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Abstract In this paper, we study the multiobjective version of the set covering prob-
lem. To our knowledge, this problem has only been addressed in two papers before,
and with two objectives and heuristic methods. We propose a new heuristic, based on
the two-phase Pareto local search, with the aim of generating a good approximation of
the Pareto efficient solutions. In the first phase of this method, the supported efficient
solutions or a good approximation of these solutions is generated. Then, a neighbor-
hood embedded in the Pareto local search is applied to generate non-supported efficient
solutions. In order to get high quality results, two elaborate local search techniques
are considered: a large neighborhood search and a variable neighborhood search. We
intensively study the parameters of these two techniques. We compare our results with
state-of-the-art results and we show that with our method, better results are obtained
for different indicators.
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1 Introduction

Since the 70s, multiobjective optimization (MO) became an important field of opera-
tions research. In many real applications, there exist effectively more than one objective
to be taken into account to evaluate the quality of the feasible solutions.

It is first the problems with continuous variables that called the attention of the
researchers [see the book of Steuer (1986) for multiobjective linear programming
(MOLP) problems and of Miettinen (1999) for multiobjective non-linear program-
ming (MONLP) problems]. However it is well-known that discrete variables are often
unavoidable in the modeling of many applications and multiobjective combinator-
ial optimization (MOCO) problems have been considered afterwards (Ehrgott and
Gandibleux 2002). MOCO problems are generally defined as follows:

“ min ” z(x) = (z1(x), . . . , zl(x), . . . , z p(x)) (MOCO)
s.t. x ∈ X = D ∩ {0, 1}n

where D is a specific polytope characterizing the particular CO problem, n is the
number of variables, zk(x) : X → R represents the kth objective function and X is
the set of feasible solutions. We will denote by Z = {z(x) : x ∈ X } ⊂ R

p the image
of X in the objective space.

Due to the typically conflictive objectives, the notion of optimal solution does not
exist anymore for MO problems. However, based on the dominance relation of Pareto
(see Definition 1), the notion of optimal solution can be replaced by the notion of
efficient (or Pareto optimal) solution (see Definition 2).

Definition 1 A vector z ∈ Z dominates a vector z′ ∈ Z if, and only if, zl ≤ z′l ,∀ l ∈
{1, . . . , p}, with at least one index l for which the inequality is strict. We denote this
dominance relation by z ≺ z′.
Definition 2 A feasible solution x ∈ X is efficient if there does not exist any other
solution x ′ ∈ X such that z(x ′) ≺ z(x). The image of an efficient solution in the
objective space is called a non-dominated point.

In the following, we will denote by XE the set of all efficient solutions (the efficient
set) and by ZN the image of XE in the objective space (the Pareto front).

In the case of MOCO problems, we can distinguish two types of efficient solutions:

• The supported efficient solutions. These solutions are optimal solutions of weighted
single-objective problems

min
p∑

l=1

λl zl(x)

s.t. x ∈ X

where λ ∈ R
p
+ is a weight vector with all positive components λl , ∀ l = 1, . . . , p.

We denote by XSE and ZSN respectively the set of supported efficient solutions
and the set of the corresponding non-dominated points in R

p. The points of ZSN

are located on the frontier of the convex hull of Z .
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• The non-supported efficient solutions. Contrary to a MO linear programming prob-
lem, ZSN is generally a proper subset of ZN due to the non-convex character of Z ,
and there exist efficient solutions that are not optimal solutions for any weighted
single-objective problems. These solutions are called non-supported efficient solu-
tions. We denote by XN E = XE\XSE and ZN N = ZN\ZSN respectively the set of
non-supported efficient solutions and the set of the corresponding non-dominated
points in R

p.

Even if other approaches exist to tackle a MO problem (aggregation of the objectives
with a utility function, hierarchy of the objectives, goal programming, interactive
method to generate a “good compromise”; see Teghem 2009), in this paper, we are
only interested in the determination, or the approximation, of XE and ZN .

It is quite difficult to determine exactly the whole set of efficient solutions XE and
the set of non-dominated points ZN for MOCO problems. This is a NP-Hard problem
even for CO problems for which a polynomial algorithm exists for the single-objective
version, such as the linear assignment problem. Moreover, many MOCO problems
have been proved to be intractable (Ehrgott and Gandibleux 2002).1 Therefore, we
can only expect to apply exact methods to determine the sets XE and ZN for small
instances and for few number of objectives. For this reason, many methods are heuristic
methods which produce approximations X̃E and Z̃N to the sets XE and ZN .

During the last 20 years, many heuristic methods for solving MOCO problems
have been proposed. From the first survey Ulungu and Teghem in 1994 till Ehrgott
and Gandibleux in 2002, a lot of papers have been published and this flow is still
increasing. Due to the success of metaheuristics for single-objective CO (Glover and
Kochenberger 2003), most of the heuristics developed are based on metaheuristics
adapted to MO [called multiobjective metaheuristics (MOMHs)]. Presently, it is a
real challenge for the researchers to improve the results previously obtained for some
classic MOCO problems.

The two main difficulties related to the development of a MOMH are related to the
basic needs of any metaheuristics Glover and Kochenberger (2003):

• To assure sufficient convergence, that is to assure to get an approximation Z̃N as
close as possible to ZN

• To assure sufficient diversity, that is to cover with Z̃N all the parts of ZN

If evolutionary methods have intensively been applied to solve MOCO prob-
lems (Coello Coello et al. 2002; Deb 2001), few results are known about the use of elab-
orate local search (LS) techniques, such as large neighborhood search (LNS) (Pisinger
and Ropke 2010; Shaw 1998) and variable neighborhood search (VNS) (Hansen and
Mladenovic 2001). It is mainly because it is more natural to use a method based on a
population, as we are looking for an approximation to a set. However, we show in this
paper that by embedding these evolved LS techniques into the two-phase Pareto local
search (2PPLS) (Lust and Teghem 2010), which uses as population the set of poten-
tially efficient solutions, we can produce a very effective heuristic. As indicated by its

1 A MOCO problem is intractable if the number of non-dominated points is exponential in the size of the
instance.
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name, the method is composed of two phases. In the first phase, an initial population
of potentially efficient solutions is produced. In the second phase, the Pareto local
search (PLS) (Angel et al. 2004; Paquete et al. 2004) is run from this population. PLS
is a straightforward adaptation of LS to MO and only needs a neighborhood function
N (x), which is applied to every new potentially efficient solution generated. At the
end, a local optimum, defined in a MO context, is obtained (Paquete et al. 2004) (called
a Pareto local optimum set). Therefore, to adapt 2PPLS to a MOCO problem, we only
have to define an initial population and a neighborhood function.

