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Abstract Given a graph G = (V ,E), the independent set problem is that of finding
a maximum-cardinality subset S of V such that no two vertices in S are adjacent.
We introduce two fast local search routines for this problem. The first can determine
in linear time whether a maximal solution can be improved by replacing a single
vertex with two others. The second routine can determine in O(m�) time (where �

is the highest degree in the graph) whether there are two solution vertices than can be
replaced by a set of three. We also present a more elaborate heuristic that successfully
applies local search to find near-optimum solutions to a wide variety of instances. We
test our algorithms on instances from the literature as well as on new ones proposed
in this paper.
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1 Introduction

The maximum independent set (MIS) problem takes a connected, undirected graph
G = (V ,E) as input, and tries to find the largest subset S of V such that no two
vertices in S have an edge between them. Besides having several direct applica-
tions (Bomze et al. 1999), MIS is closely related to two other well-known opti-
mization problems. To find the maximum clique (the largest complete subgraph) of a
graph G, it suffices to find the maximum independent set of the complement of G.
Similarly, to find the minimum vertex cover of G = (V ,E) (the smallest subset of
vertices that contains at least one endpoint of each edge in the graph), one can find
the maximum independent set S of V and return V \ S. Because these problems are
NP-hard (Karp 1972), for most instances one must resort to heuristics to obtain good
solutions within reasonable time.

Most successful heuristics (Battiti and Protasi 2001; Grosso et al. 2004, 2008;
Hansen et al. 2004; Katayama et al. 2005; Pullan and Hoos 2006; Richter et al. 2007)
maintain a single current solution that is steadily modified by very simple operations,
such as individual insertions, individual deletions, and swaps (replacing a vertex by
one of its neighbors). In particular, many algorithms use the notion of plateau search,
which consists in performing a randomized sequence of swaps. A swap does not
improve the solution value by itself, but with luck it may cause a non-solution ver-
tex to become free, thus allowing a simple insertion to be performed. Grosso et al.
(2008) have recently obtained exceptional results in practice by performing plateau
search almost exclusively. Their method (as well as several others) occasionally ap-
plies a more elaborate operation for diversification purposes, but spends most of its
time performing basic operations (insertions, deletions, and swaps), often chosen at
random.

This paper expands the set of tools that can be used effectively within metaheuris-
tics. We present a fast (in theory and practice) implementation of a natural local
search algorithm. It is based on (1, 2)-swaps, in which a single vertex is removed
from the solution and replaced by two others. We show that, given any maximal solu-
tion, one can find such a move (or prove that none exists) in linear time. In practice,
an incremental version runs in sublinear time. The local search is more powerful than
simple swaps, but still cheap enough for effective use within more elaborate heuris-
tics. We also discuss a generalization of this method to deal with (2, 3)-swaps, which
consist of two removals followed by three insertions. We can find such a move (or
prove that none exists) in O(m�) time, where � is the highest degree in the graph.

Another contribution is a more elaborate heuristic that illustrates the effective-
ness of our local search. Although the algorithm is particularly well-suited for large,
sparse instances, it is competitive with previous algorithms on a wide range of in-
stances from the literature. As an added contribution, we augment the standard set of
instances from the literature with new (and fundamentally different) instances, never
previously studied in the context of the MIS problem.

This paper is organized as follows. Section 2 establishes the notation and terminol-
ogy we use. Our local search algorithms are described in Sect. 3. Section 4 illustrates
how they can be applied within a more elaborate heuristic. We report our experimen-
tal results in Sect. 5. Finally, concluding remarks are presented in Sect. 6.
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2 Basics

The input to the MIS problem is a connected graph G = (V ,E), with |V | = n and
|E| = m. We assume that vertices are labeled from 1 to n. We use the adjacency list
representation: each vertex keeps a list of all adjacent vertices.

A solution S is simply a subset of V in which no two vertices are adjacent. The
tightness of a vertex v �∈ S, denoted by τ(v), is the number of neighbors of v that
belong to S. We say that a vertex is k-tight if it has tightness k. The tightnesses of
all vertices can be computed in O(m) time: initialize all values to zero, then traverse
the adjacency list of each solution vertex v and increment τ(w) for every arc (v,w).
Vertices that are 0-tight are called free.

A (j, k)-swap consists of removing j vertices from a solution and inserting k ver-
tices into it. For simplicity, we refer to a (k, k)-swap as a k-swap (or simply a swap
when k = 1), and to a (k − 1, k)-swap as a k-improvement. In particular, the main al-
gorithms described in this paper (Sect. 3) are fast implementations of 2-improvements
(Sect. 3.1) and 3-improvements (Sect. 3.2). We use the term move to refer to a generic
(j, k)-swap.

We say a solution is k-maximal if no k-improvement is possible. In particular, a
1-maximal (or simply maximal) solution has no free vertices.

Solution representation Being just a subset of V , there are several ways of repre-
senting a solution S. Straightforward representations, such as lists or incidence vec-
tors, easily allow insertions and deletions to be performed in constant time. Unfortu-
nately, more complex operations (such as finding a free vertex or determining whether
a solution is maximal) can take as much as �(m) time. We therefore opt for a slightly
more complicated (but more powerful) representation within our algorithms.

We represent a solution S as a permutation of all vertices that partitions them into
three blocks: first the |S| vertices in the solution, then the free vertices, and finally
the non-solution vertices that are not free. The order among vertices within a block
is irrelevant. The sizes of the first two blocks are stored explicitly. In addition, the
data structure maintains, for each vertex, its tightness (which allows us to determine
when a vertex becomes free) and its position in the permutation. Keeping this position
allows a vertex to be moved between any two blocks in constant time. (For example,
to move a vertex v from the first block to the second, we first swap v with the last
vertex of the first block, then change the boundary between the blocks to make v the
first vertex of the second block.)

Our data structure must be updated whenever a vertex v is inserted into or removed
from S. To insert a vertex v, we must first move it to the first block of the permutation.
Then, for each neighbor w of v, we increase τ(w) by one and move w to the third
block (if it was previously free). To remove a vertex v, we first move it to the second
block (since it becomes free). Then, for each neighbor w of v, we decrease τ(w) by
one and, if its new tightness is zero, we move w from the third to the second block.

This means that inserting or deleting a vertex v takes time proportional to the de-
gree of v, which we denote by deg(v). While this is more expensive than in simpler
solution representations (such as lists or incidence vectors), this data structure allows
several powerful operations to be performed in constant time. The tightness of any
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vertex, for example, is explicitly maintained. To determine whether the solution is
maximal, it suffices to check if the second block is empty. To find out whether v ∈ S,
we only need to check if it is on the first block. Finally, we can pick a vertex uni-
formly at random within any of the three blocks, since each block is represented as
a contiguous array of known size. This operation will be especially useful for meta-
heuristics.

3 Local search

We now present our two main algorithmic contributions. We start with 2-improve-
ments (in Sect. 3.1), then discuss 3-improvements (in Sect. 3.2).

3.1 Finding 2-improvements

Our main local search algorithm is based on 2-improvements. These natural opera-
tions have been studied before (see e.g. Feo et al. 1994); our contribution is a faster al-
gorithm that implements them. Given a maximal solution S, we would like to replace
some vertex x ∈ S with two vertices, v and w (both originally outside the solution),
thus increasing the total number of vertices in the solution by one.

