06* 6.26E+01 5.99E−02*

f 6 2.02E−11 1.55E−17* 9.57E+00 7.06E−04* 6.89E+03 6.50E+00*

f 7 8.16E−14 0* 7.91E−02 1.38E−02* 2.37E+01 2.82E−01*

f 8 3.15E+00 7.20E−07* 2.05E+04 5.51E+02* 1.56E+05 1.17E+04*

f 9 1.14E−04 9.15E−4 2.90E+03 1.31E−02* 2.85E+07 5.14E+01*

Average 8.71E−01 3.60E−01 2.60E+03 6.52E+01 1.65E+06 1.27E+03

Rotated functions

f 10 4.35E+00 3.30E+00* 3.20E+01 2.82E+01* 7.57E+02 6.15E+01*

f 11 4.40E−14 0* 2.72E−02 2.20E−06* 2.05E+01 1.99E−02*

f 12 1.46E−06 1.35E−09* 6.33E−01 5.83E−03* 1.01E+01 4.25E−01*

f 13 1.63E−02* 2.7E−01 1.83E+01 7.26E+00* 6.52E+01 2.77E+01*

f 14 1.87E−13 2.31E−18* 1.05E−01 7.65E−06* 6.68E+01 6.88E−02*

f 15 2.32E−11 2.13E−17* 1.31E+01 7.26E−04* 7.59E+03 6.68E+00*

f 16 1.25E−13 0* 7.77E−02 3.04E−02* 2.35E+01 3.63E−01*

f 17 6.3E−01 1.64E−06* 1.84E+04 5.55E+02* 1.64E+05 1.12E+04*

f 18 4.96E−07* 1.60E−3 6.18E+01 1.36E−02* 1.46E+07 5.61E+01*

Average 5.55E−01 3.98E−01 2.06E+03 6.56E+01 3.18E+06 1.32E+03

The columns specified by Rndm are the results when this algorithm uses random matrices while Rotm are
these results when this algorithm uses rotation matrices. The values are ABSQ. A Star shows the significance
level (p value) of Wilcoxon’s test was less than 0.05 (p < 0.05)

60 dimensions. This shows that the proposed rotation matrices are more effective for
the problems with a larger number of dimensions.

Additionally, the average of solutions (average row in Table 4) is quite different
for the rotated and non-rotated functions when the StdPSO2006 is used (36, 20 and
48 % differences for 10, 30, and 60 dimensional problems). However, these values
are very close to each other when the StdPSO2006-Rotm is used (9, 0.6, and 3.7 %
for 10, 30, and 60 dimensional problems, respectively). In fact, rotating the functions
has a small effect on the performance of the StdPSO2006-Rotm whereas this effect is
considerable when the StdPSO2006 is used. Finally, the averages of solutions for the
StdPSO2006-Rotm over 10, 30, and 60 dimensional non-rotated (rotated) functions
are 58 % (28 %), 97 % (96 %), and 99 % (99 %) better than that of the StdPSO2006,
respectively. The optimization curves for some of these functions using StdPSO2006
and StdPSO2006-Rotm are available in “Appendix II”.

123

An analysis of the velocity updating rule 441

Table 5 Results of applying CoPSO and CoPSO-Rotm to 18 benchmarks with different number of dimen-
sions

Function 10 Dimensions 30 Dimensions 60 Dimensions

Rndm Rotm Rndm Rotm Rndm Rotm

Non-rotated functions

f 1 3.52E+00 1.10E+00* 3.21E+01 2.76E+01* 1.70E+02 6.48E+01*

f 2 0 1.11E−16 3.83E−03 2.08E−08* 1.65E+00 2.22E−03*

f 3 1.91E−10 2.33E−11* 4.94E−02 5.55E−04* 3.27E+00 1.41E−01*

f 4 2.07E−01* 3.52E+00 7.75E+00* 2.13E+01 3.15E+01* 5.26E+01

f 5 2.66E−17* 7.98E−17 3.84E−04 8.95E−08* 4.31E+00 7.27E−03*

f 6 3.32E−19 3.69E−21* 4.55E−02 7.45E−06* 5.25E+02 7.74E−01*

f 7 0 4.44E−16 7.48E−01 3.62E−01* 9.61E+00 5.21E+00*

f 8 4.28E−06 2.47E−10* 1.59E+03 6.74E+01* 2.94E+04 6.87E+03*

f 9 1.47E−03* 5.18E−03 3.54E+00* 2.18E+01 5.46E+03 1.19E+02*

Average 4.14E−01 5.14E−01 1.81E+02 1.54E+01 3.96E+03 7.91E+02

Rotated functions

f 10 3.03E+00 1.07E+00* 2.92E+01 2.83E+01* 1.47E+02 6.48E+01*

f 11 0 5.55E−17 3.95E−04 2.32E−08* 1.48E+00 2.09E−03*

f 12 1.91E−10 2.46E−11* 5.86E−02 5.79E−04* 3.11E+00 1.34E−01*

f 13 1.96E+00* 3.32E+00 1.76E+01* 2.04E+01 5.25E+01 5.21E+01

f 14 3.70E−17* 8.67E−17 1.01E−03 8.79E−08* 5.67E+00 6.84E−03*

f 15 8.94E−19 5.66E−21* 7.82E−02 5.95E−06* 5.74E+02 7.33E−01*

f 16 0.00E+00* 8.28E−03 2.31E−01 5.49E−01 1.09E+01 4.24E+00*

f 17 1.06E−06 3.93E−10* 1.09E+03 7.02E+01* 5.56E+04 6.97E+03*

f 18 1.12E−03 1.03E−02 1.76E+01 2.04E+01 7.10E+03 1.19E+02*

Average 5.55E−01 4.90E−01 1.28E+02 1.55E+01 7.05E+03 8.01E+02

The columns specified by Rndm are the results when this algorithm uses random matrices while Rotm are
these results when this algorithm uses rotation matrices. The values are ABSQ. A Star shows that the p
value of Wilcoxon’s test was less than 0.05 (p < 0.05)

