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Abstract In the past decades, resource parameters have been introduced in project
scheduling literature to measure the scarceness of resources of a project instance. In
this paper, we incorporate these resource scarceness parameters in the search process
to solve the multi-mode resource constrained project scheduling problem, in which
multiple execution modes are available for each activity in the project. Therefore,
we propose a scatter search algorithm, which is executed with different improvement
methods, each tailored to the specific characteristics of different renewable and non-
renewable resource scarceness values. Computational results prove the effectiveness
of the improvement methods and reveal that the procedure is among the best perform-
ing competitive algorithms in the open literature.

Keywords Multi-mode · Scheduling · Scatter-search · Resource characteristics

1 Introduction

The single-mode resource-constrained project scheduling problem (RCPSP) is a
well-known optimization problem in the project scheduling literature. This problem
type aims at minimizing the total duration or makespan of a project subject to prece-
dence relations between the activities and limited renewable resource availabilities,
and is known to be NP-hard (Blazewicz et al. 1983). Several solution procedures have
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been developed for this problem and for its extensions to other optimization problems
(reviews can be found in Brucker et al. 1999 and Herroelen et al. 1999). One of the
extensions is the multi-mode resource-constrained project scheduling problem (MR-
CPSP). The MRCPSP is a generalized version of the single-mode RCPSP, where each
activity can be performed in one out of a set of modes, each mode with a different
activity duration and different renewable and nonrenewable resource requirements.
The objective of this optimization problem is to minimize the makespan of the prob-
lem. The multi-mode resource-constrained project scheduling problem can be repre-
sented as m,1T |cpm,disc,mu|Cmax using the classification scheme of Herroelen et
al. (1999) or as MPS|prec|Cmax following the classification scheme of Brucker et al.
(1999).

Several exact, heuristic and meta-heuristic procedures to solve the MRCPSP have
been proposed in the recent years. Branch-and-bound procedures were introduced
by Sprecher et al. (1997), Hartmann (1998) and Sprecher and Drexl (1998), while
Zhu et al. (2006) proposed a branch-and-cut algorithm. Boctor (1996a), Drexl and
Grünewald (1993), Knotts et al. (2000), Kolisch and Drexl (1997), Lova et al. (2006)
and Özdamar and Ulusoy (1994) presented single or multi-pass heuristics. Mori and
Tseng (1997), Özdamar (1999), Hartmann (2001), Alcaraz et al. (2003), Lova et al.
(2009), Tseng and Chen (2009) and Van Peteghem and Vanhoucke (2010) presented
a genetic algorithm, Slowinski et al. (1994), Boctor (1996b), Józefowska et al. (2001)
and Bouleimen and Lecocq (2003) used the simulated annealing approach, Nonobe
and Ibaraki (2002) proposed a tabu search procedure and Zhang et al. (2006) and
Jarboui et al. (2008) applied the methodology of particle swarm optimization to the
MRCPSP. Recently, Ranjbar et al. (2009) proposed a hybridized scatter search pro-
cedure to solve the MRCPSP.

Different research papers have described valuable insights in the relation between
project characteristics and the performance of solution procedures for both the single-
mode and multi-mode RCPSP (see Herroelen and De Reyck 1999 and Kolisch et al.
1995). To the best of our knowledge, for the multi-mode RCPSP only one paper
has used project characteristics to steer the algorithmic procedures towards promis-
ing solution areas. Buddhakulsomsiri and Kim (2007) proposed the moving resource
strength, which helps the priority rule-based heuristic for the MRCPSP with activity
splitting and resource vacation to identify in which project situations activity splitting
is likely to be beneficial during scheduling.

The main contribution of the paper is threefold: first, a scatter search procedure
to solve the scheduling problem is proposed. While a scatter search is proven to be
successful to deal with combinatorial problems, it is—to the best of our knowledge—
not used earlier to solve the MRCPSP. Second, three different solution improvement
methods are developed, each based on the information obtained from the renewable
and nonrenewable resource characteristics. Third, the proposed algorithm provides
state-of-the-art results for the available benchmark datasets.

The outline of this paper is as follows: In Sect. 2 the MRCPSP is described while in
Sect. 3 a resource scarceness matrix is presented which gives insight into the influence
of the scarceness of the renewable and nonrenewable resources on the search focus of
the algorithm. Section 4 proposes a scatter search for the MRCPSP, for which differ-
ent solution improvement methods tailored to the resource scarceness characteristics
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of a project, are presented. In Sect. 5, computational results for the configuration of
the scatter search are given, the influence of the resource scarceness on the solution
quality is tested and the results of the algorithm on the well-known PSPLIB dataset
are shown. Finally, in the last section overall conclusions and suggestions for future
research are presented.

2 Problem formulation

We consider an activity-on-the-node network G(N,A), where N is the set of activ-
ities and A is the set of pairs of activities between which a finish-start precedence
relationship with a minimal time lag of 0 exists. A set of activities, numbered from 1
to |N | with a dummy start node 0 and a dummy end node |N | + 1, is to be scheduled
on a set Rρ of renewable and Rν of nonrenewable resource types. Each activity i ∈ N

is performed in a mode mi , which is chosen out of a set of |Mi | different execution
modes (Mi = {1, . . . , |Mi |}). The duration of each non-preemptable activity i, when
executed in mode mi , is dimi

. An activity i, executed in mode mi , requires r
ρ
imik

re-
newable resource units of type k (k ∈ Rρ = {1, . . . , |Rρ |}) and rν

imi l
nonrenewable

resource units of type l (l ∈ Rν = {1, . . . , |Rν |}). Each renewable resource k has a
constant availability a

ρ
k throughout the project horizon, while the overall capacity of

each nonrenewable resource of type l is given by aν
l . The number of requested nonre-

newable resource units that exceeds the capacity aν
l , l ∈ Rν , is defined as the Excess

of Resource Request (ERR). If the nonrenewable resource request exceeds the avail-
ability, ERR will be larger than 0 and the solution will be infeasible. The formula of
the ERR can be stated as follows:

ERR =
|Rν |∑

l=1

(
max

(
0,

|N |∑

i=1

(rν
imi l

) − aν
l

))

The objective of the MRCPSP is to find a feasible schedule, represented by a vec-
tor of corresponding start times si and a vector denoting its corresponding execution
modes mi , such that the makespan of the project is minimized, subject to the prece-
dence constraints and (renewable and nonrenewable) resource constraints.