Adaptations of 2PPLS were enabled to produce state-of-the-art results for the
MOTSP (Lust and Teghem 2010) and the MOMKP (Lust and Teghem 2012). In
both adaptations, only one neighborhood function is used and the method stops when
a Pareto local optimum set is obtained. Strategies to escape from Pareto local optimal
set have scarcely been studied in multiobjective optimization. We mention only one
recent work of Drugan and Thierens (2012). In this work, they present two perturbation
strategies to escape from Pareto local optimal set, based on mutation and path-guided
mutation.

We present in this work a new strategy to escape from a Pareto local optimal set,
based on the VNS technique: once a Pareto local optimum set has been found according
to a neighborhood, we increase the size of the neighborhood in order to generate new
potentially efficient solutions and to escape from the Pareto local optimum set.

The contributions of this paper are two folds. First, we present a metaheuristic
method in order to solve MOCO problems, that includes at the same time LNS and
VNS techniques (Sects. 3 and 4). Secondly, we demonstrate the efficiency of the
method through the multiobjective set covering problem (MOSCP) (Sect. 2), for which
we present a new heuristic (Sect. 5) and new state-of-the-art results (Sect. 6).

2 The multiobjective set covering problem

In the MOSCP, we have a set of m rows (or items), and each row can be covered
by a subset of n columns (or sets). Each column j has p costs c j

l (l = 1, 2, . . . , p).
The MOSCP consists in determining a subset of columns, among the n columns
( j = 1, . . . , n) such that all the rows are covered by at least one column and that the
total costs are minimized.

More precisely, the MOSCP is defined as follows:

(MOSCP)

⎧
⎪⎪⎨

⎪⎪⎩

“ min ” zl(x) =
∑n

j=1
c j

l x j l = 1, 2, . . . , p

s.t.
∑n

j=1
ti j x j ≥ 1 i = 1, . . . , m

x j ∈ {0, 1} j = 1, . . . , n

with n the number of columns, m the number of rows, x the decision vector, formed
of the binary variables x j (x j = 1 means that the column j is in the solution), c j

l the
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cost l of the column j and the binary data ti j equal to 1 if the column j covers the row
i and equal to 0 otherwise.

It is assumed that all coefficients c j
l are nonnegative integer.

The data associated to the MOSCP are thus a cost matrix of size (n × p) and a
covering matrix of size (m × n).

We denote by X a feasible set in decision space, defined by X = {x ∈ {0, 1}n|{∑n
j=1 ti j x j ≥ 1,∀ i = 1, . . . , m

}}
. The corresponding feasible set in the objective

space is called Z and is defined by Z = z(X ) = {
(z1(x), z2(x), . . . , z p(x)), ∀ x ∈

X } ⊂ N
2.

As the single-objective version of the SCP is NP-Hard, the MOSCP is NP-Hard
too. Therefore, our aim is to generate a good approximation of the efficient set. It is
important to say that, with our method, if two solutions in the decision space give the
same non-dominated point, only one solution is retained (only a good approximation
of a minimal complete set Hansen 1979 is generated). The MOSCP did not receive
as much attention as other classic MOCO problems, like the MO multidimensional
knapsack problem (Lust and Teghem 2012) (MOMKP) or the MO traveling salesman
problem (Lust and Teghem 2010) (MOTSP). To our knowledge, only two groups of
authors have tackled this problem:

• Jaszkiewicz was the first one, in 2003, with the adaptation of the Pareto memetic
algorithm (PMA). In this method, two populations are managed: a population P and
an elitist set, that is the approximation set X̃E containing the potentially efficient
solutions found so far. Two solutions from P are selected (the parents) and crossed
to form a new solution (the offspring). The selection of the parents is based on
a tournament. The two parents selected are the winners of a tournament between
solutions coming from a sample of size T randomly drawn from the population P .
Once the offspring has been generated, a LS is applied from it and if the new solution
obtained is better than the second best solution in T (according to a scalarizing
function), the offspring is added to P and to X̃E (if the offspring is potentially
efficient).
• In 2006, Prins and Prodhon (2006) have also tackled this problem, by using a two-

phase heuristic method (called TPM) using primal-dual Lagrangian relaxations
to solve different single-objective SCPs. In the first phase, potentially supported
efficient solutions are generated by solving linear weighted sum problems.2 In
the second phase, they try to produce non-supported efficient solutions. With this
aim, they use the information contained in the set of potentially supported efficient
solutions to construct with a heuristic potentially non-supported efficient solutions.
The procedure is successively applied between each pair of adjacent potentially
supported non-dominated points.

The MOSCP has also been considered in two applications. The first is in public
transport where the MOSCP is used to model the crew-scheduling problem (the crew is
represented by the bus drivers) (Lourenço et al. 2001). Two objectives are considered:

2 However, the authors claim that they generate all the supported efficient solutions, even if they use a
heuristic to solve the linear weighted sum problems.

123



170 T. Lust, D. Tuyttens

the cost and the quality of the service. The authors have developed a hybrid method,
based on an own adaptation of GRASP, tabu search and genetic algorithms to solve
this problem. At the end, a set of potentially efficient solutions is proposed to the
decision makers (which may be several since different companies of bus are involved
in the decision process).

The second application is in group technology where the MOSCP is used to model
the cell formation problems (Hertz et al. 1994). Different objectives are considered:
the number of bottleneck operations, the number of machines or bootleneck parts, the
intercellular flow, the intercellular load balancing, the subcontracting costs, etc. The
authors propose for this problem a multiobjective adaptation of tabu search.

3 Two-phase Pareto local search

The new heuristic, in order to solve the MOSCP, is based on the two-phase Pareto
local search (2PPLS), developed by Lust and Teghem (2010), mainly composed of
two phases: generation of an initial population and application of PLS (Angel et al.
2004; Paquete et al. 2004) from this population. We have however integrated the VNS
technique in order to escape from a Pareto local optimum set.

