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Abstract The Far From Most Strings Problem (FFMSP) asks for a string that is far
from as many as possible of a given set of strings. All the input and the output strings
are of the same length, and two strings are far if their Hamming distance is greater
than or equal to a given threshold. FFMSP belongs to the class of sequence consen-
sus problems which have applications in molecular biology, amongst others. FFMSP
is NP-hard. It does not admit a constant-ratio approximation either, unless P = NP.
In the last few years, heuristic and metaheuristic algorithms have been proposed for
the problem, which use local search and require a heuristic, also called an evaluation
function, to evaluate candidate solutions during local search. The heuristic function
used, for this purpose, in these algorithms is the problem’s objective function. How-
ever, since many candidate solutions can be of the same objective value, the resulting
search landscape includes many points which correspond to local maxima. In this
paper, we devise a new heuristic function to evaluate candidate solutions. We then
incorporate the proposed heuristic function within a Greedy Randomized Adaptive
Search Procedure (GRASP), a metaheuristic originally proposed for the problem by
Festa. The resulting algorithm outperforms state-of-the-art with respect to solution
quality, in some cases by orders of magnitude, on both random and real data in our
experiments. The results indicate that the number of local optima is considerably
reduced using the proposed heuristic.
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1 Introduction

The Far From Most Strings Problem (FFMSP) is a combinatorial optimization prob-
lem that receives, as input, a set S of strings of the same length m over an alpha-
bet and a positive integer d ≤ m and asks for a string of length m over the alpha-
bet that is far from as many strings in S as possible (Lanctot et al. 1999, 2003;
Lanctot 2000; Meneses et al. 2005; Festa 2007). In other words, it is to maximize
the number of input strings, i.e. those in S, that are far from the output string.
Two strings are far (from each other) if their Hamming distance is equal to or
greater than the input integer d . FFMSP belongs to a more general class of prob-
lems called sequence consensus, which includes such problems as finding similar
regions in a given set of DNA or protein sequences and have applications in bioinfor-
matics, among others (Cohen and Karpovsky 1985; Macario and de Macario 1990;
Li et al. 1999; Lanctot 2000; Gramm et al. 2002; Crooke and Lebleu 1993). Other se-
quence consensus problems include Closest String Problem (CSP) (Li et al. 2002;
de Meneses et al. 2004; Chen 2007; Babaie and Mousavi 2010), Closest Sub-
string Problem (CSSP) (Sahinalp et al. 2004; Ma and Sun 2008; Wang et al. 2008;
Gramm 2008; Gomes et al. 2008), Farthest String Problem (FSP) (Cheng et al.
2004; Meneses et al. 2005), Farthest Substring Problem (FSSP) (Lanctot 2000;
Meneses et al. 2005), Close to Most Strings Problem (CMSP) (Lanctot et al. 2003;
Meneses et al. 2005), Distinguishing Substring Selection Problem (DSSS) (Gramm et
al. 2003), and Distinguishing String Selection Problem (DSSP) (Lanctot et al. 2003;
Meneses et al. 2005; Gramm et al. 2003), which are also known as string selection
and comparison problems.

FFMSP has been proved NP-hard (Lanctot et al. 1999, 2003), and no polynomial-
time algorithm is (currently) known to be able to optimally solve every instance of
FFMSP (Garey and Johnson 1979). It does not admit a constant-ratio approximation
algorithm either, unless P = NP (Lanctot et al. 1999, 2003).

In the recent years, heuristic and metaheuristic algorithms have been proposed for
the problem. Meneses et al. devised a heuristic algorithm consisting of a greedy con-
structive phase followed by an iterative improvement phase (Meneses et al. 2005).
Festa proposed a Greedy Randomized Adaptive Search Procedure (GRASP) and re-
ported improved results over the Meneses et al.’s algorithm (2007). The GRASP al-
gorithm was originally devised by Feo and Resende (1989, 1995). It comprises of
a number of iterations, each of which consists of a constructive phase followed by
a local search phase which are, respectively, similar to the constructive and iterated
improvement phases in the Meneses et al.’s algorithm. The construction phase con-
structs a candidate solution by specifying the values of the variables one at a time.
The variable-value selection is based on a heuristic function; but not always the best
option is selected. Instead, a restricted candidate list (RCL) of options is developed
from which a candidate is randomly selected. The local search phase receives, as in-
put, the candidate solution constructed by the construction phase and tries to improve
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Fig. 1 Parts of landscapes corresponding to an objective function f (.) (solid line) and a heuristic function
h(.) (dotted line) used to evaluate one-dimensional candidate solutions. The points X1, X2, X4, and X5
correspond to local maxima in the landscape for f (.). As a consequence, a hill-climbing algorithm can get
stuck at any of them if f (.) is used, whereas it will move on toward the global maximum if h(.) is used

it via, for example, an iterated improvement algorithm such as hill climbing. The
best candidate solution found over all the iterations is returned as the final output of
GRASP. For more details on GRASP and its variants, the interested reader is referred
to the annotated bibliography by Festa and Resende (2002, 2009).

Every local search algorithm to-date uses a heuristic function to evaluate and
compare candidate solutions. Such a heuristic function is also called an evaluation
function (Russel and Norvig 2003) and, especially in the context of Genetic Algo-
rithms, a fitness function (Fogel 2006). Both the Meneses et al.’s heuristic and the
Festa’s metaheuristic algorithms use in their local search phase the problem’s ob-
jective function f (.) for this purpose. For example, in the local search phase of the
Festa’s GRASP, which is a hill-climbing algorithm, a move from the current candi-
date solution X1 to one of its neighbors X2 is made only1 if f (X2) > f (X1). The use
of the problem’s objective function to evaluate candidate solutions is quite common
in local search and metaheuristic algorithms for many combinatorial optimization
problems. However, depending on the underlying problem, the resulting search land-
scape may include many points corresponding to local optima. Consequently, a hill
climbing algorithm, for example, is likely to stop earlier than expected at a local opti-
mum missing the opportunity to explore enough of the search space. Even other more
sophisticated algorithms such as Evolutionary Algorithms (Ashlock 2006) and Tabu
Search (Glover and Laguna 1997) which have provisions to escape local optima still
suffer from the existence of (too many) local optima.

We try to illustrate this issue using a rather simple landscape depicted in Fig. 1,
for a one-dimensional variable. This landscape does not of course apply to FFMSP
and is simply for the purpose of illustration. Assume that two candidate solutions are
neighbors if and only if they are adjacent on the X-axis. Both the objective function
f (.) and a heuristic function h(.) are shown in the figure, the former by solid and the
latter by dotted lines. Consider first the landscape corresponding to f (.). The points,
i.e. candidate solutions, X1, X2, X4, and X5 correspond to local maxima, some of
which corresponding to plateaux, in this landscape. The point X3 corresponds to the

1To accept a move also depends on whether the first-improvement or the best-improvement scheme, or a
hybrid of them, is adopted.
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global maximum, hence an optimal solution. Now consider the landscape which cor-
responds to the heuristic function h(.). The points X1 and X2 are no longer evaluated
the same; X2 is more likely than X1 to be near better solutions and is, therefore,
given a higher score than that of X1. Similarly, the score given to X4 is higher than
the score given to X5. Moreover, for all pairs of points 〈Xi,Xj 〉, if f (Xi) > f (Xj )

then h(Xi) > h(Xj ). As the result, the points X1, X2, X4, and X5 which were local
maximum points in the landscape for f (.) are no longer so in the landscape for h(.).
Consequently, a hill-climbing algorithm, for example, which could get stuck at any
of these points, when f (.) used, can now move on toward the global optimum due to
the use of h(.).