Before we get to the actual algorithm, we establish some important facts about any
valid 2-improvement that removes a vertex x from the solution. First, both v and w

(the vertices inserted) must be neighbors of x, otherwise the original solution would
not be maximal. Moreover, both v and w must be 1-tight, or else the new solution
would be valid. Finally, v and w must not be adjacent to each other.

Our algorithm processes each vertex x ∈ S in turn, using the data structures men-
tioned in the previous section. First, temporarily remove x from S, creating a solu-
tion S′. If S′ has less than two free vertices, stop: there is no 2-improvement involv-
ing x. Otherwise, for each neighbor v of x that is free in S′, insert v into S′ and check
if the new solution (S′′) contains a free vertex w. If it does, inserting w leads to a
2-improvement; if it does not, remove v from S′′ (thus restoring S′) and process the
next neighbor of x. If no improvement is found, reinsert x into the solution.

This algorithm clearly finds a 2-improvement if there is one. We can determine its
running time by bounding the total number of vertex scans performed. A vertex x ∈ S

is scanned only when x itself is the candidate for removal, when it is removed from
and (possibly) reinserted into the solution. A non-solution vertex v is only scanned it
if is 1-tight: it is removed from the solution (and possibly reinserted) when its unique
solution neighbor x is processed as a candidate for removal. This means every vertex
in the graph is scanned O(1) times; equivalently, every edge is visited O(1) times.
We have thus proven the following:

Theorem 1 Given a maximal solution S, one can find a 2-improvement (or prove
that none exists) in O(m) time.
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3.1.1 A direct implementation

Although our algorithm is relatively simple as described, some of its complexity is
in fact hidden by the solution representation. For example, we rely on the represen-
tation’s ability to determine in constant time whether there is a free vertex, and to
produce one such vertex if it exists. To answer such queries efficiently, the algorithm
must temporarily modify the solution by performing insertions and deletions, which
are somewhat expensive. In practice, we can save some constant factors in the run-
ning time with a more direct implementation. Although it may appear to be more
complex, it does essentially the same thing.

The implementation assumes the neighbors of any vertex v are sorted by increas-
ing order of label in v’s adjacency list. This order can be enforced in linear time (for
all vertices) in a preprocessing step with the application of radix sort to all edges.

As in the original algorithm, we process each solution vertex x in turn. To process
x, we first build a list L(x) consisting of all 1-tight neighbors of x, also sorted by
label. If L(x) has fewer than two elements, we are done with x: it is not involved
in any 2-improvement. Otherwise, we must find, among all candidates in L(x), a
pair {v,w} such that there is no edge between v and w. We do this by processing
each element v ∈ L(x) in turn. For a fixed candidate v, we check if there is a vertex
w ∈ L(x) (besides v) that does not belong to A(v), the adjacency list of v. Since both
L(x) and A(v) are sorted by vertex identifier, this can be done by traversing both lists
in tandem. All elements of L(x) should appear in the same order within A(v); if there
is a mismatch, the element of L(x) missing in A(v) is the vertex w we are looking
for.

We claim that this algorithm finds a valid 2-improvement (or determines that none
exists) in O(m) time. This is clearly a valid bound on the time spent scanning all
vertices (i.e., traversing their adjacency lists), since each vertex is scanned at most
once. Each solution vertex x is scanned to build L(x) (the list of 1-tight neighbors),
and each 1-tight non-solution vertex v is scanned when its only solution neighbor
is processed. (Non-solution vertices that are not 1-tight are not scanned at all.) We
still need to bound the time spent traversing the L(x) lists. Each list L(x) may be
traversed several times, but each occurs in tandem with the traversal of the adjacency
list A(v) of a distinct 1-tight neighbor v of x. Unless the traversal finds a valid swap
(which occurs only once), traversing L(x) costs no more than O(deg(v)), since each
element of L(x) (except v) also occurs in A(v). This bounds the total cost of such
traversals to O(m).

3.1.2 Incremental version

A typical local search procedure does not restrict itself to a single iteration. If a valid
2-improvement is found, the algorithm will try to find another in the improved so-
lution. This can of course be accomplished in linear time, but we can do better with
an incremental version of the local search, which uses information gathered in one
iteration to speed up later ones.

The algorithm maintains a set of candidates, which are solution vertices that might
be involved in a 2-improvement. So far, we have assumed that all solution vertices
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are valid candidates, and we test them one by one. After a move, we would test all
vertices again. Clearly, if we establish that a candidate x cannot be involved in a 2-
improvement, we should not reexamine it unless we have good reason to do so. More
precisely, when we “discard” a candidate vertex x, it is because it does not have
two independent 1-tight neighbors. Unless at least one other neighbor of x becomes
1-tight, there is no reason to look at x again.

With this in mind, we maintain a list of candidates that is updated whenever the
solution changes. Any move (including a 2-improvement) can be expressed in terms
of insertions and deletions of individual vertices. When we insert a vertex v into the
solution, its neighbors are the only vertices that can become 1-tight, so we simply
(and conservatively) add v to the list of candidates. When a vertex x is removed from
the solution, the update is slightly more complicated. We must traverse the adjacency
list of x and look for vertices that became 1-tight due to the removal of x. By def-
inition, each such vertex v will have a single neighbor y in the solution; y must be
inserted into the candidate list. We can find the solution vertex adjacent to each 1-tight
neighbor v in constant time, as long as we maintain with each non-solution vertex the
list of its solution neighbors.1 Therefore, we could still update the candidate list after
removing x in O(deg(x)) time. For simplicity, however, we do not maintain the aux-
iliary data structures in our implementation, and explicitly scan each 1-tight neighbor
of x.

Although we have framed our discussion in terms of 2-improvements, these up-
dates can of course be performed for any sequence of removals and/or insertions. As
we will see, this means we can easily embed the incremental local search algorithm
into more elaborate heuristics.

Once invoked, the local search itself is quite simple: it processes the available can-
didates in random order. If a candidate x leads to a 2-improvement, we perform the
move and update the list of candidates accordingly; otherwise, x is simply removed
from the list of candidates. The local search stops when the list of candidates becomes
empty, indicating that a local optimum has been reached.

3.1.3 Maximum clique

Although our experiments focus mainly on the MIS problem, it is worth mentioning
that one can also implement a linear-time 2-improvement algorithm for the maximum
clique problem. Note that simply running the algorithm above on the complement of
the input is not enough to ensure linear time, since the complement may be much
denser than the original graph.

Given a maximal clique C, we must determine if there is a vertex x ∈ C and
two vertices v,w �∈ C such that the removal of x and the insertion of v and w would
lead to a larger clique. Such a move only exists if the following holds: (1) v and w are
neighbors; (2) both v and w are adjacent to all vertices in C \{x}; and (3) neither v nor

1Standard doubly-linked lists will do, but updating them is nontrivial. In particular, when removing a
vertex x from the solution, we must be able to remove in constant time the entry representing x in the list
of each neighbor v. This can be accomplished by storing a pointer to that entry together with the arc (x, v)

in x’s adjacency list.



