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Abstract In the different stages of the educational system, the demand for efficient
planning is increasing. This article treats the NP-hard Consultation Timetabling Prob-
lem, a recurrent planning problem for the high schools in Denmark, which has not been
described in the literature before. Two versions of the problem are considered, the
Parental Consultation Timetabling Problem (PCTP) and the Supervisor Consultation
Timetabling Problem (SCTP). It is shown that both problems can be modeled using
the same Integer Programming model. Solutions are found using the state-of-the-art
MIP solver Gurobi and Adaptive Large Neighborhood Search (ALNS), and compu-
tational results are established using 300 real-life datasets. These tests show that the
developed ALNS algorithm is significantly outperforming both Gurobi and a currently
applied heuristic for the PCTP. For both the PCTP and the SCTP, it is shown that the
ALNS algorithm in average provides results within 5 % of optimum. The developed
algorithm has been implemented in the commercial product Lectio, and is therefore
available for approximately 95 % of the Danish high schools.
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466 S. Kristiansen et al.

1 Introduction

The Consultation Timetabling Problem (CTP) is a recurrent planning problem for the
high schools in Denmark, which concerns the creation of a schedule for student-teacher
meetings, given the students requests of teachers, subject to various soft constraints
and resource constraints. The problem has not been described in the literature before,
but it shares some properties with other problems within the educational sector, see
Sect. 2.3. There exists several variants of the problem. In this paper we consider the two
most important versions for the Danish high schools, namely the Parental Consultation
Timetabling Problem (PCTP) and the Supervisor Consultation Timetabling Problem
(SCTP).

This paper is written in cooperation with the Danish company MaCom A/S. MaCom
A/S is the developer of the cloud-based high school administration system Lectio,
which handles all sorts of administrative tasks for the high schools, including a GUI
and a heuristic-based solver for the PCTP. Through this cooperation we have access
to real-life data for approximately 95 % of all Danish high schools, which constitutes
thousands of datasets. We will provide computational results for 300 of these datasets,
which is a very big amount of real-life data compared to the majority of scheduling
literature.

Our task of this paper is to give a detailed description of the CTP, and model it using
Integer Programming. This model should support both the PCTP and the SCTP. To
find solutions, both a state-of-the-art MIP solver and an Adaptive Large Neighborhood
Search (ALNS) heuristic is attempted. These solution approaches are compared to the
existing heuristic used in Lectio, and the best approach is made available for all users
of Lectio.

2 Consultation timetabling problem

In the following we describe the CTP in details, starting with specifications of the two
versions of the problem.

2.1 Parental consultation timetabling problem

Once or twice a year the high schools invite the students and their parents to participate
in meetings with the teachers of the student. The goal of these meetings is to allow
the teachers to inform of the educational progress of the student, and possibly address
relevant problems. Parental consultations usually take place in the evening of a normal
work day, and each meeting generally has a duration between 5 and 15 min. The order
of events for parental consultations is the following: The high school administration
selects days where the meetings should take place, and for each day a feasible time-
interval is chosen. Each student (usually in collaboration with his parents) makes
prioritized requests of groups of teachers he would like to meet. Few of these teacher
groups contain more than a single teacher, because the student is taught by only one
teacher in most classes. Usually the high school also allows the students to request
specific time intervals, within the overall time interval on each day, where the student

123



The consultation timetabling problem at Danish high schools 467

will be available for meeting teachers. Given the student’s choice of teachers and time
intervals, it is then up to the high school administration to decide which teachers a
student should meet, and when the meetings should take place.

2.2 Supervisor consultation timetabling problem

In the last year of a high school education, the students are required to make a
large study project (Danish: Studieretnings Projekt). Each student selects two sub-
jects/courses as combined subject for his project, e.g. English and History. Each stu-
dent is then assigned two teachers whom will be his supervisors for the project. The
objective of the SCTP is to plan meetings between the students and their respective
supervisors. The goal of these meetings is for the supervisors to provide the stu-
dent with some useful hints for problem definition, literature research, etc. Typically
supervisor consultations take place in the daytime, where both the student and the
corresponding teachers are located at the high school.

From a timetabling point of view, these two types of consultations are almost
identical. For both types, as many as possible of the meeting requests should be
fulfilled, and both essentially contain the same constraints. Therefore we will in this
paper model both types of consultations using the same Integer Programming model.
In the remainder of this paper we refrain, as much as possible, from distinguishing
between the two variants of the problem, and will by CTP denote the problem which
is the superset of the PCTP and the SCTP.

In the following further details of the soft constraints of the CTP is given. These
soft constraints define various scheduling preferences for the students and teachers.

A contiguous streak of meetings for a teacher or student are from now on denoted
a sequence. A time slot is void for a teacher or student if the time slot is empty and
no meetings are scheduled in either earlier time slots or in later time slots. A break
for a student or teacher is defined as a time slot which is not void, and which has no
meetings assigned. Void time slots must be distinguished from breaks because they do
not effect the density of a schedule. This is due to the fact that students and teachers are
not obligated to stay at the school throughout the entire duration of the consultation.
Given these definitions, we formulate the following soft constraints:

– It is attempted to achieve a solution where the positions of the granted meetings
for a given individual are placed in a sequence. I.e. for both students and teachers
the number of breaks should be minimized. This is to achieve a schedule with as
little waiting time as possible. However, for the students it is possible for the high
school administration to declare whether they need a break after each meeting.
This is usually selected if there exists ”traveling” time between the meeting rooms
where the teachers are located. The CTP only takes consultation meetings into
consideration when determining a sequence, and not other activities.

– When assigning a meeting to a time slot, the availability of the student and teacher
must be taken into consideration. The high school administration decides whether
this constraint should be defined as a hard- or a soft-constraint. It is common that
in case of SCTP, this is defined as a soft-constraint as it is feasible for the students
to leave classes to have meetings with their supervisors. In case of the PCTP,
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Fig. 1 Example of a feasible consultation schedule

this constraint is usually treated as a hard-constraint, as a solution should respect
activities such as meetings, study-trips, etc.

– It is undesirable for teachers to have too long sequences of meetings. Therefore
a maximum on the length of sequences for teachers is given (treated as a soft-
constraint). This is not required for the students, since they typically have a low
number of requests.

– For a consultation which spans over several days it is desired that a student or a
teacher only have meetings in one of the days, such that they are not obligated to
attend both. This is especially critical for students, as they have a low number of
requests.

– The high school administration prefers if the meetings are placed as close as
possible to a specific time slot on each day. This is usually selected as the first
timeslot on each day.

Figure 1 shows an example of a consultation schedule on one day. The schedule
contains one void time slot, two breaks, and seven consultations.

2.3 Literature review

The CTP has, to the best of our knowledge, not been described in the literature before.
However there exist many types of related timetabling problems within the educational
system, see Schaerf (1999), Burke and Petrovic (2002), McCollum (2006), and Pillay
(2010) for overviews of this field. Problems such as Course Timetabling and Student
Sectioning have been looked into, e.g. Tripathy (1984), Erben and Keppler (1996), and
Carter and Laporte (1998), Müller and Murray (2010). Related problems for Danish
high schools include Kristiansen et al. (2011) and Kristiansen and Stidsen (2012)
regarding the Elective Course Planning Problem, and Sørensen and Stidsen (2012)
regarding the timetabling problem. For all these problems it applies that they attempt
to assign requests to time slots in a given schedule.

The requirement for compact schedules is well known in educational timetabling.
In Santos et al. (2010) the Class-Teacher Timetabling Problem with Compactness
Constraints is described. The compactness is defined in terms of teacher “holes”, which
is equivalent to our definition of breaks. The teacher holes are modeled with a linear
IP, which entails the need for two auxiliary variables, and three additional constraints.
This approach can be directly applied to the CTP. de Haan et al. (2007) specifies that
the timetabling problem at Dutch high schools requires compact schedules for both
classes and teachers. This is addressed using heuristic methods. For Greek high schools
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the situation is similar, see e.g. Birbas et al. (2009). Here the problem is handled using
a MIP solver for a complicated IP.

3 Integer programming model

The following IP model for the CTP aims at maximizing the number of granted meeting
requests and minimizing the violating of soft constraints, while respecting the hard
constraints.

A consultation problem at a high school contains set of students S, a set of teachers
T , a set of teacher groups G, an ordered set of time slots B and a set of days D.
Vb,d ∈ {0, 1} takes value 1 if time slot b is part of day d, and zero otherwise.

The decision whether a student s is given a meeting with teacher group g in time
slot b is defined by the binary variable xs,g,b ∈ {0, 1}. The profit of meeting (s, g) in
timeslot b is given by αs,g,b ∈ R

+. The basic objective function is therefore

max
∑

s,g,b

αs,g,bxs,g,b (1)

3.1 Unavailabilities

In some situations it can be allowed to interrupt other activities at the high schools to
satisfy a meeting request. Let Dt,b ∈ {0, 1} take value 1 if teacher t is not available
(i.e. occupied by other activities) in time slot b, and zero otherwise. Let Es,b ∈ {0, 1}
be the completely analogous parameter for the students. If a consultation meeting is
placed in a time slot where either a student or a teacher has some other activities, it is
penalized by the following.