The MRCPSP can be conceptually formulated as follows:

Min. sn+1 (1)

s.t.

si + dimi
≤ sj ∀(i, j) ∈ A (2)

∑

i∈S(t)

r
ρ
imik

≤ a
ρ
k ∀k ∈ Rρ,∀mi ∈ Mi,∀t (3)

|N |∑

i=1

rν
imi l

≤ aν
l ∀l ∈ Rν,∀mi ∈ Mi (4)

mi ∈ Mi ∀i ∈ N (5)
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Fig. 1 Network of the example
project

s0 = 0 (6)

si ∈ int+ ∀i ∈ N (7)

where S(t) denotes the set of activities in progress in period [t − 1, t[, t ∈ {1, sn+1}.
The project is minimized in objective function (1). Constraint set (2) takes the
finish-start precedence relations with a minimal time lag of zero into account. Con-
straints (3) and (4) take care of the renewable and nonrenewable resource limita-
tions, respectively. Each activity i has to be performed in exactly one mode mi (con-
straint 5). Constraint (6) forces the project to start at time instance zero and constraint
(7) ensures that the activity start times assume nonnegative integer values. A schedule
which fulfills all the constraints (1) to (7), is called optimal.

In Fig. 1, an example project is presented which will be used throughout the re-
mainder of this paper. The project network contains 8 non-dummy activities, each
with 2 modes. For each mode, 1 renewable resource and 1 nonrenewable resource
is indicated. The availability for the renewable (nonrenewable) resource is 7 (23). In
Table 1, the duration dimi

and resource requirements (rρ
imi

and rν
imi

) for mode mi of
activity i are shown.

3 Resource scarceness matrix

Several resource parameters have been introduced in the past decades to measure the
scarceness of resources of a project instance. These parameters are determined by the
resource consumption and the resource availability. For a constant resource availabil-
ity, the scarceness will increase for an increasing resource consumption. Moreover,
the more restrictive a resource type becomes, the higher the makespan of the project
will be.

Since the resource scarceness can be applied on both the renewable and the non-
renewable resources, a brief description for both resource types is given.

– Renewable resources
When the scarceness of the renewable resources is low, the project is hardly re-
stricted by its resources. The makespan of the project will mainly be determined
by the precedence relations of the project and each activity will be scheduled at
or close to its critical path start time. When, however, the scarceness of renew-
able resources is high, the influence of the resource constraints will overrule the
precedence constraints. Due to the relatively low resource availability, most of the
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Table 1 Information of the
example project act i mode mi dimi

r
ρ
imi

rν
imi

0 1 0 0 0

1 1 4 3 3

2 5 2 4

2 1 1 3 4

2 2 2 3

3 1 1 2 3

2 2 1 1

4 1 2 5 4

2 3 4 3

5 1 2 4 6

2 5 3 2

6 1 1 1 4

2 3 1 3

7 1 1 3 3

2 3 2 2

8 1 2 3 4

2 2 3 3

9 1 0 0 0

Available 7 23

activities will be scheduled one after the other. An increase from a low to a high
resource scarceness also leads to an increasing deviation of the project makespan
above the minimal critical path duration.

The renewable resource scarceness might influence the performance of a so-
lution procedure. Projects with a low scarceness might need a search procedure
which focuses on the neighbourhood of the minimal critical path mode assignment
(i.e. the critical path using the minimal duration of activities), while a search proce-
dure that will mainly focus on the limitations imposed by the renewable resource
availabilities might be more effective for projects with a high scarceness of the
renewable resources.

– Nonrenewable resources
The feasibility of a mode assignment is determined by the nonrenewable resource
consumption. A mode combination is feasible if the sum of the requested non-
renewable resources is smaller than or equal to the nonrenewable resource avail-
abilities (i.e. if ERR is equal to zero). In case the scarceness of the nonrenewable
resources is low, many mode assignment combinations will be feasible. The more
the scarceness of the nonrenewable resources increases, the more mode combina-
tions will become infeasible. Consequently, the higher the scarceness of the non-
renewable resources, the more the search procedure should focus on the search for
feasible mode assignments.

Combining the information of the resource scarceness of both the renewable and
the nonrenewable resources, a resource scarceness matrix can be presented, as shown
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Fig. 2 The resource scarceness
matrix

in Fig. 2. On the horizontal axis the scarceness of the renewable resources, moving
from low to high, is presented, while on the vertical axis the scarceness of the nonre-
newable resources is shown. The matrix can be divided into four quadrants: in quad-
rants 1 and 2, the number of feasible modes (# feas.modes) is high (indicated as ‘�’),
while the amount of feasible modes is more limited (‘�’) in quadrants 3 and 4, due
to the high nonrenewable resource scarceness. In quadrants 1 and 3, the makespan
(Cmax) of the projects with a low renewable resource scarceness will be close to the
critical path duration (CP), while the makespan of the projects with high resource
scarceness values in quadrants 2 and 4 might deviate significantly from the minimal
critical path duration.

In the next section, a scatter search heuristic and different improvement methods
are presented. The improvement methods are based on the resource scarceness char-
acteristics of each quadrant to increase the effectiveness of the search procedure in
each of the quadrants.