Table 5 reports the results of CoPSO when it uses random matrices versus rotation
matrices in its velocity updating rule.13 It is clear that CoPSO-Rotm performs signifi-
cantly better than CoPSO for 8 out of 18 functions in 10 dimensional space. Also, for
four functions (f2, f7, f11, and f18), the rotation matrices have no significant effect
on CoPSO and both algorithms work almost the same as one another. CoPSO-Rotm
performs worse than the CoPSO in terms of ABSQ in six functions. When it comes to
30 dimensional problems, the CoPSO-Rotm wins the challenge on 13 functions, and
only loses the race on three of them.

Finally, in 60 dimensional problems, the effect of the proposed rotation matrix is
more substantial and it makes CoPSO-Rotm significantly better than CoPSO in 16

13 Note that the maximum number of FE in this test (Table 5) is 10,000 which is different from the one in
Table 3, 200,000. Thus, the difference between the results in these two tables is expected.

123

442 M. R. Bonyadi et al.

Table 6 Results of applying AIWPSO and AIWPSO-Rotm to 18 benchmarks with different number of
dimensions

Function 10 Dimensions 30 Dimensions 60 Dimensions

Rndm Rotm Rndm Rotm Rndm Rotm

Non-rotated functions

f 1 9.56E−01 1.12E−01* 1.45E+01 8.11E+00* 4.55E+01 2.04E+01*

f 2 8.14E−16 9.25E−17* 1.29E−03 5.60E−14* 1.16E−01 1.17E−06*

f 3 1.20E−14 6.59E−15* 1.11E−01 7.46E−07* 6.57E−01 3.56E−03*

f 4 5.42E−01* 7.57E−01 3.56E+00* 5.14E+00 8.45E+00* 1.06E+01

f 5 1.05E−16 6.94E−17* 4.12E−03 2.01E−13* 2.61E−01 5.51E−06*

f 6 9.75E−33 1.44E−39* 3.85E−01 1.92E−11* 3.21E+01 5.08E−04*

f 7 1.20E−14 1.63E−15* 1.97E−02* 3.34E−02 1.54E−01* 3.56E−01

f 8 5.06E−02 3.61E−15* 1.34E+03 1.26E+01* 1.36E+04 2.44E+03*

f 9 2.53E−02 6.99E−03* 9.62E−01* 9.93E−01 1.33E+01 9.92E+00*

Average 1.75E−01 9.74E−02 1.51E+02 2.99E+00 1.53E+03 2.76E+02

Rotated functions

f 10 2.42E+00 2.13E+00* 2.59E+01* 2.78E+01 5.98E+01 5.81E+01*

f 11 1.55E−15 5.55E−17* 8.02E−04 7.47E−14* 9.91E−02 1.88E−06*

f 12 1.07E−14 7.66E−15* 1.01E−01 9.41E−07* 7.78E−01 3.39E−03*

f 13 1.09E+00 6.02E−01* 5.82E+00 5.19E+00* 1.45E+01 1.34E+01

f 14 4.29E−16 6.48E−17 1.76E−03 3.03E−13* 2.53E−01 6.87E−06*

f 15 1.24E−34 2.03E−39* 1.23E−01 1.60E−11* 4.80E+01 5.58E−04*

f 16 6.22E−15 5.92E−16* 4.59E−02* 7.86E−02 1.36E−01 1.19E−01*

f 17 3.14E−06 7.88E−17* 7.53E+01 4.48E+00* 2.89E+03 1.62E+03

f 18 4.77E−02 1.12E−02* 3.80E+00 1.45E+00* 1.64E+01 1.99E+01

Average 3.94E−01 3.04E−01 1.23E+01 4.33E+00 3.37E+02 1.91E+02

The columns specified by Rndm are the results when this algorithm uses random matrices while Rotm are
these results when this algorithm uses rotation matrices

functions and almost the same as CoPSO for the two remaining functions. In addition,
the table demonstrates that the performance of CoPSO-Rotm is not greatly affected
when the functions are rotated (4.6, 0.6, and 1.2 % for 10, 30, and 60 dimension
problems, respectively). However, this is not the case for CoPSO and the performance
of the algorithm is significantly affected when the functions are rotated (25.4, 29.2,
and 43.8 % worse for 10, 30, and 60 dimensional problems). Although the average of
solutions found by CoPSO-Rotm for all 10 dimensional problems was 3 % worse than
that of CoPSO, it was 90 % better than that of CoPSO in the 30 dimensional problems
and 85 % better for the 60 dimensional problems, thereby showing that the proposed
random rotation has improved the overall performance of CoPSO. The convergence
curves for some of these functions using CoPSO and CoPSO-Rotm are available in
“Appendix II”.

Table 6 shows the results of applying the proposed random rotations (Rotm) to
AIWPSO. It is clear that the proposed rotation matrix has improved the performance

123

An analysis of the velocity updating rule 443

of the method for 16 functions in 10 dimensional problems, but only in one case the
performance was reduced. Also, in the 30 and 60 dimensional functions, the perfor-
mance of the algorithm is significantly better for 13 functions. In AIWPSO-Rotm,
the average of solutions has been less affected when the function’s space is rotated
(43 % affected for 10, 30, and 60 dimensional problems on average in comparison to
75 % for AIWPSO). The average improvement over all the 10, 30, and 60 dimensional
problems was 29.4, 95.5 and 75 %, respectively. The convergence curves for some of
these functions using AIWPSO and AIWPSO-Rotm are available in “Appendix II”.

