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Abstract In this paper, we consider a multi-depot periodic vehicle routing problem
which is characterized by the presence of a homogeneous fleet of vehicles, multiple
depots, multiple periods, and two types of constraints that are often found in reality, i.e.,
vehicle capacity and route duration constraints. The objective is to minimize total travel
costs. To tackle the problem, we propose an efficient path relinking algorithm whose
exploration and exploitation strategies enable the algorithm to address the problem
in two different settings: (1) As a stand-alone algorithm, and (2) As a part of a co-
operative search algorithm called integrative co-operative search. The performance of
the proposed path relinking algorithm is evaluated, in each of the above ways, based
on standard benchmark instances. The computational results show that the developed
PRA performs well, in both solution quality and computational efficiency.
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1 Introduction

The vehicle routing problem (VRP), introduced by Dantzig and Ramser (1959), is
one of the most important and widely studied combinatorial optimization problems,
with many real-life applications in distribution and transportation logistics. In the
classical VRP, a homogeneous fleet of vehicles services a set of customers from a
single distribution depot or terminal. Each vehicle has a fixed capacity that cannot be
exceeded and each customer has a known demand that must be fully satisfied. Each
customer must be serviced by exactly one visit of a single vehicle and each vehicle
must depart from the depot and return to the depot (Toth and Vigo 2002).

Several variations and specializations of the vehicle routing problem, each reflecting
various real-life applications, exist. However, surveying the literature, one can notice
that not all VRP variants have been studied with the same degree of attention in the past
five decades. This is the case for the problem considered in this study. Moreover, most
of the methodological developments target a special problem variant, the capacitated
VRP or the VRP with time windows (VRPTW), despite the fact that the majority of the
problems encountered in real-life applications display more complicating attributes
and constraints. This also applies to the problem addressed in this paper.

Our objective is to contribute toward addressing these two challenges. In this paper,
we address a variant of the VRP which is the problem of designing, for an homogeneous
fleet of vehicles, a set of routes for each period of a given planning horizon. Each
vehicle performs only one route per period and each vehicle route must start and finish
at the same depot. Each customer may require to be visited on different periods during
the planning horizon and these visits may only occur in one of a given number of
allowable visit patterns. In this VRP, we consider maximum route duration constraint
and an upper limit of the quantity of goods that each vehicle can transport. Moreover,
the cost of each vehicle route is computed through a system of fees depending on the
distance that is traveled. This type of VRP is typically called the multi-depot periodic
vehicle routing problem (MDPVRP).

To tackle the MDPVRP, we propose a new path relinking algorithm (PRA), which
incorporates exploitation and exploration strategies allowing the algorithm to solve
the considered problem in two different manners: (1) As a stand-alone algorithm, and
(2) As a part of a cooperative search method named as integrative cooperative search
(ICS).

The remainder of this paper is organized as follows. The problem statement is intro-
duced in Sect. 2. The literature survey relevant to the topic of this paper is presented in
Sect. 3. Section 4 introduces the proposed PRA. The experimental results are reported
in Sect. 5. Finally, we conclude in Sect. 6.

2 Problem statement

In this section, we formally state the MDPVRP (Cordeau et al. 1997), introducing the
notations used throughout this paper. The MDPVRP can be defined as follows (Vidal
et al. 2012): consider an undirected graph G(V, E). The node set V is the union of
two subsets V = VC ∪ VD , where VC = {v1, . . . , vn} represents the customers and
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VD = {vn+1, . . . , vn+m} includes the depots. With each node i ∈ VC is associated
a deterministic demand qi , which is to be satisfied over a planning horizon of T
periods. Each node i ∈ VC is also characterized by a service frequency fi , stating how
often within these T periods this node must be visited and a list Li of possible visit-
period combinations, called patterns. The edge set E contains an edge for each pair
of customers and for each depot-customer combination. There are no edges between
depots. With each edge (vi , v j ) ∈ E is associated a travel cost ci j . The travel time
for arriving to node j from node i (ti j ) is considered equal to ci j . A limited number
(K) of homogeneous vehicles of known capacity Q is available at each depot. Each
vehicle performs only one route per period and each vehicle route must start and finish
at the same depot while the travel duration of the route should not exceed D. The
MDPVRP aims to design a set of vehicle routes servicing all customers, such that
vehicle-capacity and route-duration constraints are respected, and the total travel cost
is minimized.

3 Literature review

In this section, we review papers previously published in the literature addressing the
MDPVRP. The objective of this review is first to present the most recently proposed
heuristic and meta-heuristic algorithms for the considered problem and second, to
distinguish leading solution approaches that have been proved to be efficient to tackle
the MDPVRP.

The majority of solution methods, targeting the MDPVRP, are divided into two
main groups: (1) classical heuristics, which often solve the problem in a sequential
manner, and (2) sophisticated meta-heuristics and parallel algorithms, which tackle
the problem by simultaneously optimizing all the involved attributes. We are aware
of four heuristics in the first group. Cordeau et al. (1997) designed a tabu search
heuristic for two special variants of the MDPVRP, i.e., the PVRP and the MDVRP.
The proposed tabu search possesses some of the features of Taburoute (Gendreau et al.
1994), namely the consideration of intermediate infeasible solutions through the use
of a generalized objective function containing self-adjusting coefficients, and the use
of continuous diversification. Neighbour solutions are obtained by moving a vertex
from its route between two of its closest neighbours in another route, by means of a
generalized insertion (or GENI) (see Gendreau et al. 1992). Hadjiconstantinou and
Baldacci (1998) formulated the problem of providing maintenance services to a set of
customers as the MDPVRP with time windows (MDPVRPTW). The authors proposed
a multi-phase optimization problem and solved it using a four-phase algorithm. In
the developed algorithm, all customers are first assigned to particular depot. Then,
customer visits are successively inserted among available periods to obtain feasible
visit combinations. In the third phase, each of the depot-period VRP sub-problems is
separately solved using a tabu search algorithm. Finally, in the last phase, solutions
obtained during the optimization process are improved by modifying the period or
depot assignments through a 3-opt procedure. Kang et al. (2005) studied the problem
considered by Hadjiconstantinou and Baldacci (1998). The authors developed a two-
phase solution method in which all feasible schedules are generated from each depot
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for each period and the set of routes are determined by solving the shortest path
problem. Parthanadee and Logendran (2006) also solved the problem considered by
Hadjiconstantinou and Baldacci (1998) using a tabu search. In this algorithm, all the
initial assignments are built by cheapest insertion. At the improvement phase, depot
and delivery pattern interchanges are used.

We are also aware of two contributions belonging to the second group. The first
contribution was the evolutionary meta-heuristic proposed by Vidal et al. (2012). The
authors developed a hybrid genetic algorithm (GA) to tackle the MDPVRP and two of
its special cases, i.e., the multi-depot VRP (MDVRP) and the periodic VRP (PVRP).
The most interesting feature of the proposed GA is a new population diversity man-
agement mechanism which allows a broader access to reproduction, while preserving
the memory of what characterizes good solutions represented by the elite individu-
als of the population. The second contribution was the cooperative parallel algorithm
designed by Lahrichi et al. (2012). The authors proposed a structured cooperative par-
allel search method, called ICS, to solve highly complex combinatorial optimization
problems. The proposed ICS framework involves problem decomposition by decision
sets, integration of elite partial solutions yielded by the sub-problems, and adaptive
guiding mechanism. The authors used the MDPVRPTW to present the applicability
of the developed methodology.

This brief review supports the general statement made in Sect. 1 that the MDPVRP is
among the VRP variants which did not not receive an adequate degree of attention and
the solution algorithms proposed to solve the MDPVRP are scarce. Moreover, solution
methodologies which solve the MDPVRP as a whole by simultaneously considering
all its characteristics are scarcer. To contribute toward addressing these two challenges,
we develop a PRA to efficiently address the MDPVRP as a whole. The proposed PRA
is described in the next section.

4 The path relinking algorithm (PRA)

The PRA, as a population-based meta-heuristic, is known as a powerful solution
methodology which solves a given problem using purposeful and non-random explo-
ration and exploitation strategies (Glover and Laguna 2000). The general concepts
and principles of a path relinking are first described in Sect. 4.1. Then, the main com-
ponents of PRA proposed to solve the MDPVRP are explained in details in Sect. 4.2.