4 Scatter search

Scatter search is a population-based meta-heuristic, proposed by Glover et al. (2000),
in which solutions are intelligently combined to yield better solutions. The scatter
search method involves deterministic procedures that can include problem specific
knowledge (Pinol and Beasley 2006) and can therefore be implemented in a variety
of ways and degrees of sophistication.

Scatter search algorithms are often classified as so-called evolutionary methods.
However, the scatter search algorithm contrasts with other evolutionary procedures,
such as genetic algorithms, by providing unifying principles of joining solutions
based on generalized path constructions in Euclidian space and by utilizing strate-
gic designs where other approaches resort to randomization (Glover et al. 2000).



Using resource scarceness characteristics to solve the multi-mode 711

Fig. 3 A conceptual overview
of the scatter search procedure

For an overview of the basic and advanced features of the scatter-search, we refer
to Glover et al. (2000) and Marti et al. (2006). The scatter search we present in this
paper has a generic procedure as outlined in the pseudo-code below.

1. Diversification Generation Method
While Stop Criterium not met
2. Subset Generation Method
3. Solution Combination Method
4. Improvement Method
5. Reference Set Update Method
Endwhile

In Fig. 3, a conceptual overview of the different steps in our scatter search pro-
cedure is shown. In the remainder of this section, each of these different steps is
explained in detail.
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Table 2 Solution vector
representation Activity 1 2 3 4 5 6 7 8

RK 12 18 21 22 23 29 30 35

ML 2 1 2 1 2 1 1 2

Fig. 4 Schedule of example
project

4.1 The diversification generation method

4.1.1 Schedule representation

A schedule is represented by a solution vector, which contains two lists: a random
key (RK), which determines the sequence in which the activities are scheduled, and a
mode list (ML), which determines the duration and the resource requirements for each
activity. In the RK representation, the sequence in which the activities are scheduled
is based on the priority value attributed to each activity. It is assumed that a low RK
value corresponds to a high priority. The mode list represents the execution modes
of the activities in ascending order, i.e. the first number in the list indicates the mode
in which the first activity will be executed, the second number the execution mode
of the second activity, etc. An example of solution vector representation is given in
Table 2.

A schedule generation scheme (SGS) translates the solution vector into a schedule.
In this paper, we make use of a serial scheduling generation scheme (Kelley 1963)
which sequentially adds activities to the schedule one-at-a-time. In each iteration, the
next activity is chosen based on the priorities in the random key and that activity
is assigned to the schedule as soon as possible within the precedence and resource
constraints.

Figure 4 depicts a schedule which is based on the solution vector as proposed in
Table 2. The schedule has a makespan of 9 days and is generated by using a serial
schedule generation scheme. However, this schedule is infeasible with respect to the
nonrenewable resources since 25 nonrenewable resource units are used, while only
23 nonrenewable resources are available (which means that ERR is equal to 2).

4.1.2 Initial population

In this first step, a pool P of Psize solution vectors is generated. To generate the
mode list of the solution vectors, a controlled mode assignment procedure is de-
signed. This procedure relies on the results of a computational experiment performed



Using resource scarceness characteristics to solve the multi-mode 713

on 90 project instances containing 20 activities, 3 modes and 2 renewable and non-
renewable resources. For each project instance, 100 unique and feasible mode lists
were generated, leading to 9,000 different combinations. The idea behind this re-
search is that if a relationship between a mode list characteristic and the makespan of
a project that results from that specific mode list could be found, the search space of
the problem could be reduced to the most promising search regions.

In a first phase, the near-optimal project makespan is calculated with the bi-
population genetic algorithm for the single-mode RCPSP of Debels and Vanhoucke
(2005). In a second phase, a set of measures has been calculated to characterize the
mode lists. The following characteristics have been analyzed:

– Sum of Durations (SOD), defined as
∑n

i=1 dimi
. This characteristic is in line with

the priority rule for the mode assignment proposed by Boctor (1993), who con-
cluded that choosing the shortest feasible execution mode is the most appropriate
rule to minimize the project duration.

– Total Work Content (TWC), defined as
∑n

i=1
∑|Rρ |

k=1 r
ρ
imik

dimi
. This characteris-

tic assumes that mode lists with a lower total work content will result in lower
makespans.

– Mean relative consumption (MRC), defined as 1
|Rρ |

∑n
i=1

∑|Rρ |
k=1

r
ρ
imi k

a
ρ
k

. This char-

acteristic is based on the priority rule proposed by Heilmann (2001). It is assumed
that mode lists with a lower relative resource consumption will result in lower
makespans.

A statistical analysis investigated the relation between the mode lists characteris-
tics and the project makespans obtained during the experiment. A Pearson correla-
tion test revealed that the correlations for the SUD, TWC and MRC with the project
makespan are 0.74, 0.61 and 0.40, respectively (all correlations are significant with
p < 0.01). These results indicate that the significant and proportional relationship be-
tween the sum of all activity durations and the project makespan is the strongest. We
therefore use this information during the generation of the initial mode lists popula-
tion, leading to the controlled mode assignment procedure presented hereunder.

A controlled mode assignment procedure can be formulated in the three following
steps:

1. A start population of mode lists, called RANDPOP, is created, with a large number
of randomly generated feasible mode lists (in this paper: |RANDPOP| is equal to
4 times the number of populations elements Psize).

2. Each mode assignment list has a value for the sum of all activity durations, which
is likely to lead to smaller project makespans.

3. The Psize mode lists with the lowest values for the sum of all activity durations
are selected for entrance in the initial population.