The pseudo-code of 2PPLS with VNS is given by the Algorithm 1.
The method needs four entries: an initial population P0, the sizes of the different

neighborhood structures to order them from the smallest (kmin) to the largest (kmax) one,
and the different neighborhood functions Nk(x) for each k ∈ Z : kmin ≤ k ≤ kmax.

The method starts with the population P composed of potentially efficient solu-
tions given by the initial population P0. The neighborhood structure initially used is
the smallest (k = kmin). To each solution x ∈ X̃E , we also associate the value k(x).
This function gives for a solution x the maximal size of the neighborhood that has
been explored from the solution (for example, if k(x) = 3, that means that the neigh-
borhoods of size k = 1, 2 and 3 have been explored from the solution). This function
will help us to avoid to explore the neighborhood of a solution if it has already been
explored before.

Then, PLS is started and considering Nk(x), all the neighbors p′ of each solution
p of P are generated. If a neighbor p′ is not weakly dominated by the current solution
p (that is z(p) ⊀ z(p′) and z(p) �= z(p′)), we try to add the solution p′ to the approx-
imation X̃E of the efficient set, which is updated with the procedure AddSolution.
This procedure is not described in this paper but simply consists in updating an approx-
imation X̃E of the efficient set when a new solution p′ is added to X̃E . This procedure
has five parameters: the set X̃E to actualize, the new solution p′, its evaluation z(p′),
an optional boolean variable called Added that returns T rue if the new solution has
been added and False otherwise, and another optional variable k. This last variable
allows to update the value of the function k(p′) associated to the solution p′. Then, if
the solution p′ has been added to X̃E , Added is true and the solution p′ is added to an
auxiliary population Pa , which is also updated with the procedure AddSolution.
Therefore, Pa is only composed of new potentially efficient solutions. Once all the
neighbors from Nk of each solution of P have been generated, the algorithm starts
again, with P equal to Pa , until P = Pa = ∅. The auxiliary population Pa is used
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Algorithm 1 2PPLS with VNS
.

Parameters ↓: an initial population P0, neighborhood functions Nk (x), kmin, kmax.
Parameters ↑: an approximation X̃E of the efficient set XE .

- -| Initialization of X̃E and a population P with the initial population P0
X̃E ← P0
P ← P0
- -| Initialization of an auxiliary population Pa
Pa ← ∅

- -| Initialization of the neighborhood structure
k ← kmin
- -| Initialization of k(x): the maximal size of the neighborhood that has been explored from a solution x
for all x ∈ X̃E do

k(x) = kmin
- -| PLS with VNS
repeat

while P �= ∅ do
- -| Generation of all neighbors p′ of each solution p ∈ P
for all p ∈ P do

for all p′ ∈ Nk (p) do
if z(p) � z(p′) then
AddSolution(X̃E �, p′ ↓, z(p′) ↓, Added ↑, k ↑)
if Added = true then
AddSolution(Pa �, p′ ↓, z(p′) ↓)

if Pa �= ∅ then
- -|P is composed of the new potentially efficient solutions
P ← Pa
- -| Reinitialization of Pa
Pa ← ∅

- -|We start again with the smallest neighborhood structure
k ← kmin

else
- -|We use a larger neighborhood structure
k ← k + 1
- -|We use as population the solutions of X̃E that are not already Pareto local optimum for Nk (x)

P ← {x ∈ X̃E | k(x) < k}
until k > kmax

such that the neighborhood of each solution of P is explored, even if some solutions of
P become dominated following the addition of a new solution to Pa . Thus, sometimes,
neighbors are generated from a dominated solution.

In the case of P = Pa = ∅, the set X̃E obtained is a Pareto local optimum set
according to Nk , and cannot be improved with Nk . We thus increase the size of the
neighborhood (k ← k + 1), and apply again PLS with this larger neighborhood.

Please note that, in general, a solution Pareto local optimum for the neighborhood
k is not necessary Pareto local optimum for the neighborhood (k − 1). That is why,
after considering a larger neighborhood, we always restart the search with the smallest
neighborhood structure.

After the generation of a Pareto local optimum set according to Nk , the population
P used with the neighborhood Nk+1 is X̃E , without considering the solutions of X̃E
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that could already be Pareto local optimal for Nk+1, that is the solutions of X̃E such
that k(x) < k.

The method stops when a Pareto local optimum set has been found, according to
all the neighborhood structures considered.

4 Large neighborhood search

With LS (and therefore PLS), the larger the neighborhood, the better the quality of
the local optimum obtained is. However, by increasing the size of the neighborhood,
the time to explore the neighborhood becomes higher. Therefore, using a larger neigh-
borhood does not necessary give rise to a more effective method. If we want to keep
reasonable running times while using a large neighborhood, an efficient strategy has
to be implemented in order to explore the neighborhood.

As neighborhood in PLS, we will use a large neighborhood search (LNS) (Pisinger
and Ropke 2010; Shaw 1998). LNS was introduced by Shaw in 1998 to solve the
vehicle routing problem. With LNS, the neighborhood consists of two procedures: a
destroy method and a repair method. The destroy method destructs some parts of the
current solution while the repair method rebuilds the destroyed solution. The LNS
belongs to the class of neighborhood search known as very large scale neighborhood
search (VLSNS) (Ahuja et al. 2002). These two neighborhood often cause confusion.
Contrary to LNS, in VLSNS, the neighborhood is usually restricted to a neighborhood
that can be searched efficiently. Ahuja et al. (2002) defines three methods used in
VLSNS to explore the neighborhood: variable depth methods, network flow based
improvement methods and methods based on restriction to subclasses solvable in
polynomial time. Therefore, VLSNS is not only a large neighborhood (furthermore
the definition of large is imprecise), but essentially a neighborhood that uses a heuristic
to explore efficiently a large neighborhood.

In this paper, the size of the neighborhood will be kept relatively small, and a
VLSNS will not be needed. However, we will keep the destroy and repair techniques
of the LNS.

