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Abstract In this paper, we propose a heuristic algorithm to solve a new variant of
the partial set covering problem. In this variant, each element ei has a gain gi (i.e., a
positive profit), each set s j has a cost c j (i.e., a negative profit), and each set s j is part
of a unique group Gk that has a fixed cost fk (i.e., a negative profit). The objective is
to maximize profit and it is not necessary to cover all of the elements. We present an
industrial application of the model and propose a hybrid heuristic algorithm to solve
it; the proposed algorithm is an iterated-local-search algorithm that uses two levels
of perturbations and a tabu-search heuristic. Whereas the first level of perturbation
diversifies the search around the current local optimum, the second level of perturbation
performs long jumps in the search space to help escape from local optima with large
basins of attraction. The proposed algorithm is evaluated on thirty real-world problems
and compared to a memetic algorithm. Computational results show that most of the
solutions found by ITS are either optimal or very close to optimality.

Keywords Set covering · Partial covering · Profit maximization ·Hybrid heuristics ·
Iterated local search · Tabu search

1 Introduction

The set covering problem (SCP) is an NP-hard optimization problem (Garey and John-
son 1979) that has been extensively studied in operations research and combinatorial
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optimization. The SCP can be defined as follows: let E = {e1, . . . , em} be a universe
of elements and S = {s1, . . . , sn} be a collection of subsets s j ⊂ E , where

⋃
s j = E ,

with j = 1 …n. Each set s j covers at least one element of E and has a cost c j > 0.
The objective is to find a sub-collection of sets X ⊆ S that covers all of the elements
in E at a minimal cost. The SCP has been applied to a wide range of industrial appli-
cations including scheduling, manufacturing, service planning and location problems
(Caprara et al. 1999; Lan et al. 2007; Balas 1983).

To address the specific needs of some applications, the partial set covering problem
(PSCP) has been introduced. The PSCP is a generalization of the SCP where it is
either not necessary or not possible to cover all of the elements of E because of other
objectives or constraints. Several variants of the PSCP have been proposed in the
literature. In the k-set covering variant (Athanassopoulos et al. 2009), the aim is to
cover at least k elements at a minimal cost. In the facility location variant (Farahani
and Hekmatfar 2009), the total number of facilities (i.e., total budget) allowed to cover
the demand points (i.e., the elements) is usually limited, and as a result, some demand
points cannot be covered. The budgeted maximum coverage location problem (Khuller
et al. 1999) is a particular case of facility location problems and it involves choosing
a subset of sets from a collection of sets of weighted elements, to maximize the total
weight that is covered under a given budget constraint. Another variant of the PSCP
called the prize-collecting set cover problem has been proposed in (Könemann et al.
2006). In this variant, a profit p j is associated with each element ei ∈ E . The objective
is to find a minimum cost subset of S such that the total profit of the covered elements
is greater than or equal to a specified profit bound.

In order to solve an industrial problem (which is described in Sect. 2.1), we introduce
a profit-maximization variant of the partial set covering problem (PMSCP). In this
variant, each element ei has a gain gi (i.e., a positive profit), each set s j has a cost c j

(i.e., a negative profit), and each set s j is part of a unique group Gk that has a fixed
cost fk (i.e., a negative profit). The fixed cost of a group is paid only once, namely,
whenever a set of the group is added to the solution. The objective is to maximize the
total profit represented by the total gain of the covered elements minus the total cost
of the sets and groups that are used in the solution. The profit-maximization objective
encapsulates the idea that when the additional cost that is required to cover certain
uncovered elements is higher than the additional revenue (

∑
gi ) associated with these

elements, it is better to leave these elements out of the cover.
To solve the PMSCP, we propose an iterated-tabu-search (ITS) algorithm (ITS) that

is an iterated-local-search (ILS) algorithm, where a tabu-search heuristic (TS) is used
for local-search. An important characteristic of our algorithm is the use of a second
perturbation operator in the ILS framework that helps escaping from local optima and
hence, increases the chances of reaching optimal solutions.

Because the PMSCP is a new problem that has not previously been solved in the liter-
ature, there are no existing algorithms to which we can compare our heuristic. Instead,
we adapted one of the best heuristics that has been developed for the SCP (which is a
very similar problem) and compared our heuristic to it. The adapted algorithm has been
developed by Beasley and Chu (1996) and is described in Sect. 4. The two algorithms
are compared on 30 real world test problems (Sect. 5). Additionally, limited experi-
ments using the general purpose solver CPLEX are performed to validate our results.
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An iterated-tabu-search heuristic for a variant 145

The main contributions of this work are the use of tabu-search and a second pertur-
bation operator in the ILS framework. To our knowledge, iterated-local-search has not
previously been used to solve the partial or standard set covering problem. In addition,
we present a new variant of the PSCP and a new practical application of it.