Once the mode assignment lists are generated, a duration and resource consump-
tion can be assigned to each activity for each population element. Since Kolisch and
Drexl (1997) mentioned that finding a feasible solution for the MRCPSP is a NP-
complete problem if at least two nonrenewable resources are given, infeasible solu-
tions are accepted in the initial population, but are penalized with the penalty function
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of Alcaraz et al. (2003), which can be formulated as follows:

penalty =
{

Cmax if feasible

Cmax + max_feas_Cmax − CPmin + ERR otherwise

where max_feas_Cmax gives the maximal makespan of the feasible schedules related
to solution vectors of the current generation and CPmin is the critical path using the
minimal duration of each activity. The excess of resource request ERR is defined as
the number of requested nonrenewable resource units that exceeds the capacity aν

l ,
l ∈ Rν (see Sect. 2).

Once the mode lists are generated, the activity lists are generated randomly, as-
signing a priority value to each activity.

4.1.3 Reference sets

After the generation of Psize population elements and the evaluation of the solution
vectors with the serial schedule generation scheme (SGS), which translates the solu-
tion vector into a schedule, two diverse populations are constructed from P : a set B1,
with the b1 best solutions of the solution set P and a set B2, with b2 diverse solutions.
For the subset B1, a threshold t1 on the minimal distance between the elements is im-
posed in pursuit of diversity. The subset B2 contains the b2 best solutions from P \B1
that are sufficiently distant from the elements of B1. The diversity in B2 is achieved
by a threshold t2 on the smallest distance to any element in B1 with t2 > t1. The dis-
tance between two solutions is a measure for diversity and is calculated according to
the following two distance functions. The first distance function, ds

p1,p2
, calculates

the distance as the sum of the differences between the start times of the activities and
can be formulated as follows:

ds
p1,p2

=
|N |∑

i=1

|sp2
i − s

p1
i |

with p1 and p2 two population elements and sp1 and sp2 their according start times.
The second distance function, dm

p1,p2
, calculates the distance based on the difference

in mode assignments and is formulated as follows:

dm
p1,p2

=
|N |∑

i=1

{
0 if m

p1
i = m

p2
i

1 otherwise

In the computational results section both distance function are compared and ana-
lyzed.

If there are less solutions in B2 than the predefined number b2, the set B2 is filled
up with randomly generated schedules.

4.2 The subset generation method

After the initialization phase, a new pool of solutions is created by combining pairs
of reference solutions in a controlled way. New solutions are created from all two-
element subsets. First, all pairs in B1 containing at least one new solution compared
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to the previous generation are considered. From each such pair, two children are pro-
duced. Second, from each combination of one element from B1 and one from B2 two
offsprings are constructed. Choosing the two reference solutions out of the same clus-
ter stimulates intensification, while choosing them from different clusters stimulates
diversification.

4.3 The solution combination method

In the solution combination phase, the two selected population elements produce a
new offspring which inherits parts of their parents characteristics. Several crossover
operators were tested and tests revealed that the two-point crossover method clearly
outperforms other crossover operators. In the two-point crossover scheme, two
crossover points are randomly chosen and the characteristics between them are ex-
changed. As the procedure works on both the activity-list and the mode-list, the
crossover considers random key values and modes simultaneously (i.e. using the same
crossover points).

In Fig. 5, an example of a two-point crossover is presented. Two solution vectors
(SV1 and SV2) are used to create a new solution vector SVcross. Two crossover point
p1 and p2 are chosen randomly and are equal to 2 and 7, which means that the first
and the last 2 values are chosen out of solution vector SV1 and the other values are
selected from solution vector SV2. The new solution vector SVcross is presented be-
low. Due to the use of random keys, each solution vector remains precedence feasible
and no repair functions need to be used. In Fig. 6, the resulting feasible schedule is
represented.

Fig. 5 Solution improvement methods

Fig. 6 Schedule of solution
vector SVcross
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4.4 The improvement method

In this section we propose different solution improvement methods, which are ap-
plied on the solution vectors that are generated in the solution combination method.
Every new solution vector consists of a new generated activity list and a new gen-
erated mode list. Since the mode list determines the duration and the renewable and
nonrenewable resource requirements for each activity, quick tests can be used to in-
dicate whether the solution vector has potential to improve the current best solution
found so far, without actually using the schedule generation scheme. The two quick
tests are:

Feasibility test This test is related to the nonrenewable resources and checks
whether the mode assignment is feasible or not. If the test reveals an infeasible
solution vector (ERR > 0), the feasibility improvement method is performed.

Lower bound This test is related to the renewable resources and checks whether
a new generated mode assignment (i.e. a duration and renewable resources) can
lead to an improvement in the total project makespan. If the critical sequence lower
bound, proposed by Stinson et al. (1978), is larger than the best makespan found so
far, two specific improvement methods are performed to improve the solution vec-
tor: the critical path improvement method tries to minimize the critical path length
of the solution vector, while the work content improvement method tries to minimize
the total work content of the proposed solution vector.

In case one of the these two tests is positive, one of the three improvement meth-
ods discussed below will be called in order to obtain a modified solution vector which
will likely result in a decrease of the project makespan compared to the best known
solution found so far. Consequently, each of the improvement methods will mod-
ify the mode assignment list of the solution vector in such a way to maximize the
probability that these modifications lead to a better project makespan. Therefore, a
probability p(i,j) is calculated in order to determine which activity/mode combina-
tions will be the subject to a change. The activity/mode combinations with a higher
p(i,j) value will have a higher priority to be modified. The probability p(i,j) is defined
as follows:

p(i,j) = �i,j
∑N

i=1
∑|Mi |

j=1 �i,j

(8)

with �i,j the improvement value for each activity i/mode j combination. Changes
are made until a stop criterion defined by the improvement method is met.