Local search for independent set 531

w are adjacent to x (or else C would not be maximal). For a vertex v with tightness
|C|−1, define its missing neighbor μ(v) as the only solution vertex to which v is not
adjacent. There is a 2-improvement involving v �∈ C if it has a neighbor w �∈ C such
that τ(w) = |C| − 1 and μ(w) = μ(v). Knowing this, the local search procedure
can be implemented in O(m) time as follows. First, determine the tightness of all
vertices, as well as the missing neighbors of those that are (|C| − 1)-tight. Then, for
each (|C| − 1)-tight vertex v, determine in O(deg(v)) time if it has a neighbor w

satisfying the conditions above.

3.2 Finding 3-improvements

We now discuss a potentially more powerful local search algorithm for the minimum
independent set problem. Given a 2-maximal solution S (i.e., one in which no 2-
improvement can be performed), we want to find a valid 3-improvement. In other
words, we look for vertices {x, y} ⊂ S and {u,v,w} ⊂ V \ S such that we can turn
S into a better (valid) solution S′ by removing x and y and inserting u, v, and w.
To devise an efficient algorithm for this problem, we first establish some useful facts
about the vertices involved in such a move.

Lemma 1 Edges (u, v), (u,w), and (v,w) do not belong to the graph.

Proof If they did, the new solution S′ would not be valid. �

Lemma 2 Each vertex in {u,v,w} is adjacent to x, y, or both, but to no other vertex
in S.

Proof Consider vertex u (one can reason about v and w similarly). If u is adjacent
to any other vertex z ∈ S besides x and y, the new solution S′ would not be valid.
If u were adjacent to neither x nor y, the original solution S would not be maximal,
which contradicts our initial assumption. Therefore, u must be adjacent to either x or
y (or both). �

Lemma 3 If any two vertices in {u,v,w} are 1-tight, they must have different neigh-
bors in {x, y}.

Proof By contradiction (and without loss of generality), suppose that both v and w

are 1-tight and adjacent to x. Then a 2-improvement replacing x by v and w would
be valid, which contradicts our assumption that S is 2-maximal. �

Lemma 4 At least one vertex in {u,v,w} must be adjacent to both x and y.

Proof Immediate from Lemmas 2 and 3. �

Together, these lemmas imply that any valid 3-improvement involves vertices x,
y, u, v, and w such that:

1. x, y ∈ S and u,v,w �∈ S;
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2. u is 2-tight and adjacent to both x and y;
3. v is adjacent to x (and maybe y) and to no other vertex in S;
4. w adjacent to y (and maybe x) and to no other vertex in S;
5. u, v, and w are not adjacent to one another.

To find a 3-improvement, our algorithm processes each 2-tight vertex u in turn, as
follows. Let x and y be u’s neighbors in the solution. Our goal is to find vertices v

and w satisfying conditions 3, 4, and 5 above. To accomplish this, first temporarily
remove x and y from the solution and insert u (which is now free). Let S′ be the
new solution. If they exist, v and w (as defined in the constraints above) must be free
in S′. Therefore, if S′ less than two free vertices, we are done with u; there is no pair
{v,w} leading to a valid 3-improvement. Otherwise, for each free neighbor v of x,
temporarily add it to S′, creating S′′. If S′′ is not maximal, adding any free vertex w

will create a valid solution (thus leading to a 3-improvement). Otherwise, remove v

and try another free neighbor of x.

Running time It is easy to see that the algorithm above will find a valid 3-
improvement if there is one. We must now bound its total running time. When pro-
cessing a 2-tight vertex u, only u, x, y, and the newly-free neighbors v of x will be
scanned (no more than twice each). Note that this includes scans performed during
insertions and deletions. Because these are all distinct vertices, the total time for all
these scans O(m). Since there are O(n) 2-tight vertices u, the total time to find a
valid 3-improvement (or prove that no such move exists) is O(mn).

We can obtain a tighter bound in terms of the maximum degree � in the graph.
Using the notation above, we can make the following observations. Every 2-tight ver-
tex is scanned O(1) times as u (it is first deleted, then reinserted). Furthermore, every
solution vertex (x or y) is scanned O(�) times; more precisely, it is scanned O(1)

times when each 2-tight neighbor u is processed, and there are at most � such neigh-
bors. Finally, every 1- or 2-tight neighbor v of x is scanned O(�) times: O(1) times
when each of its (at most two) neighbors in the solution is scanned. Together, these
observations imply that every vertex can be scanned at most O(�) times. Equiva-
lently, each edge is visited O(�) times, thus bounding the total time of the algorithm
by O(m�).

For many of the benchmark instances we tested, � is a small constant, and in
most it is o(n). For denser instances, however, this bound on the running time may
be overly pessimistic. In fact, we can use the exact same argument to get a bound of
O(mk), where k ≤ � is the maximum number of 2-tight neighbors of any solution
vertex x. We have thus proven the following:

Theorem 2 Given a 2-maximal solution S, one can find a valid 3-improvement (or
prove that none exists) in O(mk) time, where k ≤ � < n is the maximum number of
2-tight neighbors of any vertex x ∈ S.

Practical considerations Ideally, we would like to have an incremental version
of the algorithm in practice, following the approach described in Sect. 3.1.2 for 2-
improvements. There, we suggested keeping list of candidate vertices, which would
be updated every time the solution changes. Although we could keep a similar list for
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3-improvements (keeping all 2-tight vertices u that might be part of a valid move),
maintaining it would be substantially more expensive because changes in the neigh-
borhoods of any of the five relevant vertices (u, v, w, x, and y) would have to be
taken into account.

Instead, we decided to use a simpler strategy in our implementation of 3-
improvements. It works in passes. Each pass starts by running a local search based
on 2-improvements to ensure the solution is 2-maximal. It then processes all vertices
in turn, performing 3-improvements as they are found. If vertex u is 2-tight when it
is its turn to be processed, the algorithm looks for x, y, v, and w, as explained above.
Otherwise, u is just skipped. In practice, the solution becomes 3-maximal after a very
small number of passes (often 1 or 2) and almost all the improvement (relative to the
starting solution) is obtained in the first pass.

4 Metaheuristics

4.1 Iterated local search

To test our local searches, we use them within a heuristic based on the iterated local
search (ILS) metaheuristic (Lourenço et al. 2003). We start from a random solution
S, apply local search to it, then repeatedly execute the following steps:

1. S′ ← perturb(S);
2. S′ ← localsearch(S′);
3. S ← S′ if certain conditions are met.

Any reasonable stopping criterion can be used, and the algorithm returns the best
solution found. The remainder of this section details our implementation of each step
of this generic algorithm.

The perturbations in Step 1 are performed with the force(k) routine, which sequen-
tially inserts k vertices into the solution (the choice of which ones will be explained
shortly) and removes the neighboring vertices as necessary. (We call these forced in-
sertions.) It then adds free vertices at random until the solution is maximal. We set
k = 1 in most iterations, which means a single vertex will be inserted. With small
probability (1/(2 · |S|)), however, we pick a higher value: k is set to i + 1 with proba-
bility proportional to 1/2i , for i ≥ 1. We must then choose which k vertices to insert.
If k = 1, we pick a random non-solution vertex. If k is larger, we also start with a ran-
dom non-solution vertex, and pick the j -th vertex (for j > 1) among the non-solution
vertices within distance exactly two from the first j − 1 vertices. (If there is no such
vertex, we simply stop inserting.)