2 Modeling a mining-industry application with the PMSCP

2.1 The mining application

We originally developed our profit-maximization variant of the PMSCP to solve a
mining-industry problem called drillholes placement. The first steps in the mining
cycle are exploration and feasibility. In the exploration stage, geologists start by esti-
mating the potential locations of mineral deposits. Then, they drill many long holes
inside the mine and extract samples from these potential sites for analysis and to con-
firm or adjust their estimations. Because drilling is expensive, geologists and mining
engineers try to position their holes to cover most potential sites with a minimum
amount of drilling. Minimizing the amount of drilling involves choosing the num-
ber, location, orientation and length of each drill hole to minimize the total cost of
drilling. In addition to the cost of drilling, moving the drill-platform from one location
to another is also expensive. The locations where the drill-platform can be positioned
are called drill stations.

Usually, geologists express their estimations in the form of a 3D model; in the min-
ing industry, this model is often called a block model. A block model is a set of cubic
blocks of equal size where each block is characterized by the estimated grade of the
minerals it may contain. Using this block model and the available drill stations, it is pos-
sible to create a set that contains all of the potential drill holes that can be drilled inside
the mine. In this set of drill holes, each drill hole can have any length and orientation
that is feasible using the drill, which can be rotated both horizontally and vertically. In
addition, each drill hole covers at least one block and the drill holes are grouped by drill
stations. A block is said to be covered by a given drill hole if the orthogonal distance
from the center of the block to the drill hole is smaller than a given value. Figure 1
shows an example of a set of potential drill holes in a 2-D block model where only two
drill stations are shown for illustration purposes. To illustrate the drill hole coverage,
the blocks covered by one of the drill hole (highlighted in bold) are shown in gray.

Each drill hole has a cost that is proportional to its length and each block has a gain
that is proportional to the importance of covering that block. Because the blocks are
only explored (not extracted) in the exploration stage, the gain attributed to each block
is the highest cost that we would find it worthwhile to pay to cover that block (not the
value of the minerals that are inside that block). A geostatistical classification method
can be used to separate important blocks from less important ones, which makes the
attribution of the gains easier. For instance, the classification method proposed by Pan
(1995) allows separating the blocks into five different categories.

From the set of all possible drill holes, we want to choose a subset of
drill holes that maximizes the profit represented by

∑
gains (blocks covered) −∑

costs (drill holes selected)−∑
costs (drill relocation).
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Drill station

Drill hole

Block

Drill hole coverage
Fig. 1 Set of potential drill holes

In order to solve this problem with our PMSCP model, we need to generalize the
concepts of drill holes, blocks and drill stations. Because a drill hole covers a set of
blocks and because the drill holes are grouped by drill stations, a block can be modeled
as an element (ei ), a drill hole can be modeled as a set of elements (s j ) and a drill
station can be modeled as a group of sets (Gk). Moreover, each element has a gain
(gi ), each set has a cost (c j ) and each group has a fixed cost ( fk). Because the cost
of moving the drill to a new location is paid exactly once, the cost of a group fk is
modeled as a fixed cost.

2.2 The PMSCP model

The PMSCP is a maximization problem that can be formulated as follows. Let
– Am×n be a zero-one matrix where ai j = 1 if the element ei is covered by the set j ,

and ai j = 0 otherwise.
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– Bl×n be a zero-one matrix where bkj = 1 if the set s j is part of the group Gk , and
bkj = 0 otherwise.

– X = {x1, x2, . . . , xn} where x j = 1 if the set s j (with cost c j > 0) is part of the
solution, and x j = 0 otherwise.

– Y = {y1, y2, . . . , ym}where yi = 1 if the element ei (with a gain gi > 0) is covered
in the solution, and yi = 0 otherwise.

– G R = {gr1, gr2, . . . , grl} where grk = 1 if at least one set of the group Gk (with
a cost fk > 0) is part of the solution, and grk = 0 otherwise.

Maximize

m∑

i=1

gi yi −
n∑

j=1

c j x j −
l∑

k=1

fk grk (1)

subject to

yi ≤
n∑

j=1
ai j x j , i = 1, . . . , m (2)

bkj x j ≤ grk, j = 1, . . . , n; k = 1, . . . , l (3)

x j , yi , grk ∈ {0, 1} (4)

Each set is part of exactly one group and each group must contain at least one set.
Constraint (2) implies that an element is covered if at least one of the sets that covers
it is part of the solution, and constraint (3) implies that a group is part of the solution
if at least one of the sets that it contains is part of the solution. In fact, the purpose
of constraints (2) and (3) is to keep track of which elements are covered and which
groups are used in a given configuration.

Throughout all this paper, the term solution or configuration refers to the collection
of selected sets (i.e, all of the sets s j such that x j = 1).

3 The proposed ITS algorithm

In this work, we propose a hybrid heuristic algorithm to solve the PMSCP. The pro-
posed algorithm is hybrid because it combines two metaheuristics: iterated-local-
search (ILS) and tabu-search (TS).