Feasibility improvement method (FIM) The purpose of this improvement method
is to decrease the value of ERR. The improvement value �i,j is formulated as fol-
lows:

�i,j = max{0,ERRold − ERRnew} (9)

with ERRnew equal to the ERR-value based on the activity i/mode j combination,
holding all the other modes equal. Obviously, the value of ERRnew is equal to the
value of ERRold if the current mode mi of activity i is chosen. Once the mode as-
signment becomes feasible or no further improvements can be made, the feasibility
improvement method is stopped.
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Critical path improvement method (CPIM) The purpose of this improvement
method is to minimize the critical path length of the solution vector. The improve-
ment value �i,j for this improvement method is calculated as follows:

�i,j = max{0,CPold − CPnew} (10)

with CPnew the critical path based on the duration of the activity i/mode j combi-
nation and holding all the other modes equal. The improvement method stops when
CPnew is smaller than the best found makespan or when no further improvements
can be found.

Work content improvement method (WCIM) The purpose of this improvement
method is to minimize the total work content of the proposed solution vector. The
work content is calculated as the total required resources needed to execute the
project, given the chosen mode per activity, i.e.

∑n
i=1

∑|Rρ |
k=1 r

ρ
imik

dimi
. The improve-

ment value �i,j for this improvement method is calculated as follows:

�i,j = max{0,WCold − WCnew} (11)

with WCnew the needed work content based on the duration and resource demand of
the selected mode, holding all other modes equal. The improvement method stops
when the critical sequence lower bound is smaller than the best found makespan or
when no further improvements can be found.

These improvement methods perfectly fit into the renewable and nonrenewable
resource scarceness matrix presented in Fig. 2. Since the feasibility improvement
method will try to solve nonrenewable resource infeasibilities expressed by positive
ERR values, it will lie its focus on the third and fourth quadrants of the matrix. The
focus of the critical path improvement method is to make changes in the critical path
length, and hence lies its focus on the left part of the resource scarceness matrix. The
work content improvement method puts a focus on the total work content of the activ-
ity/mode combinations, and consequently, will be fully exploited for project instances
classified in the right part of the resource scarceness matrix. Figure 7 shows by means

Fig. 7 Solution improvement methods
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of the dark shaded areas what to focus of each improvement method is. The contri-
bution of this approach on the solution quality will be tested in the computational
results section.

4.5 The reference set update method

The population evolves over time with the entrance of new solution vectors and the
removal of old solutions, searching to improve the quality of the best known solution.
A new solution is introduced as a member in the reference set either if the solution
vector has a better objective function value than the solution vector with the worst
objective function value in B1 or if the solution point is more diverse with respect to
B1 than the least diverse solution point in B2.

4.6 Local searches

In Sect. 4.4, we have proposed different solution improvement methods. These meth-
ods were applied on the infeasible solution vectors, before they were actually sched-
uled, using the serial schedule generation scheme. However, different local searches
were already proposed in literature which are applied on partially or fully scheduled
projects. The local search of Józefowska et al. (2001) and Bouleimen and Lecocq
(2003) search in the neighbourhood of a schedule by changing the activity list and
mode list randomly. Kolisch and Drexl (1997) determine a probability function based
on an approximation of the change in the objective function to determine which
activity-mode pair will be changed. These local searches were coded and tested but
revealed inferior results in the scatter search procedure with respect to the local search
procedures of Hartmann (2001) and Van Peteghem and Vanhoucke (2010). In what
follows, we explain both local search procedures briefly. Both local search procedures
will be tested in Sect. 5.

Hartmann (2001) The local search of Hartmann (2001) is based on the multi-mode
left shift of Sprecher (1994). A multi-mode left shift of an activity j is an operation
on a given schedule which reduces the finish time of activity j without changing the
modes or finish times of the other activities and without violating the precedence
and resource constraints. For each feasible schedule, the procedure checks for every
activity whether a multi-mode left shift can be performed. For each activity, the
first feasible multi-mode left shift is applied to the schedule. It is called a single-
pass procedure, because every activity is considered only once for a multi-mode left
shift.

Van Peteghem and Vanhoucke (2010) The local search of Van Peteghem and Van-
houcke (2010) selects an activity with a certain probability and evaluates during the
generation of a schedule all feasible mode assignments of the selected activity. For
each new mode assignment the ERR is calculated. If the ERR is equal to or smaller
than the current one, the local search checks if an improvement can be made in the
finish time of that activity. The mode with the lowest finish time, which does not
increase the ERR, is chosen.
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5 Computational results

In this section we configure the algorithm and evaluate its performance. The scatter
search has been coded and compiled in Visual C++ 6.0 and used in the compu-
tational tests on a personal computer with a 1.75 GHz processor. In Sect. 5.1 we
present two datasets which are generated for this research, while in Sect. 5.2, the
stopping criterion is discussed. In Sect. 5.3, the Taguchi method is used to configure
the algorithmic parameter settings. The influence of the improvement methods on
the different quadrants in the resource scarceness matrix is tested in Sect. 5.4. The
analysis of the local searches is presented in Sect. 5.5, while the introduction of an
integrated solution procedure is presented in Sect. 5.6. Finally, in Sect. 5.7 the re-
sults of the scatter search algorithm are compared with the results of other existing
procedures from the literature on the well-known PSPLIB benchmark dataset.

5.1 Dataset generation

5.1.1 Introduction

In this section two datasets are proposed, each containing a large set of data instances
based on different complexity project parameters. A first dataset is used to configure
the proposed scatter search algorithm, the other dataset is used to analyse the influ-
ence of the improvement methods and the local searches on the resource scarceness
matrix.