4.1 The path relinking algorithm in general

The PRA has been suggested as an approach to integrate intensification and diversi-
fication strategies in the context of tabu search (Glover and Laguna 2000). PRA can
be considered as an evolutionary algorithm where solutions are generated by combin-
ing elements from other solutions. Unlike other evolutionary methods, such as GAs,
where randomness is a key factor in the creation of offsprings from parent solutions,
path relinking systematically generates new solutions by exploring paths that connect
elite solutions. To generate the desired paths, an initial solution and a guiding solution
are selected from a so-called reference list of elite solutions to represent the starting
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and the ending points of the path. Attributes from the guiding solution are gradually
introduced into the intermediate solutions, so that these solutions contain less char-
acteristics from the initial solution and more from the guiding solution as one moves
along the path.

Based on the description mentioned above, the main components of the general
PRA are:

1. Rules for building the reference set.
2. Rules for choosing the initial and guiding solutions.
3. A neighbourhood structure for moving along paths.

Algorithm 1 shows a simple path relinking procedure presenting how these com-
ponents interact.

Algorithm 1 The general PRA
1: Generate a starting set of solutions.
2: Designate a subset of solutions to be included in the reference list.

While the cardinality of the reference list >1

• Select two solutions from the reference list;
• Identify the initial and guiding solutions;
• Remove the initial solution from the reference list;
• Move from the initial toward the guiding solution, generating intermediate solutions.
• Update the reference list;

3: Verify stopping criterion: Stop or go to 1.

4.2 The proposed path relinking algorithm

4.2.1 General idea

The PRA proposed in this paper relies on an easy-to-build and efficient reference list
evolving several independent subsets, where one subset, called complete set, corre-
sponds to elite solutions of the main problem while the others, named partial sets,
consist of elite solutions addressing specific dimensions of the problem. The coopera-
tion between the sets of the reference list is set up by means of information exchanges,
through the search mechanism of PRA.

To construct such a reference list, the MDPVRP is first decomposed into two VRPs
with fewer attributes, i.e., PVRP and MDVRP, by respectively fixing the attributes
“multiple depots” and “multiple periods”. Each of the sub-problems is then solved by
a dedicated solution algorithm which is called partial solver. The main advantage of
applying such a decomposition procedure is that working on selected attribute subsets,
instead of considering all attributes at a time, provides relatively high-quality solutions
rapidly. Furthermore, well-known solution methodologies found in the literature may
be used to solve sub-problems.

Elite solutions obtained by each partial solver are sent to a partial set of the ref-
erence list. The partial sets can be either kept unchanged in the course of PRA or
iteratively updated in order to include better solutions, in terms of both solution qual-
ity and diversification. We call these two possibilities as static and dynamic scenarios,
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respectively. Challenges, advantages and deficiencies of each scenario are thoroughly
discussed in Sect. 5.

After constructing the initial reference list, the proposed PRA starts to construct
high-quality solutions of the main problem by exploring trajectories that connect
solutions selected from different subsets, partial and/or complete, of the reference
list. Towards this end, several selection strategies, each choosing initial and guiding
solutions using a different strategy, are first implemented. Then, for each selected
initial and guiding solutions, a neighbourhood search generates a sequence of complete
solutions using the information shared by the selected solutions.

Two special variants of the proposed PRA can be obtained by ignoring complete
and partial sets, respectively. In the former case, PRA generates complete solutions
based on information only gathered from partial solutions, while, in the latter case,
the proposed algorithm becomes to a general path relinking as described in Sect. 4.1.

Different components of the proposed PRA are described in the following subsec-
tions.

4.2.2 Search space

It is well known in the meta-heuristic literature that allowing the search to enter
infeasible regions may result in generating high-quality and diverse feasible solutions.
One of the main characteristics of the proposed PRA is that infeasible solutions are
allowed throughout the search. Let us assume that x denotes the new solution generated
by the search mechanism. Moreover, let c(x) denote the travel cost of solution x, and let
q(x) and t(x) denote the total violation of the load and duration constraints, respectively.
Solution x is evaluated by a cost function z(x) = c(x)+αq(x)+βt(x), whereα andβ are
self-adjusting positive parameters. By dynamically adjusting the values of these two
parameters, this relaxation mechanism facilitates the exploration of the search space
and is particularly useful for tightly constrained instances. Parameter α is adjusted as
follows: if there is no violation of the capacity constraints, the value of α is divided by
1 + γ , otherwise it is multiplied by 1 + γ , where γ is a positive parameter. A similar
rule applies also to β with respect to route duration constraint.

4.2.3 Solution representation

One of the most important decisions in designing a meta-heuristic lies in deciding
how to represent solutions and relate them in an efficient way to the search space.
Representation should be easy to implement to reduce the cost of the algorithm. In
the proposed Path Relinking Algorithm, a path representation based on the method
proposed by Kytöjoki et al. (2007) is used to encode the solution of the MDPVRP. The
idea of the path representation is that the customers are listed in the order in which
they are visited. To explain this solution representation, let us consider the following
example: suppose that there are four customers 1–4, which have to be serviced from
two depots in two periods. Moreover, let us assume that the two first customers are
served by the first depot, whereas the two last ones are serviced from the second depot.
All customers need to be visited in each period. Figure 1 shows how a solution of this
problem is represented.
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Fig. 1 An example of the solution representation

As depicted in Fig. 1, in this kind of representation, a single row array of size n +1,
where n is the number of customers to be visited, is generated for each depot in each
period. The first position of the array (index 0) is related to the corresponding depot,
while each of the other positions (index i; 1 ≤ i ≤ n) represents a customer. The
value assigned to a position of the array represents the customer to be immediately
visited after the customer or depot related to that position. For example, in Fig. 1,
the value “2” has been assigned to the second position (index 1) of the first array. It
means that the second customer is immediately visited after the first customer by a
vehicle leaving the first depot. In this path representation, negative values indicate the
beginning of a new route, 0 refers to the end of the routes and a vacant position (drawn
as a black box in Fig. 1) reveals that the customer corresponding to that position is
not served by the depot to which the array belongs. Using this representation, changes
to the solution can be performed very quickly. For example, the insertion of a new
customer k between two adjacent customers a and b is done simply by changing the
“next-values” of k to b and a to k. Similarly, one can delete a customer or reverse part
of a route very quickly (Kytöjoki et al. 2007).
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4.2.4 Constructing the initial reference list

The reference list is a collection of high-quality solutions that are used to generate new
solutions applying the search mechanism of the PRA. What solutions are included in
the reference list, how good and how diversified they are, have a major impact on
the quality of the new generated solutions (Ghamlouche et al. 2004). Based on the
descriptions mentioned in Sect. 4.2.1, the reference list implemented in PRA consists
of three different subsets where the first two subsets are the partial sets, each keeping
elite partial solutions generated by a dedicated partial solver, while the last subset is
the complete set consisting of elite solutions of the main problem. Note that, in the
proposed algorithm, the maximum size of each subset is fixed to a predetermined value
Rmax .

Let us define the following notations:

– �i : the set of partial solutions added to the i th partial set of the reference list,
– � i : the set of whole partial solutions generated by the i th partial solver,
– φi

j : the j th partial solution of �i ,

– ψ i
k : the kth solution of � i .

The construction of the initial reference list starts by adding Rmax elite partial
solutions existing in � i (i = 1, 2) to the i th partial set of the reference list using the
following strategy whose main aim is to ensure both the quality and diversity of the
preserved solutions:

1. First, fill partially the i th partial set with �Rmax/2� partial solutions of � i which
have the best objective function values. Then, delete the added solutions from� i .
We call this part of the partial set as B1.

2. Define 	(φi
j , ψ

i
k)(φ

i
j ∈ �i , ψ i

k ∈ � i ; ∀i, j, k) as the Hamming distance of the

j th partial solution existing in �i to the kth remaining partial solution of � i .
3. Calculate d�

i

k = minφi
j ∈�i 	(φ

i
j , ψ

i
k)(∀ψ i

k ∈ � i ).

4. Sort the solutions of � i in descending order of d�
i

k .
5. Extend the i th partial set of the reference list with the first �Rmax/2	 solutions of
� i . This part of the partial set is named as B2.

Note that, the construction of the reference list considers its last subset (the complete
set) initially empty and then gradually filling it by elite complete solutions generated
during the PRA.