In Decreasing-IW method the proposed rotation matrix has improved the perfor-
mance of the algorithm by 17, 89.5 and 99 % for 10, 30, and 60 dimensional prob-
lems, respectively (Table 7). In Increasing-IW (Stochastic-IW) method, although the
proposed rotation causes 11 % (7.7 %) impairment in 10 dimensional problems, it
offers 92.8 % (90.6 %) and 98.8 % (92 %) improvement for the 30 and 60 dimensional
problems, respectively. In GCPSO, the percentage of improvement in 10, 30, and 60
dimensional problems were 14, 10, and 36 %, respectively.

Results indicate that the proposed Euclidean rotation can improve the performance
of different PSO methods. Figure 8 shows the convergence curve of several PSO
variants when they use Rndm or Rotm to optimize the function f1 in 10D and 60D.

Figure 8 shows that if Rndm is used in the algorithms, the improvement of the
objective value slows down towards the end of the optimization. However, this is not
the case if Rotm is used in the same algorithm in the tested cases. It seems that towards
the end of the optimization the swarm does not have sufficient diversity to exploit
better solutions. However, it seems that when Rotm is used, the swarm is still diverse
enough to exploit better solutions. This was actually expected as towards the end of
the optimization, the particles are closer to each other and the velocity vectors become
smaller. Thus, the probability of having the PI and SI closer to one of the axes is higher,
which, based on the second identified issue discussed in Sect. 3, results in ineffective
exploitation and causes impairment in the performance of the algorithm. However,
when Rotm is used, this issue does not exist and particles are still diverse enough to
find better solutions.

In the last test, the proposed adaptive approach for σ as well as the ability of the
algorithm to deal with the problems with shifted optima is examined (the optimal
point is not in the center of the coordinate). In these test functions, the locations of the
optimal solutions of all test functions have been shifted by a vector o (see Sect. 5.1).
Two PSO variants (StdPSO 2006, AIWPSO) were selected to run on these benchmarks
when they use Rndm (their original version), Rotm with a static approach for σ , or Rotm
with the adaptive approach. They were applied to each test case 100 times and their
results are reported. Also, each algorithm was run for 10,000 FEs with 20 particles.
The listed problems are in 10-dimensional space. Table 8 shows the results.

The results presented in Table refTab8 indicate that the proposed adaptive approach
has improved the ability of the StdPSO2006-Rotm (compared to the static approach)
in 13 functions out of 18 (in 7 functions the improvement was significant). This
improvement takes place in 10 functions for the AIWPSO-Rotm (in four functions the
improvements were significant). The results reported in the table also indicate that the
proposed Rotm approach has improved the performance of the methods for dealing
with the problems in which the location of global optima is not located in the center

123

444 M. R. Bonyadi et al.

Ta
bl

e
7

R
es

ul
ts

of
co

m
pa

ri
ng

th
re

e
al

go
ri

th
m

s
de

cr
ea

si
ng

-I
W

,i
nc

re
as

in
g-

IW
,s

to
ch

as
tic

-I
W

,a
nd

G
C

PS
O

w
he

n
th

ey
us

e
ra

nd
om

or
ro

ta
tio

n
m

at
ri

ce
s

R
ep

or
t

ty
pe

N
um

be
r

of
di

m
en

-
si

on
s

Sp
ac

e
ro

ta
tio

n*
D

ec
re

as
in

g-
IW

D
ec

re
as

in
g-

IW
-R

ot
m

In
cr

ea
si

ng
-

IW
In

cr
ea

si
ng

-
IW

-R
ot

m
St

oc
ha

st
ic

-I
W

St
oc

ha
st

ic
-

IW
-R

ot
m

G
C

PS
O

G
C

PS
O

-
R

ot
m

A
ve

ra
ge

s
of

A
B

SQ
s

ov
er

al
l

fu
nc

tio
ns

10
N

6.
39

E
−0

1
6.

30
E

−0
1

6.
97

E
−0

1
9.

67
E
−0

1
4.

91
E

−0
1

5.
50

E
−0

1
4.

84
E
−1

4.
31

E
−1

Y
8.

86
E
−0

1
6.

26
E

−0
1

9.
77

E
−0

1
9.

26
E

−0
1

7.
01

E
−0

1
5.

50
E

−0
1

6.
58

E
−1

5.
50

E
−1

30
N

1.
01

E
+

03
9.

58
E

+0
1

1.
07

E
+

03
6.

95
E

+0
1

2.
88

E
+

02
2.

70
E

+0
1

1.
81

E
+

2
1.

54
E

+2

Y
7.

58
E

+
02

8.
96

E
+0

1
8.

09
E

+
02

6.
76

E
+0

1
2.

75
E

+
02

2.
58

E
+0

1
1.

22
E

+
2

1.
18

E
+2

60
N

2.
75

E
+

05
1.

61
E

+0
3

1.
13

E
+

04
8.

01
E

+0
2

1.
13

E
+

04
8.

01
E

+0
2

3.
55

E
+

3
3.

22
E

+3

Y
7.

05
E

+
04

1.
60

E
+0

3
1.

36
E

+
05

9.
80

E
+0

2
8.

67
E

+
03

7.
81

E
+0

2
8.