−
∑

s,g,b

(
∑

t

δt · Dt,b · Pg,t + δs · Es,b

)
xs,g,b (2)

If it is not allowed to interrupt activities this term is not added to the objective, and
these constraints take the form of hard-constraints by forbidding meetings of teacher
t in time slot b if Dt,b = 1, and likewise for student s in time slot b if Es,b = 1.

It is of course not allowed to assign a student to a consultation meeting with a teacher
group, if the student has not requested this teacher group. And is it not allowed for
the student or teacher to have more than one meeting in each time slot. This imposed
the following constraints. The parameter Pt,g ∈ {0, 1} takes value 1 if teacher t is
in teacher group g, and zero otherwise. Rs,g ∈ {0, 1} takes value 1 if student s has
requested teacher group g, and zero otherwise. Cs,b ∈ {0, 1} takes value 1 if student
s has requested time slot b.

∑

b

xs,g,b ≤ Rs,g ∀ s, g (3)
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∑

g

xs,g,b ≤ Cs,b ∀ s, b (4)

∑

s,g

Pg,t · xs,g,b ≤ 1 ∀ t, b (5)

3.2 Undesirable breaks

One of the undesirable properties of the CTP is the breaks for both students and
teachers. Let the variables zs,d ∈ N and wt,d ∈ N be the number of breaks in day d
for a student and for a teacher, respectively. As we do not penalize void time slots as
shown in Fig. 1, we need to know when a individual have his first and last meeting. Let
variables f first

s,d and f last
s,d denote the timeslot of the first and last meeting for student s,

respectively. Let hfirst
t,d and hlast

t,d be the analogous variables for teacher t . Let variable
ns,b,d ∈ {0, 1} take value 1 if student s is placed in time slot b on day d. The idle time
slots for a student is then given by the following constraints

∑

g

Vb,d · xs,g,b = ns,b,d ∀ s, b, d, Vb,d = 1 (6)

f last
s,d − f first

s,d + 1 −
∑

b

ns,b,d · (1 + H S) + H S = zs,d ∀ s, d (7)

|B|d − (|B|d − ord(b)) · ns,b,d ≥ f first
s,d ∀ s, b, d, Vb,d = 1 (8)

ord(b) · ns,b,d ≤ f last
s,d ∀ s, b, d, Vb,d = 1 (9)

The parameter H S ∈ {0, 1} indicates whether a student is required a break after each
meeting, zero otherwise. This parameter is selectable for the user of Lectio. We want
to penalize the cost such that it increases exponential on the number of breaks. The
cost function is modeled as a piece-wise linear function by introducing a new variable
vss,d, j ∈ {0, 1}, where j ∈ 1, . . . , m, which takes value 1 if student s has j breaks in
day d. This imposes the following constraints.

∑

j

vss,d, j · ord( j) = zs,d ∀ s, d (10)

∑

j

vss,d, j = 1 ∀ s, d (11)

As for the teacher let variable pt,b,d ∈ {0, 1} take value 1 if teacher t has a meeting
in time slot b on day d. The cost for teacher breaks is also made as a piece-wise
linear function, using the new variable vtt,d, j ∈ {0, 1}. The following constraints are
imposed to denote the number of undesirable breaks for a given teacher,

∑

g,s

Vb,d · Pg,t · xs,g,b = pt,b,d ∀ t, b, d, Vb,d = 1 (12)

|B|d − (|B|d − ord(b)) · pt,b,d ≥ hfirst
t,d ∀ t, b, d, Vb,d = 1 (13)
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ord(b) · pt,b,d ≤ hlast
t,d ∀ t, b, d, Vb,d = 1 (14)

hlast
t,d − hfirst

t,d + 1 −
∑

b

pt,b,d = wt,d ∀ t, d (15)

∑

j

vtt,d, j · ord( j) = wt,d ∀ t, d (16)

∑

j

vtt,d, j = 1 ∀ t, d (17)

The contribution to the objective is as follows

−
∑

s,d, j

γs, j · vss,d, j −
∑

t,d, j

βt, j · vtt,d, j (18)

3.3 Sequences

In connection with the undesirable breaks, the CTP also contains some needed breaks.
For the students it is often necessary to give them a break between each consultation
meeting due to traveling time between meeting rooms. This impose the following
constraints.

∑

g

(
xs,g,b + xg,b+1,s

) ≤ 1 ∀ s, d, b ∈ B\{b|BJ |}, H S = 1, Vb,d = Vb+1,d = 1

(19)

The teachers seldom change location during the consultation period, so travel time is
not needed. However, as mentioned it is undesirable for the teachers to have a long
sequence of meetings, as they need a break now and then. The maximum size of a
sequence for a teacher is denoted Q ∈ N. Let the variable yt,b,d ∈ {0, 1} take value 1
if time slot b is the start of a sequence of length greater than Q on day d for teacher
t . The following equation constraints this variable,

∑

s

b+Q∑

b′=b
Vb′,d=1

pt,b′,d − yt,b,d ≤ Q ∀ t, d, b ∈ B\{b j | j > |B| − Q}, Vb,d = 1

(20)

The contribution to the objective is given by

−
∑

t,b,d

ω · yt,b,d (21)
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3.4 Day distribution

In case the consultation has more than one day it is preferred that each student and
each teacher only has meetings on a single day. ut,d ∈ {0, 1} and us,d ∈ {0, 1} denotes
if teacher t or student s has a meeting on day d, respectively. vt ∈ N and vs ∈ N

denotes the number of days where teacher t and student s have meetings, respectively.
The number of days with meetings is punished in the objective by

−
∑

s

ζs · vs −
∑

t

ζt · vt (22)

and is constrained by the following

∑

g

Vb,d · xs,g,b ≤ us,d ∀ s, b, d (23)

∑

s,g

Vb,d · Pt,g · xs,g,b ≤ ut,d ∀ t, b, d (24)

∑

d

us,d − 1 ≤ vs ∀ s (25)

∑

d

ut,d − 1 ≤ vt ∀ t (26)

The entire model for CTP is given in (27).

3.5 IP model for CTP

Consultation Timetabling Problem IP (27)

max
∑

s,g,b

(
αs,g,b −

∑

t

δt · Dt,b · Pg,t + δs · Es,b

)
· xs,g,b −

∑

s,d, j

γs, j · vss,d, j −
∑

t,d, j

βt, j · vtt,d, j

−
∑

t,b,d

ω · yt,b,d −
∑

s

ζs · vs −
∑

t

ζt · vt (27a)

s.t.
∑

b

xs,g,b ≤ Rs,g ∀ s, g (27b)

∑

g

xs,g,b ≤ Cs,b ∀ s, b (27c)

∑

s,g

Pg,t · xs,g,b ≤ 1 ∀ t, b (27d)

∑

g

(
xs,g,b + xg,b+1,s

) ≤ 1 ∀ s, d, b ∈ B\{b|BJ |}, H S = 1, Vb,d = Vb+1,d = 1 (27e)

∑

s

b+Q∑

b′=b
Vb′,d =1

pt,b′,d − yt,b,d ≤ Q ∀ t, d, b ∈ B\{b j | j > |B| − Q}, Vb,d = 1 (27f)
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∑

g

Vb,d · xs,g,b = ns,b,d ∀ s, b, d, Vb,d = 1 (27g)

|B|d − (|B|d − ord(b)) · ns,b,d ≥ f first
s,d ∀ s, b, d, Vb,d = 1 (27h)

ord(b) · ns,b,d ≤ f last
s,d ∀ s, b, d, Vb,d = 1 (27i)

f last
s,d − f first

s,d + 1 −
∑

b

ns,b,d · (1 + H S) + H S = zs,d ∀ s, d (27j)

∑

j

vss,d, j · ord( j) = zs,d ∀ s, d (27k)

∑

j

vss,d, j = 1 ∀ s, d (27l)

∑

g,s

Vb,d · Pg,t · xs,g,b = pt,b,d ∀ t, b, d, Vb,d = 1 (27m)

|B|d − (|B|d − ord(b)) · pt,b,d ≥ hfirst
t,d ∀ t, b, d, Vb,d = 1 (27n)

ord(b) · pt,b,d ≤ hlast
t,d ∀ t, b, d, Vb,d = 1 (27o)

hlast
t,d − hfirst

t,d + 1 −
∑

b

pt,b,d = wt,d ∀ t, d (27p)

∑

j

vtt,d, j · ord( j) = wt,d ∀ t, d (27q)

∑

j

vtt,d, j = 1 ∀ t, d (27r)

∑

g

Vb,d · xs,g,b ≤ us,d ∀ s, b, d (27s)

∑

s,g

Vb,d · Pt,g · xs,g,b ≤ ut,d ∀ t, b, d (27t)

∑

d

us,d − 1 ≤ vs ∀ s (27u)

∑

d

ut,d − 1 ≤ vt ∀ t (27v)

xs,g,b ∈ {0, 1}, yt,b,i ∈ {0, 1} (27w)
wt,d ∈ N, zs,d ∈ N (27x)
vtt,d, j ∈ {0, 1}, vss,d, j ∈ {0, 1} (27y)

f first
s,d ∈ N, f last

s,d ∈ N, hfirst
t,d ∈ N, hlast

t,d ∈ N (27z)

pt,b,d ∈ {0, 1}, ns,b,d ∈ {0, 1} (27aa)

us,d ∈ {0, 1}, ut,d ∈ {0, 1} (27ab)

vs ∈ N, vt ∈ N (27ac)

3.6 Complexity

In the following a proof of NP-hardness is given by showing that a well known
NP-hard problem, the Graph Coloring Problem (GCP), is polynomially reducible to
CTP.