Iterated-local-search is a simple but very effective metaheuristic that has been
successfully applied to many difficult optimization problems, such as the traveling
salesman problem (Martin et al. 1991; Johnson 1990; Johnson and McGeoch 1997;
Katayama et al. 1999), scheduling problems (Congram et al. 2002; Stützle 1998;
Lourenço and Zwijnenburg 1996; Balas and Vazacopoulos 1998; Kreipl 2000), graph
partitioning (Martin and Otto 1995, 1996) and MAX-SAT (Battiti and Protasi 1997).
The aim of iterated-local-search is to explore the space of local optima in an efficient
and effective way. ILS manipulates a single solution using two main operators: a local-
search operator and a perturbation operator. In each iteration, a new starting point is
created using the perturbation operator and a new local optimum is found using the
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local-search operator. The new local optimum is kept if it passes a given acceptance
criterion; otherwise, a new iteration is performed using the previous local optimum.

The perturbation and local-search operators must be carefully designed to work
well together. Furthermore, the perturbation must be large enough to ensure that it is
not negated by the local-search operator and small enough to avoid a random-restart
behavior. A complete description and guide for building effective iterated-local-search
algorithms is presented in (Lourenço et al. 2002).

Tabu-search (TS) is a local-search algorithm that uses a search history to escape
from local optima and cycles. The search history of TS is saved in a list, which is
called the tabu-list. Whenever a move is performed, the reverse move is added to the
tabu-list. A move stays in the tabu-list for a limited number of iterations (equal to
the length of the tabu-list). A move is forbidden as long as it is part of the tabu-list.
Another important component of tabu-search is the aspiration criterion that allows
a tabu move to be performed in some circumstances. A typical aspiration criterion,
which is actually used in this paper, allows a tabu move to be performed when the
resulting solution is better than the current best solution. A full description of tabu-
search can be found in (Glover et al. 1989; Glover and Taillard 1993; Zäpfel et al.
2010).

To achieve better results, many authors have combined iterated-local-search with
other heuristics such as the genetic algorithm (Azim and Ben Othman 2010), vari-
able neighborhood descent (VND) (Chen et al. 2008), GENIUS (Subramanian 2011)
and tabu-search (TS) (Misevičius et al. 2006; Smyth et al. 2003; Misevičius 2004;
Palubeckis 2007). When tabu-search is used as the local-search operator in ILS, the
resulting ILS algorithm is often called iterated-tabu-search.

The algorithm proposed in our paper is an ITS algorithm with two levels of pertur-
bations: whereas the first level of perturbation diversifies the search around the current
local optimum, the second level of perturbation performs long jumps in the search space
to help escape from local optima with large basins of attraction. In each iteration, the
first perturbation operator is invoked; then, a short run of tabu-search is performed.
The second perturbation operator is invoked if the current best solution is not improved
after stag(I T S) iterations, where stag(I T S) is a parameter. The acceptance criterion
that is used only allows a better solution to replace the current local optimum at the
end of each iteration. The algorithm stops after a limited computation time.

3.1 Solution-representation and objective function

We use a binary-string solution representation in ITS where the i th bit is equal to one
if set i is part of the solution, and the i th bit is equal to zero otherwise.

Let X be a given configuration, SX be the sets used in X , EX be the elements
covered by X and G X be the groups used in X . Then, the objective-score of X can be
calculated as follows:

score(X) =
∑

e∈EX

gain(e)−
∑

s∈SX

cost(s)−
∑

g∈G X

cost(g)
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3.2 Perturbation operators

As mentioned earlier, we use two perturbation operators in ITS. The first perturbation
operator (see Algorithm 1) diversifies the search around the current best solution
by randomly removing sets from (or adding sets to) the current configuration. This
operator iterates over the bits of value 1 and flips each bit to 0 with a probability p.
Afterward, if n bits have been flipped from 1 to 0, n new bits are randomly chosen and
flipped from 0 to 1 (if a bit is already equal to one, it is left at 1). The goal is to ensure
that the number of bits that have been flipped from 0 to 1 is less than or equal to the
number of bits that have been flipped from 1 to 0; the reason is that if too many bits are
flipped from 0 to 1, most of the sets will be redundant and the local-search operator
will spend excessive time removing redundant sets. This behavior only occurs if the
density of ones in a redundant-free solution is small, which is in fact the case for our
test problems. The probability p (or the strength of the perturbation operator) must
be low enough to avoid a random-restart behavior but high enough to ensure that the
perturbation is not immediately canceled by the local-search operator.