VLSNS and LNS are very popular in single-objective optimization (Ahuja et al.
2002; Pisinger and Ropke 2010). For example, the Lin and Kernighan (1973) heuristic,
one of the best heuristics for solving the single-objective traveling salesman problem
(TSP), is based on VLSNS. On the other hand, there is almost no study of LNS/VLSNS
for solving MOCO problems. The only known result is the LS of Angel et al. (2004),
which integrates a dynasearch neighborhood (the neighborhood is solved with dynamic
programming) to solve the biobjective TSP.

Starting from a current solution, called xc, the aim of LNS is to produce a set of
neighbors of high quality, in a reasonable time. The general technique that we use for
solving the MOSCP is the following:

1. Destroy method: Identification of a set of variables candidates to be removed from
xc (set O)

2. Repair method:

• Identification of a set of variables, not in xc, candidates to be added (set I)
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• Creation of a residual multiobjective problem formed by the variables belonging
to {O∪I}, and the constraints not anymore fulfilled (that is the items not anymore
covered, in the case of the MOSCP).
• Resolution of the residual problem: a set of potentially efficient solutions of this

problem is produced. The potentially efficient solutions of the residual problem
are then merged with the unmodified variables of xc to produce the neighbors.

This scheme will be presented with more details in Sect. 5.2.

5 Adaptation of 2PPLS to the MOSCP

In this section, we present how 2PPLS has been adapted to the MOSCP. We first present
how the initial population has been generated. We expose then the LNS considered
in PLS, method used as second phase in 2PPLS, that only needs a neighborhood (see
Sect. 3).

5.1 Initial population

The initial population is composed of a good approximation of the supported effi-
cient solutions. These solutions can be generated by solving single-objective prob-
lems obtained by applying a weighted sum of the objectives. To generate the different
weight sets, we have used the dichotomic method of Aneja and Nair (1979). This
method consists in generating all the weight sets necessary to get a minimal complete
set of extreme supported efficient solutions of a biobjective problem (Przybylski et al.
2008) (extreme supported efficient solutions are the supported efficient solutions that
are located on the vertex set of the convex hull of Z). The weight sets are based on the
computation of normal vectors to two consecutive supported non-dominated points.

For solving the single-objective SCP obtained, we have considered two different
methods:

• The free mixed integer linear programming (MILP) solver lp_solve.
• A metaheuristic, called Meta-Raps (for metaheuristic for randomized priority

search), developed by Moraga (2002). This metaheuristic has been adapted to the
SCP by Lan et al. (2007). This has resulted in an efficient heuristic, whose the code
has been published.

With the exact lp_solve solver, an exact minimal set of the extreme supported
efficient solutions can be generated. However, for the biggest instances of the MOSCP,
we will see that using this method can be time-consuming. That is why the heuristic
method based on the Meta-Raps metaheuristic has also been considered.

5.2 Large neighborhood search

We present now how we have adapted the LNS to the MOSCP. We have followed the
general scheme presented at the end of Sect. 4. Before giving more details about the
LNS, we point out two particularities related to the MOSCP:
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1. When we remove columns from a solution, some rows are not anymore covered.
The set I must thus be composed of columns that can cover these rows.

2. We have noted that removing a small number k of columns (less than 4, as it will
be shown in Fig. 1) from xc was enough. Indeed, when we work with a larger set
O, it becomes more difficult to define the set I since many rows become uncov-
ered. Moreover, the LNS always starts from a solution of good quality, and only
some small modifications of these solutions are needed to produce new potentially
efficient solutions. Therefore, as we will keep k small, for each value of k, we will
create more than one residual problem. If k = 1, the number of residual problems
will be equal to the number of columns present in the current solution x . For each
residual problem, the set O will be thus composed of one of the columns present
in xc. If k > 1, we create a set L of size L(L ≥ k), that includes the columns that
are candidates to be removed from xc (these columns are identified by the ratio Rs

1
defined in the following). Then, all the combinations of k columns from L will be
considered to form the set O. The number of residual problems will be thus equal
to the number of combinations of k elements into a set of size L , that is C L

k . The
size of the set I will also be limited to L .

More precisely, the LNS works as follows:

Destroy method:
If k = 1, the set O is composed of one of the columns present in xc.
If k > 1, the set O will be composed of k columns chosen among the list L (all

combinations are tested) containing the L worst columns (present in xc) for the ratio
Rs

1, defined by

Rs
1 =

p∑

l=1

λl c
s
l

m∑

i=1

tis

for a column s. This ratio is equal to the weighted aggregation of the costs on the
number of rows that the column s covers (the smaller the better). The weight set λ is
randomly generated.

Repair method:

1. The set I of columns candidates to be added will be composed of the L best
columns (not in xc) for the ratio Rs

2, defined by

Rs
2 =

p∑

l=1

λl c
s
l

ns

for a column s, where ns represent the number of rows that the column s covers
among the rows that are not anymore covered when the k columns have been
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Fig. 1 Evolution of the PZN
indicator and the running time according to L and k for the 61a, 61b, 61c

and 61d instances
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removed. This ratio is only computed for the columns that cover at least one of the
rows not anymore covered (ns > 0). The weight set λ is randomly generated.

2. A residual problem is defined, of size k + L , composed of the columns belonging
to the set {O ∪ I} and of the items not anymore covered.

3. To solve the residual problem, we simply generate all the efficient solutions of the
problem, with an enumeration algorithm. We then merge the efficient solutions of
the residual problem with the unmodified variables of xc, to obtain the neighbors.

6 Results

We first present results for biobjective instances.

6.1 Data and reference sets

We use the same instances as Jaszkiewicz (2003) and Prins and Prodhon (2006) con-
sidered, from the size 100× 10 (100 columns, 10 rows) to the size 1000× 200 (1000
columns, 200 rows). Those instances have however been generated by Gandibleux
et al. (1998). For each size instance, four different kinds of objectives A, B, C and D
are defined. In the case of instances of type A, the costs of each objective are randomly
generated. For the type B, the costs of the first objective are randomly generated and
the ones of the second objective are made dependent in the following way:

c j
2 = cn− j+1

1 ∀ j = 1, . . . , n

For the type C, a subdivision of the columns into several subsets is done for each
objective (for each objective, the subdivision is different). Then, all the columns from
one subset have the same cost for the objective corresponding to the subdivision.
Finally, the instances of type D combine characteristics of the sets B and C.