123



474 S. Kristiansen et al.

An arbitrary instance of GCP consists of a graph G = (V, E) and a number of
colors k. The decision-version of the GCP asks the following: Does graph G admit
a proper vertex coloring with k colors, such that no adjacent vertices take the same
color?

To answer this question we solve a CTP with parameters δt = δs = γs, j = βt, j =
ω = ζs = ζt = H S = 0, αs,g,b = 1, Cs,b = 1. This makes all constraints redundant,
except for (27b), (27c) and (27d). Further assuming every student has exactly one
request,

∑
g Rs,g = 1 ∀s, makes constraint (27c) redundant.

For each vertex v ∈ V in graph G, create a student s and a teachergroup g, and let the
meeting request (s, g) represent vertex v. The set of vertices is hence represented by a
setting of parameter Rs,g . If vertex v1 = (s1, g1) and vertex v2 = (s2, g2) are adjacent
in graph G, create a teacher t and assign it to both g1 and g2, i.e. Pg1,t = Pg2,t = 1.
I.e. every teacher will have exactly two meeting requests. Let the set of time slots B
represent the set of colors (such that |B| = k).

Hence the GCP-instance is represented by the following CTP instance:

max
∑

s,g,b

xs,g,b (28a)

s.t.
∑

b

xs,g,b ≤ Rs,g ∀ s, g (28b)

∑

s,g

Pg,t · xs,g,b ≤ 1 ∀ t, b (28c)

xs,g,b ∈ {0, 1} (28d)

Constraint (28b) specifies that each vertex (meeting request) can at most be assigned
one color (time slot). Constraint (28c) specifies that no teacher can be assigned more
than one meeting in each time slot, which specifies that no adjacent vertices can take
the same color.

To answer the question whether G is k-colorable, solve the CTP instance (28)
and check if all meeting requests are assigned a time slot, i.e.

∑
b xs,g,b =

1 ∀s, g, Rs,g = 1. If so the answer is yes, otherwise the answer is no. Hence the
Graph Coloring Problem is polynomially reducible to CTP, and CTP is therefore
NP-hard.

3.7 Defining weights

In the following the weights of the model are selected due to the preferences of the
Danish high schools. MaCom A/S has greatly assisted this process. Table 1 lists all
the weights in the model and their priority.

From analysis of previous consultations in the Danish high schools, it is noticed
that the students rarely request more than five teacher groups for consultations. And
even though the students have the opportunity to request more than five, they seldom
use this option. From this analysis it is chosen to stick the request with priority higher
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Table 1 Weight prioritizing

Weight Symbol Priority Value dependency

(Max) Request fulfilling αs,g,b Very High Priority of request (s, g) in time slot b

(Min) Teacher holes βt, j High Amount of requests of teacher t

(Min) Teacher sequence violation ω High N/A

(Min) Teacher activities interruption δt Medium N/A

(Min) Teacher multiple days ζt Medium N/A

(Min) Student holes γs, j High Amount of requests of student s

(Min) Student activities interruption δs Medium N/A

(Min) Student multiple days ζs Medium N/A

than five to the same weight. This gives the following function for the request weights
αs,g,b:

αs,g,b =
{

κb + 12 − 2 · (i − 1) i ≤ 5

κb + 2 i ≥ 6
(29)

where i ∈ Z
+ is the priority of request (g, s). Furthermore there is a set-point for

each day given by b∗
d for which it is desired that the schedule plan for the given day

is centered around. Let κb denote the penalty for assigning a request to time slot b,
defined by

κb = −
∑

d

Vb,d · |b∗
d − b|

|Bd | (30)

The cost of an undesirable break for a teacher, βt, j , is defined as follows,

βt, j =
⎧
⎨

⎩

0 j = 0
j j ≥ 1 ∧ SCT P

j1+ 1.5
ηt j ≥ 1 ∧ PCT P

(31)

where ηt is the number of requests for teacher groups where teacher t is a group
member, ηt = ∑

s,g Pg,t · Rs,g . I.e. βt, j depends on the number of requests for the
given teacher t . The distribution of βt, j is chosen such that a teacher which few students
have requested is given a high penalty for undesirable breaks. Likewise, a teacher with
many requests has a low penalty for undesirable breaks. This is due to the fact that
teachers with many requests will most likely have a more dense schedule, and are
therefore not too picky about additional breaks. The reason why there is a difference
between the weights for the different consultations types is due to the consultation
interval. For the PCTP the consultation meetings are normally located in the evening,
and hence we want to penalize the undesirable breaks. The SCTP is typically taken
place in the daytime, i.e. the teachers are already at the high school, hence undesirable
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breaks are not that significant. The weight of an undesirable break for a student γs, j

is analogues,

γs, j =
{

0 j = 0

j1+ 2
ηs j ≥ 1

(32)

where ηs is the number of requests of student s.
The cost for violating the length of a sequence for a teacher is given by ω.

ω = 2 (33)

In our model of the CTP the high school administration selects if interrupting other
activities of the students or teachers is allowed. If this is not the case, the costs δt and
δs are selected as infinitely high (implementation-wise the corresponding constraints
are treated as hard-constraints). If interrupting other activities are not allowed, these
costs are selected as a constant value,

δt = δs =
⎧
⎨

⎩

∞ Interrupting activities not allowed
4 Interrupting activities allowed ∧ PCT P
1 Interrupting activities allowed ∧ SCT P

(34)

Like for the undesirable break cost βt, j , we distinguish between the two consultations
types. For the PCTP it is expensive to interrupt other activities since it is held in the
evening and hence other activities are typically other types of meetings. The SCTP is
held in the daytime, and it is allowed to ‘lent’ a student from a lecture for a small cost.
The penalties for assigning students and teachers to multiple days are given by

ζs = 8

ζt = 1

4 Adaptive Large Neighborhood Search (ALNS)

In this section a heuristic alternative to solving the IP-model (27) is described. The
performance of these two methods are compared in Sect. 6.

As the local search algorithm we have chosen to use the Large Neighborhood Search
(LNS) proposed by Shaw (1998). Most local search algorithms explicitly defines the
neighborhood, but the neighborhood in LNS is defined implicitly by a destroy and a
repair method. The neighborhood of a solution is then defined as the set of solutions
that can be reached by first applying a destroy method and then a repair method. In
this article we will use ALNS, in which the LNS is extended by multiple destroy and
repair methods. ALNS was first described in Pisinger and Ropke (2005), and has since
been used with success on various problems, especially variants of Vehicle Routing
Problems (VRP), see e.g. Ropke and Pisinger (2006), Laporte et al. (2010), Azi et al.
(2010), Ribeiro and Laporte (2012), and Lei et al. (2011). A pseudo-code for the ALNS
heuristic is shown in Algorithm 1.
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Algorithm 1: Adaptive Large Neighborhood Search

Input: a feasible solution xs
g,b

solution xbest = x ; π = (1, . . . , 1)1

repeat2

x ′ = x3

select destroy and repair methods d ∈ �− and r ∈ �+ using π4

select q ∈ N5

remove q requests from x ′ using d6

reinsert removed requests into x ′ using r7

if c(x ′) > c(xbest ) then8

xbest = x ′9

if accept(x ′, x) then10

x = x ′11

update π12

until stop-criterion met13

return xbest14

The sets of destroy and repair methods are denoted �− and �+, respectively. The
variable π , which stores the weight of all destroy and repair methods, is introduced in
line 1. Initially all methods have the same weight. In line 4 the weight parameter π is
used to select the destroy and repair methods. In line 10 an accept function evaluates if
the new solution should become the new current solution. The accept function can be
implemented in different ways. We have chosen to implement a Simulated Annealing-
like acceptance criterion, which will be described later.

An ALNS framework has the advantage of using different neighborhoods, such
that the algorithm hopefully explores a large part of the solution space. For more
information regarding ALNS we recommend Ropke and Pisinger (2006) and Pisinger
and Ropke (2010).

4.1 ALNS scoring scheme

A central part of the ALNS algorithm is the scoring scheme of destroy and repair
methods. A scoring scheme can essentially be characterized by two central topics; (1)
How to quantify the performance of each heuristic. (2) The reaction factor, i.e. how
sensitive is the selection process to recent records of performance.

We adapt a scoring scheme based on the technical report of Muller and Spooren-
donk (2010), where performance is tracked by the percentage-wise gap between the
new found solution and the current solution. This scoring scheme has the advantage
of having few parameters to tune, and using the gap between solutions seems as a
intuitively good way of measuring heuristic performance. Below the scoring scheme
is explained in details.