42
E

+
3

4.
49

E
+3

Si
gn

ifi
ca

nt
ly

be
tte

r
A

B
SQ

10
N

2
7

3
6

2
6

0
3

Y
2

7
3

6
1

6
0

3

30
N

2
7

2
7

2
5

0
3

Y
3

6
2

6
2

6
1

3

60
N

1
7

2
7

2
7

1
5

Y
0

9
0

8
1

7
1

3

T
he

re
su

lts
ar

e
th

e
av

er
ag

es
ov

er
9

fu
nc

tio
ns

in
ea

ch
gr

ou
p

(1
0,

30
,a

nd
60

di
m

en
si

on
al

no
n-

ro
ta

te
d,

an
d

10
,3

0,
an

d
60

di
m

en
si

on
al

ro
ta

te
d)

.I
n

th
e

co
lu

m
n

“S
pa

ce
ro

ta
tio

n”
,

‘N
’

m
ea

ns
no

n-
ro

ta
te

d
an

d
‘Y

’
m

ea
ns

ro
ta

te
d

fu
nc

tio
n

123

An analysis of the velocity updating rule 445

0 50 100 150 200 250 300 350 400 450 500
10

-2

10
-1

10
0

10
1

10
2

10
3

Iteration

A
ve

ra
ge

 o
f o

bj
ec

tiv
e

va
lu

es
Function name: Rosenbrock (f

1
) Function name: Rosenbrock (f

1
)

StPSO2006
Rndm

StPSO2006
Rotm

CoPSO
Rndm

CoPSO
Rotm

AIWPSO
Rndm

AIWPSO
Rotm

0 50 100 150 200 250 300 350 400 450 500
10

1

10
2

10
3

10
4

10
5

Iteration

A
ve

ra
ge

 o
f o

bj
ec

tiv
e

va
lu

es

StPSO2006
Rndm

StPSO2006
Rotm

CoPSO
Rndm

CoPSO
Rotm

AIWPSO
Rndm

AIWPSO
Rotm

(a) (b)

Fig. 8 Convergence curve for several PSO-based methods when they used Rotm or Rnmd and they are
applied to a Rosenbrock (f1) 10D, b Rosenbrock (f1) 60D. The convergence curve for some other
functions can be found in “Appendix II”

Table 8 Comparative results between StdPSO2006-Rotm and AIWPSO-Rotm, when they use the adaptive
approach or static value for σ

Function
name

StdPSO2006-
Rndm

StdPSO 2006-Rotm AIWPSO-Rndm AIWPSO-Rotm

Static σ Adaptive σ Static σ Adaptive σ

f 1 5.73E+00 2.21E+00RA 3.95E+00R 8.99E−01 1.27E−01R 1.07E−01R

f 2 6.194E−12 0R 0R 9.19E−16 3.41E−17R 5.36E−19RS

f 3 1.521E−05 8.99E−09R 1.03E−09RS 5.33E−14 3.18E−15R 4.19E−15R

f 4 9.12E−03SA 1.15E−01 2.15E−01 2.71E−01S 7.52E−01 3.52E−01S

f 5 5.33E−13 5.13E−18R 6.19E−18R 2.19E−16 5.31E−17R 4.72E−17R

f 6 7.12E−11 3.51E−17R 8.15E−18RS 7.75E−34 5.92E−40R 5.55E−43RS

f 7 9.83E−14 0R 0R 3.49E−14 2.57E−15RA 9.42E−15R

f 8 6.19E+00 5.29E−07R 1.01E−07RS 4.97E−02 2.58E−15R 1.94E−15R

f 9 1.14E−04 3.86E−4 1.87E−5RS 3.28E−02 7.01E−03R 7.08E−03R

f 10 4.39E+00 3.10E+00R 2.05E+00RS 3.51E+00 1.19E+00R 1.35E+00R

f 11 3.22E−14 0R 0R 2.75E−15 4.39E−17R 4.37E−18RS

f 12 5.49E−06 2.18E−09R 8.77E−10RS 1.91E−14 4.72E−15R 2.99E−15R

f 13 1.71E−02SA 3.8E−01 3.77E−01 1.33E+00 5.76E−01R 1.39E−02RS

f 14 3.59E−13 1.33E−18R 2.13E−18R 1.69E−16 5.39E−17 1.28E−17R

f 15 1.72E−11 1.17E−17R 1.01E−17R 2.98E−34 1.33E−39R 2.37E−39R

f 16 3.55E−13 0R 0R 5.04E−15 2.67E−16RA 7.97E−16R

f 17 5.29E−01 2.94E−06R 5.95E−07RS 7.19E−06 3.21E−17R 4.01E−17R

f 18 5.26E−07SA 2.95E−3 3.15E−4R 5.63E−02 2.22E−02R 3.53E−02R

The values are the ABSQ. A Star shows that the significance level (p value) of Wilcoxon’s test between static
and adaptive approach was less than 0.05 (p < 0.05). Also, the superscript s shows that the significance
level between Rndm and Rotm with static σ is less than 0.05

123

446 M. R. Bonyadi et al.

of the coordinate. In fact, the StdPSO2006-Rotm with static σ performed significantly
better than its original version in 14 functions over all 18 listed when the optimum
solution is not in the center of the coordinates. Also, the AIWPSO-Rotm performed
significantly better (on average) than their original versions in optimizing 16 functions
over all 18 functions.

