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Abstract Random-key genetic algorithms were introduced by Bean (ORSA J. Com-
put. 6:154–160, 1994) for solving sequencing problems in combinatorial optimiza-
tion. Since then, they have been extended to handle a wide class of combinatorial op-
timization problems. This paper presents a tutorial on the implementation and use of
biased random-key genetic algorithms for solving combinatorial optimization prob-
lems. Biased random-key genetic algorithms are a variant of random-key genetic al-
gorithms, where one of the parents used for mating is biased to be of higher fitness
than the other parent. After introducing the basics of biased random-key genetic al-
gorithms, the paper discusses in some detail implementation issues, illustrating the
ease in which sequential and parallel heuristics based on biased random-key genetic
algorithms can be developed. A survey of applications that have recently appeared in
the literature is also given.

Keywords Genetic algorithms · Biased random-key genetic algorithms ·
Random-key genetic algorithms · Combinatorial optimization · Metaheuristics

1 Introduction

Combinatorial optimization can be defined by a finite ground set E = {1, . . . , n}, a
set of feasible solutions F ⊆ 2E , and an objective function f : 2E → R. Throughout
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this paper, we consider the minimization version of the problem, where we search for
an optimal solution S∗ ∈ F such that f (S∗) ≤ f (S),∀S ∈ F . Given a specific combi-
natorial optimization problem, one can define the ground set E, the cost function f ,
and the set of feasible solutions F . For instance, in the case of the traveling salesman
problem on a graph, the ground set E is that of all edges in the graph, f (S) is the sum
of the costs of all edges e ∈ S, and F is formed by all edge subsets that determine a
Hamiltonian cycle.

Combinatorial optimization finds applications in many settings, including rout-
ing, scheduling, inventory control, production planning, and location problems. These
problems arise in real-world situations (Pardalos and Resende 2002) such as in trans-
portation (air, rail, trucking, shipping), energy (electrical power, petroleum, natural
gas), and telecommunications (design, location, operation).

While much progress has been made in finding provably optimal solutions to com-
binatorial optimization problems employing techniques such as branch and bound,
cutting planes, and dynamic programming, as well as provably near-optimal solutions
using approximation algorithms, many combinatorial optimization problems arising
in practice benefit from heuristic methods that quickly produce good-quality solu-
tions. Many modern heuristics for combinatorial optimization are based on guidelines
provided by metaheuristics.

Metaheuristics are high level procedures that coordinate simple heuristics, such as
local search, to find solutions that are of better quality than those found by the simple
heuristics alone. Many metaheuristics have been introduced in the last thirty years
(Glover and Kochenberger 2003). Among these, we find greedy randomized adap-
tive search procedures (GRASP), simulated annealing, tabu search, variable neigh-
borhood search, scatter search, path-relinking, iterated local search, ant colony opti-
mization, swarm optimization, and genetic algorithms.

In this paper, we introduce a class of heuristics called biased random-key genetic
algorithms. This framework for building heuristics for combinatorial optimization is
general and can be applied to a wide range of problems. An important characteristic
of the framework is the clear divide between the problem-independent component
of the architecture and the problem-specific part. This allows for reuse of software
and permits the algorithm designer to concentrate on building the problem specific
decoder.

The paper is organized as follows. In Sect. 2 we introduce biased random-key
genetic algorithms. Issues related to the efficient implementation of sequential and
parallel versions of these heuristics are discussed in Sect. 3. In Sect. 4 examples of
biased random-key genetic algorithms on a wide range of combinatorial optimization
problems are given. Concluding remarks are made in Sect. 5.

2 Biased random-key genetic algorithms

Genetic algorithms, or GAs, (Goldberg 1989; Holland 1975) apply the concept of
survival of the fittest to find optimal or near-optimal solutions to combinatorial op-
timization problems. An analogy is made between a solution and an individual in a
population. Each individual has a corresponding chromosome that encodes the so-
lution. A chromosome consists of a string of genes. Each gene can take on a value,
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called an allele, from some alphabet. A chromosome has associated with it a fitness
level which is correlated to the corresponding objective function value of the solution
it encodes. Genetic algorithms evolve a set of individuals that make up a population
over a number of generations. At each generation, a new population is created by
combining elements of the current population to produce offspring that make up the
next generation. Random mutation also takes place in genetic algorithms as a means
to escape entrapment in local minima. The concept of survival of the fittest plays into
genetic algorithms when individuals are selected to mate and produce offspring. In-
dividuals are selected at random but those with better fitness are preferred over those
that are less fit.

Genetic algorithms with random keys were first introduced by Bean (1994) for
solving combinatorial optimization problems involving sequencing. In this paper we
refer to this class of genetic algorithms as random-key genetic algorithms (RKGA).
In a RKGA, chromosomes are represented as a string, or vector, of randomly gener-
ated real numbers in the interval [0,1]. A deterministic algorithm, called a decoder,
takes as input any chromosome and associates with it a solution of the combinatorial
optimization problem for which an objective value or fitness can be computed. In the
case of Bean (1994), the decoder sorts the vector of random keys and uses the indices
of the sorted keys to represent a sequence. As we will see shortly, decoders play an
important role in RKGAs.

A RKGA evolves a population of random-key vectors over a number of iterations,
called generations. The initial population is made up of p vectors of random-keys.
Each allele is generated independently at random in the real interval [0,1]. After the
fitness of each individual is computed by the decoder, the population is partitioned
into two groups of individuals: a small group of pe elite individuals, i.e. those with the
best fitness values, and the remaining set of p −pe non-elite individuals, where pe <

p − pe. To evolve the population, a new generation of individuals must be produced.
A RKGA uses an elitist strategy since all of the elite individuals of generation k are
copied unchanged to generation k + 1. This strategy keeps track of good solutions
found during the iterations of the algorithm resulting in a monotonically improving
heuristic. Mutation is an essential ingredient of genetic algorithms, used to enable
GAs to escape from entrapment in local minima. RKGAs implement mutation by
introducing mutants into the population. A mutant is simply a vector of random keys
generated in the same way that an element of the initial population is generated. At
each generation a small number pm of mutants are introduced into the population.
Mutant solutions are random-key vectors and consequently can de decoded into valid
solutions of the combinatorial optimization problem. With the pe elite individuals and
the pm mutants accounted for in population k+1, p−pe −pm additional individuals
need to be produced to complete the p individuals that make up the population of
generation k + 1. This is done by producing p − pe − pm offspring through the
process of mating.

Figure 1 illustrates the evolution dynamics. On the left of the figure is the cur-
rent population. After all individuals are sorted by their fitness values, the best fit are
placed in the elite partition labeled ELITE and the remaining individuals are placed
in the partition labeled NON-ELITE. The elite random-key vectors are copied with-
out change to the partition labeled TOP in the next population (on the right side
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Fig. 1 Transition from
generation k to generation k + 1
in a BRKGA

of the figure). A number of mutant individuals are randomly generated and placed
in the new population in the partition labeled BOT. The remainder of the popu-
lation of the next generation is completed by crossover. In a RKGA, Bean (1994)
selects two parents at random from the entire population. A biased random-key ge-
netic algorithm, or BRKGA (Gonçalves and Almeida 2002; Ericsson et al. 2002;
Gonçalves and Resende 2004), differs from a RKGA in the way parents are selected
for mating. In a BRKGA, each element is generated combining one element selected
at random from the partition labeled ELITE in the current population and one from
the partition labeled NON-ELITE. In some cases, the second parent is selected from
the entire population. Repetition in the selection of a mate is allowed and therefore an
individual can produce more than one offspring. Since we require that pe < p − pe,
the probability that a given elite individual is selected for mating (1/pe) is greater
than that of a given non-elite individual (1/(p − pe)) and therefore the given elite
individual has a higher likelihood to pass on its characteristics to future generations
than does a given non-elite individual. Also contributing to this end are parametrized
uniform crossover (Spears and DeJong 1991), the mechanism used to implement mat-
ing in BRKGAs, and the fact that one parent is always selected from the elite set. Let
ρe > 0.5 be a user-chosen parameter. This parameter is the probability that an off-
spring inherits the allele of its elite parent. Let n denote the number of genes in the
chromosome of an individual. For i = 1, . . . , n, the i-th allele c(i) of the offspring c

takes on the value of the i-th allele e(i) of the elite parent e with probability ρe and
the value of the i-th allele ē(i) of the non-elite parent ē with probability 1 − ρe. In
this way, the offspring is more likely to inherit characteristics of the elite parent than
those of the non-elite parent. Since we assume that any random key vector can be
decoded into a solution, then the offspring resulting from mating is always valid, i.e.
can be decoded into a solution of the combinatorial optimization problem.

Figure 2 illustrates the crossover process for two random-key vectors with four
genes each. Chromosome 1 refers to the elite individual and Chromosome 2 to the
non-elite one. In this example the value of ρe = 0.7, i.e. the offspring inherits the
allele of the elite parent with probability 0.7 and of the other parent with probability
0.3. A randomly generated real in the interval [0,1] simulates the toss of a biased
coin. If the outcome is less than or equal to 0.7, then the child inherits the allele of
the elite parent. Otherwise, it inherits the allele of the other parent. In this example,
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Fig. 2 Parametrized uniform crossover: mating in BRKGAs

Fig. 3 Decoder used to map solutions in the hypercube to solutions in the solution space where fitness is
computed

the offspring inherits the allele of the elite parent in its first, third, and fourth genes.
It resembles the elite parent more than it does the other parent.

When the next population is complete, i.e. when it has p individuals, fitness values
are computed for all of the newly created random-key vectors and the population is
partitioned into elite and non-elite individuals to start a new generation.

A BRKGA searches the solution space of the combinatorial optimization prob-
lem indirectly by searching the continuous n-dimensional unit hypercube, using the
decoder to map solutions in the hypercube to solutions in the solution space of the
combinatorial optimization problem where the fitness is evaluated. Figure 3 illustrates
the role of the decoder.

BRKGA heuristics are based on a general-purpose metaheuristic framework. In
this framework, depicted in Fig. 4, there is a clear divide between the problem-
independent portion of the algorithm and the problem-dependent part. The problem-
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Fig. 4 Flowchart of a BRKGA

independent portion has no knowledge of the problem being solved. It is limited
to searching the hypercube. The only connection to the combinatorial optimization
problem being solved is the problem-dependent portion of the algorithm, where the
decoder produces solutions from the vectors of random-keys and computes the fitness
of these solutions. Therefore, to specify a BRKGA heuristic one need only define its
chromosome representation and the decoder.