Runs of the algorithm is divided into segments {t0, t1, . . . , tn} each consisting of
Nit iterations. Let π t

i be the weight of heuristic i in segment t . The probability of
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choosing heuristic i in segment t is
π t

i∑
j π t

j
. At the end of each segment t , the following

update is performed for all heuristics,

π t+1
i = ρ

π̄ t
i

at
i

+ (1 − ρ)π t
i (35)

where at
i is the number of times heuristic i has been selected in segment t . π̄ t

i is the
observed weight of heuristic i in segment t , which in each iteration is incremented
depending on the quality of the new found solution. ρ ∈ [0, 1] is the reaction factor. A
high reaction factor means that the weights of a segment will be very dependent upon
the observed weights of the previous segment.

The observed weight π̄ t
i is updated in each iteration. Let x be the current solution,

and x ′ the new found solution by applying neighborhood i . In the technical report
Muller and Spoorendonk (2010) the following formula is used,

gap = c(x ′) − c(x)

c(x)
(36)

π̄ t
i = π̄ t

i + mgap (37)

where m is a constant. We will use a slightly changed version of this formula, since we
have observed that the gap formulated by (36) most often yields values of magnitude
±10−4, meaning that the observed weight π̄ t

i will rarely change value of significant
magnitude. Therefore we introduce a scale parameter in the formula,

π̄ t
i = π̄ t

i + mmin(σ ·gap,1) (38)

where σ ∈ R
+ is a parameter that needs tuning. We fix m = 5 and rely on the

parameter tuning to set a suitable value for σ . The min-operator in the exponent of m
is necessary to ensure the weight stay within a reasonable interval, in case we hit an
iteration where the scaled gap is big and positive.

4.2 Request removal

The ALNS heuristic for the CTP makes use of two different removal heuristics, each
searching a given removal neighborhood. The heuristics takes as input a given solution
xs,g,b and an integer q ∈ N. The output of the heuristics is the solution where q
meetings have been removed. The value of q is selected as a random number which
satisfies,

3 ≤ q ≤ max

(
ξ ·

∑

g,s

Rs,g, 5

)
(39)

where ξ ∈]0, 1] is the maximum percentage of requests to remove. In accordance with
Muller (2009) we decay ξ over time, starting with a high value ξstart and ending with a
smaller ξend. Given the runtime of the algorithm, we divide it into 100 segments such
that ξ is decreased by ξstart−ξend

100 in each segment. This decay of ξ means that the size of
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the searched neighborhood is progressively reduced. This has the advantage of only
performing small changes towards the end of the solution process, where we expect a
good solution has been found.

4.2.1 Random removal

The simplest removal heuristic, which randomly removes q meetings from the solution.
This simple heuristic obviously has the effect of diversifying the search.

4.2.2 Shaw removal

This removal heuristic was introduced in Shaw (1997, 1998) where it is used on the
VRP. In this section the heuristic is modified to suit the CTP. The general idea of
the heuristic is to remove meetings which are somehow related, since there is a good
chance that such requests can swap positions and possibly improve the solution. In this
paper two factors determine if meeting i is related to meeting j : Similarity between
students, and similarity between teachers. Si and Ti indicates the set of students and
teachers of meeting i , respectively. Notice that a meeting always contains exactly one
student, i.e. |Si | = 1. Let the measure of relatedness between meeting i and j be
defined by M(i, j) ∈ [0, 1],

M(i, j) =
∣∣Ti ∩ Tj

∣∣ + ∣∣Si ∩ S j
∣∣

min(|Ti |, |Tj |) + 1
(40)

I.e. relatedness is the percentage of individuals which is shared between the meetings,
such that a high value of M means that the meetings are very related. This simple
formulation of relatedness is done without any additional parameters. An alternative
natural formulation would be to scale the student-relatedness and teacher-relatedness
by two independent parameters. However we have chosen the shown formula due to its
simplicity. An addition to the formula could be to introduce a term which determines
time slot relatedness, although it should be noted that relatedness between slots is only
directly relevant if there also exists some relatedness between students or teachers.

A pseudo code for Shaw removal is shown in Algorithm 2.

Algorithm 2: Shaw removal

Input: A feasible solution xs,g,b, q ∈ N, pshaw ∈ R
+

request: r = a randomly selected meeting from xs,g,b1

set of requests : D = {r}2

while |D| < q do3

r = randomly selected meeting from D4

L = all meetings from xs,g,b not in D, sorted by decreasing similarity to r5

choose a random number y pshaw ∈ [0, 1[6

l = element number y pshaw · |L|7

D = D ∪ L[l]8

remove the meetings in D from xs,g,b9
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To avoid the situation where the same meetings are removed over and over, the
algorithm is randomized. The level of randomness is controlled by the parameter
pshaw ∈ R

+, pshaw ≥ 1. This means that pshaw somehow defines how random the
element is chosen, where pshaw = 1 corresponds to completely random.

4.3 Repair heuristic

The repair heuristics are given a set of consultation meetings and a set of not granted
meeting-requests.

4.3.1 Basic greedy heuristic

A trivial algorithm for the CTP is a simple greedy algorithm which places one request
at a time in order of contribution to the objective. In each iteration of the algorithm
this process is repeated until no more requests which improves the solution can be
inserted. Implementation wise the algorithm suffers from cost-dependencies, since
the contribution of inserting each request possibly changes after each insertion. This
is slightly optimized by only recalculating the cost of those requests which the last
insertion can possibly effect. I.e. recalculate the cost of those requests which has the
same student as the last insertion, or if the teacher group overlaps with the one of the
last insertion. This repair heuristic is used to create an initial feasible solution for the
CTP.

4.3.2 Regret heuristics

The regret heuristic improves the basic greedy by incorporating a kind of look-ahead
information when selecting a request to insert. Informally speaking, the heuristic aims
at inserting the request which we will regret most if not inserted immediately. The
regret heuristic has been used by Potvin and Rousseau (1993) and Pisinger and Ropke
(2005) for the VRP with Time Windows. Let ck

r denote the change in the objective
value by inserting request r into the kth best position. E.g. c2

r denotes the change in the
objective value by inserting request r in the second best position. A Regret-2 heuristic
will in each iteration choose to insert the request r where the difference between best
and second best position is largest, i.e.

r := arg max
r∈Rs

g,c1
r >0

(
c1

r − c2
r

)
(41)

The request r is inserted at its best position, so we restrict the heuristic to only look
at requests where the best position is actually feasible and yields a positive change in
objective. This restriction is necessary since the objective of the CTP contains both a
minimization and a maximization part, and we are not interested in inserting requests
which have negative impact on the objective. The heuristic can be extended by looking
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at k positions for each request. The request to insert is then chosen according to

r := arg max
r∈Rs

g,c1
r >0

k∑

h=2

(
c1

r − ch
r

)
(42)

We will in this paper incorporate the regret heuristic for several choices of k. The
basic greedy algorithm from the previous section is a Regret-1 heuristic due to the
tie-breaking rules. For a Regret-1 heuristic the most profitable request is inserted in
each iteration. Most papers distinguish between Regret-1 and other regret heuristic,
however implementation wise they are not very different. Setting k = |B| corresponds
to the full Regret-k heuristic.

Even though the regret heuristic is designed for VRP, it seems well suited for the
CTP due to its assignment character. It seems valuable to attempt to predict which
request is the most critical to insert. By some basic tests, we have chosen to use
Regret-2, Regret-3, and Regret-|B| as insertion heuristics.

4.4 Algorithm setup

According to Ropke and Pisinger (2006), using myopic repair heuristics, like those
of this paper, one may apply noise to the objective function to obtain a more efficient
algorithm. By applying noise, the repair heuristic will not always make the move that
seems best locally. Ropke and Pisinger (2006) support this by strong computational
results. However, preliminary tests show that, in our case, adding noise does not
yield a more efficient algorithm. More precisely, noise was added such that it was
controlled by a linear-scale parameter, and excessive tuning on this parameter yielded
no convergence at all. I.e. this parameter had (close to) no impact on the algorithm
efficiency. A similar result for the Cumulative Capacitated VRP is reported in Ribeiro
and Laporte (2012).

In occurrence with Ropke and Pisinger (2006) we borrow an acceptance criteria
from Simulated Annealing (SA). A solution x is always accepted if c(x) > c(xbest).

If c(x) < c(xbest) then x is accepted with probability exp
(
− c(xbest)−c(x)

T

)
. In each

iteration the temperature T is updated by T = dSAT , where 0 < dSA < 1. Giving the
temperature control parameter wSA, 0 < wSA < 1, T is initially selected such that a
solution is accepted with probability 1

2 if its change in objective is wSA percent worse
than the initial solution x0, i.e.

exp

(
− (c(x0) − (1 − wSA) · c(x0))

T0

)
= 1

2 ⇒ T0 = wSA · c(x0)

ln(2)
(43)

This has the advantage of better adapting the temperature to each dataset.
Furthermore at the start of each segment (those of the ALNS scoring scheme), the

current solution is set to the current best.
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5 Parameter tuning

The proposed heuristic contains many free parameters. It is essential that these parame-
ters are tuned to achieve good performance, see e.g. Adenso-Diaz and Laguna (2006)
and Diao et al. (2003). Tuning of metaheuristics is usually done by rules-of-thumb
and the researchers personal experience. However some well performing automated
algorithms have lately been introduced, mainly ParamILS (Hutter et al. 2009) and
Race-algorithms (Birattari 2005). In this paper we will use the F-Race algorithm for
tuning, as its implementation burden seems light, and it has proven competitive for
some heuristic methods, see Montero et al. (2010) and Pellegrini et al. (2010).