6 Conclusion and future work

The velocity updating rule of PSO (with the use of randomly generated diagonal matri-
ces) can drastically impact the direction and length of generated vectors. This impact
can be different for different vectors and, despite calculability, it is not controllable.
Additional side-effects of multiplying personal and global best vectors by two random
diagonal matrices were identified in this paper. These are: delay in convergence and
attraction to inappropriate directions, dissimilar direction changes in different vec-
tors, and limitation in particles’ movement in the search space. In order to overcome
these problems, the usage of Euclidean rotation matrices with random direction (gen-
erated by a normal distribution) rather than random diagonal matrices was suggested.
According to the presented results, the proposed approach addressed these problems
effectively. Also, as the Euclidean rotation preserves the length of the vectors and only
affects their directions, it makes it easier to control the effects of randomness applied
by the random matrices on the direction of the vectors. The parameters of the normal
distribution (i.e. mean and variance σ) for the rotation direction were analyzed in detail
through some experiments. A tuning procedure and an adaptive approach (Eiben et al.
1999) were considered for setting the value of the parameter σ . In the empirical analysis
presented in this paper, the new approach was adjoined to seven variants of PSO and
the performance was put under evaluation using 18 standard benchmark functions.
Experiments showed that the proposed approach significantly improved the perfor-
mance of these PSO variants. Although designing a rotation invariant PSO,(which is
one of the challenges involved in the algorithm (Hansen et al. 2008)) was not the aim
of this study, experiments suggested that the proposed approach helps the algorithm
to be rotation invariant, as theoretically investigated in Wilke (2005). The presented
approach (usage of random rotation matrices) is just one of many possible approaches
that can be used for dealing with the identified problems. As an example, one possibil-
ity would be to perform all calculations for optimization in the hyper-spherical space
(rather than Cartesian space) thereby making rotation calculations much easier. Also,
the proposed rotation approach involved rotating the vectors in all possible planes,
which is computationally expensive. An alternative approach was presented in this
paper (called RotmP), in which only one of the planes was selected randomly and
rotation was applied only to that plane. Although results showed that rotation in all
possible planes is slightly beneficial, there is still a tradeoff between computational
expenses and the quality of solutions. Thus, it is worthwhile to investigate RotmP
in more detail and to apply that to large scale optimization problems. According to
the experiments presented in this paper, it seems that one of the PSO variants (called
AIWPSO) gains more benefit from the usage of rotation matrices. The reason behind
this phenomenon is not clear; it might be related to the interactions of different com-

123

An analysis of the velocity updating rule 447

ponents or parameters of the algorithm. Hence, it is worthwhile to investigate this
effect on different methods and to provide reasons as to why some methods are more
and some are less compatible with rotation matrices. Moreover, it would be of great
interest to evaluate the proposed approach in dynamic environments. We plan to apply
the proposed velocity update equation to a set of dynamic test functions in a systematic
way to understand the merits of the proposed approach in such environments.

Acknowledgments The authors would like to extend their great appreciation to the associate editor
and anonymous reviewers for constructive comments that have helped us to improve the quality of the
paper. Also, the authors extend thanks to Dr. Frank Neumann, Dr. Andrew Sutton, and Dr. Michael Kirley
who provided us with excellent comments. This work was partially funded by the ARC Discovery Grants
DP0985723, DP1096053, and DP130104395, as well as by Grant N N519 5788038 from the Polish Ministry
of Science and Higher Education (MNiSW).

7 Appendix I

Appendix I provides the formula for all used benchmark functions. The variable pd
represents the number of dimensions.

f 1: Rosenbrock’s function

f (x) =
pd−1
∑

i=1

(100(xi+1 − x2
i)2 + (xi − 1)2)

f 2: Rastrigin’s function

f (x) =
pd
∑

i=1

(x2
i − 10 cos(2πxi) + 10)

f 3: Ackley’s function

f (x) = 20 + e − 20e−0.2

√

∑pd
i=1 x2

i
pd − e

∑pd
i=1 cos(2πxi)

pd

f 4: Weierstrass function

f (x) = ∑pd
i=1 (

∑k max
k=0 [ak cos(2πbk(xi + 0.5))])

−pd
∑k max

k=0 [ak cos(2πbk0.5)],
wherea = 0.5, b = 0.3, k max = 20

f 5: Griewank function

f (x) = 1 +
∑pd

i=1 (xi − 100)2

4000
−

pd
∏

i=1

cos(
xi − 100√

i
)

123

448 M. R. Bonyadi et al.

f 6: Sphere function

f (x) =
pd
∑

i=1

x2
i

f 7: Non-continuous Rastrigin’s function

f (x) = ∑pd
i=1 (y2

i − 10 cos(2πyi) + 10)

yi =
{

xi |xi | < 1
2

round(2xi)
2 |xi | ≥ 1

2
, i = 1, 2, . . . , pd

f 8: Quadratic function

f (x) =
pd
∑

i=1

⎛

⎝

i
∑

j=1

x j

⎞

⎠

2

f 9: Generalized penalized function

f (x) = 0.1

{

sin2(3πx1) + ∑pd−1
i=1 (xi − 1)2[1 + sin2(3πxi+1)]+

(x pd − 1)2[1 + sin2(2πx pd)]
}

+
pd
∑

i=1

u(xi , 5, 100, 4)

where

u(xi a, k, m) =
⎧

⎨

⎩

k(xi − a)m xi > a
0 −a ≤ xi ≤ a
k(−xi − a)m xi < a

8 Appendix II

Appendix II displays optimization curves for some of the benchmark functions
(f1, f2, f3, f5, f6, f8) using theStdPSO2006, theStdPSO2006-Rotm,the CoPSO, the
CoPSO-Rotm, the AIWPSO, and the AIWPSO-Rotm in 10, 30, and 60 dimensional
spaces.