6.2 Measuring the quality of the approximations

Before describing the results obtained, it is necessary to define how we have measured
the quality of the approximations generated. In MO, measuring the quality of an
approximation or comparing the approximations obtained by various methods remains
a difficult task: the problem of the quality assessment of the results of a heuristic
is in fact also a multicriteria problem. Consequently, several indicators have been
introduced in the literature to measure the quality of an approximation (see Zitzler
et al. 2002 for instance).

We have used the following unary indicators:

• The hypervolume H (to be maximized) (Zitzler 1999): the volume of the dominated
space defined by Z̃N , limited by a reference point.
• The T measure (normalized between 0 and 1, to be maximized) (Jaszkiewicz 2002):

evaluation of Z̃N by the expected value of the weighted Tchebycheff utility function
over a set of normalized weight vectors, computed as follows:
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T (Z̃N , z0,�) = 1

|�|
∑

λ∈�
min

z∈Z̃N

||z − z0||λ

where z0 is a reference point and � is a set of normalized weight sets(∑p
k=1 λk = 1, λk ≥ 0

)
.

• The average distance D1 and maximal distance D2 (to be minimized) (Czyzak and
Jaszkiewicz 1998; Ulungu et al. 1999) between the points of a reference set ZR and
the points of Z̃N , by using the Euclidean distance. If we consider the Euclidean
distance d

(
z1, z2

)
between two points z1 and z2 in the objective space, we can

define the distance d ′(Z̃N , z1) between a point z1 ∈ ZR and the points z2 ∈ Z̃N as
follows:

d ′(Z̃N , z1) = min
z2∈Z̃N

d(z2, z1)

This distance is thus equal to the minimal distance between a point z1 of ZR and the
points of the approximation Z̃N . The average distance D1 and maximal distance
D2 are then computed as follows:

D1(Z̃N ,ZR) = 1

|ZR |
∑

z1∈ZR

d ′(Z̃N , z1)

D2(Z̃N ,ZR) = max
z1∈ZR

d ′(Z̃N , z1)

• The ε factor Iε1 (to be minimized) by which the approximation Z̃N is worse than
a reference set ZR with respect to all the objectives:

Iε1(Z̃N ,ZR) = inf
ε∈R+
{∀ z ∈ ZR, ∃ z′ ∈ Z̃N : z′k ≤ ε · zk, k = 1, . . . , p}

• The proportion PZN (to be maximized) of non-dominated points generated.

Unfortunately, none of these indicators allows to conclude that an approximation is
better than another one (see Zitzler et al. 2003 for details). Nevertheless, an approxi-
mation that finds better values for these indicators is generally preferred to the others.

The reference set used is the Pareto front, that we have generated with an exact
method based on the ε-constraint method (Laumanns et al. 2004). The reference point
used in the hypervolume is the Nadir point, multiplied by 1.1 for both objectives, in
order to avoid that a point of an approximation does not dominate the reference point
of the hypervolume. The reference point necessary to the computation of the weighted
Tchebycheff utility function for the indicator T is equal to the ideal point and the
number of weight set used is equal to 100.

However, we were not able to generate the Pareto front for some of the biggest
and most difficult instances tackled (the 82c, 82d, 101c, 101d, 102c, 102d, 201a and
201b instances). Therefore, for these instances, we have considered outperformance
relations (Hansen and Jaszkiewicz 1998).

With outperformance relations, a pairwise comparison is realized between the points
of two approximations A and B. Four cases can occur: a point of A is dominated by at
least one point of B, a point of A dominates at least one point of B, a point of A is equal
to another point of B, or the result of the comparison belongs to none of these three
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possibilities (the point of A is incomparable to all the points of B). For each of the
four cases, the percentage of points of the approximation A that check the case is com-
puted. As our algorithm will be run twenty times, the outperformance relations will be
represented with box-plot graphs, that allow to represent the variations in the different
values (a pairwise comparison is made between the runs of two distinct algorithms).
In the tables, the best values achieved by the different indicators are indicated in bold.

The computer used for the experiments is a Pentium IV with 3 GHz CPUs and 512
MB of RAM.

6.3 Phase 1

In this section, we study the results obtained after the first phase of 2PPLS. We recall
that the aim of the first phase is to generate a good approximation of the supported
efficient solutions.

In Table 1, we compare the results obtained with lp_solve or Meta-Raps
as solver for optimizing the different weighted sum single-objective problems. For
Meta-Raps, we have used the default parameters defined by Lan et al. (2007).
The quality indicators considered are the proportion of supported non-dominated
points generated [PZSN (%)] and the proportion of non-dominated points generated
[PZN (%)]. We also indicate the number of potentially efficient solutions generated
(|PE|) and the running time in seconds. The results are exposed for the instances
for which we have the Pareto front. Please note that for the method which uses the
heuristic Meta-Raps, the solutions obtained after solving the weighted sum single-
objective problems are not necessary supported efficient solutions. However they can
be non-supported efficient solutions.

The results of Meta-Raps are rather disparate: we can generate from 18.33 % of
ZSN (instance 81c) to 95 % of ZSN (instance 62a). The running times are however
small and always less than 35 s.

Withlp_solve, we can of course generate 100 % of ZSN for most of the instances
(except for the instances 61d and 62d, which means that for these instances, non-
extreme supported efficient solutions exist). But the running time can be very high:
for example, for the instance 62d, lp_solve needs more than 1,000 s for generating
91 % of ZSN , while Meta-Raps only needs 5 s to generate 82 % of ZSN . We see
thus through this example that it is worthwhile to use a heuristic instead of an exact
method in the first phase. However, for certain instances, lp_solve enables to find
better results in less running times than Meta-Raps. Therefore, in these cases, it is
preferable to use lp_solve.

We have adopted the following rule to define if lp_solve or Meta-Raps has
to be used in the first phase:

• If the instance has less than 600 columns and 60 rows, lp_solve is used.
• If the instance has not more than 800 columns and 80 rows, and it is of type A or

B, lp_solve is used.
• Otherwise, Meta-Raps is used.