4.2.5 The reference list update method

The reference list is iteratively updated during the PRA in order not to lose high-
quality and diverse solutions. The general PRA updates the reference list when a new
solution is generated. In the proposed PRA, this translates into two updating methods,
which are independently applied as follows. The first method, called internal update
method (IUM), occurs whenever a high-quality complete solution is generated by the
search mechanism of the PRA. In IUM, once a feasible complete solution, Snew, is
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Fig. 2 The proposed replacement strategy

generated, it is directly added to the complete set of the reference list if the number
of elite complete solutions kept in this set is less than Rmax ; otherwise, the following
replacement strategy is implemented. We first define the diversity contribution of the
solution Snew to the complete set of the reference list shown by P, D(Snew, P), as the
minimum Hamming distance between Snew and the solutions in P , that is:

D(Snew, P) = min
X∈P,X 
=Snew

	(Snew, X)

Moreover, let us define OFSnew as the objective function value of Snew. The replace-
ment strategy schematically shown in Fig. 2 is implemented in three phases: firstly,
the replacement strategy considers all the complete solutions of the complete set with
poorer objective function values than Snew and finds the one, Smax , which maxi-
mizes the ratio of (objective function value)/(diversity contribution) (step 1). Then,
the new generated solution, Snew, replaces Smax if the following inequality holds
(step 2):

OFSnew/D(Snew, P − Smax ) < OFSmax /D(Smax , P)

In this way, we introduce into the complete set a solution with better objective
function value and possibly higher contribution of diversity. If the inequality mentioned
in the second step does not hold, the worst solution of the set determined in the first
step is replaced by Snew (step 3).

The second updating method, called external update method (EUM), occurs for
the i th partial set of the reference list (i = 1, 2) whenever a new partial solution is
obtained by the i th dedicated partial solver. As previously mentioned, the i th partial
set of the reference list (i = 1, 2) consists of a set of high-quality solutions B1 and a
set of diverse solutions B2. Suppose a new partial solution, xnew, is obtained by the i th
partial solver. EUM updates the corresponding subset of the reference list as follows:
first, xnew is examined in terms of solution quality. If it is better than the worst existing
solution in B1, the latter is replaced by the former. Otherwise, xnew is assessed in terms
of solution diversity. In this case, xnew is added to the list if it increases the distance of
B2 to B1. In other words, if the minimum Hamming distance of xnew to any solution
in B1 is greater than the minimum Hamming distance of the worst solution of B2 to
any solution in B1, the worst solution is replaced by xnew and all the existing solutions
of B2, including xnew, are sorted again.

The main purpose of implementing two different update methods is to simultane-
ously maintain the elite partial and complete solutions generated respectively by the
partial solvers and PRA.
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4.2.6 Choosing the initial and guiding solutions

The performance of the PRA is highly dependent on how the initial and guiding
solutions are selected from the reference list (Ghamlouche et al. 2004). In the proposed
PRA, four different strategies, each following a different purpose, are used to choose
the initial and guiding solutions.

The first strategy, called partial relinking strategy (PRS), selects two partial solu-
tions, each from a different partial set of the reference list, and sends them to the
neighbourhood search phase. The main idea involved in implementing such a selec-
tion strategy is to produce complete solutions by integrating the best characteristics
of the chosen partial solutions. Towards this end, the effect of four different sub-
strategies, each generating Rmax pairs of partial solutions, will be investigated in Sect.
5.2 in order to choose the one having the most positive impact on the performance of
PRA. These four sub-strategies are:

P RS1: The i th pair is constructed by defining the guiding and initial solutions as
the i th best solution of the j th ( j = 1, 2) and kth (k = 1, 2, k 
= j) partial
sets, respectively. This sub-strategy is motivated by the idea that high-quality
solutions share some common characteristics with optimum solutions. One
then hopes that linking such solutions yields improved new ones.

P RS2: The i th pair is generated by determining the guiding solution as the i th best
solution of the j th ( j = 1, 2) partial set, while the initial solution is defined
as the i th worst solution of the kth (k = 1, 2, k 
= j) partial set. The purpose
of this sub-strategy is to improve the worst partial solution of a partial set
based on the appropriate characteristics of a high-quality partial solution of
the other partial set.

P RS3: The i th pair is constructed by randomly choosing the guiding and initial
solutions from the j th ( j = 1, 2) and kth (k = 1, 2, k 
= j) partial sets,
respectively. The aim of this sub-strategy is simply to select the initial and
guiding solutions in a random manner with the hope of choosing those pairs
of elite partial solutions which are not selected using the other sub-strategies
explained in this section.

P RS4: The i th pair is generated by defining the guiding solution as the i th best solu-
tion of the j th ( j = 1, 2) partial set, whereas the initial solution is chosen as
the solution of the kth (k = 1, 2, k 
= j) partial set with maximum Hamming
distance from the guiding solution. The aim of the fourth sub-strategy is to
select the initial and guiding solutions not only according to the objective
function value but also according to a diversity, or dissimilarity criterion.

In the second strategy, called complete relinking strategy (CRS), two different com-
plete solutions are selected from the complete set of the reference list as the source
for constructing a path of new solutions. In other words, in CRS, trajectories that con-
nect complete solutions generated by the PRA are explored to obtain other complete
solutions. The main purpose of this strategy is to prevent loosing good complete solu-
tions which can be obtained by searching paths constructed between other complete
solutions previously generated by the algorithm. Suppose that the number of existing
complete solutions in the complete set is equal to
 (
 ≤ Rmax ). In CRS, the effect of
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the following three sub-strategies, each selecting 
 pairs of complete solutions, will
be investigated in Sect. 5.2.

C RS1: The i th pair is constructed by defining the guiding and initial solutions as the
best and i th complete solutions of the complete set, respectively. The main
idea involved in this sub-strategy is to improve each of the existing complete
solution based on appropriate characteristics of the best complete solution
found by the PRA.

C RS2: The i th pair is generated by determining the guiding and initial solutions as
the i th and i+1th best solutions of the complete set, respectively. The idea
behind this sub-strategy is exactly the same as the idea of implementing the
first sub-strategy of PRS.

C RS3: The i th pair of the last sub-strategy is generated as follows: the guiding solu-
tion is selected as the i th best solution of the complete set, whereas the initial
solution is chosen as the solution of the same set with maximum Hamming
distance from the selected guiding solution.

The third strategy, called mixed strategy (MS), selects a partial and a complete solu-
tion as the inputs of the neighbourhood search phase. This selection strategy aims to
improve the selected partial solution based on good features of the chosen complete
solution. For MS, the effect of two different sub-strategies will be investigated in
Sect. 5.2.

M S1: The i th pair is constructed by defining the guiding and initial solutions as the
i th best solution of the j th ( j = 1, 2) and complete sets of the reference list,
respectively.

M S2: The i th pair is generated as follows: The guiding solution is selected as the i th
best solution of the complete set, whereas the initial solution is chosen as the
solution of the j th ( j = 1, 2) partial set of the reference list with maximum
Hamming distance from the selected guiding solution.

The last strategy that we propose is called ideal point strategy (IPS), where the ideal
point (IP) is defined as a virtual point whose i th coordinate (i = 1, 2) is made by the
objective function value of the best partial solution of the i th partial set (i = 1, 2).

IPS first selects two different guiding solutions so that the i th guiding solution is
the best solution of the i th coordinate of IP. Then, each of the solutions preserved in
the reference list (partial or complete) serves respectively as the initial solution. The
main purpose of choosing multiple guiding solutions is that promising regions may be
searched more thoroughly in path relinking by simultaneously considering appropriate
characteristics of multiple high-quality guiding solutions.

4.2.7 Neighbourhood structure and guiding attributes

In the proposed algorithm, two neighbourhood searches, each targeting a different
goal, are implemented in parallel.

First search strategy–The first neighbourhood search is a memory-based strat-
egy operating on each pair of partial solutions selected from the reference list using
the PRS. The aim of implementing such a neighbourhood search is to generate a
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sequence of high-quality complete solutions through integrating appropriate charac-
teristics shared by the selected partial solutions.

As mentioned in Sect. 4.2.6, the PRS selects a solution (A) from the first partial set
of the reference list, as either an initial or guiding solution, while the other solution
(B) is chosen from the second partial set. Each of the selected partial solutions shares
two important elements of information: (1) a depot assignment pattern that shows
to which depot each customer is assigned, and (2) a visit pattern determining the
periods of the planning horizon in which each customer is serviced. Without loss of
generality, let us suppose that the first partial set of the reference list contains elite
partial solutions of the MDVRP, whereas the second partial set is made up of elite
partial solutions of the PVRP. Consequently, the selected solution (A) is a solution
that the partial solver obtained by fixing the “period” attribute and by optimizing based
on the “depot” attribute. Hence, it is reasonable to claim that in such a solution, each
customer is assigned to a good depot, while there is no guarantee that the customers
are visited based on good visit patterns. On the other hand, the chosen solution (B) is
a solution that the other partial solver attained by fixing the “depot” attribute and by
optimizing based on the “period” attribute. Therefore, each customer in this solution
is visited through a good visit pattern, while there is no guarantee that the customers
are served by good depots.