Algorithm 1 perturb1(S)
n← 0
for (i = 1 : numOfSets(S)) do

if ( flip-coin(p) = true ) then {p is the perturbation strength}
S← remove-set(S, i)
n← n + 1

end if
end for
for (i = 1 : n) do

j = random-int( 1, numOfSets(S) )
S← add-set(S, j)

end for
return S;

The analysis of the execution traces that were produced in preliminary testing
revealed that ITS have difficulties escaping from certain local optima because of the
fixed cost that is associated with the groups (these difficulties have also been confirmed
by the experimental results presented in Tables 6 and 7). In fact, when few groups
are added to the solution, their associated fixed costs are paid; then, ITS tends to
keep adding sets to (or removing sets from) the solution using these groups instead
of exploring new groups. This happens because the costs of the selected groups have
already been paid, and as a result, it is more expensive to pay for other unvisited groups
and explore their sets. Therefore, certain regions of the search space, that may in fact
contain the global optimum become difficult to reach. To overcome this weakness
of ITS, a second perturbation operator that performs long jumps in the search space
is used. This operator is invoked when the search is stagnant for a given number of
iterations [stag(I T S) in Algorithm 4]. The long jumps consist of forcing a group into
or out of the solution for a fixed number of iterations (F in Algorithm 2). If the solution
is not improved, the group is released and another group is forced (only one group is
forced at a time). When a new best solution is found, the forced group is released, the
stagnancy counter is reset and the search is continued (see Algorithm 4).
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Let M be a very large constant such that M >
∑

(gi ). To force a group out of the
solution, we remove all of its sets from the solution and increase its fixed cost by M
to make it unaffordable. Similarly, to force a group into the solution, we decrease its
fixed cost by M to make it very attractive (the cost of the group becomes negative,
and therefore, adding any set from the group to the solution increases the objective
score). To release a group, we restore its original cost. During evaluation, if a group
was forced into the solution, the original cost of the group must be used instead of the
modified cost.

The pseudo-code of the second perturbation operator is presented in Algorithm 2,
where F is the number of iterations during which a group is forced into (or out of) the
solution.

Algorithm 2 perturb2(S∗, forcedIters, currentGroup, stagnationCounter)
if (forcedIters == 0) then

S∗ ← force-group(S∗, currentGroup);
else if (forcedIters == F) then {if a group was forced for F iterations, release it and force the next group}

S∗ ← release-group(currentGroup);
currentGroup← next-group();
forcedIters← 0;
if (is-invalid(currentGroup)) then {if we already tried to force all the groups}

currentGroup← first-group();
stagnationCounter← 0;
return S∗;

end if
S∗ ← forceGroup(S∗, currentGroup);

end if
forcedIters← forcedIters + 1;
return S∗;

3.3 Local-search operator

As mentioned earlier, tabu-search has been used to perform local-search in our ITS
algorithm. In each iteration of ITS, a short run of TS is performed. In addition, the
tabu-list is cleared at the beginning of each run of TS.

As mentioned in Sect. 3.1, a binary-string solution representation is used in ITS.
In the TS operator, a neighbor of a given solution is obtained by adding a set to (or
removing a set from) the solution.

Let X be a given configuration, SX be the sets used in X , EX be the elements covered
by X and G X be the groups used in X . The score of X+ j , which is the neighbor of X
that is obtained by adding the set j to the configuration, and the score of X− j , which
is the neighbor of X that is obtained by removing the set j from the configuration, can
be calculated as follows:

score(X+ j ) = score(X)+
∑

gain(EX+ j \EX )− c j − cost(G X+ j \G X ) (5)

score(X− j ) = score(X)−
∑

gain(EX\EX− j )+ c j + cost(G X\G X− j ) (6)
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In each iteration, the best possible non-tabu move is performed and the reverse
move is added to the tabu-list; the best move is the move that replaces the current
solution with its best neighbor, i.e, the neighbor with the greatest score. The algorithm
stops if the solution is not improved after stag(T S) iterations, where stag(T S) is a
parameter. The tabu-list is used to avoid adding a set that was recently removed or
removing a set that was recently added, and the aspiration criterion allows adding or
removing such a set if the resulting solution is better than all of the solutions that have
been visited so far. The pseudo-code of TS is given in Algorithm 3. The procedure
find-next-move returns either the best non-tabu move or a tabu move that passes the
aspiration criterion.

Algorithm 3 TS(S)
clear-tabu-lists();
best← S;
stagnationCounter← 0;
loop

m← find-next-move(S);
S← perform-move(S, m);
mark-tabu(m);
if (score(S) > score(best)) then

best← S;
stagnationCounter← 0;

else if (stagnationCounter > stag(T S)) then
return best;

end if
stagnationCounter← stagnationCounter + 1;

end loop
return best;

A separate tabu-list is used for each type of move (namely, add and remove) to allow
the use of a different tabu-list size for each type of move. Our experiments have shown
that using a tabu-list for remove moves slows down the convergence of TS toward
the optimal solution. This behavior can be explained by the fact that remove moves
usually eliminate the redundant sets from the solution and open new possibilities for
add moves. For this reason, remove moves should not be postponed for very long
during the search. Instead of discarding the tabu-list for remove moves, a short list was
used.