Consider, for example, a set covering problem where one is given an m×n binary
matrix A = [ai,j ] and wants to select the smallest cover, i.e. the smallest subset of
columns J ∗ ⊆ {1,2, . . . , n} such that, for each row i = 1, . . . ,m, there is at least one
j ∈ J ∗ such that ai,j = 1. One possible BRKGA heuristic for this problem defines
the vector of random keys x to have n random keys in the real interval [0,1]. The j -th
key corresponds to the j -th column of A. The decoder selects column j to be in J ∗
only if xj ≥ 0.5. If the resulting set J ∗ is a valid cover, then the fitness of the cover
is |J ∗|. Otherwise, start with set J ∗ and apply the standard greedy algorithm for set
covering: while there are uncovered rows, find the unselected column that if added
to J ∗ covers the largest number of yet-uncovered rows, breaking ties by the index of
the column. Add this column to set J ∗. When the resulting set J ∗ is a valid cover,
scan the columns in the cover from first to last to check if each column j ∈ J ∗ is
redundant, i.e. if J ∗ \ {j} is a cover. If so, then remove j from J ∗. When no column
can be removed, stop. The fitness of the cover is |J ∗|. Note that, as required, this
decoder is a deterministic algorithm. For a given vector of random keys, applying the
decoder will always result in the same cover.

Though BRKGAs only use randomly generated keys, they are much better at find-
ing optimal or near-optimal solutions than a purely random algorithm. Figure 5 pro-
vides strong evidence that there is learning taking place in a BRKGA. The figure
shows the distributions of objective function values of the 100-element population
of a BRKGA and the repeated generation of sets of 100 random solutions for a set
covering by pairs problem (Breslau et al. 2009). The random solutions are generated
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Fig. 5 Comparing a BRKGA with a random multistart heuristic on an instance of a covering by pairs
problem

with the same code using the BRKGA parameters p = 101, pe = 1, and pm = 100.
This way, the mutants are the random solutions, the best solution is saved in the elite
set, and no crossover is ever done. Let i, j, k ∈ {1,2, . . . ,100} × {1,2, . . . ,100} ×
{1,2, . . . ,100}. The covering-by-pairs problem considered here has 76,916 triplets,
where a triplet {i, j, k} indicates that the pair {i, j} covers element k. The objective is
to find the smallest cardinality subset S∗ ⊆ {1,2, . . . ,100} such that the union of all
pairs {i, j} with i, j ∈ S∗ × S∗ covers all the 100 elements indicated by the k values.
The optimal solution, which we plot as a reference, is 21 and was computed by solv-
ing an integer programming model with the commercial integer programming solver
CPLEX. As one can observe, while the BRKGA quickly finds an optimal solution in
less than 2 seconds, the random multistart heuristic is still quite far from the optimal
after 600 seconds having only found a best solution of size 38.

As discussed earlier in this paper, a biased random-key genetic algorithm and an
(unbiased) random-key genetic algorithm differ slightly in the way they select parents
for mating. The biased variant always selects one parent from the set of elite solutions
whereas the unbiased variant selects both parents from the entire population. This
way, offspring produced by the biased version are more likely to inherit characteris-
tics of elite solutions. This likelihood is further emphasized through the parametrized
uniform crossover used by both variants to combine the parents and produce the off-
spring. Though this is apparently only a very slight difference, it almost always leads
to a big difference in how these variants perform. BRKGAs tend to find better solu-
tions than RKGAs if given the same running time and have a much higher probability
of finding a solution with a specified target solution value in less time. To illustrate
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Fig. 6 Time to target plots compare running times needed to find the optimal solution of a 220 element
covering by pairs problem with a BRKGA and two variants of a RKGA

this, consider Fig. 6 which shows time-to-optimal plots for a covering-by-pairs prob-
lem with 220 elements and 456,156 triplets. The plots compare running times to find
an optimal solution for 200 independent runs of each of three variants: a BRKGA,
a RKGA,1 and a heuristic (RKGA-ord) that is similar to a RKGA except that the
offspring inherit the allele of the better fit of the two parents with probability ρe. The
figure clearly shows that the BRKGA finds optimal solutions in less time than its
unbiased counterparts. For example, by 325 s, the time that the RKGA takes to solve
any one of its 84 attempts, the BRKGA solves 184 of its 200 attempts. Ordering the
parents, as is done in RKGA-ord, improves the RKGA, but not enough to do better
than the BRKGA. For example, by 216 s, the time that RKGA-ord takes to solve
any one of its 200 attempts, the BRKGA solves 176 of its 200 attempts. Though we
illustrate this on only a single instance of a single problem type, we have observed
that this behavior is typical for a wide range of problems (Gonçalves et al. 2009b).

3 Implementation issues

In this section, we discuss some issues related to the implementation of BRKGA
heuristics. We focus on the separation of the problem independent and dependent

1Due to excessively long running time, we only carried out 84 independent runs with the RKGA variant.
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portions of the heuristic, types of decoders, initial population, population partition-
ing, parallel implementations, and post-optimization based on pairwise path-relinking
between elite set solutions.

3.1 Components of a BRKGA heuristic

As discussed earlier in this paper, RKGAs have problem-independent and problem-
dependent modules. This makes it possible to design a general-purpose problem-
independent solver that can be reused to implement different heuristics. That way,
when designing a new heuristic for a specific combinatorial optimization problem,
one need only implement the problem-dependent part, namely the decoder.

The problem-independent module has few basic components. These components
depend on the number of genes in the chromosome of an individual (n), the number
of elements in the population (p), the number of elite elements in the population (pe),
the number of mutants introduced at each generation into the population (pm), and the
probability that an offspring inherits the allele of its elite parent (ρe). The population
is stored in the p × n real-valued matrix pop, where the i-th chromosome is stored
in row i of pop. After populating matrix pop with real-valued random numbers
generated uniformly in the interval [0,1], the fitness of each chromosome is evaluated
by the problem-dependent decoder. The fitness value of the i-th chromosome is stored
in the i-th position of the p-dimensional array fitness.

Each generation of an BRKGA heuristic consists of the following five steps:

(1) Sort array fitness in increasing order and reorder the rows of pop according
to the sorted values of array fitness. The elements of pop do not actually
need to be moved. Only an array with their positions is needed. For ease of de-
scription, we assume in this discussion that the rows of pop are actually moved
to reflect the sorted values of fitness.

(2) Mate p −pe −pm pairs of parents, one whose index in pop is an integer random
number uniformly generated in the interval [1,pe] and the other whose index is
an integer random number uniformly generated in the interval [pe + 1,p]. The
i-th offspring resulting from the crossover is temporarily stored in row i of the
real-valued (p−pe −pm)×n matrix tmppop. Mating is achieved by generating
n uniform random numbers {r1, . . . , rn} in the interval [0,1]. For j = 1, . . . , n,
if rj ≤ ρe, then the j -th gene of the offspring inherits the j -th allele of the elite
parent. Otherwise, it inherits the allele of the other parent.

(3) Generate at random pm mutant chromosomes of size n. These mutants are gener-
ated by the same module used to generate the initial population. The i-th mutant
chromosome is stored in row pm + i − 1 of matrix pop.

(4) Copy the (p − pe − pm) × n matrix tmppop to rows pe + 1, . . . , p − pm of
matrix pop.

(5) Evaluate the fitness of the chromosomes in rows pe + 1, . . . , p of matrix pop
and store these values in positions pe + 1, . . . , p of array fitness.

This process is applied repeatedly. Each iteration is called a generation. There are
many possible stopping criteria, including stopping after a fixed number of genera-
tions from the beginning, after a fixed number of generations since the generation of
the last solution improvement, after a time limit is reached, or after a solution at least
as good as a given threshold is found.
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3.2 Decoders

Decoders play an important role in BRKGA heuristics since they make the connec-
tion between the solutions in the hypercube and the fitness of their corresponding
solutions in the solution space of the combinatorial optimization problem. They can
range in complexity from very simple, involving a direct mapping between the ran-
dom key and the solution, to intricate, such as random-key driven construction heuris-
tics with local search, or even black box computations.

Suppose the solution space is made up of all permutations of �n = {1,2, . . . , n}
as is the case for the quadratic assignment problem. Bean (1994) showed that simply
sorting the vector of random keys results in a permutation of its indices. If one wants
to select p of n elements of a set, assign a random key to each element of the set, sort
the vector of random keys, and select the elements corresponding to the p smallest
keys. Composite vectors of random keys are also useful. Suppose n items need to be
arranged in order and that each element can be placed in one of two states, say up
or down. Define a vector of random keys of size 2n where the first n keys are sorted
to define the order in which the items are placed and the last n keys determine if the
item is placed in the up or down position. In this case, a key greater than or equal to
one half indicates the up position while a key less than half corresponds to the down
position. In Sect. 4 we give more examples of simple and complex decoders.

3.3 Parameter setting

Random-key genetic algorithms have few parameters that need to be set. These pa-
rameters are the number of genes in a chromosome (n), the population size (p), the
size of the elite solution population (pe), the size of the mutant solution population
(pm), and the elite allele inheritance probability (ρe), i.e. the probability that the gene
of the offspring inherits the allele of the elite parent. Though setting these parameters
is sort of an art-form, our experience has led us to set the parameters as shown in
Table 1.

Below, we illustrate the effect of population size, elite solution population size,
mutant solution population size, and elite allele inheritance probability on the random
variable time-to-optimal solution. We use the 100-element covering-by-pairs instance
used earlier to compare the BRKGA and the random multi-start heuristic. The basic
parameter setting uses a population of size p = 100, a population of elite solutions
of size pe = 15, a mutant population size of pm = 10, and an elite allele inheritance
probability of ρe = 0.7.

Table 1 Recommended parameter value settings

Parameter Description Recommended value

p size of population p = an, where 1 ≤ a ∈ R is a constant and n is the
length of the chromosome

pe size of elite population 0.10p ≤ pe ≤ 0.25p

pm size of mutant population 0.10p ≤ pm ≤ 0.30p

ρe elite allele inheritance probability 0.5 < ρe ≤ 0.8
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Fig. 7 Effect of population size on time to find an optimal solution

Figure 7 compares four settings for population size: 10, 40, 70, and 100. For each
setting, the BRKGA was independently run 50 times and CPU times to optimal solu-
tion were recorded. While there is not much difference between the small population
settings of 10 and 40, one can begin to observe speedups for the population of 70 and
even more on the population of 100. Since time per generation increases with pop-
ulation size, in those instances that many generations are needed to find an optimal
solution, the large-population BRKGAs tend to take longer than their small popula-
tion counterparts. This is clearly made up for by the many more short running times
of the large population variants.