123

An analysis of the velocity updating rule 449

10D Rosenbrock 10D Rastrigin 10D Ackely

10D Griewank 10D Sphere 10D Hyper-Ellipsoid

30D Rosenbrock 30D Rastrigin 30D Ackely

30D Griewank 30D Sphere 30D Hyper-Ellipsoid

0 50 100 150 200 250 300 350 400 450 500
10

-2

10
-1

10
0

10
1

10
2

10
3

Iteration

A
ve

ra
ge

 o
f o

bj
ec

tiv
e

va
lu

es

Function name: Rosenbrock (f1)

StPSO2006
Rndm

StPSO2006
Rotm

CoPSO
Rndm

CoPSO
Rotm

AIWPSO
Rndm

AIWPSO
Rotm

0 50 100 150 200 250 300 350 400 450 500
10

-20

10
-15

10
-10

10
-5

10
0

10
5

Iteration

A
ve

ra
ge

 o
f o

bj
ec

tiv
e

va
lu

es

Function name: Rastrigin (f2)

StPSO2006
Rndm

StPSO2006
Rotm

CoPSO
Rndm

CoPSO
Rotm

AIWPSO
Rndm

AIWPSO
Rotm

0 50 100 150 200 250 300 350 400 450 500
10

-15

10
-10

10
-5

10
0

10
5

Iteration

A
ve

ra
ge

 o
f o

bj
ec

tiv
e

va
lu

es

Function name: Ackley (f3)

StPSO2006
Rndm

StPSO2006
Rotm

CoPSO
Rndm

CoPSO
Rotm

AIWPSO
Rndm

AIWPSO
Rotm

0 50 100 150 200 250 300 350 400 450 500
10

-20

10
-15

10
-10

10
-5

10
0

10
5

Iteration

A
ve

ra
ge

 o
f o

bj
ec

tiv
e

va
lu

es

Function name: Griewangk (f5)

StPSO2006
Rndm

StPSO2006
Rotm

CoPSO
Rndm

CoPSO
Rotm

AIWPSO
Rndm

AIWPSO
Rotm

0 50 100 150 200 250 300 350 400 450 500
10

-40

10
-30

10
-20

10
-10

10
0

10
10

Iteration

A
ve

ra
ge

 o
f o

bj
ec

tiv
e

va
lu

es

Function name: Sphere (f6)

StPSO2006
Rndm

StPSO2006
Rotm

CoPSO
Rndm

CoPSO
Rotm

AIWPSO
Rndm

AIWPSO
Rotm

0 50 100 150 200 250 300 350 400 450 500
10

-20

10
-15

10
-10

10
-5

10
0

10
5

Iteration

A
ve

ra
ge

 o
f o

bj
ec

tiv
e

va
lu

es

Function name: Rotated Hyper-Ellipsoid (f8)

StPSO2006
Rndm

StPSO2006
Rotm

CoPSO
Rndm

CoPSO
Rotm

AIWPSO
Rndm

AIWPSO
Rotm

0 50 100 150 200 250 300 350 400 450 500
10

0

10
1

10
2

10
3

10
4

Iteration

A
ve

ra
ge

 o
f o

bj
ec

tiv
e

va
lu

es

Function name: Rosenbrock (f1)

StPSO2006
Rndm

StPSO2006
Rotm

CoPSO
Rndm

CoPSO
Rotm

AIWPSO
Rndm

AIWPSO
Rotm

0 50 100 150 200 250 300 350 400 450 500
10

-15

10
-10

10
-5

10
0

10
5

Iteration

A
ve

ra
ge

 o
f o

bj
ec

tiv
e

va
lu

es

Function name: Rastrigin (f2)

StPSO2006
Rndm

StPSO2006
Rotm

CoPSO
Rndm

CoPSO
Rotm

AIWPSO
Rndm

AIWPSO
Rotm

0 50 100 150 200 250 300 350 400 450 500
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Iteration

A
ve

ra
ge

 o
f o

bj
ec

tiv
e

va
lu

es

Function name: Ackley (f3)

StPSO2006
Rndm

StPSO2006
Rotm

CoPSO
Rndm

CoPSO
Rotm

AIWPSO
Rndm

AIWPSO
Rotm

0 50 100 150 200 250 300 350 400 450 500
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

Iteration

A
ve

ra
ge

 o
f o

bj
ec

tiv
e

va
lu

es

Function name: Griewangk (f5)

StPSO2006
Rndm

StPSO2006
Rotm

CoPSO
Rndm

CoPSO
Rotm

AIWPSO
Rndm

AIWPSO
Rotm

0 50 100 150 200 250 300 350 400 450 500
10

-15

10
-10

10
-5

10
0

10
5

Iteration

A
ve

ra
ge

 o
f o

bj
ec

tiv
e

va
lu

es

Function name: Sphere (f6)

StPSO2006
Rndm

StPSO2006
Rotm

CoPSO
Rndm

CoPSO
Rotm

AIWPSO
Rndm

AIWPSO
Rotm

0 50 100 150 200 250 300 350 400 450 500
10

1

10
2

10
3

10
4

10
5

10
6

Iteration

A
ve

ra
ge

 o
f o

bj
ec

tiv
e

va
lu

es

Function name: Rotated Hyper-Ellipsoid (f8)

StPSO2006
Rndm

StPSO2006
Rotm

CoPSO
Rndm

CoPSO
Rotm

AIWPSO
Rndm

AIWPSO
Rotm

60D Rosenbrock 60D Rastrigin 60D Ackely

60D Griewank 60D Sphere 60D Hyper-Ellipsoid

0 50 100 150 200 250 300 350 400 450 500
10

1

10
2

10
3

10
4

10
5

Iteration

A
ve

ra
ge

 o
f o

bj
ec

tiv
e

va
lu

es

Function name: Rosenbrock (f1)