3.4 Resulting ITS algorithm

The pseudo-code of the resulting ITS algorithm is presented in Algorithm 4.
Figure 2 illustrates how the use of the two levels of perturbation helps ITS to reach

the global optimum. The first level of perturbation (perturb1) and the local-search
operator allow the algorithm to jump from one local optimum to another in the same
region until the best local optimum of the region is reached. Because the strength of the
first perturbation operator is relatively small, it is difficult to reach new regions in the
search space. By forcing a group into (or out of) the solution, the second perturbation

123



152 N. Bilal et al.

Algorithm 4 ITS()
S← empty-solution();
S∗ ← TS(S);
stagnationCounter← 0;
currentGroup← first-group();
forcedIters← 0;
loop

S′ ← perturb1(S∗);
S∗′ ← TS(S′);
if (score(S∗′) > score(S∗)) then {acceptance criterion}

S∗ ← S∗′
stagnationCounter← 0;
S∗ ← release-group(S∗, currentGroup); {see Sect. 3.2}
currentGroup← first-group();
forcedIters← 0;

end if
if (stagnationCounter > stag(I T S)) then

S∗ ← perturb2(S∗, forcedIters, currentGroup, stagnationCounter);
end if
stagnationCounter← stagnationCounter + 1;

end loop
return S∗

s1* s2

s2*

perturb1
perturb2

region1 region2

s4

s4*

s5*

s5

perturb1

s3*

s3

perturb1

Fig. 2 The use of two levels of perturbation increases the chances of reaching the global optimum

operator (perturb2) performs a long jump in the search space and reaches a new region
(as shown in Fig. 2). Then, the first perturbation operator and the local-search operator
are reused to find the best local optimum of the new region. The global optimum of
the problem is the best local optimum of all regions.

Figure 3 illustrates how the use of tabu-search as an improvement operator in
ILS increases the chances of reaching the global optimum. In this case, if a simple
descent heuristic is used instead of tabu-search, the basin of attraction of the global
optimum that is located between the two dashed lines is very small. For this reason,
the probability that the perturbation operator attains the basin of attraction of the
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TS

s1*

s*

s

Fig. 3 The use of tabu-search in ILS increases the probability of reaching the global optimum

global optimum is very low and as a result, the global optimum will be difficult to
reach. In contrast, tabu-search can escape from local optima located on small hills,
which increases the size of the basin of attraction of the global optimum. In addition,
the use of tabu-search has the effect of merging small and adjacent hills into bigger
hills, which considerably reduces the total number of hills (i.e., the total number of
local optima to explore). As a result, the chances of reaching the global optimum are
increased as shown in Fig. 3. On the other hand, it is important to note that the runs
of tabu-search must be short enough to avoid a significant reduction of the overall
number of iterations of the ILS algorithm.

4 The adaptation of a memetic algorithm

To evaluate the performance of the proposed algorithm, we compare it to a memetic
algorithm that was proposed by Beasley and Chu (1996) to solve the SCP. A memetic
algorithm is a genetic algorithm (GA) that has been hybridized with an exact or
heuristic algorithm (Radcliffe and Surry 1994). Generally, a local-search-improvement
heuristic is incorporated into the GA to improve the quality of each individual before
it is evaluated.

We transposed as accurately as possible the memetic algorithm developed by
Beasley and Chu (BCMA) from the SCP domain to the PMSCP domain. We used
the same solution representation (binary string), the same way of managing the popu-
lation (selection and replacement), the same crossover operator (fusion crossover), but
different initialization, mutation and evaluation operators. In the following material,
BCMA is briefly presented and the adapted operators are described. The reader is
referred to (Beasley and Chu 1996) for a complete description of the original BCMA.
The resulting memetic algorithm for the PMSCP is called MA-PMSCP.

In each generation of BCMA, only one child is created (i.e., BCMA is an incremen-
tal GA). Two parents are selected using the tournament selection method and com-
bined using the fusion crossover operator. Then, the newly generated child is mutated
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and added to the population by replacing a randomly chosen individual, although a
below-average individual is more likely to be replaced. If the newly generated child
is identical to an existing member of the population, the child is discarded and a new
generation is performed.

Unlike other known crossover operators (e.g., one-point, two-point and uniform),
the fusion crossover operator produces only one child. When two parents are combined
with the fusion operator, the resulting child has more chances to inherit genes from
its fittest parent.

The initialization operator of BCMA creates a feasible solution to the SCP (i.e., all
of the elements are covered) by randomly selecting a set to cover each element. For a
given element, a set is randomly selected from the five cheapest sets (which are called
elite sets) that cover this element. This initialization operator is not compatible with
the PMSCP because the cost of a set is also influenced by the fixed cost of the group
that contains the set, and as a result, the concept of elite sets is not applicable. We
replaced the initialization operator of BCMA with a simple operator that randomly
assigns a value of 0 or 1 to each bit.

The mutation operator of BCMA randomly flips each bit at a given mutation rate.
Only elite sets are considered for mutation. Because the concept of elite sets is not
applicable to the PMSCP, the adapted mutation operator considers all of the bits for
mutation. As in BCMA, a variable mutation rate is used as follows: the mutation rate
is low at the beginning of the search to allow high intensification using the crossover
operator and is increased as the GA converges to escape from local optima.