We can then deduce that the good characteristic of the selected solution (A) is that
each customer is served by a good depot, while the appropriate characteristic of the
chosen solution (B) is that each customer is served based on a good visit pattern. The
following definitions reveal the major idea involved in the proposed neighbourhood
search:

Definition 1 A customer is called eligible if it is visited: (1) from the depot to which
that customer is assigned in the solution selected from the first partial set, and (2)
based on the visit pattern according to which that customer is served in the solution
chosen from the second partial set.

Definition 2 A good complete solution generated by the neighbourhood search is a
solution in which all the customers are eligible.

Therefore, the main purpose of the neighbourhood search is to progressively make
eligible all the customers of the selected initial solution. The algorithm proceeds for
θ iterations, where θ is a predetermined positive value. At the ith iteration of the
algorithm, a customer of the initial solution is randomly selected and its eligibility
is investigated based on the properties of Definition 1. Note that, depending on the
partial set from which the initial solution is selected, one of the criteria mentioned in
Definition 1 is always met. For example, if the initial solution is selected from the first
partial set, each of the customers is assigned to a good depot. Consequently, the first
property is always satisfied for all the customers and, thus, the second property only
should be verified for the eligibility of the chosen customer. If the second property
is not met and the selected customer is served by a visit pattern different from its
corresponding visit pattern in the guiding solution, it is considered ineligible. The
neighbourhood search then follows one of the following options:
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1. Eligible customer: If the customer is eligible, the following operators are succes-
sively applied:

– Intra-route relocate operator–The eligible customer is first removed, for
each period of its visit pattern, from the route by which it is visited. It is then
re-inserted into the best position, based on the penalty function described in
Sect. 4.2.2, of the same route.

– Inter-route relocate operator–The chosen customer is first removed, for each
period of its visit pattern, from its current route and, then, it is re-inserted into
the best position of the other routes assigned to the depot from which the
customer is served.

2. Ineligible customer: If the selected customer is ineligible, a neighbourhood
search, based on the relocate operator, is applied to the solution in order to over-
come its ineligibility. To implement the relocate operator-based neighbourhood
search, the following four steps are done in a sequential manner:
(a) The depot to which the selected customer is currently assigned is changed to

the depot by which that customer is served in the solution selected from the
first partial set.

(b) The current visit pattern of the selected customer is changed to the visit pattern
according which the customer is visited in the solution chosen from the second
partial set.

(c) The customer is removed from the routes by which it is visited.
(d) Finally, at each period of the new visit pattern, the removed customer is re-

inserted into one of the routes assigned to the new depot. Once again, the
position to which the customer is inserted is the position where the described
penalty function in Sect. 4.2.2 has the least value.

The neighbourhood search described above is equipped with a memory whose
aim is to enable the algorithm to search promising regions more thoroughly. Each
element preserved in the memory is represented by three indices (i, D∗, P∗), where
i (i = 1, 2 . . . n) shows the customer’s index, D∗ and P∗ represent, respectively, the
depot and visit pattern based on which the ith customer is visited in the best solution
generated so far by the Path Relinking. Suppose that in the course of the neighbourhood
search, we select the ith customer which is an ineligible customer. To describe how
the proposed memory works, let us consider the two following cases:

1. The initial solution has been selected from the first partial set: In this case, if
the visit pattern according to which the chosen customer is served is equal to P∗,
the current visit pattern remains unchanged; otherwise, the visit pattern is changed
to the one through which the customer is visited in the guiding solution.

2. The initial solution has been chosen from the second partial set: In this case,
if the depot to which the selected customer is assigned is equal to D∗, the current
depot is not changed; otherwise, the depot is changed to the one by which the
customer is serviced in the guiding solution.

The main purpose of applying such a mechanism is to keep the structure of the
selected solution as near as possible to the structure of the best solution obtained so
far by the algorithm. This memory is updated when a new best solution is found and,
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to diversify search directions, the above rule is not applied if the current best solution
is not changed for ε iterations. Note that ε is a predetermined positive value.

Second search strategy–The second neighbourhood search is another memory-
based strategy which explores trajectories connecting initial and guiding solutions
selected through one of the other selection strategies, i.e., complete relinking, MS
or IPS. Like various neighbourhood searches implemented for the general PRA, the
second neighbourhood search tries to gradually introduce best characteristics of either
a single or multiple guiding solutions (following the strategy used to select initial and
guiding solutions) to new solutions obtained by moving away from the chosen initial
solution. Similar to the neighbourhood search proposed above, the second neighbour-
hood is iterated θ times so that at each iteration, the eligibility of a randomly selected
customer is investigated.

The definition of an eligible customer is different from that of the first neighbour-
hood search and is dependent on the strategy used to select the initial and guiding
solutions. Definition 3 represents the properties of an eligible customer in the cases
where initial and single guiding solutions are selected using the partial relinking or
MS.

Definition 3 A customer is called eligible if it is served based on the depot and visit
pattern according to which that customer is visited in the guiding solution.

Definition 4 specifies the conditions under which a customer is called eligible if ini-
tial and multiple guiding solutions are chosen using the IPS. Note that, in Definition 4,
without loss of generality, we suppose that the first and second guiding solutions are
respectively selected as the best solutions of the first and second partial sets.

Definition 4 A customer is called eligible if it is served: (1) by the depot to which that
customer is assigned in the first guiding solution, and (2) based on the visit pattern
according to which that customer is served in the second guiding solution.

If the chosen customer is considered eligible, two operators described in the first
neighbourhood search, i.e., inter- and intra-route relocate operators, are respectively
applied. Otherwise, to overcome the ineligibility of the chosen customer, a relocate
operator-based neighbourhood search is applied. The proposed neighbourhood search
removes first the customer from all the routes through which it is currently served.
Then, one of the two following situations occurs:

– If the initial solution has been selected using either the complete relinking or MS,
the depot and visit pattern of the removed customer are respectively replaced by
the depot and visit pattern based on which the customer is visited in the guiding
solution.

– If the initial solution has been chosen using IPS, the depot and visit pattern of the
removed customer are respectively changed to the depot and visit pattern of that
customer in the first and second guiding solutions.

Finally, in each period of the new visit pattern, the removed customer is reinserted
into one of the existing routes assigned to the new depot. Like the first neighbourhood
search, the position to which the customer is inserted is the one in which the penalty
function takes the least value.
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4.2.8 Termination criterion

In this paper, the two following stopping criteria are simultaneously considered:

– The algorithm is stopped if no improving solution is found for μ successive itera-
tions. μ is a positive value, which is determined at the beginning of the algorithm.
Or,

– The algorithm is terminated if it passes a maximum allowable running time.

4.2.9 Skeleton of the proposed PRA

Algorithm 2 represents the skeleton of the PRA proposed for the MDPVRP.

Algorithm 2 Path Relinking Algorithm
Initialize the search parameters.
Construct the initial reference list.
while the termination criterion is not met do

Set ρ=0.
Update the reference list using the EUM.
for i=1...‖C∗‖ do

Set j= The i th element of C∗.
repeat

Select one initial solution, S, and one or multiple guiding solutions according to
selection strategy j .
Set x=S.
Set υ=0.
repeat

Select randomly a customer of x.
Verify the eligibility of the selected customer.
Generate a solution x̄ using the neighbourhood search corresponding to the chosen
selection strategy.
If x̄ is feasible, update the reference list using the Internal Update Method (IUM).
Compute q(.) and t(.) and update α and β.
Set x=x̄ .
Increment υ by 1.

until υ ≤ θ .
Increment ρ by 1.

until ρ ≤ Rmax .
end for

end while

When considering Algorithm 2, the following remarks should be taken into account:

1. The way in which the partial sets of the reference list are updated depends on how
and when partial solvers are called within each iteration of the proposed PRA. In
the next section, we thoroughly describe when partial solvers are called and how
they interact with the solutions found during PRA.

2. C∗ is defined as a list representing the best order of selection strategies to choose
initial and guiding solutions at a given iteration. For example, if C∗ is made up as
P RS2 → C RS3 → M S1 → I P S, it means that, at a given iteration, initial and
guiding solutions should be selected using the following order:
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(a) The second partial relinking sub-strategy.
(b) The third complete relinking sub-strategy.
(c) The first mixed sub-strategy.
(d) The IPS.
In Sect. 5.2, we explain how C∗ is built.