Figure 8 shows time-to-optimal solution plots for four different elite population
sizes: 5, 15, 25, and 50. The figure shows that elite sets of 15 to 25% of the full
population tend to cause the BRKGA to perform better that a large set of 50% of the
population and much better than a small set with only 5% of the population.

Figure 9 illustrates the effect of the size of the set of mutant solutions on the time
taken by the BRKGA to find an optimal solution. Four sizes were used: 3%, 10%,
30%, and 50% of the full population. The figure shows that it does not pay off to
use either a too small or too large set of mutant solutions. The runs using 10% of
the full population as the mutant set appear to lead to the BRKGA with the best
performance. The large mutant set of half of the population led to the BRKGA with
the worse performance.

Figure 10 illustrates the effect of different values of inheritance probability on the
time to find an optimal solution. Four values were used for ρe: 30%, 50%, 70%, and
90%. While ρe = 30% violates the requirement that ρe > 50% and does not lead to
a BRKGA with good performance, it is not as bad a being very greedy and using
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Fig. 8 Effect of elite set size on time to find an optimal solution

Fig. 9 Effect of mutant set size on time to find an optimal solution
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Fig. 10 Effect of inheritance probability on time to find an optimal solution

ρe = 90%. The greedy variant turned out to have the worst performance while the
two implementations using probabilities in the recommended range did the best.

3.4 Starting population

In Sect. 2, we initialize the population with p vectors of random keys. An alterna-
tive, is to populate the starting population with a few solutions obtained with another
heuristic for the problem being solved. This was done, for example, in Buriol et al.
(2005), where a BRKGA is proposed for solving the weight setting problem in OSPF
routing. The initial population is made up of one element with the solution found by
the heuristic InvCap while the remaining elements are randomly generated. While
for all BRKGAs it is easy to apply the decoder to find the solution corresponding
to a given vector of random keys, the opposite, i.e. finding a vector of random keys
from a solution of the combinatorial optimization problem, may not be straightfor-
ward. This, however, was not the case in Buriol et al. (2005) where the solution space
consists of vectors of integer weights in the range [1,wmax] and therefore recovering
vectors of random keys is trivial. Another type of solution representation that is easy
to map back to a vector of random keys is a permutation array.

3.5 Parallel implementation

Biased random key genetic algorithms have a natural parallel implementation. Can-
didates for parallelization include the operations
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• generate p vectors of random keys,
• generate pm mutants in next population,
• combine elite parent with other parent to produce offspring,
• decode each vector of random keys and compute its fitness.

Since each of these four operations involves independent computations, they can each
be computed in parallel. The first three of these operations are not as computation-
ally intensive as the fourth and on those operations parallelization is not expected to
contribute to significantly speedup the overall algorithm. On the other hand, the last
operation (decoding and fitness evaluation) can easily account for most of the overall
cycles and one should expect a significant speedup in the execution of the program
by parallelizing it.

Another type of parallelization is the use of multiple populations. This type of
parallelization of a BRKGA was done, for example, in Gonçalves and Resende (2010)
where a multi-population BRKGA for a constrained packing problem is described.
Multiple populations evolve independently of one another and periodically exchange
solutions.

3.6 Comparing BRKGAs and standard GAs

To conclude this section, we report on experimental results where biased random-key
genetic algorithms have been compared with standard genetic algorithms. We call a
genetic algorithm standard if it uses tailored crossover and mutation operators. We
limit the comparison to the quality of the solutions obtained. Our objective is to show
that BRKGAs are competitive with other genetic algorithms, on average producing
results that are as good or better than those found by the standard genetic algorithms.
In all cases listed below, the BRKGAs were able to achieve cost reductions averaged
over all tested instances.

We consider here studies where comparisons between a BRKGA and one or more
standard genetic algorithms were made. Namely, these are papers on manufacturing
cell formation (Gonçalves and Resende 2004), two-dimensional packing (Gonçalves
2007; Gonçalves and Resende 2010), job-shop scheduling (Gonçalves et al. 2005),
and resource constrained project scheduling (Gonçalves et al. 2009a).

In Gonçalves and Resende (2004), a BRKGA for manufacturing cell formation
was compared with the genetic algorithms GATSP (Cheng et al. 1998) and GA (On-
wubolu and Mutingi 2001). On the 24 instances for which the BRKGA and GATSP
were compared, the biased random-key variant found solutions on average 2.88% bet-
ter than GATSP. On the eight instances where the BRKGA and GA were compared,
the BRKGA found solutions having, on average, a reduction of 0.11% with respect
to GA.

In Gonçalves (2007), a BRKGA was compared with two standard genetic algo-
rithms, SGA and SAGA, of Leung et al. (2003) on 19 instances of a two-dimensional
orthogonal packing problem. The BRKGA found better solutions, on average, than
either standard genetic algorithm. With respect to SGA, the reduction was 0.24%
while for SAGA it was 0.36%. In Gonçalves and Resende (2010), a BRKGA was
compared with the standard genetic algorithm of Hadjiconstantinou and Iori (2007a)
on 630 instances of a constrained two-dimensional orthogonal packing problem. The
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biased random-key genetic algorithm was able to find solutions that were, on average,
0.49% better than those of the standard genetic algorithm.

In Gonçalves et al. (2005), a BRKGA was compared with six standard genetic
algorithms for job-shop scheduling. On the 12 instances where it was compared with
GA (Della Croce et al. 1995), an average reduction in cost of 2.02% was observed.
On the 37 and 35 instances where it was compared, respectively, with GLS1 and
GLS2 (Aarts et al. 1994), average reductions of 3.79% and 0.58% were observed. The
BRKGA was compared with the standard genetic algorithms P-GA, SBGA(40), and
SBGA(60) of Dorndorf and Pesch (1995) on, respectively, 20, 42, and 42 instances
with respective solution cost reductions of 0.48%, 1.27%, and 1.01%.

In Gonçalves et al. (2009a), a BRKGA was compared with several standard ge-
netic algorithms on 600 instances of the resource constrained project scheduling
problem having 120 activities each. Solution cost reductions of 12.02% with re-
spect to GA-DBH-Serial (Debels and Vanhoucke 2005), 11.71% with respect to
GA–Hybrid-FBI-Serial of Valls et al. (2003), 15% with respect to GA-FBI-Serial
of Valls et al. (2005), 13.41% with respect to the evolutionary local search based on
tabu search and path-relinking of Kochetov and Stolyar (2003), 19.12% with respect
to the self adapting genetic algorithm of Hartmann (2002), 23.6% with respect to the
activity list genetic algorithm of Hartmann (1998), 24.67% with respect to the prior-
ity rule genetic algorithm of Hartmann (1998), 29.90% with respect to the problem
space genetic algorithm of Leon and Ramamoorthy (1995), and 34.35% with respect
to the random-key genetic algorithm of Hartmann (1998).

4 Applications

In this section, we give examples of biased random-key genetic algorithms. For each
application, we provide a brief description of the problem and descriptions of the
chromosome (solution encoding) and the decoder, followed by a brief comment on
experimental results. We begin by considering some applications in communication
networks, including OSPF routing, survivable network design, and routing and wave-
length assignment. We then consider the problem of assigning tolls in a transportation
network to minimize road congestion. This is followed by a number of scheduling
applications, including job shop scheduling, resource constrained single- and multi-
project scheduling, single machine scheduling, and assembly line balancing. We con-
clude with applications to manufacturing cell formation, two-dimensional packing,
and concave-cost network flow optimization.

4.1 Weight setting for routing in IP networks

Ericsson et al. (2002) and Buriol et al. (2005) describe BRKGA heuristics for a rout-
ing problem in Internet Protocol networks. They address the weight-setting problem
in Open Shortest Path First (OSPF) routing. A related BRKGA is described in Reis
et al. (2009), where Distributed Exponentially-Weighted Flow Splitting (DEFT), a
different routing protocol, is used.
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4.1.1 Problem definition

Consider a directed network graph G = (N, A) where N denotes the set of nodes
(where routers are located) and A denotes the set of links connecting the routers
with a capacity ca for each a ∈ A, and a demand matrix D that, for each pair (s, t) ∈
N ×N , gives the demand ds,t in traffic flow from node s to node t . The OSPF weight-
setting problem consists in assigning positive integer weights wa ∈ [1,wmax] to each
arc a ∈ A, such that a measure of routing cost is minimized when the demands are
routed according to the rules of the OSPF protocol. The routing cost is a function
of the link capacities and the total traffic that traverses each link. In OSPF, traffic
between nodes s and t is routed on a shortest-weight path connecting these nodes.
The OSPF protocol allows for wmax ≤ 65535.

4.1.2 Solution encoding

Each solution is encoded as a vector x of random keys of length n = |A|, where the
i-th gene corresponds to the i-th link of G.

4.1.3 Chromosome decoder

To decode a link weight wi from xi (for i = 1, . . . , n), simply compute wi =
	xi × wmax
. Once link weights are computed, shortest weight (path) graphs from
each node to all other nodes in the graph can be derived, traffic can be routed on
least weight paths, the total traffic on each link computed, resulting in a routing cost
which is the fitness of the solution. Buriol et al. (2005) apply a fast local search to the
solution in an attempt to further reduce the routing cost of OSPF routing. Let A∗ be
the set of five links with the highest routing cost values. For each link i ∈ A∗, a local
improvement heuristic attempts to increase wi by one unit at a time in a specified
range and adjust the traffic accordingly. If the total routing cost can be reduced this
way, the new weight is accepted, a new set A∗ is constructed, and the process repeats
itself. If, after scanning the five links, the cost cannot be reduced, then the procedure
stops. This fast local search was adapted for DEFT routing in Reis et al. (2009).