In Table 1, the solver used in the sequel is indicated in italic. For the other instances
(the ones for which we do not have the Pareto front), Meta-Raps is used.
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Table 1 Comparison between the two solvers used in phase 1 (lp_solve and Meta-Raps)

Instance Algorithm PZSN
(%) PZN

(%) |PE| Time(s)

61a lp_solve 100.00 12.45 32.00 8.66

Meta-Raps 49.53 9.14 29.50 18.73

61b lp_solve 100.00 10.65 36.00 12.32

Meta-Raps 24.72 5.58 38.00 21.45

61c lp_solve 100.00 25.00 7.00 7.87

Meta-Raps 79.29 21.96 6.95 5.05

61d lp_solve 70.37 28.36 19.00 234.36

Meta-Raps 36.30 21.64 21.30 15.13

62a lp_solve 100.00 13.27 13.00 21.38

Meta-Raps 95.00 13.42 13.20 7.04

62b lp_solve 100.00 20.20 20.00 23.72

Meta-Raps 86.25 18.13 17.95 9.47

62c lp_solve 100.00 33.33 2.00 1470.11

Meta-Raps 67.50 23.33 2.05 0.92

62d lp_solve 90.91 26.32 10.00 1088.55

Meta-Raps 82.27 24.61 9.75 5.32

81a lp_solve 100.00 8.96 38.00 7.13

Meta-Raps 56.45 6.82 34.40 32.36

81b lp_solve 100.00 10.17 36.00 9.22

Meta-Raps 41.53 7.05 34.85 32.07

81c lp_solve 100.00 64.29 9.00 18.34

Meta-Raps 18.33 17.14 7.25 7.14

81d lp_solve 100.00 75.00 9.00 39.50

Meta-Raps 30.56 34.17 7.10 6.87

82a lp_solve 100.00 17.42 23.00 61.83

Meta-Raps 83.26 15.91 21.00 19.62

82b lp_solve 100.00 20.45 18.00 8.14

Meta-Raps 83.33 18.58 16.35 13.41

101a lp_solve 100.00 15.29 24.00 241.71

Meta-Raps 83.33 15.32 24.55 29.37

101b lp_solve 100.00 15.60 22.00 159.27

Meta-Raps 75.45 15.32 22.20 30.87

102a lp_solve 100.00 25.30 21.00 76.37

Meta-Raps 83.33 22.29 19.25 33.04

102b lp_solve 100.00 22.09 19.00 132.56

Meta-Raps 85.79 18.95 16.30 29.06

We also see in this table, through the PZN indicator, that the supported efficient
solutions represent only a small part of the efficient set (at most 33 %, except for the
81c and 81d instances).
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6.4 Phase 2

We study here the influence of the size of the neighborhood k and the length L of the
lists L and I.

In Fig. 1, we show the evolution of PZN and the running time according to L for
the 61a, 61b, 61c and 61d instances, for different values of k. We vary the values of L
from 1 to 9 and k from 1 to 4. We see that, of course, increasing the values of L or k
allows to obtain better quality results. The best improvement is when k is moved from
1 to 2 for values of L superior to 5. On the other hand, using k = 3 or k = 4 instead
of k = 2 does not give impressive improvements, whatever the value of L . We have
obtained similar results for the other instances.

Concerning the running time, as we use an exact enumeration algorithm to solve
the residual problems, we see that its evolution is exponential. Using k = 3 or k = 4
with L ≥ 8 becomes very time-consuming.

Therefore, for the comparison to state-of-the-art results, we will use k = 2 and
L = 9.

6.5 Comparison to state-of-the-art results

We first compare the results obtained with 2PPLS to the results of TPM and PMA, for
the small instances (less than 600 columns and 60 rows). These instances are not very
interesting to experiment with a heuristic since we were able to generate the efficient
sets in few seconds with an exact method based on the ε-constraint method (Laumanns
et al. 2004). However, Jaszkiewicz and Prins et al. have considered these instances and
it remains interesting to attest the quality of our heuristic on these small instances. We
indicate in Table 2 the mean values obtained for one indicator, the proportion PZN of
non-dominated points generated. We see that for each group of instances considered
(in a group of instances, the four types A, B, C and D are considered, the indicators are
averaged over a group), we obtain more than 50 % of ZN . This proportion is largely
better than TPM and PMA.

In Tables 3 and 4, we compare the results obtained with 2PPLS to the results of TPM
and PMA for bigger instances. We use the quality indicators described in Sect. 6.2,
that is the hypervolume H, the ε factor Iε1, the T indicator, the average distance D1,
the maximal distance D2 and the proportion PZN of non-dominated points generated.
We also indicate the number of potentially efficient solutions generated (|PE|) and the
running time in seconds (separated in two parts: first phase and second phase). We do
not have the running times of TPM and PMA for each instance, but we will compare

Table 2 Comparison of
PZN

(%) of 2PPLS, TPM and
PMA for small instances

Groups of instances Dimension 2PPLS TPM PMA

11 10 × 100 77.30 36.42 52.85

41 40 × 200 63.17 27.50 10.77

42 40 × 400 57.93 20.62 2.47

43 40 × 200 87.12 61.64 41.69
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Table 3 Comparison between 2PPLS, TPM and PMA based on the indicators (1)

Instance Algorithm H(105) Iε1 T D1 D2 PZN
(%) |PE| Time(s)