We use two techniques for diversification. The first is soft tabu. We keep track of
the last iteration in which each non-solution vertex was part of the solution. When-
ever the force routine has a choice of multiple vertices to insert, it looks at κ (an
input parameter) candidates uniformly at random (with replacement) and picks the
“oldest” one, i.e., the one which has been outside the solution for the longest time.
We set κ = 4 in our experiments. The second diversification technique is employed
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during local search. If v was the only vertex inserted by the force routine, the subse-
quent local search will only allow v to be removed from the solution after all other
possibilities have been tried.

Step 2 of ILS is a standard local search using the 2-improvement algorithm de-
scribed in Sect. 3.1. It stops when a local optimum is reached. We also tried incor-
porating the local search based on 3-improvements into ILS, but the fact that it is
not incremental made it too slow to improve the results. By restricting ourselves to
2-improvements, we allow more ILS iterations to be performed.

In Step 3, if the solution S′ obtained after the local search is at least as good as
S (i.e., if |S′| ≥ |S|), S′ becomes the new current solution. We have observed that
always going to S′ (even when |S′| < |S|) may cause the algorithm to stray from
the best known solution too fast. To avoid this, we use a technique akin to plateau
search. If ILS arrives at the current solution S from a solution that was better, it is not
allowed to go to a worse solution for at least |S| iterations. If the current solution does
not improve in this time, the algorithm is again allowed to go to a worse solution S′. It
does so with probability 1/(1 + δ · δ∗), where δ = |S| − |S′|, δ∗ = |S∗| − |S′|, and S∗
is the best solution found so far. Intuitively, the farther S′ is from S and S∗, the least
likely the algorithm is to set S ← S′. If the algorithm does not go to S′ (including
during plateau search), we undo the insertions and deletions that led to S′, then add
a small perturbation by performing a random 1-swap in S, if possible. We can find a
1-swap in constant time by keeping the list of all 1-tight vertices explicitly.

Finally, we consider the stopping criterion. As already mentioned, any reasonable
criterion works. In our experiments, we stop the algorithm when the average number
of scans per arc exceeds a predetermined limit (which is the same for every instance
within each family we tested). An arc scan is the most basic operation performed by
our algorithm: in fact, the total running time is proportional to the number of such
scans. By fixing the number of scans per arc (instead of the total number of scans)
in each family, we make the algorithm spend more time on larger instances, which
is a sensible approach in practice. To minimize the overhead of counting arc scans
individually, our code converts the bound on arc scans into a corresponding bound on
vertex scans (using the average vertex degree), and only keeps track of vertex scans
during execution.

4.2 The GLP algorithm

We now discuss the algorithm of Grosso et al. (2008), which we call GLP. Although
it was originally formulated for the maximum clique problem, our description refers
to the MIS problem, as does our implementation. We implemented “Algorithm 1 with
restart rule 2,” which seems to give the best results overall among the several variants
proposed in Grosso et al. (2008). What follows is a rough sketch of the algorithm.
See the original paper for details.

The algorithm keeps a current solution S (initially empty), and spends most of its
time performing plateau search (simple swaps). A simple tabu mechanism ensures
that vertices that leave the solution during plateau search do not return during the
same iteration, unless they become free and there are no alternative moves. A suc-
cessful iteration ends when a non-tabu vertex becomes free: we simply insert it into
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the solution and start a new iteration. An iteration is considered unsuccessful if this
does not happen after roughly |S| moves: in this case, the solution is perturbed with
the forced insertion of a single non-solution vertex (with at least four solution neigh-
bors, if possible), and a new iteration starts. GLP does not use local search.

Unlike Grosso et al.’s implementation of GLP, ours does not stop as soon as it
reaches the best solution reported in the literature. Instead, we use the same stopping
criterion as the ILS algorithm, based on the number of arc scans. Although different,
both ILS and GLP have scans as their main basic operation. Using the number of
arc scans as the stopping criterion ensures that both algorithms have similar running
times for all instances.

5 Experimental results

All algorithms were implemented by the authors in C++ and compiled with gcc
v. 4.3.2 with the full optimization (-O3) flag. All runs were made on one core of a
3.16 GHz Intel Core 2 Duo CPU with 4 GB of RAM running Windows 7 Enterprise
64-bit Edition. CPU times were measured with the getrusage function, which
has precision of 1/60 second. Times do not include reading the graph and building
the adjacency lists, since these are common to all algorithms. But they do include
the allocation, initialization, and destruction of the data structures specific to each
algorithm.

5.1 Instances

We test our algorithms on five families of instances. The DIMACS family con-
tains instances of the maximum clique problem from the 2nd DIMACS Imple-
mentation Challenge (Johnson and Trick 1996), which have been frequently tested
in the literature. It includes a wide variety of instances, with multiple topolo-
gies and densities. Since we deal with the MIS problem, we use the comple-
ments of the original graphs. For instances with no known optimum, we report
the best results available at the time of writing (as listed in Grosso et al. 2008;
Richter et al. 2007).

The SAT family contains transformed satisfiability instances originally from the
SAT’04 competition, available at Xu (2004) and tested in Grosso et al. (2008), Richter
et al. (2007). All optima are known.

The CODE family, made available by Sloane (2000), consists of challenging
graphs arising from coding theory. Each subfamily refers to a different error-
correcting code, with vertices representing code words and edges indicating conflicts
between them. The best known results for the hardest instances were found by the
specialized algorithms of Butenko et al. (2002, 2008).

The last two families, MESH and ROAD, are novel in the context of the inde-
pendent set problem. MESH is motivated by an application in Computer Graphics
recently described by Sander et al. (2008). To process a triangulation efficiently in
graphics hardware, their algorithm must find a small subset of triangles that covers
all the edges in the mesh. This is the same as finding a small set cover on the cor-
responding dual graph (adjacent faces in the original mesh become adjacent vertices
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in the dual). The MESH family contains the duals of well-known triangular meshes.
While converting the original primal meshes, we repeatedly eliminated vertices of
degree one and zero from the dual, since there is always a maximum independent
set that contains them. (Degree-one vertices arise when the original mesh is open,
i.e., when it has edges that are adjacent to a single triangle instead of the usual two.)
Almost all vertices in the resulting MIS instances (which are available upon request)
have degree three.

The ROAD family contains planar graphs representing parts of the road network
of the United States, originally made available for the 9th DIMACS Implementation
Challenge, on shortest paths (Demetrescu et al. 2006). Vertices represent intersec-
tions, and edges correspond to the road segments connecting them. As in the previous
family, these graphs have numerous vertices of degree one. We chose not to eliminate
them explicitly, since these instances are already available in full form.

For conciseness, we only report results on a few representatives of each family,
leaving out easy instances and those that behave similarly to others.

5.2 Local search

We start our evaluation with an analysis of the local search algorithms by themselves,
in terms of both solution quality and running time.