4.1.4 Experimental results

Ericsson et al. (2002) compare routing solutions produced by their BRKGA for the
13 test problems proposed by Fortz and Thorup (2004) with lower bounds derived by
solving a multicommodity flow linear program (LP), the tabu search heuristic of Fortz
and Thorup, and the simple heuristics UnitOSPF, InvCapOSPF, and RandomOSPF.
The BRKGA was run for 700 generations on each instance and easily outperformed
the simple heuristics, finding solutions comparable with those of Fortz and Thorup.
These solutions were close to the LP lower bounds for a wide range of traffic de-
mands. By running BRKGA independently 10 times for 8000 generations on each
one of the instances, the BRKGA was shown to produce better solutions than Fortz
and Thorup on all 10 runs. The best solution found was closer to the LP lower bound
than to the solution produced by the search heuristic of Fortz and Thorup.
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Buriol et al. (2005) test their BRKGA on the same 13 test instances considered by
Fortz and Thorup (2004) and Ericsson et al. (2002). They show that the new decoder
with the fast local search finds better solutions than the BRKGA of Ericsson et al.
Furthermore, they show that given a target solution value, the new BRKGA is also
faster than the BRKGA of Ericsson et al. Finally, they show results of experiments
comparing run-time distributions for the BRKGA and the tabu search of Fortz and
Thorup. Using three target values on a large real instance, the experiments show that
the tabu search distribution has a long tail while the distribution for the BRKGA does
not.

Reis et al. (2009) compare their BRKGA for DEFT routing with the BRKGA of
Buriol et al. (2005) for OSPF routing. They show results for the 13 test problems used
by previous papers and confirm that DEFT routing can achieve solutions that result
in less congestion than OSPF routing.

4.2 Survivable network design

Given a set of nodes in a network, a traffic matrix estimating the demand, or traffic,
between pairs of these nodes, a set of arcs, each having endpoints at a pair of the given
nodes, a set of possible fiber link types, each with an associated capacity and cost
per unit of length, and a set of failure configurations, the survivable network design
problem seeks to determine how many units of each cable type will be installed in
each link such that all of the demand can be routed on the network under the no failure
and all failure modes such that the total cost of the installed fiber is minimized. Buriol
et al. (2007) proposed a BRKGA to design survivable networks where traffic is routed
using the Open Shortest Path First (OSPF) protocol and there is only one link type.
Andrade et al. (2006) extended this BRKGA to handle composite links, i.e. the case
where there are several fiber types. Four decoders are proposed by Andrade et al.

4.2.1 Problem definition

Given a directed graph G = (V ,E), where V is the set of routers and E is the set
of potential arcs where fiber can be installed, and a demand matrix D, that for each
pair (u, v) ∈ V × V , specifies the demand Du,v between u and v. Arc e ∈ E has
length de. Link types are numbered 1, . . . , T . Link type i has capacity ci and cost
per unit of length pi . We wish to determine integer OSPF weights we ∈ [1,65535] as
well as the number of copies of each link type to be deployed at each arc such that
when traffic is routed according to the OSPF protocol in a no-failure or any single arc
failure situation there is enough installed capacity to move all of the demand and the
total cost of the installed capacity is minimized.

4.2.2 Solution encoding

Assume arcs in E are numbered 1, . . . , |E|. A solution of the survivable network
design problem is encoded as a vector x of |E| random keys. The i-th key corresponds
to the i-th arc.
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4.2.3 Chromosome decoder

To produce the OSPF weight wi of the i-th arc, scale the random key by the max-
imum weight, i.e. set wi = 	xi × 65535
. For the no-failure mode and each failure
mode, route the traffic using the OSPF protocol using the computed arc weights, com-
pute the loads on each arc and record the maximum load over the no-failure and all
failure modes. For each arc, determine an optimal allocation of link types such that
the resulting capacity of the set of composite links is enough to accommodate the
maximum load on the arc. Compute the cost of the required links.

4.2.4 Experimental results

Since this was the first heuristic proposed in the literature for this problem, Buriol
et al. (2007) compare network designs produced with their BRKGA with those pro-
duced by a similar process where instead of finding good OSPF weights with the
BRKGA, link weights are set in one case to unit (UNIT) and randomly (RAND) in
another. They also compare their solutions with a simple lower bound (LB). Four net-
works of sizes varying from 10 nodes and 90 links to 71 nodes and 350 links make
up the benchmark test set. For each network, four instances were created: one with
no failures, one with both single router and single link failures, one with single link
failures and no router failure, and one with single router failures and no link failure.
The results show that the solutions produced by the BRKGA are superior to those
produced with the other heuristics. For example, a 1000-generation run with a 500-
element population produced for one of the instances with no failure the following
ratios of solution values: 1.64 for UNIT:BRKGA, 1.82 for RAND:BRKGA, and 1.94
for BRKGA:LB.

Andrade et al. (2006) show the results of an experiment on a real network with 54
routers and 278 arcs. Three link types were considered. All four decoders were tested
and the so-called min cost decoder achieved the best results among the decoders
tested.

4.3 Routing and wavelength assignment

The problem of routing and wavelength assignment (RWA) in wavelength division
multiplexing (WDM) optical networks consists in routing a set of lightpaths (a light-
path is an all-optical point-to-point connection between two nodes) and assigning
a wavelength to each of them, such that lightpaths whose routes share a common
fiber are assigned different wavelengths. Noronha et al. (2010) propose a BRKGA
for routing and wavelength assignment with the goal of minimizing the number of
different wavelengths used in the assignment (this variant of the RWA is called min-
RWA). This BRKGA extends the best heuristic in the literature (Skorin-Kapov 2007)
by embedding it into an evolutionary framework.

4.3.1 Problem definition

We are given a bidirected graph G = (V ,E) that represents the physical topology of
the optical network, where V is the set of nodes and E is the set of fiber links, and
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a set T of lightpaths to be established. Each lightpath is characterized by its pair of
endpoints {s, t} ∈ V × V, s �= t . Each lightpath is routed on a single path from s to
t and is assigned the same wavelength for the entire path. If two lightpaths share an
arc, they must be assigned different wavelengths. The objective is to minimize the
number of wavelengths used.

4.3.2 Solution encoding

A solution of the routing and wavelength assignment problem is encoded in a vector
x of |T | random keys, where |T | is the number of lightpaths. The key xi corresponds
to the i-th lightpath, for i = 1, . . . , |T |.
4.3.3 Chromosome decoder

Skorin-Kapov (2007) proposed the current state-of-the-art heuristic for min-RWA.
Each wavelength is associated with a different copy of the graph G. Lightpaths that
are arc disjointly routed on the same copy of G are assigned the same wavelength.
Copies of G are associated with the bins and lightpaths with the items of an instance
of the bin packing problem. Therefore, min-RWA can be reformulated as the problem
of packing all the lightpath requests in a minimum number of bins. Let minlength(i)

be the number of hops in the path with the smallest number of arcs between the
endnodes of lightpath i in G. These values are only used for sorting the lightpaths
in the decoding heuristics, even though the lightpaths are not necessarily routed on
shortest paths. This occurs because whenever a lightpath is routed on a copy of G

(or, equivalently, placed in the corresponding bin), all arcs in its route are deleted
from this copy to avoid that other lightpaths use them. Therefore, the next lightpaths
routed in this copy of G might be routed on a path that is not a shortest path in
the original graph G. The classical best fit decreasing heuristic is used to pack the
lightpaths. Since the number of lightpaths is usually much greater than the diameter
of the graph, there are many lightpaths with the same minlength value. In the case
of ties, Skorin-Kapov (2007) recommended breaking them randomly. The BRKGA
uses the vector of random keys to randomly perturb the values of minlength(i) and
get rid of the ties. These values are adjusted as minlength(i) ← minlength(i) + x(i).

4.3.4 Experimental results

Noronha et al. (2010) test their BRKGA extensively on a set of hard instances of the
RWA problem. The BRKGA is compared with a multi-start variant MS-RWA of the
heuristic BFD-RWA of Skorin-Kapov (2007) as well as the tabu search based heuristic
2-EDR+TS-PCP of Noronha and Ribeiro (2006). Noronha et al. observe in their com-
putational experiments that the multi-start heuristic MS-RWA was able to improve the
results of BFD-RWA and also that their BRKGA identifies the relationships between
keys and good solutions, converging to better solutions, on average, in 23% less time
than MS-RWA. The average solution gap observed with the BRKGA was almost 50%
of that presented by 2-EDR+TS-PCP. The experiments also illustrated the robustness
of the BRKGA, since all versions of the BRKGA (using different parameter settings)
obtained good and similar results.
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4.4 Tollbooth location and tariff assignment

In transportation networks, it is desirable to direct traffic so as to minimize conges-
tion, thus decreasing user travel times and improving network utilization. One way
to persuade drivers to avoid certain routes and favor others is by charging toll for
drivers to use certain segments of the network. The objective of the tollbooth location
and tariff assignment problem is to locate a given number of tollbooths on links of
the network and determine toll values to impose on users of those links such that the
average user travel time is minimized. Buriol et al. (2009) describe a BRKGA for this
problem.

4.4.1 Problem definition

Given a network topology and certain traffic flow demands, we levy tolls on arcs,
seeking an efficient system such that the resulting set of least-cost user paths is opti-
mal for the overall system. Consider a directed graph G = (N,A), with N represent-
ing the set of nodes and A the set of arcs. Each arc a ∈ A has an associated capacity ca

and cost �a , which is a function of the load �a (or flow) on the arc, the time ta to tra-
verse the arc when there is no traffic on the arc, a power parameter na , and a parameter
�a . In real-world traffic networks, arc (road segment) delays are generally described
by nonlinear functions associated with these network congestion parameters. We as-
sume that �a is a strictly increasing, convex function. In addition, define K ⊆ N ×N

to be the set of commodities, or origin-destination (O-D) pairs, having o(k) and d(k)

as origin and destination nodes, respectively, for all k ∈ K = {1, . . . , |K|}. Each com-
modity k ∈ K has an associated demand of traffic flow �k defined, i.e. for each O-D
pair {o(k), d(k)}, there is an associated amount of flow �k that emanates from node
o(k) and terminates at node d(k). Furthermore, define xk

a to be the contribution of
commodity k to the flow on arc a. The traffic optimization problem can be written as

min� =
∑

a∈A

�ata
[
1 + �a(�a/ca)

na
]
/
∑

k∈K

�k

subject to

�a =
∑

k∈K

xk
a, ∀a ∈ A,

∑

i:(j,i)∈A

xk
(j,i) −

∑

i:(i,j)∈A

xk
(i,j) =

⎧
⎪⎨
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−�k, ∀j ∈ N, k ∈ K : j = d(k),

�k, ∀j ∈ N, k ∈ K : j = o(k),

0, ∀j ∈ N, k ∈ K : j �= o(k), j �= d(k),

xk
a ≥ 0, ∀a ∈ A, k ∈ K.