In BCMA, a repair operator is used to ensure the feasibility of the solutions gen-
erated by the GA. In addition, a redundancy-removal operator is used to enhance
the quality of the repaired solutions. The concept of feasibility is not applicable to
PMSCP’s because it is not necessary to cover all of the elements. We replace the
repair and redundancy removal operators of BCGA with a best improvement (or steep-
est descent) operator that enhances the quality of the solutions produced by the GA.
The best improvement operator (BI) is executed on the newly created individuals
immediately before the evaluation step of MA-PMSCP; moreover, this operator uses
the same neighborhood that is used in the tabu-search operator 3.3. As in TS, the best
possible move is performed in each iteration. BI starts from a given configuration and
performs a sequence of moves on it until the solution is locally optimal. Redundant
sets are automatically removed because a configuration that contains one or more
redundant sets will always have a better neighbor, which can be obtained by removing
a redundant set: if X is a configuration containing a redundant set j, X ′ = X − { j} is
a better neighbor than X because score(X ′) = score(X)+ c j (see Eq. 6). As a result,
a solution that is improved with BI is devoid of redundant sets.

5 Computational results

In this section, we perform experimental analysis on the proposed ITS algorithm and
compare it to a memetic algorithm (MA-PMSCP). Experiments are performed on thirty
test problems that stem from the mining industry; these test problems contain twenty
small-scale and medium-scale problems, and ten large-scale problems. The algorithms
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were implemented in C++ and compiled with the GNU-C++-Compiler(G++). The
experiments were performed on an Intel(R)Xeon(R) X7550@2.00GHz processor with
up to 1 TB of RAM.

The test problems have been generated using real geometrical data (block models
and drill holes) from the mining industry. The cost associated with each set is propor-
tional to the length of the corresponding drill hole. The gain attributed to each block is
proportional to the highest cost that one would pay to cover that block. The same fixed
cost is used for all groups because the cost of positioning the drill is invariable for our
test problems. The objective score of a solution has no physical interpretation and is
used for comparison purposes. The characteristics of the test problems are presented
in Tables 1 and 2 where the best-known solutions that are presented are the best results
that were obtained in all our experiments (including CPLEX runs, which are discussed
below). The density is the percentage of ones in the matrix Am×n defined in Sect. 2.2.

We use the mathematical programming solver CPLEX (version 12.2) to determine
the quality of the solutions found by ITS and MA-PMSCP. By running CPLEX for a
sufficiently long computation time (up to 9 days per instance), we obtain optimal or
near-optimal solutions and an optimality gap. The optimality gap is an upper bound
of the percentage deviation from the optimal solution. Some of the CPLEX runs were
stopped due to RAM limitation; which was up to 173 GB but varied for each run
depending on the traffic in the test machine. The results obtained by CPLEX are
presented in Table 3. Whereas a solution with an optimality gap of zero is optimal,
a solution with an optimality gap that is close to zero is near-optimal and may in
fact be optimal. The total time spend by CPLEX is presented in days (d), hours (h) or
seconds (s). The tree size is the size of the branching tree used in the branch and bound
algorithm of CPLEX; this tree is stored in memory. Note that the large problems have
not been solved with CPLEX. In fact, because of the size of these problems, CPLEX
was not able to start branching after up to 24 h.

Five trials of ITS and MA-PMSCP are performed for each test problem. The para-
meters used in ITS are as follows: stag(I T S) = 200, stag(T S) = 1000, F = 50 for
small and medium-size problems, and F = 1 for large problems (F is decreased for
large problems because the overall number of iterations is lower and as a result, the
second perturbation operator is invoked fewer times). The length of the tabu-list that
is used for add moves is equal to the number of sets in the problem that is being
solved and the length of the tabu-list that is used for remove moves is equal to one.
These parameters where chosen based on preliminary computational experiments. For
MA-PMSCP, we use a population size of fifty individuals and a variable mutation rate
that varies between 0.1 and 0.3. As in BCGA, the crossover operator is invoked in
each generation (i.e., the crossover probability is 1).