We believe that the landscape for FFMSP based on using the objective function
f (.) to evaluate candidate solutions contains many local maximum points, because
there are altogether |Σ |m points in the search space with only n different objective
values, where Σ is the alphabet and n and m are, respectively, the number and the
length of the input strings. Therefore, we believe, that the search landscape could
be improved by replacing the objective function used to evaluate candidate solutions
with a more appropriate heuristic function for this purpose. In this paper, we first
devise a novel heuristic function called estimated Gain-per-Cost ( ˜GpC) to evaluate
candidate solutions based on their likelihood to lead to better solutions with as few
changes as possible. Of course, we do not intend to measure this likelihood precisely
but to provide a very rough estimate of that, hence proposing a heuristic for this pur-
pose. We then propose a hybrid heuristic function hf, ˜GpC(.) which takes into account
both the objective function f (.) and the estimated Gain-per-Cost heuristic function
˜GpC(.) in such a way that, given two candidate solutions X1 and X2, X1 is evaluated

as to be better than X2 if and only if either f (X1) > f (X2), or f (X1) = f (X2) and
X1 has a higher estimated Gain-per-Cost value than X2. Experimental results indi-
cate that the number of local maximum points is reduced remarkably, usually by an
order of magnitude, due to using hf, ˜GpC , as opposed to f (.), to evaluate candidate
solutions.

In order to evaluate the proposed heuristic function hf, ˜GpC(.), as opposed to the
objective function f (.) used as the heuristic function to evaluate candidate solutions,
we compare two versions of GRASP, one using f (.) as the heuristic function, i.e. the
state-of-the-art (Festa 2007), and the other using hf, ˜GpC(.). Although the previous
works (Meneses et al. 2005; Festa 2007) restrict their experiments to random data,
we compare the algorithms on both random and real data. The results indicate that
the new GRASP, based on hf, ˜GpC , outperforms the state-of-the-art in all cases, with
respect to solution quality, in some by orders of magnitude.

The rest of the paper is organized as follows. The next section provides problem
definition and basic notations. In Sect. 3, the estimated Gain-per-Cost heuristic is
devised. How to determine the estimated Gain-per-Cost heuristic values is addressed
in Sect. 4. Section 5 proposes the hybrid heuristic evaluation function and presents the
pseudo-code for the algorithm. Experimental results are reported in Sect. 6; Sect. 7
concludes the paper.
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2 Problem definition and basic notations

Let s be a string of length m. We use sk , where k is an integer between 1 and m,
inclusive to denote the kth character of s. The Hamming distance between two strings
s1 and s2 of length m is denoted by dH (s1, s2) and defined as

∑m
k=1 δ(sk

1 , sk
2 ), where:

δ(sk
1 , sk

2 ) =
{

1 if sk
1 �= sk

2
0 otherwise

The Far From Most Strings Problem is formally defined as follows:

FFMSP:

Instance: a triple 〈Σ,S,d〉, where Σ , called alphabet, is a set of characters, S is a
set of strings s1, s2, . . . , sn, n > 1, of length m > 1 over the alphabet Σ , |Σ | > 1,
and d is an integer, called distance threshold, such that 1 ≤ d ≤ m.

Output: a string X of length m over the alphabet Σ .
Maximize: the number of strings sj ∈ S such that dH (X, sj ) ≥ d .

In the rest of the paper, we assume that the underlying instance of FFMSP is de-
noted by the triple 〈Σ,S,d〉. We further assume that S = {s1, s2, . . . , sn}; that is, the
input strings are denoted by the small letter s indexed from 1 to n, where n is the
number of the input strings. We use m to denote the length of the strings and (possi-
bly indexed) X to denote a candidate solution. The objective function for FFMSP is
denoted by f (.). That is, f (X) is the number of strings in S whose distance from X

is at least d , where X is a candidate solution. For simplicity, we use dj (X) to denote
dH (X, sj ), j = 1,2, . . . , n. We say that a string sj is far from a candidate solution X

if dj (X) ≥ d ; it is otherwise near X. The set of strings in S that are near X is denoted
as Near(X). We define the cost of a string sj as cj (X) = d − dj (X). We also define

fj (X) =
{

1 if dj (X) ≥ d

0 otherwise
(1)

Therefore,

f (X) =
n

∑

j=1

fj (X) (2)

Example 1 Let 〈Σ,S,3〉 be an instance of FFMSP, where Σ = {A,T,C,G}, S =
{s1, s2, s3}, s1 = "GACTC", s2 = "GATCA", s3 = "CTAGA". Let X = "GATTC" be a
candidate solution. Then, n = 3, m = 5, d = 3, d1(X) = 1, d2(X) = 2, d3(X) = 5,
c1(X) = 2, c2(X) = 1, and c3(X) = −2. Therefore, the input strings s1 and s2 are
near X, whereas s3 is far from X, which means f1(X) = f2(X) = 0 but f3(X) = 1,
hence Near(X) = {s1, s2}.

Each candidate solution Xi can be viewed of as a point in the m-dimensional
search space Σm. We use Neighbors(Xi), where Xi is a point, to denote the set of
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points defined as to be the neighbors of Xi . One convenient way of defining neighbor-
hood, for example, is to consider two points as neighbors if and only if their Hamming
distance is one, in which case:

Neighbors(Xi) = {Xj |Xj ∈ Σm,dH (Xi,Xj ) = 1}, Xi ∈ Σm

In order to disambiguate the heuristic function used to evaluate candidate solutions
with, for example, those used in greedy constructive algorithms which are capable
of evaluating incomplete variable assignments, in the rest of the paper, as in Russel
and Norvig (2003), we use the term evaluation function to refer to a function used to
evaluate candidate solutions. If the objective function f (.) is used for this purpose,
we will call it the objective evaluation function. Otherwise, i.e. when a heuristic func-
tion other than f (.) is used for this purpose, it will be called a heuristic evaluation
function.

A walk of length L, or for short an L-walk, L ∈ N, 1 ≤ L ≤ m, where N is the
set of natural numbers, from a point Xs in the search space is the replacement of Xs

with a point Xd such that dH (Xs,Xd) = L. We call L the length and the points Xs

and Xd , respectively, the source and the destination of the walk. We refer to the case
L = 0 as no-walk, where Xs = Xd . An L-walk is called random if its destination
is equally-likely to be any point Xj in the search space such that dH (Xs,Xj ) = L,
where Xs is the source of the walk.