5 Experimental results

In this section, the performance of the proposed PRA is investigated based on the
standard benchmark instance proposed by Vidal et al. (2012). The authors generated
10 problems whose characteristics are shown by Table 1.

To explore the efficiency of the proposed PRA, two different scenarios, each investi-
gating one special aspect of the algorithm, are investigated. In the first scenario, called
static scenario, the partial sets of the reference list, initially filled up by the dedicated
partial solvers, remain unchanged during the algorithm. In such a scenario, we aim to
study how PRA performs as a pure stand-alone algorithm based on some initial partial
information but without benefiting from information shared by partial solvers operat-
ing in parallel. Towards this end, a feasible solution is first generated using the local
search proposed by Vidal et al. (2012) for each of the problem instances. Let us denote
the constructed solution by A. Then, the problem is decomposed into two VRPs with
exactly one less attribute, i.e., PVRP and MDVRP. In the PVRP, the attribute “multi-
ple depots” is fixed by assigning each customer to the depot by which it is served in
solution A. On the other hand, in the MDVRP, the other attribute “multiple periods” is
fixed by allocating each customer to the visit pattern according to which it is visited
in solution A. Thereafter, each of the above sub-problems is solved using a dedicated
partial solver. The dedicated partial solver can be any exact, heuristic or meta-heuristic
method proposed in the literature to address the PVRP and MDVRP. In this paper, we
use the hybrid GA proposed by Vidal et al. (2012) to rapidly generate fairly good (not
necessarily high-quality) partial solutions. Finally, the obtained partial solutions are
sent to the PRA in order to generate solutions of the main problem.

Table 1 Problem instances
Instance n K m T

pr01 48 1 4 4

pr02 96 1 4 4

pr03 144 2 4 4

pr04 192 2 4 4

pr05 240 3 4 4

pr06 288 3 4 4

pr07 72 1 6 6

pr08 144 1 6 6

pr09 216 2 6 6

pr10 288 3 6 6
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On the other hand, in Scenario 2, called dynamic scenario, the partial sets of the
reference list are updated in the course of the optimization by partial solutions gen-
erated through the ICS method designed by Lahrichi et al. (2012). To more precisely
understand how this scenario is built, let us briefly describe the solution methodology
used in the ICS. In the ICS approach, three fundamental questions are answered: how
to decompose the problem at hand to define sub-problems; how to integrate partial
solutions obtained from the decomposition phase to construct and improve solutions
of the main problem and, finally, how to perform and guide the search. In the decompo-
sition phase, the main problem is first decomposed into several sub-problems by fixing
the values of given sets of attributes. The constructed sub-problems are then simul-
taneously solved by partial solvers which can be well-known constructive methods,
heuristics, meta-heuristics or exact methods. The elite partial solutions obtained are
sent to the central memory accompanied with context information (measures, indica-
tors, and memories). Then, in order to construct whole solutions, integrators play their
important role. Integrators, which could be either exact methods or meta-heuristics,
construct, and possibly improve, solutions to the main problem using solutions from
the different partial solution sets. Finally, in order to control the evolution of partial
solvers and integrators implemented in the ICS approach, a guiding and controlling
mechanism, namely global search coordinator, guides the global search by sending
appropriate instructions to partial solvers and, eventually, integrators.

In the dynamic scenario, the proposed PRA, in fact, plays the role of an integrator
working based on partial solutions generated during the optimization procedure of
the ICS. Towards this end, a modified version of the ICS method is executed on each
problem instance for 10 different runs. In each of the runs, the ICS is interrupted in
four different snapshots, i.e., after 5, 10, 15 and 30 min, and partial solutions obtained
at each snapshot are used to update the partial sets of the reference list using the Exter-
nal Update Method. Note that, in this scenario, each partial set remains unchanged
between two successive snapshots. The most distinguishable difference between the
two scenarios is that, in the dynamic scenario, we examine how the quality of the pro-
posed PRA is affected when better and more diversified partial solutions are eventually
fed to the algorithm by the ICS solution methodology.

The proposed algorithm has been coded in C++ and executed on a Pentium 4,
2.8 GHz, and Windows XP using 256 MB of RAM. Different aspects of the exper-
imental results are discussed as follows: in Sect. 5.1, we first use a well-structured
algorithm to calibrate all the parameters involved in PRA, Then, in Sect. 5.2, we
explore the impact of different combination of selection strategies, introduced in Sect.
4.2.6, on the performance of PRA. Finally, experimental results on the two considered
scenarios are given in Sect. 5.3.

5.1 Parameter setting

Like most heuristic and meta-heuristic algorithms, the proposed PRA relies on a set
of correlated parameters. Table 2 provides a summary of all PRA parameters.

There are various methods in the literature to calibrate parameters used in heuris-
tics and meta-heuristics. In this paper, we use the well-reported four-step calibration
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Table 2 Parameters of PRA
Symbol Description

Rmax Maximum size of each subset of the reference list

α, β Self-adjusting parameters in the penalty function

γ Factor involved in updating the self-adjusting parameters

θ Number of times that each neighbourhood search is iterated

ε Number of iterations after which the memory rule is broken

μ Maximum allowable number of non-improving iterations

Table 3 Calibration results of
REVAC

Symbol Starting level Range Changing step

Rmax 20 [20,40] 5

α, β 1,1 [1,5], [1,5] 1,1

γ 1 [1,4] 1

θ n [n, 5*n] n/2

ε 5,000 [5000,10000] 2,500

μ 200,000 [200000, 600000] 50,000

method of Coy et al. (2000) to tune the parameters used in the heuristic algorithm.
Coy et al. (2000) proposed a fairly fast procedure based on statistical design of experi-
ments and gradient descent to systematically calibrate parameter values. The proposed
parameter setting procedure takes a small number of the problem instances from the
entire problem set, finds high-quality parameter settings for each problem, and then
combines the parameter settings to determine good parameter values for the entire set
of instances. This procedure can be summarized in the following four steps that are
implemented in a sequential manner:

Step 1– A subset of instances to analyze (analysis set) is chosen from the entire set.
The instances are selected so that most of the structural differences found in
the problem set are represented in the analysis set. In this study, the analysis
set is made up of five instances, i.e., pr02, pr04, pr06, pr09, and pr10.

Step 2– Computational experience is used to select the starting level of each para-
meter, the range over which each parameter will be varied, and the amount
by which each parameter should be changed. Towards this end, in this paper,
a robust calibration method called relevance estimation and value calibra-
tion (REVAC) (Smith and Eiben 2010) is used. Technically, REVAC is a
heuristic generate-and-test method that is iteratively searching for the set of
parameter vectors of a given evolutionary algorithm (EA) with a maximum
performance. For each iteration, a new parameter vector is generated and its
performance is tested. Testing a parameter vector is done by executing the
EA with the given parameter values and measuring the EA performance. A
detailed explanation of REVAC can be found in Smith and Eiben (2010).
Table 3 summarizes the results obtained using REVAC.
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Table 4 Calibration results
Symbol Description

Rmax 30

α, β 1, 3

γ 1

θ 4*n

ε 5,000

μ 500,000

Time (s) 13,826

Step 3– Good parameter settings are selected for each instance in the analysis set
using fractional factorial design and response surface optimization. In this
paper, the half-factorial design is implemented for each selected analysis set.

Step 4– Finally, in this step, the parameter values obtained in the third step are
averaged to obtain high-quality parameter values. Table 4 represents the
selected value of each parameter, along with the average computational time
needed to calibrate the parameters. The obtained average computational time,
reported in Table 4, seems reasonable considering this fact that each calibra-
tion method is done only once for each new typical application.

5.2 Path relinking selection strategies

We tested all combinations of selection strategies,defined in Sect. 4.2.6, in order to
identify the best way to select initial and guiding solutions. The best combination is
then used for the extensive experimental analysis of the PRA.

The same 5 problem instances used to calibrate the parameter settings are also
used here. Moreover, each run is repeated 5 times. Thus, since there are 24 possible
combinations of selection strategies (4 PRS × 3 complete relinking strategies × 2
MS), a total of 600 runs were performed. The performance of each combination
of selection strategies was measured, in both the static and dynamic scenarios, as
the average improvement in solution quality, compared to the best partial solution
initially fed to the partial sets of the reference list. Note that, in the dynamic scenario,
the best partial solution found at the first snapshot, 5 min, is used to compare the
efficiency of all combinations. The comparative performances of all combinations of
selection strategies, in the static and dynamic scenarios, are presented in Tables 5 and 6,
respectively.