In literature, two of the most used parameters to calculate the scarceness of the
resources for single-mode projects are the Resource Strength (RS), introduced by
Cooper (1976) and later on redefined by Alvarez-Valdes and Tamarit (1989) and
Kolisch et al. (1995), and the Resource Constrainedness (RC), proposed by Patterson
(1976). Since no formula is known for the resource constrainedness as a resource pa-
rameter for multi-mode resource-constrained projects, we will use in the remainder
of this paper the resource strength as a parameter to calculate the scarceness of the
renewable and nonrenewable resources. Kolisch et al. (1995) and Demeulemeester et
al. (2003) defined this parameter for multi-mode projects as follows:

RSk = ak − rmin
k

rmax
k − rmin

k

(12)

where ak denotes the total availability of renewable resource type k, rmin
k is

formulated as maxi=1,...,n;m=1,...,|Mi |rikmi
and rmax

k denotes the peak demand of
renewable resource type k in the precedence preserving earliest start schedule,
where each activity has a duration which corresponds to a maximum allocation
of resources (Demeulemeester et al. 2003). Kolisch et al. (1995) defined rmin

k as
maxi=1,...,n{minm=1,...,Mrikm}. However, for low values of RSk , the use of this def-
inition will lead to different non-executable modes, which means that its execution
would violate the renewable (or nonrenewable) resource constraints in any schedule
(Sprecher 2000).

For the nonrenewable resources the minimum and maximum consumption can be
obtained by cumulating the consumptions obtained when performing each activity in
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Table 3 Parameter setting for
the different datasets Dataset 1 Dataset 2

OS 0.25–0.50–0.75 OS 0.25–0.50–0.75

RSR 0.25–0.50–0.75 RSR 0 to 1 (0.10)

RSNR 0.25–0.50–0.75 RSNR 0 to 1 (0.10)

RF 0.50–1.00 RF 0.50–1.00

# 540 # 7,260

the mode having minimum and maximum consumptions. The resource strength RS
varies between zero and one. A RS close to zero indicates that the scarceness of the
resource is high, while a RS close to 1 implies that the resource is hardly restrictive.

5.1.2 Parameter settings

For the generation of the instances of both datasets, we have used the RanGen project
scheduling instances generator developed by Vanhoucke et al. (2008) and extended
the projects to a multi-mode version. Each instance contains 50 activities, with three
modes, two renewable resource and two nonrenewable resources. Dataset 1 is used in
Sect. 5.3 for the configuration of the algorithmic parameters, while dataset 2 is used
in Sects. 5.4, 5.5 and 5.6 to analyze the performance of the improvement methods
and local searches.

The following network and resource parameters were used for the two datasets.
The values for each of these project characteristics are presented in Table 3.

1. The network complexity is described by the order strength, which is defined as the
number of precedence relations (including the transitive ones but not including
the arcs connecting the dummy start or end activity) divided by the theoretical
maximum number of precedence relations (Mastor 1970). In both datasets, the OS
is set at 0.25, 0.50 or 0.75.

2. In dataset 1, the resource strength is set at 0.25, 0.50 or 0.75, while in the other
dataset, the parameter varies between 0 and 1 in steps of 0.10. The same parameter
values are used for the nonrenewable resource strength in both datasets.

3. The resource factor (RF) indicates the percentage of resources that are required
per activity and is set at 0.50 or 1.

4. For each problem class, 5 instances were generated. In the last row of Table 3, the
total number of instances generated is shown.

5.2 Stopping criterion

Since it is assumed that the computational effort for constructing one schedule is
similar in most heuristics and in order to make a fair comparison, the evaluation is
stopped after a predefined number of generated schedules, in casu 5,000 schedules.
According to Kolisch and Hartmann (2006), the advantage of the number of sched-
ules as stop criterion is twofold: first, it is platform independent and second, future
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studies can easily make use of the benchmark results by applying the same stop cri-
terion. However, the stop criterion also has a few shortcomings. First, it cannot be
applied to all different heuristic strategies. Second, the required time to compute one
schedule might differ between metaheuristics. Nevertheless, Kolisch and Hartmann
(2006) conclude that limiting the number of schedules is the best criterion available
for a broad comparison, which motivated us to use this stop criterion in all computa-
tional experiments.

To measure the number of schedules, the definition of one schedule should be
defined. In their RCPSP review paper, Kolisch and Hartmann (2006) state that one
schedule corresponds to (at most) one start time assignment per activity, as done by
a SGS. However, measuring the number of schedules according to this rule means
that for every mode change in a local search procedure a new schedule should be
counted. Therefore, Lova et al. (2009) define the number of generated schedules as
the sum of times each activity of the project has obtained a feasible start time divided
by the number of activities of the project. Assume a project with eight activities, each
with three modes. Suppose that the SGS generates a schedule based on an activity
and mode list (8 start times are assigned) and that a local search procedure has also
analyzed the two other (feasible) modes for three of the activities. This means that
the procedure has generated and analyzed (8 + 2 × 3)/8 = 1.75 schedules. In the
remainder of this paper, the last definition is used to define the number of schedules.

5.3 Impact of the algorithmic parameters

In order to determine a suitable set of parameters for our scatter search algorithm,
the Taguchi method is used (Montgomery 2005). This method involves reducing the
variation in the process through robust design of experiments (DOE). The DOE is
carried out on dataset 1.

The algorithm contains the following seven key parameters: the values B , b1 and
b2, which determine the total population size (POP = B(b1 + b2)), the value DF,
which determines which distance function is used, the value IMG, which determines
if the initial mode lists are generated randomly or by using the controlled mode as-
signment procedure, and the values v1 and v2, which determine the threshold values
t1 = v1|N | and t2 = v2|N |.