Let Xs and Xd be, respectively, the source and the destination of an L-walk and
sj be an input string. We define Δj for this L-walk as dj (Xd) − dj (Xs). If the walk
is random, Δj will be a random variable, in which case we use PrL(Δj = k), k ∈ Z,
where Z is the set of proper numbers, to denote the probability of Δj = k. Similarly,
we use, for example, PrL(Δj ≤ k), k ∈ Z, to denote the probability of Δj ≤ k as
the result of a random L-walk. We reserve Pr(.)—with no subscript—and Ex(.) to
denote the conventional probability and expectation functions respectively.

3 The proposed estimated gain per cost heuristic

In this section, the proposed Estimated Gain per Cost ( ˜GpC) heuristic evaluation
function is introduced. Some definitions and theorems are first presented.

Definition 1 Let Xs be a candidate solution and sj be a string in Near(Xs). By a fix
for sj from Xs , we mean an L-walk whose source and destination are, respectively,
Xs and Xd such that dj (Xd) = d . We assume that the walk is designed independently
from the other input strings so it can be viewed as a random L-walk with respect to
them.

Informally-speaking, a fix for a string sj from the current candidate solution is to
alter exactly L characters of X, where L = d − dj (X), in such a way that sj becomes
far from the resulting candidate solution Xd in order to contribute 1 unit to the (new)
objective value f (Xd). However, because the walk is random with respect to the
other strings, f (Xd) is still a random variable, for n > 1.
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Definition 2 Let Xs be a candidate solution, and sj be a string in Near(Xs). The
potential gain, or for short the gain, of sj with respect to Xs is denoted by gj (Xs)

and defined as the expected value of f (Xd), where Xd is the destination of a fix for
sj from Xs .

The next theorem shows that the gain of a string sj can be calculated using the
probability distribution for Δj for the underlying L-walk.

Theorem 1 Let Xs be a candidate solution and sj a string in Near(Xs). Then:

gj (Xs) = 1 +
n

∑

k=1
k �=j

PrL(Δk ≥ ck(Xs))

where L = cj (Xs).

A lemma is first presented.

Lemma 1 Let Xs be a candidate solution and sk be an input string. The probability
of the string sk being far from the destination Xd of a random L-walk from Xs is
equal to PrL(Δk ≥ ck(Xs)).

Proof The probability of sk being far from Xd is:

Pr(fk(Xd) = 1) = Pr(dk(Xd) ≥ d)

= Pr(dk(Xd) − dk(Xs) ≥ d − dk(Xs))

= PrL(Δk ≥ d − dk(Xs))

= PrL(Δk ≥ ck(Xs)) (3)

�

Proof of Theorem 1

gj (Xs) = Ex(f (Xd)) (using Definition 2) (4)

= Ex

(

n
∑

k=1

fk(Xd)

)

(using (2)) (5)

= Ex

(

fj (Xd) +
n

∑

k=1
k �=j

fk(Xd)

)

= Ex

(

1 +
n

∑

k=1
k �=j

fk(Xd)

)

(since the walk is a fix for sj from Xs) (6)
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= 1 + Ex

(

n
∑

k=1
k �=j

fk(Xd)

)

= 1 +
n

∑

k=1
k �=j

Ex(fk(Xd))

= 1 +
n

∑

k=1
k �=j

Pr(fk(Xd) = 1) (since fk(Xd) is either 0 or 1) (7)

= 1 +
n

∑

k=1
k �=j

Prcj (Xs)(Δk ≥ ck(Xs)) (by Lemma 1) (8)

�

Definition 3 Let X be a candidate solution and sj a string in Near(X). The gain-
per-cost of sj , with respect to X, is defined as the ration of its gain gj (X) to its cost
cj (X). The Gain-per-Cost of X GpC(X) is defined as the average of the gain per
costs of the strings in Near(X):

GpC(X) = 1

|Near(X)|
∑

sj ∈Near(X)

gj (X)

cj (X)

It is defined to be zero if |Near(X)| = 0.

The gain-per-cost of a string sj in Near(X), as defined above, is directly pro-
portional to its gain but conversely-proportional to its cost. Informally-speaking, the
higher the expected value of the number of strings far from the destination of a fix for
sj is, the higher its gain-per-cost will be. On the other hand, the lower its cost is, the
higher its gain-per-cost will be too. Because the Gain-per-Cost of X is the average of
such gain-per-cost values, over strings in Near(X), we propose the Gain-per-Cost of
a candidate solution X as a heuristic to indicate the closeness of X to better candidate
solutions, i.e. those with higher objective values.

The problem with the Gain-per-Cost of candidate solutions as defined by Defini-
tion 3 is that its calculation requires the probability distribution function of Δk for
all possible lenghts of random walks, as stated by Theorem 1, which can be different
for different strings sk in S. Therefore, to reduce the required computational cost, we
do not propose to determine all these probability distribution functions, but approx-
imate them with the probability distribution function for a unique random variable
Δ (with no index) which corresponds to a random string as a representative of all
the strings in S. The variable Δ, with respect to a random L-walk, is then defined as
dH (s,Xd) − dH (s,Xs), where s is a random, as opposed to an input, string and Xs

and Xd are the source and destination of the random L-walk, respectively. As con-
firmed by the experimental results, the use of the heuristic evaluation function based
on this approximation still improves significantly the state-of-the-art. The proposed



An improved heuristic for the far from most strings problem 247

Fig. 2 An L-walk, L > 0, may be considered as an (L − 1)-walk followed by a 1-walk. Sample source
and destination points for L = 4 are displayed at the right

estimated Gain-per-Cost it ˜GpC) heuristic evaluation function is formally defined as
follows (unless |Near(X)| = 0 in which case it is defined as 0):

˜GpC(X) = 1

|Near(X)|
∑

sj ∈Near(X)

g̃j (X)

cj (X)
(9)

where g̃j (X) is the estimated gain of a string sj , with respect to X, defined as:

g̃j (X) = 1 +
n

∑

k=1
k �=j

Prcj (X)(Δ ≥ ck(X)) (10)

The next section proposes a method, using dynamic programming, to efficiently de-
termine the probability distribution function for the random variable Δ.

4 Probability distribution function for Δ

In this section, a method is proposed to determine the probability distribution function
for the random variable Δ with respect to a random L-walk. For simplicity, we use
pL(.) to denote this function, i.e. pL(k) = PrL(Δ = k), L ∈ N0, k ∈ Z, where N0
is the set of natural numbers including zero. By definition, for the case L = 0, this
function is the following

p0(k) =
{

1 if k = 0,
0 otherwise

(11)

The following theorem provides a recursion to determine the probability distribu-
tion for Δ, for L > 0.