The main idea of a race algorithm is to sequentially process a set of data instances
using all possible parameter configurations. In each iteration, the parameter configu-
rations which are statistically inferior are eliminated. The algorithm is ran until one
parameter configuration remains or the specified time limit is exceeded, see Algorithm
3. If more than one parameter configuration remains once the algorithm terminates,
the one which in average has performed best is selected. The advantage of a race
algorithm is that bad parameter configurations are eliminated early, such that no more
valuable computation time is spend on evaluating these. The racing algorithm differs
from most other tuning approaches in the sense that it only performs one algorithm
run per parameter configuration per data instances. This relies on the proof in Birat-
tari (2005) where it is shown that this is the optimal experimental setting in terms of
variance of the estimated performance.

Algorithm 3: Race Tuning
Input:
�: Set of parameter configurations
Texp: Computation time of each experiment
Ttotal: Time limit
α: Confidence level
i = 0, Sθ = �, Cθ = ∅1

while t < Ttotal AND |Sθ | > 1 do2

dataset = RandomSampled()3

foreach θ ∈ Sθ do4

Ci
θ = EvalSolution(Texp, θ , dataset)5

i = i + 16

Drop inferior parameter configurations from Sθ by statistical test, using7

confidence level α

In a F-Race algorithm, the Friedman Two-way Analysis of Variance by Ranks test
is used to determine whether there is sufficient statistically evidence to eliminate
parameter configurations from future iterations. If this is the case, then post-tests are
performed where pairwise comparison between the best candidate and the remaining
determines which configurations should be eliminated, if any. The F-Race algorithm
has been successfully used for tuning in a number of cases, see e.g. Chiarandini et al.
(2006), Becker et al. (2006) and Pellegrini and Birattari (2007).
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Table 2 Final values of tuned parameters, found by the F-Race algorithm with confidence level α = 0.05

Parameter wSA dSA Nit ρ σ ξstart ξend pshaw

Value 0.01 0.99 100 0.50 1000 0.30 0.0033 20

A problem of the described Racing algorithm, which applies to most tuning frame-
works, is the so-called full-factorial design, meaning that the full set of parameter
configuration is initially considered. This results in the F-Race becoming impracti-
cal and computational prohibitive, if there exists a large number of parameters and
each parameters can take a modest number of values. This has been addressed in
Balaprakash et al. (2007) by defining a probabilistic model on the set of all possible
parameter configurations, such that a small set of parameter configurations is gener-
ated in each iteration of the tuning process. Elite configurations are used to update the
model to bias the search around high quality parameter configurations. This version
of F-Race is denoted Iterative F-Race (I/F-Race).

In this paper we use a simplified I/F-Race algorithm, where we start out with a small
subset of parameter configurations, and based on the Race-results of these we manually
construct new configurations, which are believed to be superior. One could think of this
approach as a sort of manual iterative F-Race. Table 2 shows the best found parameter
configuration. It should be mentioned that we set bSP = b0 and δs = δt = ∞,
since these are the most common values chosen by the users. The datasets used are
of the school year 2011/2012. wSA is the temperature control parameter and dSA is
the decay parameter for the SA based acceptance criteria. Nit defines the number of
iterations between resets. ρ and σ are reaction factor and the scale parameter for the
ALNS scoring scheme, respectively. ξstart and ξend are the destroy percentage in the
beginning and in the end of the running time. Finally, pshaw indicates how random the
element is chosen in the Shaw removal.

6 Performance

The goal of this section is to evaluate the performance of the developed solution
methods, the ALNS algorithm and solving the IP model. Also a comparison with
the existing heuristic of Lectio is made. All tests are performed using nUnit 2.6 in
C# 4.0 on a machine with an Intel i7-930@2.8 GHz CPU and 12 GB of RAM. No
parallelization has been implemented.

6.1 Performance comparison between ALNS and Gurobi

In the following, the performance of the state-of-the-art MIP solver Gurobi 5.01 (cur-
rently top-ranked in the MIP benchmark of Mittelman 2012) and the implemented
ALNS algorithm are compared. For both the PCTP and the SCTP, 100 datasets from
the school-year 2011/2012 are selected from the database of Lectio.
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In this experimental setup, the ALNS algorithm is run for 2 min. This low running
time is due to the following: (1) The schools does generally not expect an algorithm
to run longer, as they are usually not aware that it is a hard problem to solve. Some
even believe the problem is trivial. (2) The ALNS “tailors-off” after a while, i.e only
minor improvements are seen on the best found solution after the 2-min mark.

The Gurobi solver is run for 1 h, because we do not only want to evaluate the
performance in terms of best found IP solution, we also want a good upper bound for
the instances.

In the performance tests it is not allowed to interrupt other activities for the PCTP,
i.e. δt = δs = ∞. For the SCTP interrupting activities is allowed. This is due to the
fact that PCTP is normally arranged in the evening while SCTP is during the normal
work-hours.

From Table 3 it is seen that ALNS in average finds solutions 4 % from optimum.
Even though ALNS has far lower running time than Gurobi, it finds better solutions
in almost all cases.

Table 4 shows the performance for the SCTP.
From Table 4 it is seen that ALNS in average finds solutions 4.1 % from optimum

for the SCTP. This is lower than the average gap for Gurobi, which is 7.7 %.
From Table 3 it is seen that ALNS outperforms Gurobi for the PCTP. For the SCTP,

the results are more blurred, but the ALNS still performs best in 70 out of 100 cases.
What can also be seen from Tables 3 and 4 is that the standard deviation for the ALNS
is low in all cases, and the maximum gap obtained across all datasets is considerably
lower than the maximum gap which Gurobi obtains (even given the higher running
time of Gurobi). This is important as the customers of Lectio expects a consistent and
stable solution procedure.

6.2 Performance comparison of ALNS and current heuristic of Lectio

The current algorithm in Lectio is an undocumented heuristic, which initially attempts
to fulfill every meeting request by assigning them to random time slots, and then
attempts to find improving solutions with a hill-climber embedded in a SA framework.
This heuristic does not support the SCTP. In this section, we compare the existing
heuristic of Lectio with the implemented ALNS algorithm.

The comparison of algorithms for the PCTP is done by adapting the objective of
the ALNS so it matches the one of the implemented SA algorithm, which yields the
following changes:

– Since the SA algorithm attempts to fulfill all meeting requests, we set αs
g to a huge

value for all meeting requests, effectively making the ALNS behave the same way.
– We set β t = γ s = 2.
– The SA algorithm does not allow interrupting of activities, i.e. δt = δs = ∞.
– The time slot set-point setting of the SA solver is broken, so we set κ = 0 and

likewise for the SA solver.
– The violation of sequence length for teachers is penalized in quadratic way. This

means that term (21) is now written as −∑
t,b,d

(
yt,b,d

)ω, and ω = 2.
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Table 3 Gurobi 5.01 and ALNS for the PCTP on 100 datasets

Gurobi 5.01 ALNS

|B| ∑
R

∑
R

|S|
∑

R
|T | x UB Gap (%) x̄ σ Gap (%)