The detailed results of ITS are presented in Tables 4 and 5. The minimum, maximum
and average solutions are presented in columns S(min), S(max) and S(avg), respectively.
The cases where ITS was able to find the optimal solution or a solution that is better
than the near-optimal solution that was found by CPLEX are highlighted in bold. The
other columns contain the average of the following values that correspond to a given
run: T is the time in seconds when the best solution was first found, I ters is the total
number of iterations that were performed, I mp is the number of times the solution
has been improved, P2 is the number of times that stagnancy has been detected in
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Table 3 Optimal or
near-optimal solutions obtained
with CPLEX

Instance Solution Optimality
gap (%)

Total time Tree size

A1 150,386 0 6.3 (h) 250 MB

A2 179,973 0 450 (s) 50 MB

A3 155,242 0.51 4.6 (d) 96.3 GB

A4 156,558 1.28 2.9 (d) 173.2 GB

A5 158,550 5.23 8.5 (d) 124.7 GB

B1 152,222 1.73 3.2 (d) 135.9 GB

B2 155,310 2.88 2.75 (d) 95.0 GB

B3 156,509 5.01 3.2 (d) 89.2 GB

B4 156,851 6.26 1.3 (d) 113.0 GB

B5 158,903 6.11 7.2 (d) 48.4 GB

C1 246,121 0 1933 (s) 27.8 MB

C2 247,455 0 6.3 (h) 229.9 MB

C3 249,070 0 3.7 (h) 188.5 MB

C4 249,124 0 23.6 (h) 2.0 GB

C5 249,935 0 16.7 (h) 306.4 MB

D1 247,112 0.43 7.2 (d) 82.1 GB

D2 248,200 0.82 7.8 (d) 32.1 GB

D3 248,136 1.6 8.2 (d) 9.4 GB

D4 247,809 2.01 8.0 (d) 4.3 GB

D5 249,929 1.59 9.0 (d) 36.9 GB

ITS (and resulted in the use of the second perturbation operator), and P2-I mp is the
number of times in which the use of the second perturbation operator has allowed ITS
to escape from local optima and improve the current best solution. Note that if the
optimal solution is found early in a run, P2 will be high because the solution will be
stagnant and P2-I mp will be low because the solution is already optimal and cannot
be improved.

In Tables 6 and 7, ITS and MA-PMSCP are compared. In addition, we experiment
with two variants of ITS. The first variant (called ITS without perturb2) is ITS without
the second perturbation operator and the second variant (called ILS + perturb2) is
ITS where the TS operator has been replaced with a steepest descent operator (the
steepest descent operator is similar to TS but stops when a local optimum is reached).
The column σ(avg) contains the percentage deviation of the average solution from the
best-known solution, the column σ(best) contains the percentage deviation of the best
solution from the best-known solution and the column T(avg) contains the average
solution-time (in seconds unless otherwise specified) for each algorithm. The total
execution time for each instance is the same for all algorithms and is presented in the
last column of the tables.

From the presented tables, we observe the following:

– From Tables 4 and 5, we observe that ITS performs consistently better than MA-
PMSCP on all test problems (between 0.47 and 7.26 % better on small-scale and
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Table 4 Detailed results for ITS on small and medium problems

Instance S(min) S(max) S(avg) T(avg)(s) I ters(avg) I mp(avg) P2(avg) P2-I mp(avg)

A1 150,158 150,386 150,245.6 159 20,425.4 14.6 30 2.2

A2 179,973 179,973 179,973 122 9,350.8 9.4 14 1.6

A3 154,150 155,266 154,909.2 618.8 9,729.8 28 14.2 1.8

A4 156,243 156,423 156,338.2 480.2 4,846.6 23.4 6.8 1

A5 159,673 160,276 159,963 1,141.4 1,751 31.6 2.2 0.6

B1 152,110 152,335 152,290 79.6 9,830.2 15.6 9.2 1.6

B2 155,409 155,554 155,524.2 278.2 6,617.2 18 6 1

B3 157,249 157,551 157,455 904.6 2,417.4 23.8 2.8 1.8

B4 157,872 158,403 158,215 983.6 1,710.6 21.6 2.4 1.4

B5 158,298 159,426 158,827 810.8 1,033.6 20.2 1 0.4

C1 246,121 246,121 246,121 10.4 5,417.2 19.2 3 0

C2 247,447 247,455 247,450.2 355.2 2,774.4 16.2 3.4 2.2

C3 249,070 249,070 249,070 93.6 1,671 24.8 2 1

C4 249,060 24,9094 249,072.4 543.8 1,442.2 22.2 1.8 1

C5 249,501 24,9881 249,756.8 1,763 1,968.6 20.6 2.6 1.8

D1 247,107 247,199 247,170.6 585.2 2,764.8 27.4 3.4 2.6

D2 247,723 248,389 247,968.6 984.8 1,318 31.4 1 0.2

D3 248,474 248,923 248,663.8 2,468.2 1,223.6 25.6 1.6 1

D4 248,107 249,107 248,672.2 5,376 1,404 34.8 1.8 1

D5 249,605 250,158 249,956.8 3,439.6 1,418.4 31.6 1.2 0.6

Table 5 Detailed results for ITS on large problems

Instance S(min) S(max) S(avg) T(avg)(s) I ters(avg) I mp(avg) P2(avg) P2-I mp(avg)