Given a number κ of tolls to place in the network, the objective is to determine
a set of κ arcs in A where tolls will be placed and tariffs for each toll such that if
users travel on least-cost routes, the resulting xk

a decision variables (for all a ∈ A and
k ∈ K) will be such that the above traffic optimization problem is solved.
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4.4.2 Solution encoding

A solution of the tollbooth location and tariff assignment problem is encoded in a
vector χ of 2 × |A| random keys. The first |A| random keys correspond to the tariffs
on the arcs while the last |A| keys are used to indicate whether a toll is to be placed
on an arc or not.

4.4.3 Chromosome decoder

Define a binary variable ya for each arc a ∈ A which takes on value 1 if and only
if a toll is levied on arc a. For each arc a ∈ A, let πa denote the tariff levied by the
toll on arc a. Finally, let Ta be the value of the maximum toll that can be levied on
arc a. Given a chromosome χ with 2 × |A| random keys, let ya = 1 if and only if
χ|A|+a ≥ 0.5. The corresponding tariff on arc a is πa = 	χa × Ta
 × ya . To compute
the decision variables xk

a of the traffic assignment problem, all demands are routed
on least-cost routes in the network. A local search procedure is applied on the tariffs
to attempt to decrease the value of the objective function of the traffic assignment
model. The crossover operator handles the last |A| random keys in a way that is
slightly different from the standard parametrized uniform crossover that is applied
to the first |A| random keys. For all arcs on which both parent solutions agree on
whether or not to place a toll, the child inherits the random key of any one of the
parents. If the parents do not agree on all locations, then additional tolls will need
to be assigned in the child chromosome to guarantee that κ arcs have tolls. For each
additional toll, the child inherits the chromosome of a parent having χa ≥ 0.5 with
probability that favors inheritance from the elite parent.

4.4.4 Experimental results

Since this BRKGA is the first heuristic proposed in the literature to solve this
problem, Buriol et al. (2009) limit their experiments to testing two versions of the
BRKGA, one using the decoder described above and another with a similar decoder
without local search. The heuristics are tested on the transportation networks of the
cities of Sioux Falls, Winnipeg, Stockholm, and Barcelona. These networks vary in
size from 24 nodes and 76 links with 528 O-D pairs (Sioux Falls) to 1052 nodes
and 2836 links with 4345 O-D pairs (Winnipeg). For each instance, the BRKGA was
run with the number of tollbooths varying from one to the number of nodes in the
network. For the smallest instance, Sioux Falls, the system optimal solution, a lower
bound on the tollbooth location and tariff assignment problem, was computed. By
placing tollbooths on 60 of the 76 links of the Sioux Falls example, the BRKGA was
able to produce solutions within 10% of the system optimal. System optimal could
not be computed for the larger instances. On the network of Stockholm, the BRKGA
with the local search decoder was shown to produce better solutions than the variant
without local search. On Winnipeg and Barcelona, however, the variant without local
search found better solutions.

4.5 Job-shop scheduling

Gonçalves et al. (2005) present a BRKGA heuristic for the job-shop scheduling prob-
lem.
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4.5.1 Problem definition

We are given n jobs, each composed of several operations that must be processed on
m machines. Each operation uses one of the m machines for a fixed duration. Each
machine can process at most one operation at a time and once an operation initiates
processing on a given machine it must complete processing on that machine without
interruption. The operations of a given job have to be processed in a specified order.
The problem consists in finding a schedule of the operations on the machines that
minimizes the makespan Cmax , i.e. the finish time of the last operation completed in
the schedule, taking into account the precedence constraints.

4.5.2 Solution encoding

Let p be the number of operations. The proposed random-key vector x used to encode
a solution has size 2p. Its first p genes determine the priorities of the operations, i.e.
xi corresponds to the priority of operation i, for i = 1, . . . , p. The last p genes are
used to encode the delay used to schedule an operation, i.e. for i = 1, . . . , p, xp+i is
used to compute the delay of operation i. The delay of operation i is defined to be
xp+i × D, where D is the duration of the longest operation.

4.5.3 Chromosome decoder

A parametrized active schedule is constructed using the priorities and delays encoded
in the chromosome. This schedule is an active schedule, i.e. it allows a machine to be
idle even when there is an operation available for it to process. Among all operations i

that would require a delay at most xp+i ×D, the operation i with the highest priority
xi is scheduled on the machine.

4.5.4 Experimental results

To show the effectiveness of their algorithm, Gonçalves et al. (2005) considered 43
instances from two classes of standard job-shop scheduling test problems: Fisher
and Thompson (1963) instances FT06, FT10, FT20, and Lawrence (1984) instances
LA01 through LA40.

The BRKGA was compared with the problem space genetic algorithm of Storer
et al. (1992), the genetic algorithms of Aarts et al. (1994), Della Croce et al. (1995),
Dorndorf and Pesch (1995), and Gonçalves and Beirão (1999), the GRASP heuristics
of Binato et al. (2002) and Aiex et al. (2003), the hybrid genetic/simulated annealing
heuristic of Wang and Zheng (2001), and the tabu search of Nowicki and Smutnicki
(1996).

All 43 instances were solved with the BRKGA. The BRKGA found the best-
known solution for 31 instances (72% of the problems) and had an average relative
deviation from the best-known solution of 0.39%. It showed an improvement with
respect to all others algorithms with the exception of the tabu search algorithm of
Nowicki and Smutnicki that had a slightly better performance, mainly on the 15 × 15
problems.
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4.6 Resource constrained project scheduling

In project scheduling a set of activities needs to be scheduled. Precedence relations
between activities constrain the start of an activity to occur after the completion of an-
other. The objective is to minimize the makespan, i.e. minimize the completion time
of the last scheduled activity. When activities require resources with limited capaci-
ties we have a resource constrained project scheduling problem (RCPSP). Mendes et
al. (2009) and Gonçalves et al. (2009a) describe BRKGA heurstics for the RCPSP.

4.6.1 Problem definition

A project consists of n + 2 activities. To complete the project, each activity has to
be processed. Let J = {0,1, . . . , n, n + 1} denote the set of activities to be scheduled
and K = {1, . . . , k} the set of resources. Activities 0 and n + 1 are dummies, have no
duration, and represent the initial and final activities. The activities are interrelated
by two kinds of constraints: (1) Precedence constraints force each activity j to be
scheduled after all predecessor activities Pj are completed; (2) Activities require re-
sources with limited capacities. While being processed, activity j requires rj,k units
of resource type k ∈ K during every time instant of its non-preemptable duration dj .
Resource type k has a limited capacity of Rk at any point in time. The parameters dj ,
rj,k , and Rk are assumed to be integer, nonnegative, and deterministic. For the project
start and end activities, we have d0 = dn+1 = 0 and r0,k = rn+1,k = 0 for all k ∈ K .
Let Fj represent the finish time of activity j . A schedule can be represented by a vec-
tor of finish times (F1, . . . ,Fn+1) and its makespan is Cmax = max{F1, . . . ,Fn+1}.
The problem consists in finding a schedule of the activities, taking into account the
resources and the precedence constraints, that minimizes the makespan.

4.6.2 Solution encoding

A solution is encoded with a vector x of 2n random keys. The first n keys correspond
to the priorities of the activities while the last n are used to determine the delay when
scheduling an activity.

4.6.3 Chromosome decoder

For each activity j ∈ J not yet scheduled, the delay δj = xn+j ×1.5× δ̄ is computed,
where δ̄ is the maximum duration of any activity. Activities are scheduled, one at a
time, at discrete points in time, starting from time t = 0. At time t , all activities j ∈ J

whose predecessors have completed processing or will have completed processing
by time t + δj are considered to be candidates to be scheduled. These activities are
scheduled in the order determined by their priorities (the priority of activity j is
xj ). Each is scheduled as soon as all of its predecessors complete processing and all
resources it requires are available. The next schedule time is the earliest completion
time among all activities being processed at and after time t . This process is repeated
until all activities have been scheduled. The makespan Cmax is the completion time
of the last activity to complete processing. A new and more effective decoder for this
problem is described in Gonçalves et al. (2009a).
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4.6.4 Experimental results

To illustrate the effectiveness of the BRKGA for RCPSP, Gonçalves et al. (2009a)
consider a total of 600 instances from the standard RCPSP test problem set J120. In
this test set each instance has 120 activities and requires four resource types. Instance
details are described by Kolisch et al. (1995) and could be obtained at http://129.187.
106.231/psplib/datasm.html (Last visited on April 8, 2010). The BRKGA was com-
pared with the variable neighborhood search of Fleszar and Hindi (2004), the large
neighborhood search of Palpant et al. (2004), the hybrid scatter search/electro-
magnetism heuristic of Debels et al. (2006), the population based approach of Valls et
al. (2004), the sampling methods of Tormos and Lova (2003), Schirmer and Riesen-
berg (1998), Kolisch and Drexl (1996), and Kolisch (1995, 1996a, 1996b), the ge-
netic algorithms of Leon and Ramamoorthy (1995), Mendes et al. (2009), Valls et al.
(2003, 2005), Debels and Vanhoucke (2005), Kochetov and Stolyar (2003), Hartmann
(1998, 2002), the simulated annealing heuristic of Bouleimen and Lecocq (2003), the
tabu search heuristics of Nonobe and Ibaraki (2002) and Baar et al. (1998), and the
Lagrangian relaxation heuristic of Möhring et al. (2003).

Gonçalves et al. (2009a) showed in the above experiment that no algorithm dom-
inated the BRKGA. The approach of Debels et al. (2006) is the one that seems to
have had the most similar performance. With this BRKGA, Gonçalves et al. im-
proved the best known solution for 11 instances in test problem repository PSPLIB
(http://129.187.106.231/psplib/files/j120hrs.sm, last visited on April 8, 2010).

4.7 Resource constrained multi-project scheduling

In the resource constrained multi-project scheduling problem (RCMPSP), activities
that make up several projects must be scheduled. These activities share one or more
resources having limited capacities. Associated with each project are its release and
due dates. The project cannot begin processing before the release date and should
finish as close as possible to its due date. There are penalties associated with earliness,
tardiness, and total processing time of the project and the objective is to schedule the
activities such that the sum of the penalties of the projects is minimized. Gonçalves
et al. (2008) describe three BRKGA variants for resource constrained multi-project
scheduling that they name GA-SlackMod, GA-Basic, and GA-SlackND.