The values v1 and v2 depend on the chosen distance function. If the distance func-
tion dm

p1,p2
is chosen, the values v1 and v2 indicate a percentage of the total number

of activities for which the execution mode is equal. In the other situation, the values
v1 and v2 indicate the average time per activity the start times of an activity in the two
schedules may vary. Since there is a relationship between the value DF and the val-
ues v1 and v2, two Taguchi experiments are executed, one with the distance function
dm
p1,p2

and one with the distance function ds
p1,p2

.
Each experiment therefore contains 6 parameters (B , b1, b2, IMG, v1 and v2). Ac-

cording to the number of levels (2 for the parameter IMG and 5 for the others), the
orthogonal array L25 is chosen. An overview of the different levels for each parame-
ter is given in Table 4. The values v1 and v2 are divided by distance function.

Computational results clearly indicates that the experiment with the distance func-
tion ds outperforms the experiment with the distance function dm (a minimum devia-
tion of 190.75% versus 191.62% and an average deviation 200.70% versus 201.15%).
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Table 4 Different parameter
values Factor level Parameters ds

p1,p2
dm
p1,p2

B b1 b2 IMG v1 v2 v1 v2

1 5 8 3 0 0.25 1 0.1 0.3

2 10 10 5 1 0.50 2 0.2 0.4

3 15 12 7 0.75 3 0.3 0.5

4 20 15 9 1 4 0.4 0.6

5 25 20 11 1.5 5 0.5 0.7

Table 5 Response table with 5,000 schedules

Factor level Parameters

B b1 b2 IMG v1 v2

1 197.33% 201.15% 201.05% 200.75% 203.11% 205.50%

2 193.65% 200.13% 199.87% 200.62% 201.07% 200.73%

3 195.28% 198.16% 202.91% 198.58% 197.73%

4 201.01% 200.27% 199.45% 201.57% 200.01%

5 216.23% 203.78% 200.22% 199.16% 199.53%

� 22.58% 5.62% 3.46% 1.13% 4.53% 7.78%

In Table 5, an overview is given of the average of the average deviation from the mini-
mal critical path after 5,000 schedules for each of the different parameters and levels.
According to the factor level trends, the best combinations of parameter values for
the our algorithm are determined, as indicated in bold in Table 5.

5.4 Influence of the improvement method

In this section, the influence of the different improvement methods on the solution
quality in the different quadrants of the resource scarceness matrix is tested. The re-
sults for the improvement methods applied on dataset 2 after 5,000 schedules and
after 1 second are mentioned in Table 6. The sum of all the project makespans is
presented in the column ‘Sum’, while the column ‘Dev.CP’ (%) contains the average
deviation from the minimal critical path length. The column ‘Dev.Best’ contains the
average deviation from the solutions of the best procedure, which will be presented
later. Since the CPU-time needed to execute each of the improvement methods dif-
fers significantly (as can be seen in column ‘CPU-time’), computational tests were
performed with a fixed time limit of 1 second in order to make a fair comparison.
However, similar conclusions can be drawn.

In this section, we will consider the first 5 results. The other results will be dis-
cussed in the following sections.

Figure 8 indicates which improvement method obtains the lowest average devia-
tion from the minimal critical path for the project instances in a specific RSR /RSNR-
combination. E.g. for the instances with a RSR = 80 and a RSNR = 40, the critical path
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Table 6 Influence of the improvement methods and local searches

Result Impr. Local 5,000 schedules 1 second

method Search Sum Dev.CP Dev.Best CPU-time Sum Dev.CP Dev.Best

(%) (%) (s) (%) (%) (%)

1 – – 283,006 48.70% 3.92% 0.31 278,246 45.92% 3.16%

2 FIM – 280,459 47.27% 2.97% 0.33 275,284 44,26% 2.07%

3 WCIM – 280,311 47.17% 2.58% 0.67 278,437 45.98% 3.18%

4 CPIM – 278,389 46.09% 1.62% 0.51 274,417 43.76% 1.22%

5 COMB – 275,217 44.33% 0.95% 0.92 273,690 43.30% 1.01%

6 – HART 276,689 45.10% 1.48% 0.25 271,616 42.06% 0.61%

7 – VPV 275,455 44.43% 1.05% 0.29 271,342 42.03% 0.56%

8 – COMB 274,998 44.19% 0.58% 0.26 270,718 41.70% 0.29%

9 COMB COMB 273,047 43.09% 0.00% 0.73 270,232 41.37% 0.00%

Fig. 8 Distribution of the most
effective improvement methods
over the resource scarceness
matrix

improvement method outperforms the other two improvement methods. The results
corresponds with the resource scarceness characteristics as mentioned in Sect. 4.4:

– The lower the renewable resource scarceness of a project instance is, the more
effective the critical path improvement method is.

– The higher the renewable resource scarceness of a project instance is, the more
effective the work content improvement method is.

– The higher the nonrenewable resource scarceness of a project instance is, the more
effective the feasibility improvement method is.

Based on these findings, a combined improvement method can be proposed. For
this combined improvement method, a probability is assigned to each of the improve-
ment methods, based on the value V which is assigned according to the following
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formula:

VCPIM = RSR

VFIM = 100 − RSNR

VWCIM = 100 − RSR

with RSR the value of the renewable resource strength and RSNR the value of the
nonrenewable resource strength. The probability P that an improvement method q

(q = CPIM, FIM or WCIM) is chosen is equal to:

Pq = Vq

VCPIM + VFIM + VWCIM

If the improvement is selected and finds an improvement in the solution vector,
the improvement value V is increased such that the probability of selection in a next
iteration is increased. In doing so, this probability selection method aims at selecting
the improvement methods that fits best for the project under study given the renew-
able and nonrenewable resource characteristics as shown in the resource scarceness
matrix. Table 6 shows that this method results in the best performing results found
(result 5).