Both of Tables 5 and 6 identify the combination of strategies P RS4 (The forth
partial relinking sub-strategy), C RS3 (The third complete relinking sub-strategy) and
M S2 (the second mixed sub-strategy) as offering the best results. This set of selec-
tion strategies is therefore retained for our experimental analyses. The choice of this
combination confirms the importance of selecting initial and guiding solutions non-
randomly and also not only according to the objective function value but also according
to a diversity criterion.
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Table 5 Average improvement
in the static scenario (%)

P RS1 P RS2 P RS3 P RS4

(C RS1,M S1) 6.88 6.52 6.41 7.16

(C RS1,M S2) 7.50 7.31 7.12 7.82

(C RS2,M S1) 7.22 7.15 7.01 7.65

(C RS2,M S2) 7.71 7.44 7.29 8.07

(C RS3,M S1) 7.04 6.72 6.60 7.31

(C RS3,M S2) 7.64 7.50 7.34 8.49

Table 6 Average improvement
in the dynamic scenario (%)

P RS1 P RS2 P RS3 P RS4

(C RS1,M S1) 1.21 1.16 0.97 1.44

(C RS1,M S2) 1.60 1.39 1.30 1.79

(C RS2,M S1) 1.47 1.30 1.18 1.72

(C RS2,M S2) 1.71 1.58 1.41 1.90

(C RS3,M S1) 1.31 1.22 1.03 1.63

(C RS3,M S2) 1.80 1.59 1.44 2.12

Table 7 Characteristics of partial solutions in the static scenario

Instance S P1 S P2 S P1 + S P2 BKS

Worst Average Best Worst Average Best Worst Average Best

pr01 2152.38 2121.03 2118.84 2371.34 2253.45 2247.3 2371.34 2238.96 2118.84 2019.07

pr02 3784.13 3764.12 3747.75 4743.42 4742.1 4741.48 4743.42 4253.11 3747.75 3547.45

pr03 4943.99 4879.25 4856.39 6882.52 6439.64 6338.26 6882.52 5659.45 4856.39 4480.87

pr04 5714.78 5629.4 5575.78 8804.4 8799.12 8794.91 8804.4 7214.26 5575.78 5134.17

pr05 6059.12 6033.76 5998.22 8329.88 8324.96 8323.32 8329.88 7179.36 5998.22 5570.45

pr06 7196.13 7243.17 7130.2 8406.22 8402.05 8372.31 8406.22 7822.61 7130.2 6524.92

pr07 4820.72 4802.57 4788.51 5422.49 5421.88 5421.77 5422.49 5112.23 4788.51 4502.02

pr08 6620.41 6610.04 6594.6 8902.65 8733.29 8421.24 8902.65 7671.67 6594.6 6023.98

pr09 8750.52 8726.48 8689.47 11790.6 11779.4 11770.3 11790.6 10252.94 8689.47 8257.80

pr10 10678.9 10653.9 10617.8 14476.3 14465.1 14459.8 14476.3 12559.5 10617.8 9818.42

5.3 Results on MDPVRP instances

5.3.1 Static scenario

We tested PRA on the problem instances described at the beginning of this section. In
this scenario, the maximum running time was set to 30 minutes. Table 7 summarizes
the characteristics of partial solutions initially fed to PRA.

In Table 7, S P1 and S P2 represent partial solutions sets generated for the MDVRP
and the PVRP, respectively. S P1 + S P2 is the union of all partial solutions. Moreover,
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Table 8 Average results on MDPVRP instances in the static scenario

Instance PRA HGA Gap to
HGA (%)

Gap to
BKS (%)

Worst Average Best Time (s) Average Time (s)

pr01 2019.07 2019.07 2019.07 30 2019.07 21 0 0
pr02 3547.45 3547.45 3547.45 124 3547.45 89 0 0
pr03 4480.87 4480.87 4480.87 495 4491.08 463.2 −0.22 0
pr04 5155.12 5149.64 5134.17 1, 389 5151.73 1, 326 −0.04 0.30
pr05 5672.71 5598.32 5579.43 1, 800 5605.60 1, 800 −0.12 0.50
pr06 6618.38 6568.79 6540.66 1, 800 6570.28 1, 800 −0.02 0.67
pr07 4502.02 4502.02 4502.02 203 4502.06 131 −0.01 0
pr08 6038.44 6027.51 6023.98 547 6029.58 478 −0.03 0.05
pr09 8341.09 8304.26 8268.88 1, 800 8310.19 1, 667 −0.07 0.56
pr10 9987.16 9963.55 9852.30 1, 800 9972.35 1, 800 −0.09 1.48
AV 5636.23 5616.15 5594.88 998.8 5619.94 957.5 −0.06 +0.36

for each set, worse, average and best partial solutions on 10 runs are shown. Finally,
the last column reveals the best known solution (BKS) obtained by hybrid genetic
algorithm (HGA) of Vidal et al. (2012) for the same problem. It should be noted that,
the BKS do not represent the average performance of the HGA, but are rather the best
solutions that were identified overall runs performed by HGA.

For each problem instance, we answer to the following questions:

1. What percentage of the gap is there between the PRA’s output and the BKS?
2. Can the proposed PRA compete with HGA of Vidal et al. (2012), which has

been proved as one of the most powerful solution methodologies to address the
MDPVRP?

3. How much is PRA capable of improving the gap between initial partial solutions
and the BKS?

Table 8 shows the results dealing with the two first questions. In this table, the
average results of 10 runs of PRA and HGA, in terms of solution quality and com-
putational time, are reported in columns 2–6. Moreover, the average error gaps of
PRA compared to the HGA and BKS are respectively shown in the last two columns.
Finally, the last line (AV) provides the average value of each column. Note that, if
each of the considered solution methods (PRA and HGA) give a result equal to the
BKS, we indicate the corresponding value in boldface.

The results shown by Table 8 can be interpreted as follows:

1. The average error gap of PRA to the BKS is +0.36 % which is very reasonable
considering the problem complexity. PRA results vary according to the problem
difficulty. The average gap ranges from 0.00 to 1.48 %. On four problems (pr01,
pr02, pr03 and pr04), the algorithm seems to always converge toward the BKS,
whereas problems pr08 to pr10, with larger number of depots and periods, seem
particularly difficult to tackle. Generally, the proposed PRA performs well when
compared to the BKS even on the more challenging instances.
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Table 9 An example of the
Friedman test table

Instance The average results
obtained by PRA

The average results
obtained by HGA

pr01 X11 X12

pr02 X21 X22

pr03 X31 X32

. . .

. . .

. . .

2. The average standard deviation (ASD) per instance of PRA is 0.22 %. This value
is less than the ASD obtained by HGA (0.26 %) and reveals this fact that PRA is
very reliable to produce good results.

3. The average computational time of PRA is barely higher than the HGA, but it still
seems reasonable considering the problem difficulty.

4. The average error gap existing between PRA and HGA is −0.06 % which shows
the superiority of PRA to produce better results. To statistically prove this superi-
ority, the well-known Friedman test is used. The Friedman test is a non-parametric
statistical test developed by the economist Milton Friedman. Similar to the para-
metric repeated measures ANOVA, it is used to detect differences in treatments
across multiple test attempts. The procedure involves ranking each row (or block)
together, then considering the values of ranks by columns. In this paper, the Fried-
man test table is presented as Table 9. In this table, the first column display instance
identifier, while the two other columns show the average results respectively gen-
erated by PRA and HGA. The characteristics of Friedman test, implemented in
this paper, are as follows:

– Assumptions:
– The results over problem instances are mutually independent (i.e., the

results within one instance do not influence the results within other
instance)

– Within each problem instance, the objective functions can be ranked.
– Hypotheses:

– H0: There is no significant difference between the outputs of PRA and
HGA.

– H1: PRA performs better than HGA.
– Procedure:

(a) Rank the results of both algorithms (PRA and HGA) within each problem
instance, giving 1 to the best and 2 to the worst. Let us define R(Xi j ) as
the rank assigned to row i and column j of Table 9.