We first ran the local searches on solutions found by a linear-time algorithm that
inserts free vertices uniformly at random into an initially empty solution until it be-
comes maximal. Table 1 reports the results obtained after 999 runs of this random
algorithm (which we call R), with different random seeds. The first four columns
characterize the instance: its name, number of vertices (n), average vertex degree
(DEG), and best known solution (BEST). (Note that BEST is taken from the litera-
ture for CODE, DIMACS, and SAT; for ROAD and MESH, we show the best results
found by the metaheuristics tested in this paper.) The next column shows the aver-
age solution obtained by the constructive algorithm (L1), followed by the average
local maxima obtained by the 2-improvement (L2) and 3-improvement (L3) local
searches. Finally, the last three columns show the average running time (in millisec-
onds) of these algorithms. Note that local search times include construction of the
initial solution.

Given the somewhat low precision of our timing routine (and how fast the algo-
rithms are in this experiment), we did not measure running times directly. Instead,
we ran each subsequence of 111 seeds repeatedly until the total running time was at
least 5 seconds, then took the average time per run. Before each timed run, we ran
the whole subsequence of 111 once to warm up the cache and minimize fluctuations.
(Single runs would be slightly slower, but would have little effect on the relative
performance of the algorithms.)

For a more complete understanding of the local searches, we also ran them on
solutions found by a natural greedy algorithm. It builds the solution one vertex at a
time, always picking for insertion the vertex with the minimum residual degree, i.e.,
with the fewest free neighbors. Its goal is to preserve as many free vertices as possible
after each insertion.

This algorithm can be easily implemented in O(m) time if we keep free vertices
in buckets according to the their residual degrees, which are maintained explicitly.
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Table 1 Performance of the local search algorithms when starting from a random solution (R). For each
instance, the table shows its name, number of vertices (n), average vertex degree (DEG), and the best known
solution (BEST). Average solutions are then shown for the constructive algorithm (L1), 2-improvement
local search (L2), and 3-improvement local search (L3). The last three columns show the average running
times of these methods in milliseconds (local search times include construction). Each block of instances
corresponds to one family (DIMACS, SAT, CODE, MESH, and ROAD, respectively)

INSTANCE AVG SOLUTION AVG TIME (ms)

NAME n DEG BEST L1 L2 L3 L1 L2 L3

C2000.9 2000 199.5 80 51.2 59.6 62.4 0.04 0.25 0.92

MANN_a81 3321 3.9 1100 1082.2 1082.2 1082.2 0.08 0.27 0.39

brock400_2 400 100.1 29 16.6 19.3 20.2 0.01 0.05 0.15

brock400_4 400 100.2 33 16.8 19.3 20.4 0.01 0.05 0.16

c-fat500-10 500 312.5 126 125.0 125.0 125.0 0.05 0.31 0.31

hamming10-2 1024 10.0 512 243.2 419.1 422.4 0.03 0.21 0.27

johnson32-2-4 496 60.0 16 16.0 16.0 16.0 0.01 0.04 2.28

keller6 3361 610.9 59 34.5 43.0 45.5 0.06 0.48 4.17

p_hat1500-1 1500 1119.1 12 6.9 8.1 8.9 0.02 0.16 0.93

p_hat1500-3 1500 369.3 94 42.8 77.7 84.6 0.04 0.35 1.09

san1000 1000 498.0 15 7.6 7.6 7.7 0.02 0.80 4.04

san400_0.7_1 400 119.7 40 19.6 20.5 20.5 0.01 0.09 0.45

san400_0.9_1 400 39.9 100 44.1 54.4 56.4 0.01 0.07 0.24

frb59-26-1 1534 165.0 59 39.2 45.9 48.3 0.03 0.18 1.13

frb100-40 4000 286.4 100 66.4 76.7 80.5 0.07 0.47 3.84

1et.2048 2048 22.0 316 232.4 268.4 280.9 0.05 0.24 2.17

1zc.4096 4096 45.0 379 253.8 293.2 307.4 0.08 0.45 2.93

2dc.2048 2048 492.6 24 15.6 18.7 19.9 0.03 0.23 6.46

dragon 150000 3.0 66442 56335.4 61479.2 63082.6 5.75 21.22 80.56

dragonsub 600000 3.0 282294 226999.4 256510.3 264696.9 59.97 213.42 507.79

buddha 1087716 3.0 480683 408208.3 445097.8 456406.2 151.63 482.37 1078.56

bay 321270 2.5 166363 144693.6 158677.7 162269.6 17.83 83.67 216.81

fla 1070376 2.5 549548 476260.7 523241.4 535056.1 157.88 508.17 1021.52

When a new vertex is inserted into the solution, we scan its previously free neighbors
to update the residual degrees of their own neighbors, which are then moved between
buckets as necessary. Buckets are implemented as doubly-linked lists. We add a small
degree of randomization to the algorithm by randomly permuting all vertices before
adding them to their original buckets. Table 2 reports the results obtained by this
implementation (which we refer to as G) by itself and when followed by local search.
The columns are the same as in Table 1.

Finally, we consider a variant of the greedy algorithm that picks a vertex uniformly
at random among all candidates with minimum residual degree. An efficient imple-
mentation of this method cannot use buckets as G does, since one cannot sample
uniformly at random from linked lists in constant time. Instead, we use a technique
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Table 2 Performance of the local search algorithms starting from greedy (G) solutions. L1 refers to the
constructive algorithm, L2 to the 2-improvement local search, and L3 to the 3-improvement local search

INSTANCE AVG SOLUTION AVG TIME (ms)