Theorem 2 Let s be a random string and Δ = dH (s,Xd) − dH (s,Xs), where Xs

and Xd are, respectively, the source and the destination of a random L-walk, L > 0.
Then:

pL(k) = |Σ | − 2

|Σ | pL−1(k) + 1

|Σ | (pL−1(k − 1) + pL−1(k + 1))

Proof Because L > 0, the random L-walk can be viewed as a random (L − 1)-walk
followed by a random 1-walk with the constraint that the 1-walk does not change
any character already changed by the (L − 1)-walk. Let Xmid be the destination of
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the (L − 1)-walk, which is the source of the subsequent random 1-walk (see Fig. 2).
Further assume that k is the index of the character changed by the 1-walk, hence Xmid

and Xd are only different in their kth characters, where 1 ≤ k ≤ m. This implies that
the kth characters of Xs and Xmid will have to be the same. Therefore, exactly one of
the following three cases must hold:

(i) sk = Xk
mid and sk �= Xk

d

(ii) sk �= Xk
mid and sk = Xk

d

(iii) sk �= Xk
mid and sk �= Xk

d

In case (i), the kth character of s is the same as the kth character of Xmid but
different from the kth character of Xd , hence dH (s,Xd) = dH (s,Xmid)+1. Similarly,
in case (ii), the kth character of s is the same as the kth character of Xd but different
from the kth character of Xmid , which means dH (s,Xd) = dH (s,Xmid) − 1. Finally,
in case (iii), the kth character of s is different from those of Xmid and Xd , which
implies dH (s,Xd) = dH (s,Xmid). Therefore, in any case,

−1 ≤ dH (s,Xd) − dH (s,Xmid) ≤ 1 (12)

The probability of case (i) is 1
|Σ | (because for any possible value of Xk

mid , sk can

equally-likely take |Σ | values one of which meets the requirement sk = Xk
mid). Simi-

larly, the probability of case (ii) is 1
|Σ | (for any possible value of Xk

d , sk can equally-

likely be any of the |Σ | values one of which satisfying sk = Xk
d ). Consequently, the

probability of case (iii), is 1 − ( 1
|Σ | + 1

|Σ | ) = |Σ |−2
|Σ | .

By definition of Δ,

pL(k) = PrL(dH (s,Xd) − dH (s,Xs) = k)

= PrL((dH (s,Xd) − dH (s,Xmid)) + (dH (s,Xmid) − dH (s,Xs)) = k)

Let D1 = (dH (s,Xd) − dH (s,Xmid)) and DL−1 = (dH (s,Xmid) − dH (s,Xs)),
respectively. Then:

pL(k) = Pr(D1 + DL−1 = k)

From inequation (12), we know that −1 ≤ D1 ≤ 1. Therefore,

pL(k) = Pr((D1 = −1 ∧ DL−1 = k + 1)

∨ (D1 = 0 ∧ DL−1 = k)

∨ (D1 = 1 ∧ DL−1 = k − 1))

Because the three disjoint cases in the right-hand side of the equation are mutually
exclusive, we conclude

pL(k) = Pr(D1 = −1 ∧ DL−1 = k + 1)

+ Pr(D1 = 0 ∧ DL−1 = k)

+ Pr(D1 = 1 ∧ DL−1 = k − 1)
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Similarly, because D1 can take any of the values −1, 0, or 1 independently from the
value of DL−1, the conjoint conditions in each parenthesis in the right-hand side are
independent. Therefore:

pL(k) = Pr(D1 = −1) × Pr(DL−1 = k + 1)

+ Pr(D1 = 0) × Pr(DL−1 = k)

+ Pr(D1 = 1) × Pr(DL−1 = k − 1)

= Pr(D1 = −1) × pL−1(k + 1)

+ Pr(D1 = 0) × pL−1(k)

+ Pr(D1 = 1) × pL−1(k − 1)

Finally, the probabilities Pr(D1 = −1), Pr(D1 = 0), and Pr(D1 = 1) are equal to,
respectively, the probabilities of the cases (i), (iii), and (ii), which are, respectively

1
|Σ | ,

|Σ |−2
|Σ | , and 1

|Σ | . We conclude

pL(k) = |Σ | − 2

|Σ | pL−1(k) + 1

|Σ | (pL−1(k − 1) + pL−1(k + 1)) �

Note that pL(k) is zero for |k| > L because, as a result of an L-walk, exactly L

characters are only changed.

Corollary 1 Let T (., .) be a bi-variable function from N0 × Z to N0, recursively
defined as the following:

T (0, k) =
{

1 if k = 0
0 otherwise

T (L, k) = T (L − 1, k − 1) + (|Σ | − 2)T (L − 1, k) + T (L − 1, k + 1),

L > 0 (13)

Then,

pL(k) = T (L, k)

|Σ |L , L ≥ 0, k ∈ Z

Proof We use mathematical induction on L.

Base case: For the case L = 0, |Σ |L = 1, and the lemma trivially holds using (11).
Induction hypothesis: We assume that the lemma holds for L = t . That is:

pt(k) = T (t, k)

|Σ |t , k ∈ Z

Induction step: We now prove that it also holds for L = t + 1.

Using Theorem 2:

pt+1(k) = 1

|Σ |pt(k − 1) +
( |Σ | − 2

|Σ |
)

pt(k) + 1

|Σ |pt(k + 1)
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Fig. 3 The first seven rows of the Δ-triangle developed to determine the probability distribution function
for the random variable Δ, for the case |Σ | = 4.The value at the top of the triangle, i.e. for L = 0, is 1.
Every other value is recursively obtained from three values in its above row, as illustrated for the value 15
(see (13)). In the case any of these three values is outside the triangle, 0 will instead be used. The value
pL(k), i.e. the probability PrL(Δ = k), is obtained by dividing the integer specified at the row L and the
column k by the value |Σ |L, i.e. by 4L here. For example, p3(2) is 6

43 ≈ 0.09

= 1

|Σ |
T (t, k − 1)

|Σ |t +
( |Σ | − 2

|Σ |
)

T (t, k)

|Σ |t + 1

|Σ |
T (t, k + 1)

|Σ |t
(by the hypothesis)

= 1

|Σ |t+1
(T (t, k − 1) + (|Σ | − 2)T (t, k) + T (t, k + 1))

= T (t + 1, k)

|Σ |t+1 �

The above corollary enables us to use a two-dimensional array to present the prob-
ability distribution for Δ. If we only keep nonzero values, the array can be presented
as a triangle of integers, called Δ-triangle, which can be efficiently determined using
dynamic programming, in a fashion similar to that of Khayyam-Pascal (binomial co-
efficients) triangle (Peelle 1975; Edwards 2002). The first seven rows of the triangle,
for the walk lengths of 0 to 6, is presented in Fig. 3 for the case |Σ | = 4. Starting
from L = 0, the Lth row corresponds to T (L, k) for different value of k as specified
underneath the triangle. Note that T (L, k) is nonzero only for −L ≤ k ≤ +L (and all
the zero values are outside the triangle). Therefore, there are a total of 2L+1 nonzero
values for T (L, k), in the Lth row of the triangle, each of which corresponding to one
value of k. Based on the recursive definition of T (., .) (see (13)), the value of each
entry in the triangle is efficiently calculated from three values of the previous row,
which are the value just above and the values just above right and above left (note
that some of these values may be outside the triangle, in which case they are zero).
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Having constructed the triangle, and by the above corollary, the probability value
pL(k) is simply determined by retrieving T (L, k) from the triangle and dividing it
by the value |Σ |L. The Δ-triangle possesses several interesting properties, including:
(i) the values on both sides of the triangle are always 1, (ii) the greatest value in
each row is in the middle, corresponding to k = 0, (iii) the triangle is symmetric with
respect to the vertical axis k = 0, (iv) the values are all integers, and (v) there are
exactly 2L + 1 values in the Lth row, whose summation is |Σ |L.