(b) Calculate the total summation of squared ranks, A2, using the following
formula:

A2 =
10∑

i=1

2∑

j=1

[R(Xi j )]2

123



A path relinking algorithm for a multi-depot periodic VRP 519

Table 10 Friedman test results
Friedman test’s variable Value

A2 49

B2 48.2

T2 36 > f0.99,1,9

Table 11 Average gap improvement to BKS in the static scenario (%)

Instance S P1 S P2 S P1 + S P2

Worst Average Best Worst Average Best Worst Average Best

pr01 6.60 5.05 4.94 17.45 11.61 11.30 17.45 8.08 4.94

pr02 6.67 6.11 5.65 33.71 33.68 33.66 33.71 19.89 5.65

pr03 10.33 8.89 8.38 53.60 43.71 41.45 53.60 26.03 8.38

pr04 10.90 9.34 8.60 71.08 71.08 71.30 71.08 40.21 8.60

pr05 6.94 7.82 7.52 47.70 48.95 49.26 47.70 28.39 7.52

pr06 8.85 10.33 9.04 27.40 28.10 28.07 27.40 19.21 9.04

pr07 7.08 6.68 6.36 20.45 20.43 20.43 20.45 13.56 6.36

pr08 9.66 9.67 9.47 47.54 44.91 39.80 47.54 27.29 9.47

pr09 4.96 5.11 5.09 41.77 42.08 42.40 41.77 23.60 5.09

pr10 7.04 7.03 7.80 45.72 45.84 46.92 45.72 26.43 7.80

(c) Compute the summation of the rank for each algorithm, R j = ∑10
i=1

R(Xi j ) for j = 1, 2 and calculate B2:

B2 = 1

10

2∑

j=1

R2
j

(d) The test statistic is given by:

T2 = 9(B2 − 45)

A2 − B2

(e) Reject H0, at the level of significance 0.01, if T2 is greater than the quantile
of the F distribution with K1 = 1 and K2 = 9 degrees of freedom.
Table 10 summarizes the results of the above five-step procedure.

As shown in Table 10, the test static (T2) is greater than f0.99,1,9. This result justifies
that PRA performs significantly better than HGA to produce good results, in terms
of solution quality and computational time.

On the other hand, Table 11 represents the results concerning the third question.
This table indicates how much PRA is able to improve the gap between partial solutions
and the BKS.

As shown in Table 11, PRA is considerably powerful to decrease the gap existing
between the BKS and partial solutions of all the sets. This fact, along with the results

123



520 A. Rahimi-Vahed et al.

shown in Table 8, reveals that the proposed algorithm plays very well its role as a
stand-alone algorithm to generate high-quality solutions of the considered MDPVRP.

5.3.2 Dynamic scenario

In the dynamic scenario, we try to answer the same questions as mentioned in
Sect. 5.3.1. Table 12 indicates the main characteristics of partial solutions generated
by the ICS in different snapshots. In each of the problem instances, PRA is executed
on partial solutions of each snapshot and the obtained results on 10 runs is reported in
Table 13.

The average error gap to the BKS is +0.25, +0.20, +0.17 and +0.12 % at 5, 10, 15
and 30-min snapshot, respectively. These average error gaps reveal that the quality of
the proposed PRA increases by gradually feeding better and more diversified partial
solutions by the ICS. On the other hand, in all the snapshots, the values of error gaps
seem reasonable considering the problem difficulty. On four problem instance (pr01,
pr02, pr07 and pr08), PRA always traps, in all snapshots, on the best partial solution fed
by the ICS. This phenomenon seems inevitable because, in each of these problems,
there exists apparently no better solution than the BKS which is initially sent as a
partial solution to PRA by the ICS. On two problems (pr03 and pr10), PRA obtained
new best known solutions which are shown as boldface starred values in the table.

Moreover, the average standard deviation per instance produced by PRA is 0.22,
0.22, 0.20 and 0.19 at 5, 10, 15 and 30-min snapshot, respectively. These values, along
with the obtained average computational time, reveal this fact that PRA, as a reliable
algorithm, is able to generate good results in a reasonable time.

Finally, the average error gap between PRA and HGA is −0.16, −0.21, −0.25
and −0.30 % at 5, 10, 15 and 30-min snapshot, respectively. These average error
gaps prove, once again, better performance of PRA to generate promising results, in
terms of solution quality and computational efficiency. Note that, in this scenario, the
average result generated by PRA, for each problem instance and snapshot, is equal
or better than the corresponding value in the static scenario. Consequently, we do not
need to use the Friedman test and the significant difference between PRA and HGA
is automatically proved.

Table 14 reports the improvement percentage on the gap between the BKS and
partial solutions initially sent to PRA. Note that, pr01, pr02, pr07 and pr08 are ignored
in Table 14 because, as mentioned above, the ICS always sends, in these problems,
the BKS as a partial solution to PRA.

Studying the results obtained in the static and dynamic scenarios, we deduce that
the proposed PRA can be used as a competitive solution method in the both of its
considered settings, i.e., as a stand-alone algorithm and as an integrator in the ICS
solution methodology.

6 Conclusions

This paper presented a new PRA to efficiently tackle the MDPVRP, for which few
efficient algorithms are currently available. The proposed algorithm was designed
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Table 12 Characteristics of partial solutions in the dynamic scenario

Instance Snapshot S P1 S P2 S P1 + S P2

Worst Average Best Worst Average Best Worst Average Best

pr01 5 min. 2053.43 2028.14 2019.17 2112.51 2044.05 2019.17 2112.51 2036.09 2019.17

10 min. 2043.01 2020.19 2019.17 2044.07 2026.42 2019.17 2044.07 2032.27 2019.17

15 min. 2033.19 2026.38 2019.17 2027.48 2024.26 2019.17 2027.48 2025.61 2019.17

30 min. 2022.88 2121.83 2019.17 2023.97 2021.75 2019.17 2023.97 2021.92 2019.17

pr02 5 min. 3608.77 3558.96 3547.45 3611.28 3562.31 3547.45 3611.28 3567.14 3547.45

10 min. 3595.14 3552.16 3547.45 3595.14 3550.51 3547.45 3595.14 3553.22 3547.45

15 min. 3588.42 3550.68 3547.45 3559.66 3549.14 3547.45 3588.42 3550.09 3547.45

30 min. 3565.31 3549.66 3547.45 3554.04 3548.23 3547.45 3565.31 3549.53 3547.45

pr03 5 min. 4721.48 4537.04 4481.94 4853.33 4486.88 4481.94 4853.33 4507.53 4481.94

10 min. 4700.62 4503.37 4481.94 4850.66 4483.23 4481.94 4850.66 4493.28 4481.94

15 min. 4564.74 4523.19 4480.87 4486.41 4483.34 4480.87 4564.74 4503.14 4480.87

30 min. 4538.53 4514.19 4480.87 4484.35 4482.45 4480.87 4538.53 4495.91 4480.87

pr04 5 min. 5201.69 5188.06 5172.76 5248.72 5195.26 5175.77 5248.72 5192.59 5172.76

10 min. 5170.82 5164.58 5149.05 5162.32 5161.02 5149.05 5170.82 5162.81 5149.05

15 min. 5177.83 5168.42 5149.05 5239.55 5178.44 5149.05 5239.55 5173.47 5149.05

30 min. 5442.74 5239.41 5144.45 5152.96 5149.75 5144.45 5442.74 5199.34 5144.45

pr05 5 Min. 5958.50 5788.24 5603.28 5958.50 5762.19 5682.16 5958.50 5768.22 5603.28

10 min. 5720.83 5687.28 5642.99 5683.15 5664.23 5642.99 5720.83 5665.12 5642.99

15 min. 5714.57 5681.45 5642.99 5958.50 5773.21 5642.99 5958.50 5728.35 5642.99

30 min. 5706.81 5653.23 5604.95 5717.69 5664.12 5604.95 5717.69 5658.92 5604.95

pr06 5 min. 7085.21 6675.21 6608.98 7047.29 6663.29 6608.98 7085.21 6669.53 6608.98

10 min. 6772.95 6659.41 6589.88 6735.38 6648.21 6589.88 6772.95 6653.12 6589.88

15 min. 6744.39 6638.79 6589.81 6735.38 6626.47 6589.81 6744.39 6630.25 6589.81

30 min. 6594.50 6574.25 6567.66 6590.36 6571.19 6567.66 6594.50 6572.22 6567.66

pr07 5 min. 4638.60 4578.29 4502.02 4778.42 4589.23 4502.02 4778.42 4584.18 4502.02

10 min. 4577.91 4538.25 4502.02 4517.79 4506.77 4502.02 4577.91 4527.51 4502.02

15 min. 4577.91 4528.84 4502.02 4509.36 4504.87 4502.02 4577.91 4520.36 4502.02

30 min. 4509.97 4504.93 4502.02 4504.45 4503.33 4502.02 4509.97 4503.66 4502.02

pr08 5 min. 6246.78 6167.32 6024.24 6577.04 6321.87 6024.24 6577.04 6244.25 6024.24