NAME n DEG BEST L1 L2 L3 L1 L2 L3

C2000.9 2000 199.5 80 66.0 68.0 68.0 3.83 4.03 4.30

MANN_a81 3321 3.9 1100 1095.9 1095.9 1096.0 0.23 0.45 1.27

brock400_2 400 100.1 29 22.0 23.0 23.0 0.41 0.45 0.49

brock400_4 400 100.2 33 22.0 22.0 22.0 0.42 0.45 0.51

c-fat500-10 500 312.5 126 126.0 126.0 126.0 0.96 1.22 1.22

hamming10-2 1024 10.0 512 512.0 512.0 512.0 0.13 0.23 0.23

johnson32-2-4 496 60.0 16 16.0 16.0 16.0 0.25 0.28 2.60

keller6 3361 610.9 59 48.2 48.9 50.1 18.23 18.60 20.55

p_hat1500-1 1500 1119.1 12 10.0 10.0 10.0 16.63 16.78 17.20

p_hat1500-3 1500 369.3 94 86.0 91.0 92.0 6.29 6.49 6.96

san1000 1000 498.0 15 10.0 10.0 10.0 3.98 4.05 6.53

san400_0.7_1 400 119.7 40 21.0 21.0 21.0 0.43 0.48 1.22

san400_0.9_1 400 39.9 100 92.0 100.0 100.0 0.17 0.23 0.23

frb59-26-1 1534 165.0 59 48.0 48.0 48.0 2.63 2.75 3.43

frb100-40 4000 286.4 100 82.0 82.0 84.6 12.71 13.06 15.38

1et.2048 2048 22.0 316 292.4 295.1 299.2 0.66 0.81 1.98

1zc.4096 4096 45.0 379 328.5 329.5 331.0 2.24 2.56 3.42

2dc.2048 2048 492.6 24 21.0 22.0 22.0 12.21 12.38 14.83

dragon 150000 3.0 66442 64175.3 64175.3 64310.8 13.64 26.16 66.34

dragonsub 600000 3.0 282294 277255.9 277255.9 277352.2 92.87 206.55 296.35

buddha 1087716 3.0 480683 463923.1 463923.1 465028.9 225.47 476.08 911.21

bay 321270 2.5 166363 165562.0 165566.5 165638.6 49.61 93.85 178.79

fla 1070376 2.5 549548 545958.5 545969.9 546268.3 283.24 555.00 891.35

similar to the one used by our standard solution representation (Sect. 2). Instead of
keeping each bucket separately, we maintain a permutation of the entire list of ver-
tices in a single array. All vertices with a given residual degree belong to a contiguous
block in the array, in arbitrary order. Non-free vertices appear first, followed by the
free vertices sorted by residual degree. By keeping the initial positions of all blocks
explicitly, we can pick a random element of each block in constant time. It is easy
to see that this data structure can be updated efficiently after a vertex is inserted in
the solution. Although it has higher data structure overhead than G, this random-
ized greedy algorithm (RG) still runs in O(m) time. The results obtained with it are
presented in Table 3.

Comparing all three tables, we observe that the greedy algorithms (G and RG) find
solutions of similar quality, and are usually much better than random (R). Random is
consistently faster, however, especially for very dense instances, such as p_hat1500-1.
While the greedy algorithms must visit every edge in the graph, the random algorithm
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Table 3 Performance of the local search algorithms starting from randomized greedy solutions (RG). L1
refers to the constructive algorithm, L2 to the 2-improvement local search, and L3 to the 3-improvement
local search

INSTANCE AVG SOLUTION AVG TIME (ms)

NAME n DEG BEST L1 L2 L3 L1 L2 L3

C2000.9 2000 199.5 80 66.6 67.5 68.5 10.58 10.75 11.12

MANN_a81 3321 3.9 1100 1095.4 1095.5 1095.6 0.43 0.64 1.52

brock400_2 400 100.1 29 22.0 22.4 22.7 0.93 0.97 1.02

brock400_4 400 100.2 33 21.6 22.0 22.2 0.93 0.97 1.03

c-fat500-10 500 312.5 126 126.0 126.0 126.0 3.28 3.54 3.54

hamming10-2 1024 10.0 512 512.0 512.0 512.0 0.31 0.40 0.41

johnson32-2-4 496 60.0 16 16.0 16.0 16.0 0.69 0.72 2.97

keller6 3361 610.9 59 48.2 49.3 50.0 45.27 45.61 47.15

p_hat1500-1 1500 1119.1 12 9.8 10.5 10.6 38.71 38.85 39.20

p_hat1500-3 1500 369.3 94 85.9 88.5 89.9 14.05 14.27 14.69

san1000 1000 498.0 15 9.5 9.5 9.6 11.21 11.35 19.19

san400_0.7_1 400 119.7 40 21.3 21.3 21.4 1.04 1.09 1.80

san400_0.9_1 400 39.9 100 80.6 100.0 100.0 0.39 0.45 0.45

frb59-26-1 1534 165.0 59 47.5 48.3 49.6 8.10 8.21 9.13

frb100-40 4000 286.4 100 80.7 82.1 83.9 28.04 28.40 31.03

1et.2048 2048 22.0 316 292.7 295.7 299.5 1.28 1.43 2.64

1zc.4096 4096 45.0 379 327.1 328.6 330.4 4.87 5.19 6.11

2dc.2048 2048 492.6 24 21.0 21.2 21.6 23.37 23.50 27.62

dragon 150000 3.0 66442 64022.3 64243.7 64489.9 22.74 35.36 75.71

dragonsub 600000 3.0 282294 275614.6 276453.6 277633.6 99.60 214.87 333.25

buddha 1087716 3.0 480683 463295.8 464868.0 466632.2 221.29 477.98 854.63

bay 321270 2.5 166363 165463.4 165610.7 165753.3 75.36 120.49 200.96

fla 1070376 2.5 549548 545502.1 546146.3 546775.9 444.61 716.92 1021.07

only traverses the adjacency lists of the vertices that end up in the solution. Applying
the 2-improvement local search to R is often cheaper than running G or RG by them-
selves, but the local maxima reached from R are usually worse. Moreover, on very
sparse instances, 2-improvement is actually faster when applied to greedy solutions
than to random ones (even including construction times), since it starts much closer
to a local maximum.

The 2-improvement local search is remarkably fast when applied to the greedy
solutions, particularly when the solution is small compared to the total number of
vertices (as in san1000, for example). Even for large, sparse instances (such as fla
and buddha) the local search is about as fast as the constructive algorithm. (Recall
that the local search times reported in the tables actually include construction.)

On these large, sparse instances, 2-improvements are much more effective on RG
than on G. In fact, G tends to find better solutions than RG, but after local search the
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opposite is true. A possible explanation is that the stack-like nature of buckets in G
causes the solutions it generates to be more “packed” solutions than for RG.

The 3-exchange local search finds much better solutions than 2-exchange for all
three constructive algorithms (especially G).2 In relative terms, however, they are
similar: they find their best solutions when starting from RG, and the worst when
starting from R. The running times of the 3-improvement local search are often
not much higher than those of the greedy algorithm, even for some dense instances
(such as keller6). As anticipated in Sect. 3.2, this indicates that bounding the running
time by O(m�) is sometimes too pessimistic. Of course, bad cases do happen: on
johnson32-2-4, for example, the local search is 10 times slower than the standard
greedy algorithm—and it does not even improve the solution.

The higher variance of RG helps after local search. Over all 999 runs, for a fixed
local search, the best solution found when starting from RG is at least as good as when
starting from R or G. The main exception is dragonsub: the best solution found by
RG followed by 2-improvement was worse than the best solution found by G, which
is actually 2-maximal. Despite this exception, these results suggest that some variant
of RG could be well-suited to multistart-based metaheuristics, such as GRASP (Feo
et al. 1994).

5.3 Metaheuristics

Although local search can improve the results found by constructive heuristics, we
have seen that the local optima are usually somewhat far from the best known bounds.
For near-optimal solutions, we turn to metaheuristics. We compare our iterated local
search (ILS) with our implementation of Grosso et al.’s GLP algorithm. Our version
of GLP deals with the maximum independent set problem directly, and its time per
operation is comparable to the original implementation (Grosso et al. 2008).

Tables 4, 5, and 6 present results for DIMACS, CODE, and SAT, respectively. For
each instance, we first show its number of vertices, its density, and the best known
solution. We then report the minimum, average, and maximum solutions found over
15 runs of each algorithm (the numbers in parentheses indicate how many of the 15
runs found the maximum). Finally, we give the average running time in seconds. Both
algorithms were run until the average number of scans per arc reached 217. The best
average solution found in each case is highlighted in bold.

As anticipated by our choice of stopping criterion, the relative running times of
the algorithms do not fluctuate much: ILS is consistently about twice as fast on av-
erage. This gap is due to constant factors in the implementation of the algorithms.
In particular, GLP maintains separate data structures to be able to pick non-tabu free
vertices and non-tabu 1-tight vertices uniformly at random in constant time. Although
this gap could probably be reduced with additional tuning, it is small enough for our
purposes. The number of operations is similar and implementation-independent. For
the remainder of this section, our discussion ignores any difference in running times
between the algorithms.