Alleroed 12 51 3.0 2.4 485.0 485.0 0.0 484.8 0.1 0.0

Alssund 18 84 2.5 4.0 850.6 850.6 0.0 849.4 0.6 0.1

Aurehoej1 18 537 4.0 9.9 3,270.3 3,774.3 15.4 3,655.9 6.9 3.2

Aurehoej2 18 409 3.8 6.6 3,033.1 3,300.5 8.8 3,219.5 3.9 2.5

Broenderslev 24 241 4.0 4.8 1,656.2 1,965.1 18.7 1,905.6 3.0 3.1

CPHWEST 39 133 3.7 5.8 990.5 1,124.7 13.5 1,044.5 3.0 7.7

DetKristne 32 247 4.1 11.2 1,553.3 1,978.5 27.4 1,830.9 4.9 8.1

Dronninglund1 30 108 4.9 7.7 726.0 801.5 10.4 782.0 4.1 2.5

Dronninglund2 30 94 4.1 8.6 636.6 672.7 5.7 664.5 0.6 1.2

Egedal 27 408 3.4 6.3 3,143.5 3,625.0 15.3 3,558.2 3.7 1.9

Egaa 24 265 3.2 9.8 2,101.7 2,374.0 13.0 2,318.5 7.7 2.4

Esbjerg1 24 345 3.9 9.6 2,306.2 2,465.3 6.9 2,402.1 4.2 2.6

Esbjerg2 24 307 3.5 4.3 2,117.6 2,439.9 15.2 2,314.3 2.4 5.4

Esbjerg3 24 255 3.8 9.4 1,770.0 1,888.1 6.7 1,839.5 2.8 2.6

Esbjerg4 24 351 4.0 9.2 2,493.8 2,700.5 8.3 2,612.3 4.5 3.4

Frederikssund 24 49 3.3 4.5 404.2 406.8 0.7 403.8 0.4 0.8

Frederiksvaerk 8 74 2.4 3.2 699.0 699.0 0.0 697.9 0.6 0.2

Gefion 18 479 3.1 7.2 3,316.6 4,248.9 28.1 3,958.1 23.7 7.4

Gladsaxe 40 901 4.1 11.0 5,516.0 7,163.7 29.9 6,950.7 15.1 3.1

Greve 18 336 4.5 4.4 2,133.1 2,535.9 18.9 2,482.6 4.4 2.2

Haslev1 18 123 2.9 5.4 1,051.5 1,077.1 2.4 1,060.2 0.5 1.6

Haslev2 18 122 3.2 4.2 983.5 1,019.6 3.7 988.7 2.6 3.1

Herlufsholm1 24 143 4.3 14.3 853.1 918.9 7.7 894.5 1.2 2.7

Herlufsholm2 24 88 4.9 6.8 599.5 671.3 12.0 621.8 1.9 8.0

Herning1 27 118 3.8 3.6 0.0 0.0 0.0 0.0 0.0 0.0

Herning2 27 75 3.4 6.3 0.0 0.0 0.0 0.0 0.0 0.0

Herning3 27 140 3.7 4.5 2.0 2.0 0.0 2.0 0.0 0.0

Himmelev 34 453 3.7 8.4 3,118.1 3,736.1 19.8 3,471.7 8.8 7.6

Hjoerring 30 179 3.8 2.1 751.2 1,229.9 63.7 1,009.2 15.3 21.9

HorsensGym 18 123 3.2 3.4 1,131.5 1,133.8 0.2 1,129.4 1.1 0.4

HorsensStats 21 143 2.9 3.0 1,217.8 1,289.3 5.9 1,253.8 1.9 2.8

Ikast-Brande 30 52 3.5 5.8 419.4 463.7 10.6 449.7 0.4 3.1

Johannesskolen1 24 165 4.5 7.9 1,131.2 1,296.8 14.6 1,188.3 4.3 9.1

Johannesskolen2 24 97 3.7 7.5 701.4 786.3 12.1 743.9 5.0 5.7

Johannesskolen3 28 135 3.6 7.5 519.2 581.4 12.0 519.9 3.2 11.8

Kalundborg 27 299 3.0 4.8 2,281.0 2,587.0 13.4 2,458.3 5.3 5.2

Kolding 18 80 3.5 4.0 721.4 725.2 0.5 721.0 0.2 0.6

Langkær1 18 52 3.5 2.6 471.1 471.1 0.0 470.6 0.3 0.1

Langkær2 18 90 3.5 3.8 788.9 814.6 3.3 805.9 0.5 1.1
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Table 3 continued

Gurobi 5.01 ALNS

|B| ∑
R

∑
R

|S|
∑

R
|T | x UB Gap (%) x̄ σ Gap (%)

Middelfart 27 223 3.1 6.2 1,682.5 1,923.6 14.3 1,788.1 7.4 7.6

Morsoe1 27 105 3.9 10.5 768.8 834.2 8.5 804.2 3.2 3.7

Morsoe2 27 113 4.7 10.3 732.9 815.2 11.2 778.4 4.2 4.7

Munkensdam1 21 256 3.6 4.7 1,871.9 2,251.6 20.3 2,198.6 5.3 2.4

Munkensdam2 21 345 3.4 6.3 2,352.8 2,931.6 24.6 2,846.8 6.7 3.0

NielsSteensens1 36 117 5.9 7.8 715.8 781.9 9.2 757.2 3.9 3.3

NielsSteensens2 30 328 7.5 17.3 1,249.9 1,764.9 41.2 1,656.6 5.9 6.5

NielsSteensens3 30 365 7.9 20.3 1,125.7 1,895.7 68.4 1,800.3 7.4 5.3

NielsSteensens4 30 234 6.7 13.8 1,101.6 1,230.0 11.7 1,144.4 5.2 7.5

NielsSteensens5 30 263 6.3 17.5 1,461.7 1,634.2 11.8 1,557.1 5.7 5.0

Noerre 18 422 2.7 7.8 3,574.1 4,031.6 12.8 3,944.5 5.2 2.2

Nordfyns 23 192 2.6 6.6 1,761.9 1,863.5 5.8 1,795.5 6.2 3.8

Nordsjaellands1 34 1,187 6.4 25.3 6,001.7 7,018.5 16.9 6,597.3 27.9 6.4

Nordsjaellands2 34 1,038 6.6 23.1 2,298.7 2,626.1 14.3 2,453.2 14.7 7.1

Nordsjaellands3 34 457 6.3 13.9 2,225.4 2,858.3 28.4 2,634.7 7.8 8.5

Nordsjaellands4 34 163 4.9 9.6 1,100.9 1,210.0 9.9 1,172.4 2.9 3.2

Nordsjaellands5 40 712 5.6 19.8 2,543.1 4,796.2 88.6 4,460.5 16.6 7.5

Nordsjaellands6 34 780 6.1 19.0 2,500.4 4,899.0 95.9 4,612.2 14.2 6.2

Nordsjaellands7 34 880 6.1 19.1 2,763.3 3,047.9 10.3 2,894.5 6.3 5.3

Nordsjaellands8 34 23 1.6 3.3 242.1 242.1 0.0 241.9 0.3 0.1

Nordsjaellands9 34 949 6.2 22.1 3,202.9 5,519.0 72.3 5,037.1 31.8 9.6

Nordsjaellands10 34 31 1.9 4.4 272.2 272.9 0.2 269.1 3.3 1.4

Nyborg 24 119 3.2 5.7 55.4 55.4 0.0 55.4 0.0 0.0

Nykoebing 24 182 3.0 3.2 1,447.1 1,502.2 3.8 1483.1 1.2 1.3

NZahles1 25 324 4.3 9.5 2,116.2 2,456.3 16.1 2,365.7 5.5 3.8

NZahles2 24 301 4.1 8.9 2,035.3 2,280.1 12.0 2,217.8 6.5 2.8

Odder 18 95 4.0 7.3 740.0 773.5 4.5 762.7 1.5 1.4

Odsherreds 21 193 3.4 5.0 1,533.4 1,619.6 5.6 1,595.4 2.2 1.5

Risskov1 15 65 3.1 4.6 539.7 539.7 0.0 536.7 2.5 0.6

Risskov2 15 149 3.5 5.7 1,263.2 1,273.1 0.8 1,256.9 2.9 1.3

Risskov3 15 181 3.7 6.2 1,396.9 1,406.8 0.7 1,389.7 4.8 1.2

Roedkilde 18 266 3.6 9.2 2,161.1 2,352.9 8.9 2,325.2 5.2 1.2

Roedovre 51 779 3.6 10.3 1,513.8 2,032.4 34.3 1,661.7 20.1 22.3

Rosborg1 24 218 3.5 9.9 1,742.7 1,876.3 7.7 1,827.9 5.4 2.7

Rosborg2 28 268 3.7 11.7 1,960.9 2,297.2 17.2 2,223.3 11.4 3.3

Rosborg3 28 487 1.9 9.6 4,568.5 4,939.6 8.1 4,750.0 10.1 4.0

Rosborg4 26 235 3.6 8.4 1,713.8 2,033.2 18.6 1,960.4 11.1 3.7

Roskilde 48 263 3.7 6.4 1,716.4 2,251.7 31.2 2,112.8 6.4 6.6

Rybners 24 267 3.1 6.9 1,923.3 2,472.3 28.5 2,402.5 3.8 2.9
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Table 3 continued

Gurobi 5.01 ALNS

|B| ∑
R

∑
R

|S|
∑

R
|T | x UB Gap (%) x̄ σ Gap (%)