The following example, though simple, illustrates how the triangle can be used to
calculate a heuristic value ˜GpC(X) for a candidate solution X.

Example 2 Consider the instance 〈Σ,S,3〉 and the candidate solution of Exam-
ple 1. That is, Σ = {A,T,C,G}, S = {s1, s2, s3}, s1 = "GACTC", s2 = "GATCA", s3 =
"CTAGA", and X = "GATTC". Recall that c1(X) = 2, c2(X) = 1, and c3(X) = −2,
and Near(X) = {s1, s2}. Therefore,

g̃1(X) = 1 + Prc1(X)(Δ ≥ c2(X)) + Prc1(X)(Δ ≥ c3(X))

= 1 + Pr2(Δ ≥ 1) + Pr2(Δ ≥ −2)

= 1 + (p2(1) + p2(2)) + (p2(−2) + p2(−1) + p2(0) + p2(1) + p2(2))

= 1 +
(

5

16

)

+
(

16

16

)

= 37

16

Similarly we have:

g̃2(X) = 1 + Prc2(X)(Δ ≥ c1(X)) + Prc2(X)(Δ ≥ c3(X)) = 2

We conclude

˜GpC(X) = 1

2

(

g̃1(X)

c1(X)
+ g̃2(X)

c2(X)

)

= 1

2

(

37

32
+ 2

)

= 101

64

5 The hybrid heuristic evaluation function and the final algorithm

In this section, we first propose a hybrid heuristic evaluation function and then present
the pseudo-code for the resulting algorithm. The proposed hybrid heuristic evaluation
function hf, ˜GpC(.) is a combination of the objective evaluation function f (.) and

the proposed estimated Gain-per-Cost heuristic evaluation function ˜GpC(.) such that
f (.) dominates ˜GpC(.). More specifically, the following requirement is to be met:

∀Xi ∈ Σm∀Xj ∈ Σm, f (Xi) > f (Xj ) ⇒ hf, ˜GpC(Xi) > hf, ˜GpC(Xj ) (14)

The following theorem indicates that, in order to meet the above requirement, we
can use the hybrid heuristic evaluation function as hf, ˜GpC(X) = η.f (X) + ˜GpC(X),
where η is a constant is a combination of greater than the number of input strings.
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Theorem 3 Let X be a candidate solution. Then ˜GpC(X) ≤ n.

Proof Because the estimated gain of a string is the summation of 1 and n − 1 proba-
bility values and that a probability value cannot be greater than 1, the estimated gain
of a string is upper bounded by n. On the other hand, the cost of an arbitrary string sj
in Near(X) is at least 1, which means that the (estimated) gain-per-cost of a string is
also upper bounded by n. Therefore this means, by (9), ˜GpC(X) ≤ n. �

Based on this theorem, we propose the following hybrid heuristic evaluation func-
tion:

hf, ˜GpC(X) = (n + 1).f (X) + ˜GpC(X) (15)

Corollary 2 Let N1 be the number of local maximum points in the search landscape
corresponding to f (.), and N

˜GpC be the number of local maximum points in the
search landscape corresponding to hf, ˜GpC(.) that are not optimal solution to the
problem. Then

N
˜GpC ≤ N1

Proof It is enough to show that if an arbitrary point Xi is not a local or a global
maximum point in the landscape for f (.), it will not be a local maximum point in the
landscape for hf, ˜GpC either. Suppose that a point Xi ∈ Σm is not a local or a global
maximum point in the landscape for f (.). Then, ∃Xj ∈ Neighbors(Xi), f (Xj ) >

f (Xi). Since the heuristic evaluation function hf, ˜GpC satisfies the property 14, this
implies:

∃Xj ∈ Neighbors(Xi), hf, ˜GpC(Xj ) > hf, ˜GpC(Xi)

which means that Xi cannot be a local maximum point in the search landscape for
hf, ˜GpC . �

Informally speaking, this corollary indicates that replacing the objective evalua-
tion function f (.) with the heuristic evaluation function hf, ˜GpC does not worsen the
landscape with respect to the number of local maximum points; the only possible new
local maximum points will be those that are optimal solutions to the problem, getting
stuck at which means achieving an optimal solution. In fact, as reported in the next
section, the use of hf, ˜GpC(.) as opposed to f (.) is quite promising in reducing the
number of local maximum points.

We now present a high level pseudo-code for a GRASP algorithm GRASP-FFMSP
for FFMSP, followed by a more detailed pseudo-code for the proposed hybrid heuris-
tic evaluation function hf, ˜GpC(.). Figure 4 presents the pseudo-code for GRASP-
FFMSP. As a GRASP, it executes a pair of construction and local search phases a
number of times, specified by the parameter ItrNum; the best solution BestSoFarX
found over all the iterations is returned as the final output.

In the construction phase, a candidate solution X is incrementally built, starting
from a null string and appending to it one alphabet character at a time. As can be
seen in the algorithm (Fig. 4), the outer for loop in the construction phase iterates
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m times, each to determine one of the characters of X. To decide on which alphabet
character to choose, all possible |Σ | characters are examined, in the corresponding
inner for loop, using some heuristic function. Here, as in Festa (2007), the heuristic
value given to a character c as a candidate for Xi is the number of input strings whose
ith characters differ from c and that are near X. Note that we defined, in Sect. 2, an
input string sj as to be near a (complete) candidate solution X if its Hamming dis-
tance from X, dj (X), is less than the threshold d . However, because of our usage of
partial solutions in the construction phase of the algorithm, we generalize the defi-
nition to the following. By the Hamming distance between an input string sj and a
partial solution X of length t , 1 ≤ t ≤ m, we mean the Hamming distance between
the strings of the first t characters of sj and X; we still use dj (X) to denote this
Hamming distance. Note that this definition is consistent with the previous one, con-
sidering a complete solution as a special case of a partial one whose length is m. In
summary, the heuristic value given to an alphabet character c as a candidate for Xi

is:

c.score =
n

∑

j=1
si
j �=c

dj (X)<d

1

Once the heuristic values for all candidate characters are calculated, some of the
characters will be considered as the members of Restricted Candidate List, RCL,
from which one is to be selected randomly. The number of elements in RCL may be
viewed as a control parameter to make an appropriate balance between greediness and
randomness in the construction phase. Among various mechanisms to do so are so-
called cardinality-based and value-based RCLs. The former refers to the case where
the size of RCL is predefined and fixed, whereas the latter refers to the case where it is
determined dynamically based on the heuristic values of the candidates. A convenient
way for the latter is to put in RCL every candidate whose heuristic value is better than
a given percentage γ of the best heuristic value over all the candidates. The selection
randomness in turn may or may not be based on the uniform probability distribution.
More details on various strategies for GRASP may be found in Festa and Resende
(2002, 2009).