E1 617,248 619,800 618,852 12,806.8 56,810.6 34.6 186.4 1.2

E2 445,572 449,288 446,976.2 15,965.6 61,644.6 63.2 196.8 2.8

E3 543,841 548,110 545,262.2 14,750.4 23,383.4 44.2 71.2 1.2

E4 635,294 637,010 636,065.4 28,585.2 9,321.2 46 27.4 8.4

E5 468,404 472,158 470,955.4 28,794 12,116.6 47.4 32.8 1.6

F1 496,208 500,797 498,983.6 31,044 8,717.8 44.8 25 6.8

F2 487,641 494,333 490,600.4 32,674.2 8,240 42.8 24 7.4

F3 481,691 485,309 483,177.8 34,616 5,317.8 39.6 14 6.8

F4 480,028 484,835 481,769.8 26,312.8 2,222.2 26 5.4 3.4

F5 492,514 495,066 494,008.2 34,696.4 1,424.2 20 3.2 3.2

medium-scale problems, and between 2.41 and 9.4 % better on large-scale prob-
lems).

– From Tables 3 and 4, we observe that ITS is able to find equal or better solutions
than the long CPLEX runs for 17 of the 20 small and medium-scale problems. Given
the small optimality gap of CPLEX solutions and the long duration of CPLEX runs,
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we deduce that most of the solutions found by ITS (the bests of the five trials) are
optimal or very close to optimality.

– Even though the differences between the solutions found by ITS and the solutions
found by the two variants of ITS are small (Tables 6 and 7), ITS performs consis-
tently better when both the second perturbation operator and TS are used (except
for A5 where ILS + perturb2 performs better). In addition, given the long CPLEX
runs results, we observe that the use of both operators allows ITS to reach the
optimal solution more frequently.

– Finally, we notice that the percentage deviations of ITS from MA-PMSCP are
larger for large-scale problems than the percentage deviations that were found for
small and medium-scale problems. Thus ITS is both better and more scalable than
MA-PMSCP.

6 Conclusions and future work

In this work, we proposed a new variant of the partial set covering problem, a mining-
industry application to it and a heuristic algorithm to solve it. The analysis of our
computational results shows that the proposed algorithm is very effective and scalable
for solving the PMSCP. We showed that most of the solutions found by ITS are either
optimal or very close to optimality.

In addition, we theoretically discussed how the use of tabu-search and a second
perturbation operator in ITS can help escape from the local optimum located on small
hills and the local optima that have large basins of attraction. Furthermore, we experi-
mentally showed that the use of both the second perturbation operator and tabu-search
allows the algorithm to reach the optimal solution more frequently.

We end this paper by motivating the use of multiple perturbation operators in ILS.
Even though we used two perturbation operators to target the sets and the groups of the
PMSCP, other applications can benefit from the use of more perturbation operators.
In addition, each perturbation operator can have a frequency that is dependent on the
strength of the perturbation; where the frequency is used to determine how frequently
an operator will be invoked. For instance, in our case, the first perturbation operator
is invoked in each iteration (i.e. has a frequency of one) while the second perturbation
operator (that has a higher strength) is invoked in each stag(I T S) iterations (i.e. has a
frequency of stag(I T S)). Similarly, the use of multiple local-search operators in ILS
can be an interesting subject for future research.
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Misevičius, A., Lenkevicius, A., Rubliauskas, D.: Iterated tabu search: an improvement to standard tabu
search. Inf. Technol. Control 35(3), 187–197 (2006)

Palubeckis, G.: Iterated tabu search for the maximum diversity problem. Appl. Math. Comput. 189(1),
371–383 (2007)

Pan, G.: Geostatistical design of infill drilling programs. Society of Mining Engineers of AIME 142 (1995)
Radcliffe, N.J., Surry, P.D.: Formal memetic algorithms. In: Evolutionary Computing, pp. 1–16. Springer,

Berlin (1994)
Smyth, K., Hoos, H.H., Stützle, T.: Iterated robust tabu search for max-sat. In: Advances in Artificial

Intelligence, Lecture Notes in Computer Science vol. 2671, pp. 129–144. Springer, Berlin (2003)

123



164 N. Bilal et al.

Stützle, T.: Applying iterated local search to the permutation flow shop problem. Technical Report, FG
Intellektik, TU Darmstadt (1998)

Subramanian, M.: A hybrid heuristic, based on iterated local search and genius, for the vehicle routing
problem with simultaneous pickup and delivery. Int. J. Logist. Syst. Manag. 10(2), 142–157 (2011)

Zäpfel, G., Braune, R., Bögl, M.: Metaheuristic Search Concepts: A Tutorial with Applications to Production
and Logistics. Springer, Berlin (2010)

123


	An iterated-tabu-search heuristic for a variant of the partial set covering problem
	Abstract
	1 Introduction
	2 Modeling a mining-industry application with the PMSCP
	2.1 The mining application
	2.2 The PMSCP model

	3 The proposed ITS algorithm
	3.1 Solution-representation and objective function
	3.2 Perturbation operators
	3.3 Local-search operator
	3.4 Resulting ITS algorithm

	4 The adaptation of a memetic algorithm
	5 Computational results
	6 Conclusions and future work
	References