10 min. 6246.78 6097.44 6023.98 6485.56 6299.41 6023.98 6485.56 6226.09 6023.98

15 min. 6246.78 6077.29 6023.98 6069.12 6044.65 6023.98 6246.78 6060.43 6023.98

30 min. 6246.78 6054.38 6023.98 6025.21 6024.46 6023.98 6246.78 6044.61 6023.98

pr09 5 min. 8570.64 8433.12 8326.58 8531.55 8417.17 8316.95 8570.64 8425.62 8316.95

10 min. 8312.40 8304.99 8296.42 8305.65 8301.44 8296.42 8312.40 8302.78 8296.42

15 min. 8307.94 8301.45 8296.09 8305.65 8299.52 8296.09 8307.94 8300.27 8296.09

30 min. 8424.49 8349.51 8293.33 8300.34 8297.44 8293.33 8424.49 8324.66 8293.33

pr10 5 min. 12626.90 10857.44 10128.8 13340.10 11190.51 10128.8 13340.10 13152.27 10128.8

10 min. 10489.30 10227.44 9993.94 10402.10 10200.36 9993.94 10489.30 10214.77 9993.94

15 min. 10169.20 10134.98 9993.94 10059.70 10032.46 9993.94 10169.20 10081.33 9993.94

30 min. 10091.90 10049.77 9993.94 12192.90 10104.71 9993.94 12192.90 10070.14 9993.94
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Table 13 Average results on MDPVRP instances in the dynamic scenario

Instance Snapshot PRA Gap to
HGA (%)

Gap to
BKS (%)

Worst Average Best Time (s)

pr01 5 min. 2019.07 2019.07 2019.07 15 0 0

10 min. 2019.07 2019.07 2019.07 15 0 0

15 min. 2019.07 2019.07 2019.07 15 0 0

30 min. 2019.07 2019.07 2019.07 15 0 0

pr02 5 min. 3547.45 3547.45 3547.45 65 0 0

10 min. 3547.45 3547.45 3547.45 65 0 0

15 min. 3547.45 3547.45 3547.45 65 0 0

30 min. 3547.45 3547.45 3547.45 65 0 0

pr03 5 min. 4480.87 4480.87 4480.87 242 −0.22 0

10 min. 4480.87 4480.87 4480.87 242 −0.22 0

15 min. 4480.87 4479.29∗ 4472.22∗ 242 −0.26 −0.03

30 min. 4480.87 4478.12∗ 4472.22∗ 242 −0.29 −0.06

pr04 5 min. 5155.32 5148.42 5134.17 300 −0.07 0.27

10 min. 5149.05 5148.09 5134.17 300 −0.07 0.27

15 min. 5149.05 5147.81 5134.17 300 −0.07 0.27

30 min. 5148.45 5147.75 5134.17 300 −0.07 0.26

pr05 5 min. 5597.12 5595.24 5581.10 300 −0.18 0.44

10 min. 5603.28 5592.91 5581.10 300 −0.22 0.40

15 min. 5596.73 5589.04 5581.10 343 −0.29 0.33

30 min. 5594.94 5585.16 5581.10 343 −0.36 0.26

pr06 5 min. 6573.29 6560.44 6540.66 300 −0.14 0.54

10 min. 6566.46 6547.08 6540.66 300 −0.35 0.33

15 min. 6566.46 6546.19 6538.91 512 −0.37 0.32

30 min. 6549.57 6541.80 6538.60 512 −0.43 0.25

pr07 5 min. 4502.02 4502.02 4502.02 101 −0.009 0

10 min. 4502.02 4502.02 4502.02 101 −0.009 0

15 min. 4502.02 4502.02 4502.02 101 −0.009 0

30 min. 4502.02 4502.02 4502.02 101 −0.009 0

pr08 5 min. 6023.98 6023.98 6023.98 225 −0.09 0

10 min. 6023.98 6023.98 6023.98 225 −0.09 0

15 min. 6023.98 6023.98 6023.98 225 −0.09 0

30 min. 6023.98 6023.98 6023.98 225 −0.09 0

pr09 5 min. 8312.14 8303.89 8268.88 300 −0.07 0.56

10 min. 8292.23 8291.08 8268.88 300 −0.22 0.40

15 min. 8292.23 8288.44 8268.88 494 −0.26 0.37

30 min. 8286.01 8279.55 8268.88 494 −0.37 0.26

pr10 5 min. 9995.29 9890.22 9852.30 300 −0.82 0.73

10 min. 9886.34 9875.78 9852.30 300 −0.97 0.58
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Table 13 continued

Instance Snapshot PRA Gap to
HGA (%)

Gap to
BKS (%)

Worst Average Best Time (s)

15 min. 9886.34 9856.30 9811.3∗ 750 −1.16 0.39

30 min. 9871.06 9839.07 9811.3∗ 750 −1.36 0.21

AV 5 min. 5620.66 5607.16 5595.05 214.8 −0.16 +0.25

10 min. 5607.08 5602.83 5595.05 214.8 −0.21 +0.20

15 min. 5606.42 5599.96 5589.91 304.7 −0.25 +0.17

30 min. 5602.34 5696.37 5589.88 304.7 −0.30 +0.12

Table 14 Average gap improvement to BKS in the dynamic scenario (%)

Instance Snapshot S P1 S P2 S P1 + S P2

Worst Average Best Worst Average Best Worst Average Best

pr03 5 min. 5.37 1.25 0.02 8.31 0.13 0.02 8.31 0.59 0.02

10 min. 4.90 0.50 0.02 8.25 0.05 0.02 8.25 0.28 0.02

15 min. 1.87 0.98 0.19 0.12 0.09 0.19 1.87 0.53 0.19

30 min. 1.29 0.80 0.19 0.08 0.09 0.19 1.29 0.44 0.19

pr04 5 min. 0.90 0.77 0.46 1.82 0.86 0.49 1.82 0.81 0.46

10 min. 0.42 0.32 0.15 0.26 0.28 0.15 0.42 0.30 0.15

15 min. 0.56 0.41 0.13 1.79 0.62 0.13 1.76 0.51 0.13

30 min. 5.81 1.82 0.03 2.06 0.05 0.03 5.81 0.93 0.03

pr05 5 min. 6.49 3.50 0.38 6.49 3.02 1.80 6.49 3.26 0.38

10 min. 2.11 1.74 1.12 1.43 1.33 1.12 2.11 1.53 1.12

15 min. 2.11 1.69 1.12 6.49 3.34 1.12 6.49 2.51 1.12

30 min. 2.01 1.28 0.44 2.20 1.46 0.44 2.20 1.37 0.44

pr06 5 min. 7.84 1.80 1.03 7.26 1.59 1.03 7.84 1.70 1.03

10 min. 3.16 1.74 0.75 2.59 1.61 0.75 3.16 1.68 0.75

15 min. 2.73 1.44 0.80 2.61 1.26 0.80 2.75 1.35 0.80

30 min. 0.69 0.50 0.44 0.64 0.48 0.44 0.72 0.49 0.44

pr09 5 min. 3.13 1.60 0.40 2.66 1.41 0.28 3.13 1.50 0.28

10 min. 0.24 0.21 0.10 0.17 0.18 0.10 0.24 0.20 0.10

15 min. 0.19 0.17 0.12 0.16 0.15 0.14 0.18 0.16 0.12

30 min. 1.68 0.87 0.24 0.16 0.24 0.28 1.65 0.56 0.24

pr10 5 min. 26.80 9.12 2.78 34.07 12.51 2.77 34.07 10.81 2.77

10 min. 6.14 3.60 1.54 5.25 3.32 1.53 6.14 3.46 1.53

15 min. 2.88 2.86 1.86 1.77 1.83 1.84 2.88 2.34 1.86

30 min. 2.25 2.18 1.86 23.65 2.76 1.84 23.65 2.47 1.86

based on different exploration and exploitation strategies which enable the algorithm
to address the problem in two different ways: (1) As a pure stand alone algorithm, and
(2) As an integrator in the ICS solution framework.
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To validate the efficiency of PRA, different test problems, existing in the literature,
were solved. The computational results revealed that the proposed PRA performs
considerably well, for all the problem instances.

The proposed PRA is a general-purpose solver and opens the way to experimen-
tations and sensitivity analyses of local search and meta-heuristic components on a
wide range of structurally different problems. Finally, the generalization of the method
towards a wider variety of multi-objective and stochastic problems appears as an inter-
esting research avenue.
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