4.7.1 Problem definition

The problem consists of a set I of projects, where each project i ∈ I is composed
of activities j = {Ni−1 + 1, . . . ,Ni}, where activities Ni−1 + 1 and Ni are dummies
and represent the initial and final activities of project i. J is the set of activities and
K = {1, . . . , k} is a set of renewable resources types. The activities are interrelated by
two kinds of constraints. First, precedence constraints force each activity j ∈ J to
be scheduled after all its predecessor activities Pj are completed. Second, processing
of the activities is subject to the availability of resources with limited capacities.
While being processed, activity j ∈ J requires rj,k units of resource type k ∈ K
during every time instant of its non-preemptable duration dj . Resource type k ∈ K

http://129.187.106.231/psplib/datasm.html
http://129.187.106.231/psplib/datasm.html
http://129.187.106.231/psplib/files/j120hrs.sm
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has a limited availability of Rk at any point in time. Parameters dj , rj,k , and Rk are
assumed to be non-negative and deterministic. We assume that start and end activities
of each project have zero processing times and do not require any resource. Activities
0 and N + 1 are dummy activities, have no duration, and correspond to the start
and end of all projects. Activity 0 precedes all of the dummy initial activities of
the individual projects and activity N + 1 is preceded by all of the dummy final
activities of all the jobs. Using these dummy activities, the multi-project scheduling
problem can be treated as if it were a single project. The objective is to minimize
a

∑
i∈I (aT 3

i + bE2
i + c(CDi − BDi )

2/CPDi ), where Ti , Ei , CDi , BDi , and CPDi

are, respectively, the tardiness, earliness, conclusion time, start time, and critical path
duration of project i.

4.7.2 Solution encoding

The encoding of the solution is identical to the one used in the BRKGA for single-
project scheduling described in Sect. 4.6, i.e. a vector x of 2n random keys. The
first n keys correspond to the priorities of the activities while the last n are used to
determine the delay when scheduling an activity.

4.7.3 Chromosome decoder

The decoder is identical to the one used in the BRKGA for single-project scheduling
described in Sect. 4.6 except that instead of computing the makespan, this decoder
computes the penalty a

∑
i∈I (aT 3

i + bE2
i + c(CDi − BDi )

2/CPDi ) as the fitness of
the chromosome.

4.7.4 Experimental results

Since no prior experimental work on RCMPSP included tardiness, earliness, and
flowtime deviations as measures of performance, Gonçalves et al. (2008) generated
multi-project instances with known optimal values to compare the three BRKGA
variants proposed in their paper. Five types of multi-project instances where gen-
erated with 10, 20, 30, 40, and 50 single projects each. For each problem type, 20
instances were generated. Since each single project instance had 120 activities, the
multi-project instances had 1200, 2400, 3600, 4800, and 6000 activities each. Each
activity was allowed to use up to four resources. Finally, the average number of over-
lapping projects in execution was 3, 6, 9, 12, and 15, respectively.

Algorithm GA-SlackMod was the winner in all aspects relative to the other two.
For all instances, in absolute terms, algorithm GA-SlackMod obtained earliness, tar-
diness, and flow time deviation close to the optimum value.

4.8 Early tardy scheduling

Valente et al. (2006) describe a BRKGA for a single machine scheduling problem
with earliness and tardiness costs and no unforced machine idle time. Such prob-
lems arise in just-in-time production, where goods are produced only when they are
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needed, since jobs are scheduled to conclude as close as possible to their due dates.
The early cost can be seen, for example, as the cost of completing a project early in
PERT-CPM analyzes, deterioration in the production of perishable goods, or a hold-
ing cost for finished goods. The tardy cost is often associated with rush shipping
costs, lost sales, or loss of goodwill. It is assumed that no unforced machine idle
time is allowed, and therefore the machine is only idle when no jobs are available
for processing. This assumption represents a type of production environment where
the machine idleness cost is higher than the cost incurred by completing a job early,
or the machine is heavily loaded, so it must be kept running in order to satisfy the
demand.

4.8.1 Problem definition

A set of n independent jobs {J1, . . . , Jn} must be scheduled without preemption on a
single machine that can handle at most one job at a time. The machine and the jobs are
assumed to be continuously available from time zero onwards and machine idle time
is not allowed. Job Jj , j = 1, . . . , n, requires a processing time pj and should ideally
be completed on its due date dj . For any schedule, the earliness and tardiness of Jj

can be respectively defined as Ej = max {0, dj − Cj } and Tj = max {0,Cj − dj },
where Cj is the completion time of Jj . The objective is to find the schedule that
minimizes the sum of the earliness and tardiness costs of all jobs, i.e.

∑n
j=1(hjEj +

wjTj ), where hj and wj are, respectively, the per unit earliness and tardiness costs
of job Jj .

4.8.2 Solution encoding

A solution of the early tardy scheduling problem is encoded in a vector x of n random
keys that, when sorted, corresponds to the ordering that the jobs are processed on the
machine.

4.8.3 Chromosome decoder

Given a vector x of n random keys, a solution is produced by first sorting the vector
to produce an ordering of the jobs. The jobs are scheduled on the machine and the
total cost is computed. A simple local search scans the jobs, from first to last, testing
if consecutive jobs can be swapped in the order of processing. If a swap decreases the
cost of the schedule, the swap is done, the cost recomputed, and the scan continues
from that job until the last two jobs are tested.

4.8.4 Experimental results

Valente et al. (2006) tested six BRKGA variants for the early tardy scheduling prob-
lem. The genetic algorithms were compared with the NSearch heuristic of Li (1997).
The algorithms were tested on randomly generated problems having 15, 50, 75, and
100 jobs. The objective function values obtained by the heuristic procedures were
compared with the optimal solution for the 15-job problems, and with the best known
solution for the remaining problems.
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As far as solution quality is concerned, the proposed BRKGA heuristics (with few
exceptions) found better solutions than NSearch, both with respect average percent
deviation and in the number of instances for which better results were obtained.

The run time of the genetic algorithms were greater (particularly for the versions
that incorporate more sophisticated local search procedures), but these times were for
the full 500 generations. The experiments showed also that increased local search at
the fitness-evaluation level of the BRKGA provided better solution values. The run
times increased as the local search complexity itself increased, but once again these
results can be misleading, and need to be complemented by an analysis of the number
of generations needed to reach the best solution. Including the final round of multiple
non-adjacent interchange is barely noticeable in terms of run time and can provide a
further improvement in solution quality.

4.9 Single machine scheduling with linear earliness and quadratic tardiness
penalties

Valente and Gonçalves (2008) present a BRKGA for a single machine scheduling
problem with linear earliness and quadratic tardiness penalties. They consider an ob-
jective function with linear earliness and quadratic tardiness costs. A linear penalty is
then used for the early jobs, since the costs of maintaining and managing this inven-
tory tend to be proportional to the quantity held in stock. However, late deliveries can
result in lost sales, loss of goodwill, and disruptions in stages further down the sup-
ply chain. A quadratic tardiness penalty is used for the tardy jobs. In many situations
this is preferable to the more usual linear tardiness or maximum tardiness functions.
Finally, no machine idle time is allowed.

4.9.1 Problem definition

A set of n independent jobs {J1, . . . , Jn} must be scheduled on a single machine that
can handle at most a single job at a time. The machine is assumed to be continu-
ously available from time zero onwards, and preemption is not allowed. Job Jj , for
j = 1, . . . , n, requires a processing time pj and should ideally be completed on its
due date dj . For any schedule, the earliness and tardiness of Jj can be respectively
defined as Ej = max {0, dj − Cj } and Tj = max {0,Cj − dj }, where Cj is the com-
pletion time of Jj . The objective is to find a schedule that minimizes the sum of linear
earliness and quadratic tardiness costs

∑n
j=1(Ej + T 2

j ), subject to the constraint that
no machine idle time is allowed.

4.9.2 Solution encoding

A solution of the single machine scheduling problem with linear earliness and
quadratic tardiness penalties is encoded in a vector x of n random keys that, when
sorted, corresponds to the ordering that the jobs are processed on the machine.
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4.9.3 Chromosome decoder

Given a vector x of n random keys, a solution is produced by first sorting the vector
to produce an ordering of the jobs. The jobs are scheduled on the machine and the
total cost is computed. Then three simple local search procedures, adjacent pairwise
interchange (API), 3-swaps (3SW), and largest cost insertion (LCI) are applied. At
each iteration, API considers in succession all adjacent job positions. A pair of ad-
jacent jobs is swapped if such an interchange improves the objective function value.
If necessary, the solution is updated. This process is repeated until no improvement
is found in a complete iteration. Next, 3SW is applied. It is similar to API, except
that it considers three consecutive job positions instead of an adjacent pair of jobs.
All possible permutations of these three jobs are analyzed, and the best configura-
tion is selected. If necessary, the solution is updated. Once more, the procedure is
applied repeatedly until no improvement is possible. Finally LCI is applied. At each
iteration, LCI selects the job with the largest objective function value. The selected
job is removed from its position i in the schedule, and inserted at position j , for all
j �= i. The best insertion is performed if it improves the objective function value. If
necessary, the solution is updated. This process is also repeated until no improving
move is found.

4.9.4 Experimental results

Valente and Gonçalves (2008) compare several BRKGA variants with existing heuris-
tics, namely the EQTP dispatching rule of Valente (2007) and the recovering beam
search (RBS) procedure of Valente (2009). Finally, the results found by the heuris-
tics are evaluated with respect to the optimum objective function values for some
instance sizes. The instances used in the computational tests are available online
at http://www.fep.up.pt/docentes/jvalente/benchmarks.html (Last visited on April 8,
2010).

The experiments show that two of the BRKGA variants (MA_IN and MA) find the
best results, and are clearly superior to existing heuristics for this problem. They find
optimal solutions for over 90% of the test instances. The improvements in perfor-
mance provided by the BRKGA heuristics are larger for the more difficult instances.
Furthermore, the improvements over the best existing heuristic procedures increase
with size of the instance. The performance of the proposed BRKGA approach was
improved by both the initialization of the first population and the addition of a local
search procedure.