2Due to an implementation issue, a preliminary version of this paper (Andrade et al. 2008) incorrectly
stated that the 3-improvement local search could seldom improve 2-maximal solutions. As the tables show,
this is not true: 3-improvements are found quite often.
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Table 4 DIMACS family. For each algorithm, we show the worst (MIN), average (AVG), and best (MAX)
solution found over 15 runs (the number of runs that found the maximum is in parenthesis). We also show
the average running times in seconds (TIME). Both algorithms were run until the average arc was scanned
217 times

GRAPH ILS GLP

NAME n DENS BEST MIN AVG MAX TIME MIN AVG MAX TIME

C1000.9 1000 0.099 68 68 68.0 68(15) 25 68 68.0 68(15) 50

C2000.5 2000 0.500 16 16 16.0 16(15) 436 16 16.0 16(15) 967

C2000.9 2000 0.100 80 76 76.9 77(14) 103 77 77.5 79(2) 182

C4000.5 4000 0.500 18 17 17.1 18(1) 1897 18 18.0 18(15) 3708

DSJC1000.5 1000 0.500 15 15 15.0 15(15) 103 15 15.0 15(15) 258

MANN_a27 378 0.010 126 126 126.0 126(15) 1 126 126.0 126(15) 2

MANN_a45 1035 0.004 345 344 344.5 345(8) 3 343 343.8 344(12) 5

MANN_a81 3321 0.001 1100 1100 1100.0 1100(15) 10 1097 1097.6 1098(9) 17

brock200_1 200 0.255 21 21 21.0 21(15) 3 21 21.0 21(15) 6

brock200_2 200 0.504 12 12 12.0 12(15) 4 12 12.0 12(15) 13

brock200_3 200 0.395 15 15 15.0 15(15) 4 15 15.0 15(15) 10

brock200_4 200 0.342 17 17 17.0 17(15) 4 17 17.0 17(15) 9

brock400_1 400 0.252 27 25 25.0 25(15) 11 25 25.1 27(1) 22

brock400_2 400 0.251 29 25 25.0 25(15) 11 25 27.7 29(10) 20

brock400_3 400 0.252 31 25 27.0 31(5) 11 31 31.0 31(15) 19

brock400_4 400 0.251 33 25 30.3 33(10) 11 33 33.0 33(15) 16

brock800_1 800 0.351 23 21 21.0 21(15) 60 21 21.1 23(1) 112

brock800_2 800 0.349 24 21 21.0 21(15) 60 21 21.0 21(15) 111

brock800_3 800 0.351 25 22 22.0 22(15) 60 22 22.2 25(1) 111

brock800_4 800 0.350 26 21 21.3 26(1) 60 21 21.7 26(2) 112

c-fat500-10 500 0.626 126 126 126.0 126(15) 30 126 126.0 126(15) 65

hamming10-2 1024 0.010 512 512 512.0 512(15) 7 512 512.0 512(15) 15

hamming10-4 1024 0.171 40 40 40.0 40(15) 39 40 40.0 40(15) 98

johnson32-2-4 496 0.121 16 16 16.0 16(15) 4 16 16.0 16(15) 21

keller6 3361 0.182 59 59 59.0 59(15) 519 59 59.0 59(15) 862

p_hat1500-1 1500 0.747 12 12 12.0 12(15) 173 12 12.0 12(15) 808

p_hat1500-2 1500 0.494 65 65 65.0 65(15) 150 65 65.0 65(15) 252

p_hat1500-3 1500 0.246 94 94 94.0 94(15) 88 94 94.0 94(15) 136

san1000 1000 0.498 15 15 15.0 15(15) 84 15 15.0 15(15) 234

san400_0.7_1 400 0.300 40 40 40.0 40(15) 15 40 40.0 40(15) 21

san400_0.7_2 400 0.300 30 30 30.0 30(15) 15 30 30.0 30(15) 23

san400_0.7_3 400 0.300 22 22 22.0 22(15) 13 22 22.0 22(15) 25

san400_0.9_1 400 0.100 100 100 100.0 100(15) 7 100 100.0 100(15) 8

Regarding solution quality, we note that, together, the algorithms do rather well
on these families. For almost all instances, the best known bound was found at least
once (the main exceptions are C2000.9, brock800_2, and the largest SAT graphs).
Moreover, the average solutions found by ILS and GLP are usually very close to one
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Table 5 Results for the CODE family with 217 scans per arc (aggregated over 15 runs)

GRAPH ILS GLP

NAME n DENS BEST MIN AVG MAX TIME MIN AVG MAX TIME

1dc.1024 1024 0.046 94 93 93.1 94(2) 14 93 93.1 94(2) 31

1dc.2048 2048 0.028 172 170 171.1 172(8) 32 170 171.5 172(11) 74

1et.1024 1024 0.018 171 171 171.0 171(15) 8 170 170.9 171(13) 16

1et.2048 2048 0.011 316 316 316.0 316(15) 16 316 316.0 316(15) 40

1tc.1024 1024 0.015 196 196 196.0 196(15) 8 196 196.0 196(15) 18

1tc.2048 2048 0.009 352 352 352.0 352(15) 15 352 352.0 352(15) 37

1zc.1024 1024 0.032 112 111 111.1 112(2) 10 112 112.0 112(15) 28

1zc.2048 2048 0.019 198 196 197.3 198(6) 22 197 197.8 198(12) 65

1zc.4096 4096 0.011 379 358 367.7 379(1) 51 367 374.4 379(4) 160

2dc.1024 1024 0.323 16 16 16.0 16(15) 50 16 16.0 16(15) 198

2dc.2048 2048 0.241 24 23 23.8 24(12) 165 24 24.0 24(15) 527

Table 6 Results for the SAT family with 217 scans per arc (aggregated over 15 runs)

GRAPH ILS GLP

NAME n DENS BEST MIN AVG MAX TIME MIN AVG MAX TIME

frb30-15-1 450 0.176 30 30 30.0 30(15) 9 30 30.0 30(15) 22

frb35-17-1 595 0.158 35 34 34.9 35(14) 13 35 35.0 35(15) 32

frb40-19-1 760 0.143 40 40 40.0 40(15) 19 40 40.0 40(15) 43

frb45-21-1 945 0.133 45 44 44.7 45(11) 27 44 44.9 45(13) 62

frb50-23-1 1150 0.121 50 48 48.9 50(1) 36 48 48.6 49(9) 82

frb53-24-1 1272 0.117 53 51 51.5 53(1) 42 51 51.3 52(4) 93

frb56-25-1 1400 0.112 56 54 54.2 55(3) 49 54 54.1 55(2) 111

frb59-26-1 1534 0.108 59 57 57.3 58(4) 57 57 57.0 57(15) 126

frb100-40 4000 0.072 100 95 95.3 96(5) 249 94 94.1 95(1) 495

another. GLP was consistently better on the brock instances (dense random graphs
with a “hidden” large clique), C2000.9 and C4000.5 (also random, with larger cliques
naturally hidden by the high value of n). GLP’s advantage at finding these cliques is
probably due to its stronger tabu mechanism. In contrast, GLP does poorly on the
MANN instances (sparse graphs with large independent sets), while ILS finds the
optimal solution MANN_a81 in less than one second on average. On SAT instances,
ILS found the best known solutions for all instances in at least one run, but GLP was
more consistent on average, reaching these solutions more often. On SAT, ILS does
better on the hardest (larger) instances, but misses the best known solution more often
on smaller instances.