5.5 Introduction of local searches

Results 6 and 7 in Table 6 show the impact on the solution quality for the two local
searches described in Sect. 4.6, i.e. the local search of Hartmann (HART) and the
local search of Van Peteghem and Vanhoucke (VPV). The table shows that the lo-
cal of search of Van Peteghem and Vanhoucke outperforms on average the solutions
of Hartmann. However, looking to the specific RSNR − RSR-combinations in the re-
source scarceness matrix, a distinction can be made: in (parts of) quadrants 2 and 3
the local search of Hartmann (HART) outperforms the local search of Van Peteghem
and Vanhoucke (VPV), while in the other two quadrants, the latter seems more effec-
tive than the former (see Fig. 9). Based on these findings, a controlled local search
procedure is proposed (result 8), where in the specific regions of quadrant 2 and 3
the local search of Hartmann is used, while in the other situations, the local search of
Van Peteghem and Vanhoucke is performed.

5.6 An integrated solution procedure for the MRCPSP

An integrated procedure is developed by integrating the combined local search and
the combined improvement method in our scatter search algorithm. This integrated
procedure follows the different steps as indicated in Fig. 3. Once a solution vector
is generated in the solution combination method, the integrated procedure is applied,
along the following steps:

1. Based on the probability P (as defined in Sect. 5.4), one of the three improvement
methods is applied on the solution vector.
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Fig. 9 Influence of the local
searches on the resource
scarceness matrix

2. The solution vector is evaluated. Depending on the values of RSR and RSNR, the
local search of Hartmann (if RSR < 40 and RSNR > 70 or if RSR > 50 and RSNR <

50) or the local search of Van Peteghem and Vanhoucke (otherwise) is applied.
3. The solution vector is added to the population.

Once all the solution vectors of the subsets are combined, the population is up-
dated, new subsets are generated and new solution vectors are generated with the
solution combination method. On each solution vector, the integrated procedure is
applied. This procedure continues until the stopping criterion is met.

The results for the overall procedure are mentioned in Table 6 (result 9). In the
following section, tests will be performed on the PSPLIB dataset using this integrated
solution procedure.

5.7 Comparison with other heuristics

In this section we compare the scatter search algorithm with other procedures
available in literature. We test the algorithm on the well-known PSPLIB bench-
mark dataset of Kolisch and Sprecher (1996). This dataset is generated with the
project generator ProGen (Kolisch et al. 1995) and is available in the project
scheduling problem library PSPLIB from the ftp server of the University of Kiel
(http://129.187.106.231/psplib/). The dataset for the multi-mode RCPSP contains
project instances with 10, 12, 14, 16, 18, 20 and 30 activities, each with 2 renew-
able and 2 nonrenewable resources. The duration of the activities varies from 1 to
10. For the instances with 30 activities only a set of best known heuristic solutions is
available, for the other instances the optimal solutions are known. For each problem
size, 640 instances were generated. Due to infeasibility of some instances, not all
these instances could be solved.

In Table 7 an overview of the average deviation from the optimal solution on the
J10 to J20-datasets for different algorithms and based on 5,000 schedules is pre-
sented. As can be seen in both tables, the results for our algorithm outperforms the

http://129.187.106.231/psplib/
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Table 7 Comparison with other heuristics—average % deviation from optimum—5,000 schedules

Instances set

J10 J12 J14 J16 J18 J20

Józefowska et al. (2001) 1.16 1.73 2.60 4.07 5.52 6.74

Alcaraz et al. (2003) 0.24 0.73 1.00 1.12 1.43 1.91

Ranjbar et al. (2009) 0.18 0.65 0.89 0.95 1.21 1.64

Lova et al. (2006) 0.06 0.17 0.32 0.44 0.63 0.87

Tseng and Chen (2009) 0.33 0.52 0.91 1.08 1.30 1.71

Van Peteghem and Vanhoucke (2010) 0.01 0.09 0.22 0.32 0.42 0.57

This work 0.00 0.02 0.08 0.15 0.23 0.32

Optimal 100% 99.45% 97.28% 96.73% 94.75% 87.73%

CPU-time (ms) 95 105 118 130 143 155

Table 8 % increase of project duration above critical path length and CPU-time for J30

1,000 schedules 5,000 schedules 50,000 schedules

Av. % Dev. CP Av. % Dev. CP Av. % Dev. CP

Lova et al. (2009) 16.65% 14.77% –

Tseng and Chen (2009) – 18.33% 15.68%

Van Peteghem and Vanhoucke (2010) 15.30% 13.75% 13.31%

This work 15.02% 13.66% 12.72%

other heuristics. The percentage of optimal solutions found and the computation time
(in ms) for each of the datasets for 5,000 schedules is presented in the bottom two
rows.

For the J30-dataset only the best known solutions (BKS) are available. Since com-
parison of the deviations from the BKS is not desirable (due to the change over time in
the values of the BKS), only the percentage increase of the project duration above the
minimal critical path length can provide a fair comparison between different heuristic
procedures. Therefore, these deviations for the results after 1,000, 5,000 and 50,000
schedules computed compared to two other solution procedures are mentioned in
Table 8 and indicate the strong performance of our algorithm. For one instance, an
improvement in the best known solution was found.

6 Conclusions

In this paper we have designed a promising scatter search procedure for the well-
known multi-mode resource-constrained project scheduling problem. The added
value of this algorithm lies in the steering power of three proposed improvement
methods, each tailored to the specific characteristics of different renewable and non-
renewable resource scarceness values. Computational results confirm the influence
of these improvement methods on projects situated in one of the quadrants of our
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resource scarceness matrix. The combination of these improvement methods and the
introduction of two local searches into one overall solution procedure leads to promis-
ing computational results.

Further research efforts will focus on both the extension of the multi-mode project
scheduling problem by taking other criteria into account, like the maximisation of
the net present value and introduction of activity splitting, and on the applicability of
these solution improvement methods on the influence of other network or resource
parameters on the search strategy of solution procedures.
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