4.10 Assembly line balancing

Assembly or fabrication lines are used to manufacture large quantities of standard-
ized products. An assembly line consists of a sequence of m workstations, connected
by a conveyor belt, through which the product units flow. Each workstation performs
a subset of the n operations necessary for manufacturing the products. Each product
unit remains at each station for a fixed time C called the cycle time. In traditional as-
sembly lines, workstations are consecutively arranged in a straight line. Each product

http://www.fep.up.pt/docentes/jvalente/benchmarks.html
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unit proceeds along this line and visits each workstation once. The major decision
consists in defining an assignment of operations to workstations such that the line
efficiency is maximized. Gonçalves and Almeida (2002) describe a BRKGA for as-
sembly line balancing.

4.10.1 Problem definition

In the assembly line problem, a single product is manufactured in large quantities in
a process involving n operations, each of which takes tj time units to process, for
j = 1, . . . , n. Operations are partially ordered by precedence relations, i.e. when an
operation j is assigned to a station k, each operation i which precedes j must be as-
signed to one of the workstations 1, . . . , k. Each operation must be assigned to exactly
one workstation. The sets of operations Sk , assigned to workstations k = 1, . . . ,m, are
called workstation loads. Workstations are numbered consecutively along the line.
The total operation time of the operations assigned to a station k, called worksta-
tion time t (Sk), must not exceed the cycle time, i.e. t (Sk) = ∑

{j∈Sk} tj ≤ C, for
k = 1, . . . ,m. Gonçalves and Almeida (2002) deal with the SALBP-1 variant of the
problem, where we are given the cycle time C and the objective is to minimize the
number m of stations.

4.10.2 Solution encoding

A solution of the assembly line problem is encoded in a vector x of n random keys,
where n is the number of operations. The key xi corresponds to the priority of the
i-th operation.

4.10.3 Chromosome decoder

The decoder takes as input a vector x of n random keys and returns an assignment of
operations to work stations. The random key xi is the priority of operation i. Given
a set of operation priorities, a station-oriented heuristic is used to assign operations
to workstations. This procedure starts with station 1 and considers the other stations
successively. In each iteration, the operation with highest priority in the candidate set
is chosen and assigned to the current station. The current station is closed and the next
station is opened when the candidate set is empty, i.e. when adding any operation to
the station would exceed the cycle time. Subsequently, a local search procedure is
used to try to improve the solution obtained by the station-oriented heuristic. The
local search attempts to swap long operations scheduled in downstream workstations
with shorter operations in upstream workstations with the objective of freeing up a
downstream workstation.

4.10.4 Experimental results

To demonstrate the effectiveness and robustness of the approach, Gonçalves and
Almeida (2002) present computational results using three sets of test problems found
in the literature: the 64 instances of the Talbot-Set (Talbot et al. 1986), the 50 in-
stances of the Hoffman-Set (Hoffmann 1990, 1992), and the 168 of the Scholl-Set



516 J.F. Gonçalves, M.G.C. Resende

(Scholl 1993). The combined set consists of 269 instances (minus 13 instances
which are in both the Talbot-Set and the Hoffmann-Set). The sources of the prob-
lems as well as a detailed description are given by Scholl (1993) (these datasets
can be downloaded from http://www.bwl.th-darmstadt.de/bwl3/forsch/projekte/alb/
salb1dat.htm, last visited on April 8, 2010).

Two experiments were carried out. In the first, the BRKGA was compared with
the heuristic EUREKA of Hoffmann (1992) and in the second it is compared with the
tabu search heuristics PrioTabu and EurTabu Scholl and Voß (1997). The proposed
BRKGA produced solutions that are as good as those found by EUREKA. For prob-
lem instance Arcus-111 the BRKGA found a solution which is better than the one
found with EUREKA. The BRKGA found approximately 7% more best solutions
than PrioTabu and same number of best solutions as EurTabu.

4.11 Manufacturing cell formation

The fundamental problem in cellular manufacturing is the formation of product fam-
ilies and machine cells. Gonçalves and Resende (2004) present a BRKGA for manu-
facturing cell formation.

4.11.1 Problem definition

Given P products and M machines, we wish to assign products and machines to a
number of product-machine cells such that inter-cellular movement is minimized and
machine utilization within a cell is maximized. Let the binary matrix A = [a]i,j be
such that ai,j = 1 if and only if product i uses machine j . By reordering the rows
and columns of A and moving the cells so they are located on or near the diagonal of
the reordered matrix, a measure of efficacy of the solution can be defined to be μ =
(n1 − nout

1 )/(n1 + nin
0 ), where n1 is the number of ones in A, nout

1 is the number of
ones outside the diagonal blocks, and nin

0 is the number of zeroes inside the diagonal
blocks. We seek to maximize μ.

4.11.2 Solution encoding

A solution to the cellular manufacturing problem is encoded as a vector x of M + 1
random keys, where the first M random keys are used to assign the machines to cells
and the last random key determines the number of cells. Assuming that the smallest
cell allowed has dimension 2 × 2, the maximum number of cells is C̄ = M/2�. The
number of cells in a solution is therefore C = 	xM+1 × C̄
 and machine i is assigned
to cell 	xi × C
.

4.11.3 Chromosome decoder

The decoder first assigns products to the cell that maximizes the efficacy with respect
to the machine-cell assignments. Once products are assigned, then machines are re-
assigned to the cells that maximize the efficacy. This process of reassigning products
and machines is repeated until there is no further increase in the efficacy measure.

http://www.bwl.th-darmstadt.de/bwl3/forsch/projekte/alb/salb1dat.htm
http://www.bwl.th-darmstadt.de/bwl3/forsch/projekte/alb/salb1dat.htm
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4.11.4 Experimental results

To show the performance of the proposed BRKGA, Gonçalves and Resende (2004)
used 35 group technology instances collected from the literature. The selected matri-
ces range from dimension 5 × 7 to 40 × 100 and comprise well-structured as well as
unstructured matrices. The grouping efficacies obtained by the BRKGA were com-
pared with the ones obtained by the approaches ZODIAC of Chandrasekharan and
Rajagopalan (1987), GRAFICS of Srinivasan and Narendran (1991), the clustering
algorithm MST of Srinivasan (1994), the genetic algorithms GATSP of Cheng et al.
(1998), the genetic algorithm of Onwubolu and Mutingi (2001), and the genetic pro-
gramming procedure of Dimopoulos and Mort (2001). In 2004, these six approaches
corresponded to the best published results for these 35 test problems.

The experiments showed that the proposed BRKGA computed machine/product
groupings having a grouping efficacy that was never smaller than any of the best re-
ported results. It found grouping efficacies that were equal to the best ones found in
the literature for 14 (40%) problems and improved the values of the grouping effi-
cacies for 21 (60%) problems. On 11 (31%) problems, the percentage improvement
was over 5%.

4.12 Constrained two-dimensional orthogonal packing

In the constrained two-dimensional (2D), non-guillotine restricted, packing problem,
a fixed set of small weighted rectangles has to be placed, without overlap, into a larger
stock rectangle so as to maximize the sum of the weights of the rectangles packed.
Gonçalves (2007) proposed the first BRKGA for this problem. This was improved in
Gonçalves and Resende (2010), where a new BRKGA, that uses a novel placement
procedure and a new fitness function to drive the optimization, was proposed.

4.12.1 Problem definition

The two-dimensional packing problem consists in packing into a single large planar
stock rectangle (W,H), of width W and height H , n smaller rectangles (wi, hi), i =
1, . . . , n, each of width wi and height hi . Each rectangle i has a fixed orientation (i.e.
cannot be rotated), must be packed with its edges parallel to the edges of the stock
rectangle, and the number xi of pieces of each rectangle type that are to be packed
must lie between Pi and Qi , i.e. 0 ≤ Pi ≤ xi ≤ Qi , for all i = 1, . . . , n. Each rectangle
i = 1, . . . , n has an associated value equal to vi and the objective is to maximize the
total value

∑n
i=1 vixi of the rectangles packed. Without significant loss of generality,

it is usual to assume that all dimensions W , H , and (wi, hi), i = 1, . . . , n, are integers.

4.12.2 Solution encoding

A solution of the two-dimensional packing problem is encoded in a vector x of 2N

random keys, where N = ∑n
i=1 ni . The first N random keys correspond to the order-

ing that the rectangles are packed while the last N keys indicate how the rectangles
are to be placed in the stock rectangle.
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4.12.3 Chromosome decoder

Given a vector x of random keys, the rectangles are packed by scanning x starting
from the first component. For i = 1, . . . ,N , let t = 	xi ×n
 denote the type of rectan-
gle to be packed next. If there are no more rectangles of type t available to be packed,
the decoder proceeds to the next value of i. Otherwise it proceeds to pack one or more
rectangles of type t , up to the maximum number of available rectangles of that type
using a heuristic determined by the value of xN+i . If xN+i ≤ 0.5, then the left-bottom
heuristic is used. Otherwise, the rectangle is placed using the bottom-left heuristic. If
the left-bottom heuristic is applied, a vertical layer of rectangles is placed. Similarly,
if the bottom-left heuristic is used, a horizontal layer of rectangles is placed. The fit-
ness of the chromosome is the total weight of the packed rectangles plus a term that
tries to capture the improvement potential of different packings which have the same
total value.

4.12.4 Experimental results

Gonçalves (2007) carried out two types of experiments to evaluate the proposed
BRKGA. In the first, the performance of the BRKGA was evaluated against other
metaheuristic approaches while in the second he evaluated the deviation from the op-
timal of the trim loss values obtained by the BRKGA. In the first set of experiments,
the BRKGA was compared with the genetic algorithm SGA and the mixed simu-
lated annealing-genetic algorithm MSAGA of Leung et al. (2003), as well as with the
GRASP of Alvarez-Valdes et al. (2005). 21 instances were used in this experiment:
three instances from Lai and Chan (1997), five instances from Jakobs (1996), two in-
stances from Leung et al. (2003), and nine instances from Hopper and Turton (2001).
All these problem instances have known optimal solution where the trim loss is zero.
In the second set of experiments, instances were taken from Hifi (1998), Beasley
(1985), Hadjiconstantinou and Christofides (1995), Wang (1983), Christofides and
Whitlock (1977), Fekete and Schepers (1997), and Hopper and Turton (2001).