SanktAnnae 21 320 4.1 7.0 2,115.0 2,498.7 18.1 2,381.6 5.6 4.9

Skive 36 220 3.6 12.9 1,611.0 1,903.2 18.1 1,850.3 2.9 2.9

Slagelse 30 85 3.0 3.9 805.3 805.4 0.0 802.6 0.8 0.4

Solroed1 16 341 3.3 7.4 2,418.2 2,468.7 2.1 2,436.8 6.1 1.3

Solroed2 16 415 3.4 7.2 3,083.3 3,317.9 7.6 3,263.0 5.2 1.7

Soroe1 24 369 3.7 8.2 2,587.1 3,111.2 20.3 2,947.3 12.1 5.6

Soroe2 33 335 4.2 5.6 1,594.3 2,649.3 66.2 2,255.0 12.3 17.5

Stenhus 18 221 4.3 3.2 0.0 0.0 0.0 0.0 0.0 0.0

Stoevring 24 62 3.7 4.4 521.4 521.4 0.0 520.5 0.5 0.2

Struer1 30 237 3.3 4.4 1,596.8 1,801.2 12.8 1,656.9 2.1 8.7

Struer2 30 333 3.3 8.8 2,301.3 2,790.8 21.3 2,534.0 7.9 10.1

Svendborg1 18 96 2.1 2.9 991.4 991.4 0.0 991.1 0.2 0.0

Svendborg2 18 134 2.6 4.5 1,289.0 1,289.1 0.0 1,288.0 0.3 0.1

Taarnby 36 791 4.6 11.0 4,397.7 5,918.0 34.6 5,609.2 17.7 5.5

UCH 32 104 1.0 17.3 949.8 949.8 0.0 922.6 0.0 2.9

ViborgGym1 30 206 4.3 5.2 1,367.7 1,486.5 8.7 1,434.0 2.6 3.7

ViborgGym2 30 149 4.4 5.3 1,094.0 1,146.6 4.8 1,133.4 0.9 1.2

ViborgGym3 30 294 3.7 4.6 2,153.6 2,275.5 5.7 2,211.7 1.8 2.9

ViborgHandel 30 324 4.2 18.0 2,111.8 2,615.9 23.9 2,526.7 9.7 3.5

ViborgKatedral 40 337 4.8 11.2 1,935.5 2,516.5 30.0 2,313.4 8.6 8.8

Vordingborg1 16 315 3.8 6.3 2,222.0 2,358.8 6.2 2,304.3 2.8 2.4

Vordingborg2 16 239 3.3 5.6 1,867.5 1,950.0 4.4 1,924.6 2.0 1.3

Average 26 279 3.9 8.3 14.8 4.0

Max 51 1187 7.9 25.3 95.9 22.3

For each dataset is listed the number of time slots “|B|”, the total number of meeting requests “
∑

R”, the
average number of requests pr. student, and the average number of requests pr. teacher. For Gurobi is shown
the final objective value “x”, the best bound found “UB”, and the reported gap between these two. For
ALNS, column “x̄” is the mean performance of the algorithm over 10 runs, and column “σ” is the standard
deviation for these runs. Finally, column “Gap” is the gap of mean performance and the upper bound found
by Gurobi. The best found solution is marked with bold for each instance

We evaluate the algorithms on 100 randomly selected datasets for the school-year
2009/2010. The reason a new batch of datasets is selected for this test is that the
existing heuristic of Lectio does not support all features mentioned in this paper.
Due to customer requests, Lectio is continuously developed, and this also effects the
CTP. E.g. datasets from the school-year 2009/2010 does not support features such as
multiple days for a consultation.

Experience has shown that the SA algorithm needs long runtime to provide mean-
ingful solutions. We set runtime equal to 10 min, which is significantly higher than
the preferable runtime of the high schools, as described in Sect. 6.1. Furthermore, to
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Table 4 Gurobi and ALNS for the SCTP on 100 datasets

Gurobi 5.01 ALNS

|B| ∑
R

∑
R

|T | x UB Gap (%) x̄ σ Gap (%)

Aabenraa 60 226 4.3 2,461.2 2,495.7 1.4 2,387.5 3.3 4.5

Broendby1 21 69 3.8 677.3 707.3 4.4 683.2 2.8 3.5

Broendby2 14 69 4.3 770.2 779.5 1.2 768.6 1.0 1.4

Broendby3 24 62 3.4 609.0 632.8 3.9 614.8 1.3 2.9

Broenderslev1 69 115 3.5 1,335.4 1,340.9 0.4 1,302.4 2.1 3.0

Broenderslev2 102 115 3.5 1,253.4 1,272.5 1.5 1,236.0 1.6 3.0

Christianshavns 43 210 4.8 2,329.7 2,423.7 4.0 2,223.7 4.4 9.0

Dronninglund1 100 134 4.2 1,442.7 1,481.3 2.7 1,453.5 2.1 1.9

Dronninglund2 60 134 4.3 1,553.3 1,561.9 0.6 1,537.5 2.8 1.6

Egaa 29 214 4.8 2,257.5 2,457.1 8.8 2,376.2 4.0 3.4

Falkoner1 30 64 3.4 671.6 679.0 1.1 668.0 2.6 1.6

Falkoner2 37 206 4.2 2,188.3 2,345.6 7.2 2,266.1 5.0 3.5

Falkoner3 30 64 3.4 664.9 672.3 1.1 664.9 0.0 1.1

Grenaa1 28 122 3.8 1,280.7 1,380.3 7.8 1,325.4 3.1 4.2

Grenaa2 24 122 3.8 1,249.2 1,330.7 6.5 1,290.3 3.8 3.1

Greve1 28 157 3.3 1,575.1 1,762.2 11.9 1,693.3 3.2 4.1

Greve2 62 259 4.1 2,805.4 3,035.8 8.2 2,913.5 7.4 4.2

Greve3 20 51 3.2 566.4 569.9 0.6 566.3 0.0 0.6

Gribskov1 74 182 4.1 1,867.8 1,914.6 2.5 1,787.6 3.2 7.1

Herlev1 24 71 2.8 729.9 751.5 3.0 730.2 0.9 2.9

Herlev2 29 78 2.8 682.1 791.7 16.1 750.2 1.2 5.5

Hoeng1 21 66 3.5 607.9 686.5 12.9 621.5 0.4 10.5

Hoeng2 23 98 3.9 1,029.8 1,071.8 4.1 1,038.5 2.2 3.2

Hoeng3 22 45 2.7 392.7 481.7 22.7 408.3 1.2 18.0

Hoeng4 23 56 2.6 589.1 612.4 4.0 589.2 1.8 3.9

Koebenhavns1 16 143 3.9 1,239.8 1,278.3 3.1 1,242.0 6.1 2.9

Koebenhavns2 16 100 3.7 786.4 786.5 0.0 785.6 0.8 0.1

Koebenhavns3 16 100 3.7 725.8 725.9 0.0 725.8 0.0 0.0

Koebenhavns4 25 146 3.8 1,402.3 1,486.1 6.0 1,424.6 0.8 4.3

Koege1 30 255 8.5 1,348.2 2,475.2 83.6 2,333.2 10.3 6.1

Koege2 36 261 6.2 2,381.3 2,493.7 4.7 2,045.7 5.2 21.9

Koege3 74 258 8.6 2,775.1 2,903.2 4.6 2,622.9 5.0 10.7

Kolding1 24 219 5.0 2,283.5 2,430.9 6.5 2,348.7 4.8 3.5

Kolding2 45 174 3.8 1,934.9 2,005.3 3.6 1,908.8 4.1 5.1
Langkaer1 62 215 5.4 2,195.8 2,472.6 12.6 2,239.4 7.8 10.4
Langkaer2 60 216 5.4 2,351.0 2,481.0 5.5 2,240.1 9.3 10.8

Langkaer3 60 216 5.4 2,359.1 2,472.8 4.8 2,258.3 6.6 9.5

Langkaer4 30 57 3.8 546.4 596.1 9.1 566.2 3.6 5.3

Langkaer5 56 217 5.6 2,282.3 2,493.5 9.3 2,253.3 3.4 10.7
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Table 4 continued

Gurobi 5.01 ALNS

|B| ∑
R

∑
R

|T | x UB Gap (%) x̄ σ Gap (%)