The local search phase of GRASP receives the complete solution obtained by the
construction phase and tries to improve it using a local search procedure. As can be
seen in Fig. 4, the local search phase of GRASP-FFMSP is a simple hill-climbing pro-
cedure, which is based on the first-move (also called first-improvement) as opposed
to the best-move (also called best-improvement) strategy (Blum and Roli 2003). That
is, the current solution X will be replaced with the first solution of a higher value
found in its neighborhood. The neighbors of a candidate solution X are defined to
be those which differ from X in exactly one character; that is those whose Hamming
distance from X is exactly 1. Candidate solutions are evaluated and compared using
an evaluation function h(.). The pseudo-code presented so-far (Fig. 4) is almost the
same for both our algorithm and the algorithm in Festa (2007); the main distinction
lies in the adopted heuristic evaluation function h(.) used in the local search phase.
In Festa (2007), the objective function f (.) was used for this purpose, whereas we
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Algorithm GRASP-FFMSP
Input: S = {s1, s2, . . . , sn}, n > 1,each si is a string of length m > 1,
and an alphabet Σ

and an integer d , 1 ≤ d ≤ m

Output: a string of length m

Parameters: ItrNum and γ

Function calls: it invokes f (.) and hf, ˜GpC(.), which return the objective and the hybrid heuristic
evaluation values for a given candidate solution, respectively. The pseudo-code for the latter may be
found in Fig. 5.
1: BestSoFarX ← a random solution
2: for itr = 1 to ItrNum do
3: X ← the null string {initialize X to an empty partial solution}

{construction phase:}
4: for i = 1 to m do
5: RCL ← φ {initialize RCL to an empty set}
6: for all c ∈ Σ do
7: c.score ← number of strings sj such that si

j
�= c and dj (X) < d

8: end for
{make RCL:}

9: MaxScore ← Max{c.score|c ∈ Σ}
10: for all c ∈ Σ do
11: if c.score > γ × MaxScore then
12: RCL ← RCL ∪ {c}
13: end if
14: end for
15: c ← a member of RCL selected randomly
16: Xi ← c {add c at the end of the partial solution X}
17: end for

{local search phase:}
18: improved ← true
19: while improved do
20: improved ← false
21: for k = 1 to m do
22: for all c ∈ Σ other than Xk do
23: tmpX ← the string obtained by replacing Xk with c

24: if hf, ˜GpC(tmpX) > hf, ˜GpC(X) then
25: X ← tmpX
26: improved ← true
27: end if
28: end for
29: end for
30: end while

{update BestSoFarX:}
31: if f (X) > f (BestSoFarX) then
32: BestSoFarX ← X

33: end if
34: end for

{finally, return the best solution found over all the iterations:}
35: return BestSoFarX

Fig. 4 The pseudo-code for the algorithm GRASP-FFMSP
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propose the use of the hybrid heuristic evaluation function hf, ˜GpC(.). To summarize
how the proposed function is determined, a pseudo-code for this function is presented
in Fig. 5. It assumes that a two-dimensional array T [ ][ ] has already been populated
to represent the two-dimensional function T (., .) defined in Corollary 1 (see (13)).
As can be seen in the pseudo-code, at first the values for dj (X), cj (X), j = 1, . . . , n,
|Near(X)|, and f (X) are determined. Then, the value ˜GpC(X) is calculated, which
in turn requires the calculation of the values g̃j (X), where dj (X) < d . These cal-
culations simply follow from (9), (10), and Corollary 1. The latter is used to calcu-
late Prcj

(Δ = v), ck(X) ≤ v ≤ cj (X), as T [cj , v]/|Σ |cj . Finally, having calculated
˜GpC(X), the algorithm calculates and returns the hybrid heuristic evaluation value
hf, ˜GpC(X).

We now show that, given a candidate solution X, the value hf, ˜GpC(X) can be

determined in O(nm + n2), having paid a memory cost and a one-off time cost of
O(m2) to define and populate the two-dimensional array T [ ][ ]. The array T im-
plicitly presents the probability distribution function (PDF) for Δ (see Fig. 3 for an
illustration). As can be seen in Fig. 5, in order to determine Prcj (X)(Δ ≥ ck(X)), a
for loop is used. However, it is possible to create another triangle of the same size
to keep the cumulative distribution function (CDF) for the random variable Δ to re-
trieve Prcj (X)(Δ ≥ ck(X)) in O(1) (note that Prcj (X)(Δ ≥ ck(X)) = 1−Prcj (X)(Δ ≤
ck(X) − 1)). The memory cost and the one-off time cost to create and populate (the
first m rows of) these arrays with the PDF and CDF values are still O(m2). The Ham-
ming distances dj (X) and the costs cj (X) of the input strings sj are determined in
O(nm), as can be seen in the beginning of the pseudo-code (Fig. 5). Note that the cal-
culation of the Hamming distance between an input string and a candidate solution
requires the comparison of m characters. Consequently, and since retrieving the CDF
values is performed in O(1), the value ˜GpC(X) can be calculated in O(nm + n2).
Therefore, hf, ˜GpC(X) is also computed in O(nm + n2), in addition to the memory

and the one-off time costs of O(m2), which results in the total time complexity of
O((n + m)2).

6 Experimental results

To evaluate the power of the proposed hybrid heuristic evaluation function hf, ˜GpC
we implemented two versions of GRASP, one as the state-of-the-art (Festa 2007), i.e.
with the objective evaluation function f (.) and the other with the heuristic evaluation
function hf, ˜GpC . We refer to these two versions as GRASP1 and GRASP

˜GpC , respec-
tively. The algorithms were implemented in Java, using Eclipse, and run on a Pentium
4 Desktop machine with 3.21 GHz clock speed and 2 GB of RAM.