The first set of experiments showed that the BRKGA clearly outperforms, in terms
of solution quality, all of the other heuristics. The BRKGA obtained the best average
values for all of the 19 problem instances and obtained the best minimum trim loss
values for 17 of the problem instances. On the Hifi (1998) instances, the BRKGA
found the optimal trim loss for all the 25 instances and for all the 10 replications.
Since the problem instances of this set have only 7 to 22 rectangles, the fact that the
optimal solutions were found is not as relevant as the fact that they were obtained
on all the 10 replications. On the Beasley (1985), Hadjiconstantinou and Christofides
(1995), Wang (1983), Christofides and Whitlock (1977), and Fekete and Schepers
(1997) instances, the optimal or best known trim loss values were obtained from
Oliveira (2004). For this set, the BRKGA obtained the optimal trim loss values for
all the 19 instances with known optimal value, obtained three trim loss values equal
to best known trim loss values, and was able to improve the best known trim loss for
instance 2 of Fekete and Schepers (1997). For 18 problem instances, the optimal/best
known value was obtained on all 10 replications. For the Hopper and Turton (2001)
test problems, the BRKGA found the optimal trim loss values for eight of the 21
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problem instances. For all the other instances the relative deviation from the minimum
trim loss value was always under 1%. For the Hopper and Turton (2001) instances,
the BRKGA obtained the optimal trim loss values for five of the 35 problems. For
all the other instances the relative deviations from the optimal trim loss value were
always under 3.17%.

Gonçalves and Resende (2010) compare the proposed BRKGA with four recently
proposed heuristics, which presented the best computational results to date. These
heuristics are a population heuristic (PH) proposed by Beasley (2004), a genetic al-
gorithm (GA) proposed by Hadjiconstantinou and Iori (2007b), a GRASP heuristic
proposed by Alvarez-Valdes et al. (2005), and a tabu search approach (TABU) pro-
posed by Alvarez-Valdes et al. (2007). The algorithms are compared with a set of 630
large random instances generated by Beasley (2004) following Fekete and Schepers
(2004).

The results showed that the BRKGA produced overall average deviations from the
upper bound that were always lower than those produced by all the other heuristics
on all instance classes, including the BRKGA of Gonçalves (2007). A close look at
the results shows that BRKGA outperformed the other heuristics not only because
it obtained smaller average deviations from the upper bound (PH = 1.67%, GA =
1.32%, GRASP = 1.07%, TABU = 0.98% and BRKGA = 0.83%) but also because
it obtained a larger number of best results for the 21 combinations of sizes and types
(PH = 0/21, GA = 0/21, GRASP = 5/21, TABU = 8/21, and BRKGA = 20/21).

4.13 General concave minimum cost flow

Fontes and Gonçalves (2007) proposed a BRKGA for the general minimum con-
cave cost network flow problem (MCNFP). Concave cost functions in network flow
problems arise in practice as a consequence of taking into account economic consid-
erations. For example, fixed costs may arise and economies of scale often lead to a
decrease in marginal costs. The genetic algorithm makes use of a local search heuris-
tic to solve the problem. The local search algorithm tries to improve the solutions in
the population by using domain-specific information. The BRKGA is used to solve
instances with both concave routing costs and fixed costs.

4.13.1 Problem definition

Given a graph G = (W,A), where W is a set of n + 1 nodes (node n + 1 denotes
the source node and nodes 1, . . . , n denote demand nodes) and a set A of m directed
arcs, A ⊆ {(i, j) : i, j ∈ W }. Each node i ∈ W \ {n + 1} has an associated nonneg-
ative integer demand value ri . The supply at the source node equals the sum of the
demands required by the n demand nodes. A general nondecreasing and nonnegative
concave cost function gij is associated with each arc (i, j) and satisfies gij (0) = 0.
The objective is to find a subset S of arcs to be used and the flow xij routed through
these arcs, such that the demands are satisfied and at minimum cost. A concave MC-
NFP has the property that it has a finite solution if and only if there exists a direct
path going from the source node to every demand node and if there are no negative
cost cycles. Therefore, a flow solution is a tree rooted at the single source spanning
all demand nodes. Thus, the objective is to find an optimal tree rooted at the source
node that satisfies all customers demand at minimum cost.
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4.13.2 Solution encoding

A solution of the MCNFP is encoded in a vector x of n random keys that corresponds
to the priorities of the demand nodes used in the tree-constructor procedure of the
decoder.

4.13.3 Chromosome decoder

The decoder builds a tree rooted at the source node. The node priorities in x are used
to determine the order by which nodes are considered by the tree constructor. The
algorithm repeatedly performs three steps until either a tree or an infeasible solution is
produced. The first step consists in finding the highest priority node not yet supplied.
In the second step, the algorithm seeks the set of nodes that can act as a parent for
the node found in the first step. In the third and last step, the parent is chosen as the
highest priority node that does not create an infeasibility, if one exists. A potential
solution becomes infeasible if a cycle cannot be avoided. In this case, a high cost is
associated with the solution. After a solution is constructed, a local search procedure
is applied to it. The local search tries to improve upon a given solution by comparing
it with solutions obtained by replacing an arc currently in the solution by an arc not
in the solution such that the new solution is still a tree.

4.13.4 Experimental results

To test the BRKGA heuristic, Fontes and Gonçalves (2007) considered the Euclidean
problem set described in Fontes et al. (2003). This set of instances can be downloaded
from http://people.brunel.ac.uk/~mastjjb/jeb/orlib/netflowccinfo.html (Last visited
on April 8, 2010). The results obtained by the BRKGA were compared with opti-
mal solutions found by a dynamic programming approach (Fontes et al. 2006) for
problem instances with up to 19 nodes and, for larger instances, to heuristic solutions
found by a local search algorithm (Fontes et al. 2003).

The experiments showed the BRKGA to improve upon the efficiency and effec-
tiveness of existing methods. Optimal solutions were found for all but one of the
600 problems with sizes ranging from 10 to 19 nodes. For larger instances, having
from 25 to 50 nodes, optimal solutions were found for all fixed-charge problems. For
the concave problems, optimal solution values were unknown. On these instances,
comparisons were made with upper bound values reported in the literature. The re-
sults show the proposed BRKGA to be very efficient and effective. The quality of the
solutions obtained by the BRKGA heuristic is quite similar to the ones reported by
Fontes et al. (2003). However, the computational time requirements for the BRKGA
were much smaller.

5 Concluding remarks

This paper addressed biased random key genetic algorithms (BRKGA), a heuristic
framework for combinatorial optimization. The framework is well-suited to imple-
ment the process of learning the association between vectors of random keys and
good solutions of the combinatorial optimization problems they are trying to solve.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/netflowccinfo.html


Biased random-key genetic algorithms for combinatorial optimization 521

Solutions in a BRKGA are encoded as n-dimensional vectors of random keys.
A population of p such vectors is evolved through the iterations of the algorithm. Ini-
tially p vectors of keys are randomly generated with keys in the real interval [0,1].
At each iteration, the population is partitioned into a smaller elite set with the best
solutions and a larger non-elite set with the remaining solutions. Note that to partition
the population we require that each random vector be decoded and the cost of its cor-
responding solution evaluated. All of the elite solutions are copied to the population
of the next iteration. In addition, a small number of mutant solutions is generated in
the same way that the initial population was generated. These mutants are responsible
for making the heuristic escape local optima and assure asymptotic convergence of
the method to a global optimum. Note that the number of elite and mutant solutions
are input parameters, but our experience has shown that having around 10–25% of the
population as elite solutions and 10–30% as mutants is an appropriate choice. Given
the elite and mutants in the new population, one only needs to complete the popula-
tion through the process of crossover. Crossover is simple: one parent is selected at
random from the elite set and the other from either the non-elite or the entire popula-
tion. Repetition is allowed so a parent can produce more than one offspring in a given
iteration. The best fit of the two parents is called parent A while the other one is parent
B . The offspring C is generated at random in such a way that it has a higher probabil-
ity of inheriting the characteristics of parent A. This is done by flipping a biased coin
n times. The coin flip results in heads (parent A) with higher probability than tails
(parent B). The probability of resulting in heads is an input parameter greater than
half. Our experience has shown that a value between 0.5 and 0.8 works well. The re-
sult of the i-th flip of the coin determines if the offspring inherits the i-th random key
of parent A or B . Note that all of the above steps, with the exception of computing
the fitness of the population to make the partitioning, are problem independent.

One of the appealing aspects of the BRKGA concept is the division between prob-
lem dependent and problem independent parts of the algorithm. Where in a standard
GA one needs to define different crossover and mutation operators for each problem
to be solved, in a BRKGA one does not worry about crossover and mutation. They
are pre-specified. In fact, once one codes a BRKGA, most of the code can be reused
in future implementations. In a BRKGA one need only worry about computing the
fitness of a solution as, by the way, one also needs to do in a standard GA. We show
that once one has a heuristic for a problem, it is easy to place this heuristic in an
evolutionary framework as a BRKGA. A BRKGA coordinates simple heuristics to
find solutions that are better than those found by the simple heuristics alone.This is
not always the case for a standard GA.

The BRKGA is a slight modification of the random-key GA of Bean (1994). In a
BRKGA one parent is always chosen from the elite set, while this is not the case in the
algorithm of Bean. Though slight, this modification contributes to a big improvement
in the performance of these random-key GAs. This is, in some sense, similar to the
addition of greediness to a pure randomized construction procedure as was done in
the semi-greedy heuristic (Hart and Shogan 1987) and GRASP (Feo and Resende
1989, 1995), both of which result in much better solutions on average than a pure
randomized construction.

The components of BRKGAs are described in the paper and their integration into a
heuristic framework is proposed. This framework separates the problem-independent
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part of the procedure from the part that is problem dependent. This way, a BRKGA
can be defined by specifying how solutions are encoded and decoded, making it easy
to tailor BRKGAs for solving specific combinatorial optimization problems. Imple-
mentation issues, including parallelization of the heuristic, are addressed. The paper
concludes with a number of applications, where for each one, the encoding and de-
coding is described in detail.

We can only provide insight into why BRKGA heuristics work well and show
empirical evidence that they actually do. BRKGAs implement the idea of survival of
the fittest though the elitist process and the biased crossover and are able to escape
from local optima through the use of mutants. In other papers, listed in Sect. 4, we
have compared BRKGA heuristics with other standard GAs and have shown that the
BRKGA heuristics are indeed competitive.

It is not our intention in this paper to create a new metaheuristic. However, we
argue that the BRKGA framework is at least as general-purpose as standard genetic
algorithms. BRKGAs handle a wide range of combinatorial optimization problems
without much programming effort by the user.
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