Langkaer6 62 56 3.7 631.5 652.6 3.3 629.2 0.7 3.7

Mariagerfjord1 29 123 4.0 1,227.0 1,387.2 13.1 1,318.6 2.0 5.2

Mariagerfjord2 29 123 4.0 1,269.0 1,402.6 10.5 1,345.3 4.0 4.3

Marselisborg1 22 102 3.4 1,021.3 1,087.4 6.5 1,045.4 1.9 4.0

Marselisborg2 17 106 3.3 1,036.2 1,046.9 1.0 1,035.4 1.0 1.1

Marselisborg3 22 105 3.9 1,049.3 1,156.3 10.2 1,098.3 4.3 5.3

Marselisborg4 17 96 3.2 948.6 955.2 0.7 947.2 0.9 0.8

Munkensdam 43 191 5.6 2,179.9 2,203.8 1.1 2,067.9 4.6 6.6

Nordfyns1 22 173 5.1 1,871.9 1,974.3 5.5 1,926.6 1.6 2.5

Nordfyns2 21 173 5.2 1,846.9 1,975.6 7.0 1,929.9 2.6 2.4

Nordfyns3 22 173 5.1 1,831.5 1,973.7 7.8 1,908.1 2.1 3.4

Nordfyns4 21 173 4.1 1,438.0 1,538.2 7.0 1,478.3 3.7 4.1

Noerresundby 31 303 4.7 2,959.5 3,437.4 16.2 3,291.7 2.6 4.4

NZahles1 13 69 3.3 615.7 636.9 3.5 619.1 0.9 2.9

NZahles2 13 62 3.9 512.1 524.3 2.4 509.5 1.3 2.9

Odsherreds 49 119 3.8 1,365.1 1,372.6 0.6 1,289.4 3.4 6.5

Oeregaard1 20 219 5.6 2,257.3 2,296.6 1.7 2,258.1 5.6 1.7

Oeregaard2 20 213 5.0 1,728.9 1,778.5 2.9 1,743.9 3.2 2.0

Oeregaard3 20 219 5.6 2,327.5 2,372.3 1.9 2,340.2 3.3 1.4

Oeregaard4 20 219 5.6 2,338.4 2,373.5 1.5 2,339.9 2.6 1.4

Risskov 36 215 6.1 2,400.4 2,427.4 1.1 2,353.2 2.0 3.2

Roedkilde 18 230 4.4 2,452.3 2,534.1 3.3 2,495.7 3.1 1.5

Rosborg1 22 257 4.9 2,756.7 2,895.6 5.0 2,837.4 3.2 2.1

Rosborg2 22 257 4.8 2,651.0 2,860.6 7.9 2,805.4 3.3 2.0

SanktAnnae1 23 149 3.6 1,554.1 1,675.1 7.8 1,580.4 3.9 6.0

SanktAnnae2 24 165 3.8 1,682.9 1,850.2 9.9 1,753.4 4.0 5.5

SanktAnnae3 17 21 2.6 197.9 197.9 0.0 197.9 0.0 0.0

SanktAnnae4 31 162 4.2 1,359.0 1,719.9 26.6 1,598.9 3.6 7.6

Skanderborg1 57 232 3.9 2,440.0 2,640.1 8.2 2,547.4 3.4 3.6

Skanderborg2 60 229 4.9 2,369.5 2,414.4 1.9 2,320.4 3.4 4.1

Skive1 16 140 3.3 1,417.5 1,458.6 2.9 1,430.9 3.8 1.9

Skive2 31 103 2.6 865.5 1,062.6 22.8 995.5 2.5 6.8

Skive3 31 140 3.3 1,189.7 1,452.9 22.1 1,372.7 4.4 5.8

Skive4 16 21 2.1 227.8 227.8 0.0 227.6 0.1 0.1

Skive5 16 98 3.0 960.9 972.9 1.3 960.7 0.9 1.3

Skive6 16 110 3.1 1,106.9 1,144.7 3.4 1,119.3 2.0 2.3

Skive7 31 134 3.0 1,152.9 1,365.6 18.5 1,284.6 3.2 6.3

Skive8 16 107 3.0 1,006.8 1,015.8 0.9 1,007.1 0.9 0.9

Skive9 31 100 3.0 907.8 1,034.9 14.0 983.0 4.6 5.3
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Table 4 continued

Gurobi 5.01 ALNS

|B| ∑
R

∑
R

|T | x UB Gap (%) x̄ σ Gap (%)

Soenderborg1 22 234 3.7 2,105.1 2,590.6 23.1 2,475.3 4.9 4.7
Soenderborg2 22 236 3.4 2,095.1 2,703.9 29.1 2,577.9 4.2 4.9

Soenderborg3 21 236 3.4 2,452.5 2,688.1 9.6 2,597.3 4.0 3.5

Soenderborg4 22 235 3.4 1,927.6 2,681.3 39.1 2,554.2 3.7 5.0

Solroed1 18 242 4.6 1,935.5 2,181.4 12.7 2,130.3 6.8 2.4

Solroed2 20 22 1.8 228.6 228.6 0.0 228.6 0.0 0.0

Solroed3 17 22 1.8 223.3 223.3 0.0 223.3 0.0 0.0

Solroed4 54 243 4.6 2,309.9 2,562.4 10.9 2,354.2 5.2 8.8

Solroed5 20 243 4.5 1,555.0 2,185.8 40.6 2,054.9 8.0 6.4

Solroed6 17 215 4.2 1,703.0 1,835.0 7.8 1,775.5 6.8 3.4

Solroed7 17 194 4.0 1,599.6 1,748.0 9.3 1,679.2 2.6 4.1

Vejen1 10 41 2.4 424.2 424.2 0.0 424.2 0.0 0.0

Vejen2 19 126 3.8 1,171.2 1,225.0 4.6 1,198.5 3.0 2.2

Vejen3 19 125 4.2 1,172.1 1,234.9 5.4 1,204.6 2.4 2.5

Vejen4 19 125 4.2 1,130.2 1,205.3 6.6 1,172.5 2.4 2.8

Viborg1 19 105 3.8 1,004.3 1,100.3 9.6 1,034.2 0.6 6.4

Viborg2 49 187 4.4 2,081.7 2,153.0 3.4 2,060.0 4.8 4.5

Viby1 20 124 3.7 1,278.3 1,279.4 0.1 1,256.9 1.2 1.8

Viby2 13 93 5.2 957.5 957.5 0.0 957.5 0.0 0.0

Viby3 8 45 2.7 480.0 480.0 0.0 480.0 0.0 0.0

Viby4 16 93 5.2 1,057.7 1057.7 0.0 1,053.3 0.3 0.4

Viby5 21 123 3.7 1,378.6 1,378.8 0.0 1,356.1 1.1 1.7

Average 30 148 4.1 7.7 4.1

Max 102 303 8.6 83.6 21.9

Columns are defined in analogous way to Table 3. The average number of requests pr. student is not shown,
as it is 1.0 in all cases

reduce the influence of stochastic behavior, we perform 10 runs on each dataset with
each solver.

Table 5 shows the average performance, the standard deviation and the number
of unassigned requests of both algorithms. Recall that in this test both algorithms
attempt to fulfill every meeting request. However it cannot be guaranteed that the
algorithms can find a solution which satisfies this, nor that it even exists. Furthermore
we compare the algorithms in the domain of the SA algorithm, and in this domain it is
only attempted to minimize the different costs, i.e. no benefit is made from fulfilling
meeting requests. This means it would not be fair to compare solutions which does not
have the same amount of unassigned requests, since additional fulfilled requests will
potentially yield additional cost of e.g. number of breaks, interrupted activities, etc.
Therefore we enforce the following criterion to determine whether the comparison of
solutions for a dataset is valid: The difference in the number of unassigned requests
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Table 5 Comparison of performance of the SA algorithm and the ALNS algorithm
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Table 5 continued

Each algorithm is ran 10 times on each dataset. For each algorithm and each dataset is listed the mean
objective ”x̄”, standard deviation of objective “σ”, and the number of unassigned meeting requests “#UA”.
Notice that the objectives are given in the domain of the SA algorithm, which is of different magnitude than
the objective of this article. Those datasets where the number of unassigned requests differs between the
algorithms with more than ±1 are struck out, as this is not considered a fair comparison. Column “Diff” is
the difference between mean objectives
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must lie in the interval ±1. This means the comparison of solvers in Table 5 is only
approximate, however it can be considered as a very good approximation, since a
difference of one fulfilled meeting request will have minor influence of the objective.
Notice that the objectives are given in the domain of the SA algorithm, which is of
different magnitude than the objective of this article. This is due to the fact that the
undocumented heuristic aims at minimizing whereas the approach of this paper is to
maximize.

Given the average objective of the SA algorithm x̄SA and the average objective
of the ALNS algorithm x̄ALNS, and that the comparison of these two is valid, we
compute the difference x̄SA − x̄ALNS. For almost every instance where compari-
son is valid, the ALNS algorithm in average finds a better solution. Furthermore the
solutions from the ALNS algorithm has far lower deviation than the SA algorithm,
which are important, as the users of the algorithm will usually only run the algorithm
once.

By the computational tests of this section, it has been shown that the ALNS algo-
rithm is the best solution procedure, of those considered in this paper, for the CTP. It
outperforms both Gurobi and the existing heuristic of Lectio in terms of both solution
quality and reliability.

7 Final remarks and outlook

It has been shown how the CTP, an important real-life problem for the Danish high
schools, can be modeled using linear IP. ALNS has proven successful in establishing
solutions for two versions of the problem, the PCTP and the SCTP. Furthermore,
F-Race has shown to be an efficient method for tuning of the free parameters. The
developed ALNS algorithm has been implemented in Lectio and is hence available
for 95 % of the Danish high schools.

In case of the PCTP, it has been shown that the ALNS algorithm in average finds
solutions which are less than 4 % from optimum. This average is taken over 100 real-
life dataset, and therefore we have high confidence in this result. Furthermore it has
been shown that comparing with the existing algorithm in Lectio, which is the only
other known heuristic algorithm for the problem, the ALNS algorithm is far superior.
For 83 of the 86 datasets, ALNS finds better solutions, and in many cases the solution
quality of the ALNS is considerably better. For the remaining 14 datasets a comparison
was not considered fair.

The performance for the SCTP is also tested on 100 real-life dataset. For these
datasets, it is shown that the ALNS algorithm in average finds solutions less than 5 %
from optimum.

For both the PCTP and SCTP the average solution found by ALNS is better than
the solutions found by the state-of-the-art MIP solver Gurobi 5.01.

The main subject for further research is considered to be the use of Dantzig-Wolfe
decomposition and solution using Branch-and-Price. In this context, a column in the
master problem could represent a meeting-plan for a student or a teacher. This would
move many constraints to the subproblem, possibly giving a stronger IP formulation,
which could lead to a more efficient IP-based solution approach.
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Another possibility for future research is to combine the two solution methods
described, i.e. using the MIP solver as a repair heuristic within the ALNS. Similar
approaches are seen in Muller et al. (2011) and Prescott-Gagnon et al. (2009), with
competitive results.
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