StPSO2006
Rndm

StPSO2006
Rotm

CoPSO
Rndm

CoPSO
Rotm

AIWPSO
Rndm

AIWPSO
Rotm

0 50 100 150 200 250 300 350 400 450 500
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Iteration

A
ve

ra
ge

 o
f o

bj
ec

tiv
e

va
lu

es

Function name: Rastrigin (f2)

StPSO2006
Rndm

StPSO2006
Rotm

CoPSO
Rndm

CoPSO
Rotm

AIWPSO
Rndm

AIWPSO
Rotm

0 50 100 150 200 250 300 350 400 450 500
10

-3

10
-2

10
-1

10
0

10
1

10
2

Iteration

A
ve

ra
ge

 o
f o

bj
ec

tiv
e

va
lu

es

Function name: Ackley (f3)

StPSO2006
Rndm

StPSO2006
Rotm

CoPSO
Rndm

CoPSO
Rotm

AIWPSO
Rndm

AIWPSO
Rotm

0 50 100 150 200 250 300 350 400 450 500
10

-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Iteration

A
ve

ra
ge

 o
f o

bj
ec

tiv
e

va
lu

es

Function name: Griewangk (f5)

StPSO2006
Rndm

StPSO2006
Rotm

CoPSO
Rndm

CoPSO
Rotm

AIWPSO
Rndm

AIWPSO
Rotm

0 50 100 150 200 250 300 350 400 450 500
10

-4

10
-2

10
0

10
2

10
4

10
6

Iteration

A
ve

ra
ge

 o
f o

bj
ec

tiv
e

va
lu

es

Function name: Sphere (f6)

StPSO2006
Rndm

StPSO2006
Rotm

CoPSO
Rndm

CoPSO
Rotm

AIWPSO
Rndm

AIWPSO
Rotm

0 50 100 150 200 250 300 350 400 450 500
10

3

10
4

10
5

10
6

Iteration

A
ve

ra
ge

 o
f o

bj
ec

tiv
e

va
lu

es

Function name: Rotated Hyper-Ellipsoid (f8)

StPSO2006
Rndm

StPSO2006
Rotm

CoPSO
Rndm

CoPSO
Rotm

AIWPSO
Rndm

AIWPSO
Rotm

123

450 M. R. Bonyadi et al.

9 Appendix III

Appendix III presents the implementation details for calculating Rotm(σ) as given in
Eq. (10). Assume we need to multiply d-dimensional vector v by Rotm(σ). According
to Eq. (10), we have:

v × Rotm (σ) = v × Rot1,2
(

α1,2
) × Rot1,3

(

α1,3
) × · · · × Rotd−1,d

(

αd−1,d
)

The number of matrices on the right side of the equation is d(d − 1)/2. However,
according to Eq. (10), each matrix Roti, j

(

αi, j
)

only contains 4 non-zero values that
are in (i , i), (i , j), (j , i), and (j , j) positions of Rot. Consequently, multiplying v by
Rot can be performed as follows:

vk × Roti, j
(

αi, j
) =

⎧

⎨

⎩

vk Roti,i
(

αi,i
) + v j Rot j,i

(

α j,i
)

i f k = i
vk Rot j, j

(

α j, j
) + vi Roti, j

(

α j,i
)

i f k = j
vk otherwise

Clearly, multiplication of vk and Roti, j
(

αi, j
)

can be done in O(1). Also, this multipli-
cation alters only two indexes in v. This formulation can be repeatedly applied to v for
different matrices Rot j,i

(

α j,i
)

. Because the number of these matrices is d(d − 1)/2
and the multiplication is in O(1), this multiplication is done in O(d2).

References

Chen, D.B., Zhao, C.X.: Particle swarm optimization with adaptive population size and its application.
Appl. Soft Comput. 9(1), 39–48 (2009)

Chow, T.L.: Mathematical Methods for Physicists: A Concise Introduction. Cambridge University Press,
Cambridge (2000)

Clerc, M.: (2006) Particle Swarm Optimization. Wiley, New York
Clerc, M., Kennedy, J.: The particle swarm—explosion, stability, and convergence in a multidimensional

complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)
de Oca, M.A.M., Stutzle, T., Birattari, M., Dorigo, M.: Frankenstein’s PSO: a composite particle swarm

optimization algorithm. IEEE Trans. Evol. Comput. 13(5), 1120–1132 (2009)
Duffin, K.L., Barrett, W.A.: Spiders: a new user interface for rotation and visualization of n-dimensional

point sets. In: Proceedings of the Conference on Visualization, IEEE Computer Society Press, Los
Alamitos, CA (1994)

Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: International Symposium on
Micro Machine and Human Science, IEEE (1995)

Eberhart, R.C., Shi, Y.: Tracking and optimizing dynamic systems with particle swarms. In: Proceedings
IEEE Congress Evolutionary Computation, IEEE (2001)

Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans.
Evol. Comput. 3(2), 124–141 (1999)

Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley, Hoboken (2005)
Ghosh, S., Das, S., Kundu, D., Suresh, K., Panigrahi, B.K., Cui, Z.: An inertia-adaptive particle swarm

system with particle mobility factor for improved global optimization. Neural Comput. Appl. 21(2),
237–250 (2010)

Hansen, N., Ros, R., Mauny, N., Schoenausr, M, Auger, A.: PSO facing non-separable and ill-conditioned
problems. In: INRIA (2008)

Helwig, S., Wanka, R.: Particle swarm optimization in high-dimensional bounded search spaces. In: Swarm
Intelligence Symposium, IEEE (2007)

123

An analysis of the velocity updating rule 451

Helwig, S., Branke, J., Mostaghim, S.: Experimental analysis of bound handling techniques in particle
swarm optimization. IEEE Trans. Evol. Comput. 17(2), 259–271 (2013)