As for the value-based GRASP parameter, we set γ to 0.5. However, we did
not use the same value for ItrNum in the algorithms, because each iteration of
GRASP

˜GpC usually takes longer than each iteration of GRASP1. We used 10 and
10,000 for this parameter in GRASP

˜GpC and GRASP1, respectively, which guaran-
teed that GRASP

˜GpC would use much less time than GRASP1. The local search phase
in both algorithms was the hill-climbing iterated improvement, and two candidates
were considered as neighbors if and only if their Hamming distance was 1.
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Function hf, ˜GpC
Input: a complete candidate solution X

Output: the hybrid heuristic evaluation value for X

Parameters: none
Function calls: none
{The variables dj , cj ,GpC, gj , j = 1, . . . , n, f , and NumNear are used to represent

dj (X), cj (X), ˜GpC(X), g̃j (X), f (X), and |Near(X)|, respectively, for the given candidate solution X.}
1: for j = 1 to n do
2: dj ← the Hamming distance between sj and X

3: cj ← m − dj

4: if dj < d then
5: NumNear ← NumNear + 1
6: end if
7: f ← n − NumNear
8: end for

{determine ˜GpC(X) using (9):}
9: if NumNear = 0 then

10: GpC ← 0
11: else
12: sumGpC ← 0

{determine g̃j (X) using (10):}
13: for j = 1 to n do
14: if dj < d then
15: gj ← 1
16: for k = 1 to n do
17: if k �= j then
18: sumP ← 0

{determine Prcj (X)(Δ ≥ ck(X)) (note that this probability will be 0 if ck > cj ):}
19: for v = ck to cj do
20: sumP ← sumP + T [cj , v]/|Σ |cj
21: end for
22: gj ← gj + sumP
23: end if
24: end for
25: sumGpC ← sumGpC + gj /cj

26: end if
27: end for
28: GpC ← sumGpC/NumNear
29: end if

{finally, return the hybrid heuristic evaluation value hf, ˜GpC(X):}
30: return (n + 1) ∗ f + GpC

Fig. 5 The pseudo-code to calculate hf, ˜GpC(X)

We examined and compared the algorithms on various instances of FFMSP with
different numbers n and lengths m of input strings over the alphabet Σ = {A,T,C,G}.
We used three different values of 100, 200, and 300 as the number of strings n. For
each value vn for n, we used three different values of vn, 2vn, and 4vn as the length
of strings m. Finally, for each pair of values 〈vn, vm〉 for 〈n,m〉, we considered three
different values of 0.75vm, 0.85vm, and 0.95vm as the distance threshold d . These
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make 3 × 3 × 3 = 27 different instance types altogether. By an instance type, we
mean the triple of values for its 〈n,m,d〉.

The algorithms were evaluated on both random and real data. For each instance
type, we generated 3 random instances, hence 27 × 3 = 81 random instances alto-
gether. We used one real instance per instance type making altogether 81 + 27 = 108
problem instances. The random data was generated by the standard Java pseudo-
random number generator. As for real data, we used the Hyaloperonospora parasitica
V 6.0 sequence data (HpV6Transcript.ntseq file).2 These sequence data were pro-
duced by the US Department of Energy Joint Genome Institute3 and curated at the
Virginia Bioinformatics Institute.4 For each pair of values 〈vn, vm〉 for the number
and length of the required sequences, starting from smaller vn followed by smaller
vm, we used the first n sequences not already-used whose length are at least m and
truncated them to m.

The results for random data are presented in Table 1. The first column in this
table shows the instance types. The second (F1) and the third (T1) columns show
the average solution quality (i.e. the number of far strings) and average run-time (in
milliseconds), respectively, for GRASP1. The next two columns (F

˜GpC and T
˜GpC)

report these two quantities for GRASP
˜GpC . The reported run-time does not include

the time used to read in data files. The last column (α%) measures the improvement

percentage defined as
F

˜GpC−F1

F
˜GpC

× 100. The last row in the table calculates the average

of improvement percentage. The figures are rounded up to two decimal places.
As can be seen in Table 1, GRASP

˜GpC performs better than GRASP1 in all the
27 cases. The minimum improvement percentage is 8.5 (for the first case) and its
maximum is 100 (in 11 cases), where GRASP1 gives a zero solution quality. Fur-
thermore, for majority of cases where GRASP1 gives nonzero solution quality, e.g.
for the (100,100,95) instance type, the improvement is by orders of magnitude. The
average improvement to the solution quality is more than 69 percent. This shows the
significant effectiveness of the proposed hybrid heuristic evaluation function for the
purpose of FFMSP. In general, this effectiveness is more clearly seen in the cases in
Table 1 where GRASP1 performs poorly giving low objective values.

The results for real data are similarly presented in Table 2. This table is the same
as Table 1 except that it reports the results on real, as opposed to random, instances.
Similarly, Table 2 indicates that GRASP

˜GpC is superior to GRASP1 in all the 27 cases.
The minimum improvement percentage is 2 (again for the first case) and its maximum
is 100 (again in 11 cases), where GRASP1 gives a zero solution quality. In most cases,
the improvement in the solution quality is by orders of magnitude, with an average
value of about 66 percent. Again, this suggests that the proposed hybrid heuristic
evaluation function is quite effective for the purpose of FFMSP.

Tables 1 and 2 also show that the performance of the algorithms is usually better
on real than random instances. Except for the cases where it gives the maximum n as
for the objective values for both random and real data, GRASP

˜GpC performs better on

2Available at http://vmd.vbi.vt.edu/download/index.php.
3http://www.jgi.doe.gov.
4http://www.vbi.vt.edu.
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Table 1 Comparison of GRASP1 and GRASP
˜GpC with respect to average solution quality and average

run-time on random instances

(n,m,d) GRASP1 GRASP
˜GpC α%

F1 T1 F
˜GpC T

˜GpC

(100,100,75) 89.67 23391 98 151 8.5

(100,100,85) 10.33 10292 29.33 375 64.78

(100,100,95) 0.33 6620 7.67 422 95.7

(100,200,150) 85.33 38292 100 417 14.67

(100,200,170) 2.67 14578 28.33 1412 90.58

(100,200,190) 0 14162 5.33 1338 100

(100,400,300) 79.67 63515 100 401 20.33

(100,400,340) 1 28135 29.33 6802 96.59

(100,400,380) 0 28494 4.33 5240 100

(200,200,150) 162.33 128521 180.33 1011 9.98

(200,200,170) 3.67 33063 32 3328 88.53

(200,200,190) 0 31271 5.33 2745 100

(200,400,300) 153.67 203776 195.33 3536 21.33

(200,400,340) 0.67 60494 31.33 17261 97.86

(200,400,380) 0 61089 4 11161 100

(200,800,600) 146.33 326932 200 6005 26.84

(200,800,680) 0 130198 25.67 63104 100

(200,800,760) 0 131182 3.33 51250 100

(300,300,225) 230 338886 253.67 3166 9.33

(300,300,255) 1.67 76417 33 13969 94.94

(300,300,285) 0 76250 4.33 11031 100

(300,600,450) 222 586625 266.33 10250 16.64

(300,600,510) 0 165818 26 60115 100

(300,600,570) 0 165740 2.67 37901 100

(300,1200,900) 207.33 1009984 300 33073 30.89

(300,1200,1020) 0 413484 23 280307 100

(300,1200,1140) 0 412495 0.67 123260 100

Average 69.91

real than random instances (of the same type). This also holds for GRASP1 except for
the cases where it gives zero for both random and real instances.