Although our algorithm does well on these families, GLP is somewhat more ro-
bust, especially on DIMACS and CODE. This is not the case for large, sparse graphs,
to which we now turn our attention. Table 7 presents results for the MESH family.
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Table 7 Results for the MESH family with 215 scans per arc (aggregated over 15 runs)

GRAPH ILS GLP

NAME n MIN AVG MAX TIME MIN AVG MAX TIME

dolphin 554 249 249 249(15) 1 249 249 249(15) 1

mannequin 1309 583 583 583(15) 1 583 583 583(15) 2

beethoven 4419 1998 2001 2004(1) 5 2001 2002 2004(5) 7

cow 5036 2335 2342 2346(3) 5 2334 2344 2346(10) 8

venus 5672 2670 2675 2680(1) 6 2682 2683 2684(7) 9

fandisk 8634 4058 4066 4074(1) 9 4066 4070 4074(1) 17

blob 16068 7230 7237 7243(1) 17 7238 7241 7245(1) 33

gargoyle 20000 8843 8846 8849(2) 23 8843 8846 8849(2) 44

face 22871 10203 10207 10211(1) 25 10205 10208 10212(1) 48

feline 41262 18804 18812 18822(1) 48 18812 18820 18827(1) 104

gameguy 42623 20615 20634 20655(1) 45 20644 20663 20693(1) 146

bunny 68790 32218 32238 32268(1) 79 32248 32265 32281(1) 208

dragon 150000 66412 66427 66442(1) 178 66366 66381 66399(1) 494

turtle 267534 122250 122322 122363(1) 509 122230 122317 122404(1) 1631

dragonsub 600000 281882 281965 282002(1) 1246 282172 282241 282294(1) 3479

ecat 684496 321886 321982 322079(1) 2177 321845 321930 322116(1) 7665

buddha 1087716 480595 480646 480683(1) 3239 479122 479231 479285(1) 11374

Because it includes much larger graphs than the previous series, we limit the average
number of arc scans to 215.

Note that GLP tends to find slightly better results for smaller instances; for some
larger instances, notably dragon and buddha, ILS is clearly better. The relative perfor-
mance of the algorithms appears to be correlated with the regularity of the meshes:
GLP is better for regular meshes, whereas ILS is superior for more irregular ones.
We verified this by visual inspection—see Fig. 1 for a couple of examples. Alter-
natively, we can use the standard deviation of the vertex degrees in the original
(primal) mesh is a rough proxy for irregularity. It is relatively smaller for bunny
(0.58) and dragonsub (0.63), on which GLP is the best algorithm, and bigger for
buddha (1.28) and dragon (1.26), on which ILS is superior.3 Note that dragonsub
is a subdivision of dragon: a new vertex is inserted in the middle of each edge,
and each triangle is divided in four. Both meshes represent the same model, but
because every new vertex has degree exactly six, dragonsub is much more regu-
lar.

Although optimal solutions for the MESH family are not known, Sander et al.
(2008) computed lower bounds on the cover solutions for seven of their origi-
nal meshes, which can be easily translated into upper bounds for our (MIS) in-
stances. The instances (and MIS upper bounds) are: buddha (495807), bunny (32850),

3The standard deviation is not always a good measure of regularity. Despite being highly regular, gameguy
has a triangulation pattern in which roughly half the vertices have degree 4 and half have degree 8, leading
to a standard deviation higher than 2.
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Fig. 1 Detailed view of the meshes from which bunny (left) and buddha (right) were derived. Notice that
bunny is significantly more regular. (Pictures provided by the authors of Sander et al. 2008.)

dragon (68480), fandisk (4168), feline (19325), gargoyle (9120), and turtle (125438).
For ILS, the lowest gaps observed were on bunny (the solutions were 1.9% lower
than the upper bounds), and the highest on buddha (more than 3.0%). The ex-
tremes of GLP were on the same instances: 1.8% on bunny and 3.3% on bud-
dha.

Finally, Table 8 presents the results for ROAD, with the average number of scans
per arc limited to 212. Here ILS has clear advantage. On every instance, the worst
result found by ILS was better than the best found by GLP.

We note that MESH and ROAD are fundamentally different from the previ-
ous families. These are large graphs with linear-sized maximum independent sets.
Both ILS and GLP start from relatively bad solutions, which are then steadily
improved, one vertex at a time. To illustrate this, Fig. 2 shows the average so-
lutions found for three representative instances from these families (buddha, tur-
tle, and fla) as the algorithms progress. GLP initially finds better solutions, but
is soon overtaken by ILS. In the case of turtle, GLP eventually catches up
again. The third curve in the plots (ILS+plateau) refers to a version of our al-
gorithm that also performs plateau search when the current solution improves
(recall that ILS only performs plateau search when the solution worsens). Al-
though faster at first, ILS+plateau is eventually surpassed by ILS in all three in-
stances.

For comparison, Fig. 2 also shows results for longer runs (220 scans per arc,
with 15 different seeds) on instances from the other three families: frb100-40 (SAT),
C2000.9 (DIMACS), and 1zc.4096 (CODE). As before, GLP starts much better. On
frb100-40, it is soon surpassed by ILS. On 1zc.4096, ILS slowly reduces the gap, but
does not quite close it. On C2000.9, GLP is consistently better, even as the number
of scans increases. Note that the performance of ILS+plateau is not much different
from ILS itself, unlike on MESH and ROAD instances.
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Table 8 Results for the ROAD family with 212 scans per arc (aggregated over 15 runs)

GRAPH ILS GLP

NAME n DEG MIN AVG MAX TIME MIN AVG MAX TIME

ny 264346 2.8 131416 131433 131447(1) 63 131148 131178 131204(1) 191

bay 321270 2.5 166345 166356 166363(2) 84 166218 166228 166258(1) 255

col 435666 2.4 225736 225748 225763(1) 128 225563 225590 225615(1) 385

fla 1070376 2.5 549517 549527 549548(1) 374 548604 548648 548686(1) 1223

Fig. 2 Average solutions found as the number of scans per vertex increases. Results for buddha (top left),
turtle (top right), fla (middle left), frb100-40 (middle right), C2000.9 (bottom left), and 1zc.4096 (bottom
right)
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6 Final remarks

We have proposed a fast implementation of a natural local search procedure for the
independent set problem. Within an iterated local search (a metaheuristic), it pro-
vided results competitive with the best methods previously proposed, often matching
the best known solutions (including optima) on the well-studied DIMACS, CODE, and
SAT families. On some large, sparse instances (road networks and irregular meshes),
its performance is consistently superior to that of GLP. For these large instances, how-
ever, we do not know exactly how far our method is from the optimal solution: there
may be room for improvement. It seems reasonable, for example, to deal with these
problems more locally. Instead of looking at the entire graph at once, we conjecture
that one could do better by focusing at individual regions at a time.
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