Hsieh, S.T., Sun, T.Y., Liu, C.C., Tsai, S.J.: Efficient population utilization strategy for particle swarm
optimizer. IEEE Trans. Syst. Man Cybern. Part B-Cybern. 39(2), 444–456 (2009)

Huang, H., Qin, H., Hao, Z., Lim, A.: Example-based learning particle swarm optimization for continuous
optimization. Inf. Sci. (2010)

Jiang, M., Luo, Y.P., Yang, S.Y.: Stochastic convergence analysis and parameter selection of the standard
particle swarm optimization algorithm. Inf. Process. Lett. 102(1), 8–16 (2007)

Kennedy, J., Eberhart, R.: Particle swarm optimization. In: International Conference on Neural Networks,
IEEE (1995)

Krohling, R.A.: Gaussian Swarm: A Novel Particle Swarm Optimization Algorithm. IEEE (2004)
Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for

global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)
Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe better. IEEE Trans.

Evol. Comput. 8(3), 204–210 (2004)
Nickabadi, A., Ebadzadeh, M.M., Safabakhsh, R.: A novel particle swarm optimization algorithm with

adaptive inertia weight. Appl. Soft Comput. 11(4), 3658–3670 (2011)
Poli, R.: Analysis of the publications on the applications of particle swarm optimisation. J. Artif. Evol.

Appl. 1–10 (2008)
Poli, R.: Mean and variance of the sampling distribution of particle swarm optimizers during stagnation.

IEEE Trans. Evol. Comput. 13(4), 712–721 (2009)
Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization an overview. Swarm Intell. 1(1), 33–57

(2007)
Pso, I.: PSO Source Code. http://particleswarm.info/Standard_PSO_2006.c (2006)
Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing hierarchical particle swarm optimizer

with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8(3), 240–255 (2004)
Salomon, R.: Reevaluating genetic algorithm performance under coordinate rotation of benchmark

functions—a survey of some theoretical and practical aspects of genetic algorithms. BioSystems 39,
263–278 (1995)

Secrest, B.R., Lamont, G.B.: Visualizing particle swarm optimization-Gaussian particle swarm optimiza-
tion. In: Swarm Intelligence Symposium, IEEE (2003)

Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: World Congress on Computational Intelli-
gence, IEEE (1998a)

Shi, Y., Eberhart, R.: Parameter Selection in Particle Swarm Optimization. Evolutionary Programming VII.
Springer, Berlin (1998b)

Spears, W.M., Green, D.T., Spears, D.F.: Biases in particle swarm optimization. Int. J. Swarm Intell. Res.
1(2), 34–57 (2010)

Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y., Auger, A., Tiwari, S.: Problem definitions and
evaluation criteria for the CEC 2005 special session on real-parameter optimization. In: KanGAL Report
(2005)

Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf.
Process. Lett. 85(6), 317–325 (2003)

Tu, Z., Lu, Y.: A robust stochastic genetic algorithm (StGA) for global numerical optimization. IEEE Trans.
Evol. Comput. 8(5), 456–470 (2004)

van den Bergh, F., Engelbrecht, A.: A new locally convergent particle swarm optimiser. In: Systems, Man
and Cybernetics, Hammamet, Tunisia, IEEE (2002)

Van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization particle trajectories. Inf. Sci.
176(8), 937–971 (2006)

Van den Bergh, F., Engelbrecht, A.P.: A convergence proof for the particle swarm optimiser. Fundamenta
Informaticae 105(4), 341–374 (2010)

Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., Tian, Q.: Self-adaptive learning based particle swarm
optimization. Inf. Sci. 181(20), 4515–4538 (2011)

Wilcoxon, F.: Individual comparisons by ranking methods. Biometr. Bull. 1(6), 80–83 (1945)
Wilke, D.: Analysis of the Particle Swarm Optimization Algorithm. Master Thesis, University of Pretoria

(2005)
Wilke, D.N., Kok, S., Groenwold, A.A.: Comparison of linear and classical velocity update rules in particle

swarm optimization: notes on diversity. Int. J. Numer. Methods Eng. 70(8), 962–984 (2007a)

123

http://particleswarm.info/Standard_PSO_2006.c

452 M. R. Bonyadi et al.

Wilke, D.N., Kok, S., Groenwold, A.A.: Comparison of linear and classical velocity update rules in particle
swarm optimization: notes on scale and frame invariance. Int. J. Numer. Methods Eng. 70(8), 985–1008
(2007b)

Xinchao, Z.: A perturbed particle swarm algorithm for numerical optimization. Appl. Soft Comput. 10(1),
119–124 (2010)

Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102
(1999)

Zhang, L.-P., Yu, H.-J., Hu, S.-X.: Optimal choice of parameters for particle swarm optimization. J. Zhejiang
Univ. Sci. 6A(6), 528–534 (2005)

Zheng, Y., Ma, L., Zhang, L., Qian, J.: Empirical study of particle swarm optimizer with an increasing
inertia weight. In: Congress on Evolutionary Computation, IEEE (2003)

123

	An analysis of the velocity updating rule of the particle swarm optimization algorithm
	Abstract
	1 Introduction
	2 Background
	2.1 Basics of PSO
	2.2 PSO variants
	2.3 Investigation of random matrices

	3 Effects of random matrices on vectors
	4 Proposed approach
	5 Experimental results
	5.1 Experimental setup
	5.2 Test functions
	5.3 Parameter setting
	5.4 Results analysis

	6 Conclusion and future work
	Acknowledgments
	7 Appendix I
	8 Appendix II
	9 Appendix III
	References