Although, the number of iterations is large enough (10,000) for GRASP1. In order
to observe its performance over a longer time, we further increased ItrNum to 100,000
(i.e. by 10 times) and ran it on both random and real instances with n = 200, m =
400, and d = 340, i.e. moderate value for each. For both random and real cases, the
algorithm returned the average solution quality of 1 (for both cases) within an average
time of more than 9 minutes. As can be seen in Tables 1 and 2, GRASP

˜GpC obtained
the average solution quality of 31.33 and 70 for random and real cases in less than 2
seconds, respectively.
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Table 2 Comparison of GRASP1 and GRASP
˜GpC with respect to average solution quality and average

run-time on real instances

(n,m,d) GRASP1 GRASP
˜GpC α%

F1 T1 F
˜GpC T

˜GpC

(100,100,75) 98 23484 100 47 2

(100,100,85) 24 10797 53 328 54.72

(100,100,95) 1 6484 9 344 88.89

(100,200,150) 94 38594 100 94 6

(100,200,170) 4 14516 46 1234 91.3

(100,200,190) 0 13922 8 1407 100

(100,400,300) 90 64766 100 172 10

(100,400,340) 1 27563 51 4609 98.04

(100,400,380) 0 27484 6 5719 100

(200,200,150) 191 158125 200 312 4.5

(200,200,170) 4 32844 82 3062 95.12

(200,200,190) 0 30828 8 3281 100

(200,400,300) 180 225812 200 500 10

(200,400,340) 1 60250 70 11047 98.57

(200,400,380) 0 60047 7 12828 100

(200,800,600) 164 350734 200 828 18

(200,800,680) 0 127437 83 41328 100

(200,800,760) 0 127593 7 54375 100

(300,300,225) 287 494922 300 578 4.33

(300,300,255) 2 75703 83 8218 97.59

(300,300,285) 0 75563 5 9937 100

(300,600,450) 268 712953 300 1312 10.67

(300,600,510) 0 165375 92 37000 100

(300,600,570) 0 164718 3 38813 100

(300,1200,900) 245 1131797 300 2407 18.33

(300,1200,1020) 0 408469 92 140328 100

(300,1200,1140) 0 409875 1 161859 100

Average 66.97

Finally, in order to see the effect of using the hybrid heuristic evaluation function
hf, ˜GpC on the search landscape, particularly on reducing the number of local maxi-
mum points, we recorded for each run of the algorithms the average number of uphill
moves in their local search (hill climbing) phases. An uphill move from a point in the
search space means that the point is not a local, or a global, maximum point. Since
the total number of points is fixed, 4m in our case, the higher the number of such
points is, the lower the number of local or global maximum points is. Again, we have
averaged these quantities over several (10 random and 3 real) instances of the same
type. The results are presented in Table 3, where the number of uphill moves (UP1 for
GRASP1 and UP

˜GpC for GRASP
˜GpC), as opposed to the objective values in Table 1,
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Table 3 Comparison of the (average) number of up-hill moves in the local search phases of GRASP1
(UP1) and GRASP

˜GpC (UP
˜GpC) over both random and real instances

(n,m,d) Random Real

UP1 UP
˜GpC β% UP1 UP

˜GpC β%

(100,100,75) 11.32 62.9 82 13.82 61.3 77.45

(100,100,85) 1.11 92.13 98.79 1.71 101.3 98.31

(100,100,95) 0 110.13 100 0 102.8 100

(100,200,150) 8.59 143.33 94 9.7 97.3 90.03

(100,200,170) 0.04 267.93 99.98 0.06 236.7 99.97

(100,200,190) 0 257.6 100 0 256.5 100

(100,400,300) 5.62 228.73 97.54 6.34 133.3 95.24

(100,400,340) 0 811.33 100 0 601.5 100

(100,400,380) 0 575 100 0 589.5 100

(200,200,150) 17.62 73.4 75.99 29.72 128.9 76.94

(200,200,170) 0.08 257.07 99.96 0.1 232.2 99.95

(200,200,190) 0 264.53 100 0 271 100

(200,400,300) 14.38 197.97 92.73 19.14 190 89.92

(200,400,340) 0 872.8 100 0 529.2 100

(200,400,380) 0 573.17 100 0 570.9 100

(200,800,600) 9.15 542.77 98.31 11.52 251.5 95.41

(200,800,680) 0 1966.07 100 0 1303.6 100

(200,800,760) 0 1159.83 100 0 1103.6 100

(300,300,225) 21.54 83.6 74.23 46.69 152.4 69.36

(300,300,255) 0 555.63 100 0.01 357.2 99.99

(300,300,285) 0 441.83 100 0 359.4 100

(300,600,450) 18.93 166.57 88.63 30.7 271 88.67

(300,600,510) 0 1410.53 100 0 873.1 100

(300,600,570) 0 781.63 100 0 635.3 100

(300,1200,900) 12.27 783.43 98.43 16.86 416.3 95.95

(300,1200,1020) 0 3347.8 100 0 2100.3 100

(300,1200,1140) 0 1268.23 100 0 1100.5 100

Average 96.32 95.45

are reported. The fourth and the seventh columns report the improvement percent-

age (β%), which is defined as
UP

˜GpC−UP1

UP
˜GpC

× 100 and used as a (rough) measure of

the improvement in the search landscape with respect to the reduction in the number
of local maximum points due to the use of the proposed hybrid heuristic function

hf, ˜GpC .
As can be seen in Table 3, the number of uphill moves is improved by orders of

magnitude in all of the cases. This indicates remarkable reduction in the number of
local maximum points in the search landscape due to using the heuristic evaluation
function h

f,˜GpC
. On average, the increase in the number of uphill moves are 96.32%

and 95.45% for random and real instances, respectively.
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7 Conclusion

In general, a metaheuristic algorithm for an optimization problem uses a heuristic
function to evaluate candidate solutions. Such heuristic functions are also called eval-
uation functions and, especially in the context of genetic algorithms, fitness functions.
The very first choice for such a heuristic function is naturally the problem’s objective
function. However, in the case many candidate solutions can be of the same objec-
tive value, this can result in a search landscape in which many points correspond to
local optima. The existence of local optima is widely-known to be an important fac-
tor in degrading the performance of metaheuristics, especially local search, for many
optimization problems.

We believe that many combinatorial optimization problems, including FFMSP, are
prune to this issue, because the number of candidate solutions are normally exponen-
tial whereas the number of different objective values are often polynomial in problem
size for many such problems; these are |
|m and 1 + n, respectively, for FFMSP. As
a starting point to address this issue, this paper concentrated on FFMSP. Firstly, the
estimated Gain-per-Cost heuristic was devised to indicate, though roughly, the like-
lihood for a given candidate solution to be close to better ones. A triangle called
Δ-triangle, in a similar fashion to that of Khayyam-Pascal triangle, was then devel-
oped to help determine this heuristic. Then, in order to restrict the application of the
estimated Gain-per-Cost heuristic to the discrimination between candidate solutions
with the same objective value, a hybrid heuristic function h

f,˜GpC
combining both the

objective function and the estimated Gain-per-Cost heuristic was proposed.
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