61a 2PPLS 650.4639 1.013633 0.929305 0.090 2.287 76.15 221.10 8.66 + 16.28

TPM 646.9003 1.067160 0.927248 1.349 5.949 15.56 55.00 –

PMA 639.0582 1.062786 0.925659 1.233 7.015 2.61 110.10 –

61b 2PPLS 806.8344 1.011334 0.918550 0.148 2.510 52.35 267.40 12.32 + 18.59

TPM 801.0863 1.063717 0.916390 1.224 6.449 13.31 64.00 –

PMA 784.6685 1.085539 0.911936 1.798 4.815 0.09 136.20 –

61c 2PPLS 76.9568 1.046435 0.879243 1.895 7.465 30.36 15.60 5.05 + 1.37

TPM 72.8138 1.161202 0.863144 7.073 17.823 21.43 7.00 –

PMA 66.1876 1.139919 0.840228 5.598 14.767 0.00 9.60 –

61d 2PPLS 585.2976 1.057449 0.931428 1.061 6.246 34.63 50.75 15.13 + 4.23

TPM 581.5946 1.118967 0.930271 2.403 10.061 28.36 24.00 –

PMA 549.4480 1.191023 0.912641 4.819 15.118 0.00 46.20 –

62a 2PPLS 139.4577 1.054538 0.925718 0.308 2.746 57.35 75.80 21.38 + 6.44

TPM 136.7701 1.245484 0.921079 2.448 9.112 16.33 20.00 –

PMA 138.5127 1.111875 0.924904 0.583 3.652 34.80 70.10 –

62b 2PPLS 196.6011 1.042553 0.936334 0.187 2.085 64.49 79.35 23.72 + 7.29

TPM 195.4355 1.113794 0.933906 1.171 5.363 24.24 31.00 –

PMA 195.5629 1.096406 0.935249 0.671 4.317 27.58 63.80 –

62c 2PPLS 1.7594 1.034191 0.778159 2.859 6.905 44.17 3.40 0.92 + 0.30

TPM 1.7849 1.022750 0.780545 2.866 6.886 33.33 3.00 –

PMA .1029 1.195617 0.497462 27.260 40.446 0.00 1.30 –

62d 2PPLS 7.6825 1.080195 0.887484 0.652 3.292 46.71 25.30 5.32 + 1.76

TPM 7.6778 1.096886 0.887863 1.056 3.717 34.21 14.00 –

PMA 7.2203 1.203339 0.877871 1.248 3.713 16.58 26.00 –

81a 2PPLS 1804.7490 1.015879 0.918999 0.094 1.164 58.87 351.65 7.13 + 24.66

TPM 1787.6098 1.103112 0.915902 1.957 9.729 10.61 64.00 –

PMA 1777.7066 1.064281 0.915603 1.253 3.792 0.61 173.80 –

81b 2PPLS 2295.7315 1.021002 0.919304 0.141 1.176 56.20 272.25 9.22 + 21.75

TPM 2277.4616 1.090868 0.916750 1.690 6.398 11.30 55.00 –

PMA 2267.9781 1.066492 0.916470 1.197 6.756 3.64 138.10 –

81c 2PPLS 113.9085 1.074723 0.983918 2.998 12.301 21.79 12.00 7.14 + 1.49

TPM 114.0509 1.037037 0.984317 3.596 15.592 35.71 9.00 –

PMA 110.0607 1.251852 0.975104 21.113 61.595 0.00 1.50 –

81d 2PPLS 168.5435 1.030773 0.983111 4.098 16.119 42.50 10.25 6.87 + 1.14

TPM 169.3999 1.014968 0.983678 2.827 23.631 75.00 10.00 –

PMA 160.0092 1.160129 0.964133 10.640 42.617 0.00 6.60 –

later in this section, the average running times obtained by each algorithm, for each
group of instances.

We see that we obtain better results for the indicators considered, except for the
instances 62c and 62d for which TPM obtains slightly better values for some indicators,
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Table 4 Comparison between 2PPLS, TPM and PMA based on the indicators (2)

Instance Algorithm H(105) Iε1 T D1 D2 PZN
(%) |PE| Time(s)

82a 2PPLS 433.5862 1.052256 0.937949 0.201 2.970 62.84 108.15 19.62 + 11.06

TPM 427.6693 1.279070 0.932029 2.190 7.907 17.42 27.00 –

PMA 431.1933 1.099454 0.936085 0.774 4.617 20.45 87.30 –

82b 2PPLS 233.6640 1.049694 0.952172 0.191 5.143 72.16 73.50 8.14 + 7.92

TPM 232.8426 1.151741 0.950443 1.179 6.040 23.86 28.00 –

PMA 232.8318 1.130456 0.949976 0.612 6.534 35.91 58.60 –

101a 2PPLS 1287.8008 1.051087 0.954936 0.494 8.865 45.83 107.80 29.37 + 14.51

TPM 1284.6645 1.119284 0.953671 1.340 13.648 19.11 44.00 –

PMA 1282.0624 1.123602 0.953413 1.020 15.550 10.00 90.50 –

101b 2PPLS 944.1663 1.042192 0.949094 0.444 6.274 48.16 103.75 30.87 + 13.01

TPM 937.8272 1.251705 0.945765 2.324 10.751 19.15 32.00 –

PMA 939.9055 1.104710 0.947423 1.264 17.493 14.96 91.00 –

102a 2PPLS 305.8453 1.090276 0.956545 0.395 3.450 56.51 60.75 33.04 + 6.59

TPM 286.7343 2.256186 0.941059 9.920 24.121 0.00 6.00 –

PMA 305.1965 1.144873 0.955852 0.675 6.340 33.01 55.80 –

102b 2PPLS 340.0914 1.074174 0.948418 0.419 6.688 64.77 66.70 29.06 + 8.80

TPM 329.3906 2.012500 0.936739 3.032 26.430 0.00 31.00 –

PMA 338.8972 1.146556 0.946918 0.644 3.737 28.95 61.50 –

and for the instances 81c and 81d for which TPM obtains better values for most of the
indicators.

The proportion PZN (%) of non-dominated points generated is included between
21 and 92 % and the running time is always less than 45 s.

For the other instances (the 82c, 82d, 101c, 101d, 102c, 102d, 201a and 201b
instances), we have used the outperformance relations to compare the results of 2PPLS
with PMA (and not with TPM since we did not get all the results of TPM for these
instances). The results are given in Fig. 2. We see that the proportion of solutions of
2PPLS that are dominated by PMA is very weak. On the other hand, the proportion
of solutions of 2PPLS that dominate PMA is superior to 50 %.

Finally, the comparison of the average running times for solving the different groups
of instances is given in Table 5. We see that the running times of 2PPLS are less or
equal than the running times of TPM and PMA (TPM has been executed on a Pentium
IV with 1.8 GHz CPUs and 512 MB of RAM, and PMA on a computer with 750
MHz). Those computers are slower than the one that we used (Pentium IV with 3 GHz
CPUs), but we have obtained less computation times for most of the instances, and
our results are considerably better on the different indicators considered.

6.6 Three-objective instances

We present in this section results for three-objective instances. We use different
instances of each type (A, B, C and D, see Sect. 6.1). The costs have been generated
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Fig. 2 Outperformance relations

following the scheme presented in Sect. 6.1. For the type B, the costs of the third objec-
tive is randomly generated. We do not have state-of-the-art results for these instances,
therefore we will be the first to present results for the three-objective set covering
problem.
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Table 5 Comparison of the
running times (in seconds) of
2PPLS, TPM and PMA

Groups of instances Dimension 2PPLS TPM PMA

11 10 × 100 0.56 2.05 4.2

41 40 × 200 7.62 7.69 20.3

42 40 × 400 8.56 8.56 45.7

43 40 × 200 2.34 7.34 14.8

61 60 × 600 20.41 20.27 132.4

62 60 × 600 16.78 20.35 98.8

81 80 × 800 19.85 30.22 165.9

82 80 × 800 16.44 30.27 148.4

101 100 × 1000 26.48 50.10 311.7

102 100 × 1000 23.75 50.41 282.1

201 200 × 1000 60.36 70.81 686.8

We have first tried to solve an instance with 60 rows and 600 columns of type
A. For the neighborhood, we have used the same parameters than the instances with
two objectives, that is k = 2 and L = 9. For the initial population, we generate
randomly 1000 weighted-sum problems, that are solved with the exact method based
onlp_solve. We have obtained the following result: the method needs about 30 min,
to generate 11039 potentially efficient solutions, while for the instance of the same size,
with two objectives, only 25 s were needed, to generate 221 solutions (on average).
We see that increasing the number of objectives considerably increases the number of
potentially efficient solutions to generate, and therefore the computational time.

One way to limit the computational time is to limit the number of potentially
efficient solutions generated. In order to do so, we have proceeded in the following
way: we maintain a hypergrid in the objective space, dynamically updated according
the minimum and maximum values of the solutions for each objective, and we measure
the “mean density of the hypergrid”. The mean density of the hypergrid is equal to the
number of potentially non-dominated generated divided by the number of hypercubes
of the hypergrid that contain at least one potentially non-dominated points.

The hypergrid allows thus to obtain information concerning the repartition of the
solutions in the objective space and to stop the search once enough solutions have
been generated. Here, we will simply stop the method when the mean density of the
hypergrid attains a certain threshold.

We show the results that we have obtained with this technique in Fig. 3. The figures
represent the evolution of the T indicator and the evolution of the number of potentially
efficient solutions |P E | according to the running time. The running time is controlled
with the density threshold parameter. We start with a value of density equal to 2 with 2
divisions of the objective space for each objective and we end with a value of density
equal to 20 with 20 divisions. Between these two values, we increase both the mean
density threshold and the number of divisions with a step equal to 2. The method will
stop when the mean density threshold will be attained or if a Pareto local optimum set
has been reached. We have used for the neighborhood the same parameters than with
the instances with two objectives, that is k = 2 and L = 9. The results of 2PPLS are
compared with the method used in Phase 1 (P1): we randomly generate weight sets and
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Fig. 3 Evolution of the T indicator and the number of potentially efficient solutions (|P E |) according to
the running time for the 61a, 61b, 61c and 61d instances
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the weighted-sum problems are solved with the exact method based on lp_solve.
The running time of P1 is controlled with the number of weight sets.

For the instance 61a, from the Fig. 3, we see that the density threshold allows to
control the running time of 2PPLS. The last point of the graph has been obtained with
a density threshold of 20, with a number of divisions also equal to 20. This point has
been reached in more than 2,500 s. However, with a density threshold of 16, we can
attain a point with a similar quality, in less than 500 s. We also see that 2PPLS always
gives better results than P1.

We come to the same conclusion with the instance 61b.
For the instance 61c, from a density threshold equal to 10, we see that a Pareto

local optimum set has been obtained since increasing the density threshold does not
allow to improve the results. We also see that, for this instance, using a hypergrid is
not essential: as the number of potentially efficient solutions is rather small comparing
to the instances 61a and 61b, a Pareto local optimum set is reached in about 200 s.

We get the same conclusion for the instance 61d, except that the Pareto local opti-
mum set has been reached from a density threshold equal to 6. Also, for this instance,
we have considered two sets of parameters for the neighborhood: the initial set (k = 2
and L = 9, under the name N1) and a larger one, with k = 4 and L = 10 (under
the name N2). We see that this larger neighborhood allows to get better final results.
However, if the running time was limited to around 300 s, it is preferable to use the
neighborhood N1 since better results are faster reached.

We have thus seen through these experiments the difficulty to tune the parameters
of 2PPLS for solving three-objective instances. For some instances, a Pareto local
optimum set is rapidly reached and it is not necessary to use a hypergrid to control
the search. On the other hand, for some of the instances, the number of potentially
efficient solutions generated is so large that it is preferable to use a tool (such as the
hypergrid) to control the number of potentially efficient solutions generated by the
algorithm.

A step further will be to dynamically updating the parameters of the algorithm
according to the instances or to the behavior of the algorithm during the search, and
to attain an “any-time” behavior (that is, whatever the time allowed to the algorithm,
the best set of parameters is used in order to get the best approximation that is pos-
sible to reach for the time considered), as it has already been studied in biobjective
optimization (Dubois-Lacoste et al. 2012).

7 Conclusion and perspectives

We have shown through this paper the effectiveness of the approach based on 2PPLS,
VNS and LNS to solve the MOSCP. The integration of VNS and LNS into 2PPLS
allowed to obtain new state-of-the-art results for the MOSCP (biobjective and three-
objective instances). LNS is particularly suited to multiobjective optimization, since
with this approach a set of new potentially efficient solutions can be easily produced
from one solution. VNS, for his part, helps to escape from a local Pareto optimum set.

Among the perspectives, more experiments could be conducted with the LNS:
use of other ratios, considering only a subset of rows to define the neighborhood or
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using a heuristic to solve the residual problems instead of using an exact enumeration
algorithm. A dynamic control of the parameters, according to the instances solved,
would also be worth to be studied, in order to reach an “any-time” behavior of the
algorithm.

For the three-objective instances, we could use techniques based on the integration
of the preferences of the decision maker (Thiele et al. 2009), so that the search of
potentially efficient solutions could only be realized in a specific part of the search
space. With this aim, refinement of the Pareto dominance (by integration of some
preferences of the decision maker) may be useful.

Finally, the approach is general and could be used to develop new heuristics for
solving other MOCO problems and some applications.
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