J Heuristics (2011) 17:353-372
DOI 10.1007/s10732-010-9137-z

A randomized Delaunay triangulation heuristic
for the Euclidean Steiner tree problem in %¢

Jon W. Van Laarhoven - Jeffrey W. Ohlmann

Received: 10 February 2008 / Revised: 5 March 2010 / Accepted: 15 June 2010/
Published online: 9 July 2010
© Springer Science+Business Media, LLC 2010

Abstract We present a heuristic for the Euclidean Steiner tree problem in 9 for
d > 2. The algorithm utilizes the Delaunay triangulation to generate candidate Steiner
points for insertion, the minimum spanning tree to identify the Steiner points to re-
move, and second-order cone programming to optimize the location of the remaining
Steiner points. Unlike other ESTP heuristics relying upon Delaunay triangulation,
we insert Steiner points probabilistically into Delaunay triangles to achieve different
subtrees on subsets of terminal points. We govern this neighbor generation procedure
with a local search framework that extends effectively into higher dimensions. We
present computational results on benchmark test problems in R¢ for 2 < d < 5.

Keywords Steiner tree - Delaunay triangulation

1 Introduction

The objective of the Euclidean Steiner tree problem (ESTP) is to determine the min-
imal length tree (with respect to the Euclidean metric) spanning a set of terminal
points, X, while permitting the introduction of extra points (composing a set S of
so-called Steiner points) into the network to reduce its overall length. The ESTP is
a difficult combinatorial optimization problem; Garey et al. (1977) show that recog-
nition version of the ESTP is NP-hard, i.e., all problems in NP polynomially reduce

J.W. Van Laarhoven

Program in Applied Mathematics and Computational Sciences, University of Iowa,
14 MacLean Hall, Towa City, IA 52242, USA

e-mail: jon-vanlaarhoven @uiowa.edu

J.W. Ohlmann ()

Department of Management Sciences, University of Iowa, 108 John Pappajohn Business Building,
Towa City, IA 52242, USA

e-mail: jeffrey-ohlmann @uiowa.edu

@ Springer

mailto:jon-vanlaarhoven@uiowa.edu
mailto:jeffrey-ohlmann@uiowa.edu

354 J.W. Van Laarhoven, J.W. Ohlmann

to the ESTP, but the ESTP itself is not known to be in NP. The graph theory liter-
ature contains extensive studies of exact algorithms, approximation algorithms, and
heuristic approaches for the ESTP.

Breakthroughs have lead to increases in the size of ESTP instances which can be
solved to optimality by exact algorithms, particularly in %t?. The Geosteiner algorithm
(Warme et al. 2001), can optimally solve ESTP instances with up to 1000 terminal
points. For higher dimensions, however, exact algorithms are quite limited as many
of the pruning rules are highly specialized to the planar case. The state-of-the-art
exact algorithm for the ESTP in %¢ for d > 2 is the Smith+ algorithm (Fampa and
Anstreicher 2008) which enhances the algorithm of Smith (1992) by implementing
second-order cone programming to locate the Steiner points and “strong branching”
to accelerate the fathoming process in the branch-and-bound enumeration scheme.
The Smith+ algorithm is capable of optimally solving instances with up to 16 terminal
points in R for2 <d <5.

Arora (1998) shows ESTP belongs to the class of NP-hard problems which
have a polynomial-time approximation scheme (PTAS). Using recursive partition-
ing and dynamic programming, Arora (1998) develops a (1 4+ 1/c)-PTAS that runs
in n(log n)O(C“/d_)d_1 time on instances with n terminal points in %¢. Rao and Smith
(1998) describe a (1 + 1/¢)-PTAS which uses a generalization of graph “spanners”
and runs in 20y + (cd)PDp logn time on instances with n terminal points in
f¢. Practical implementation of these polynomial time approximations remains to be
shown.

In this paper, we focus on a heuristic approach to the ESTP that utilizes computa-
tional geometry and randomization to obtain near-optimal solutions for instances in
M9, 2 < d <5, within reasonable computation times. The remainder of the paper is
organized as follows. We present relevant terminology and background information
in Sect. 2. We outline our algorithm in Sect. 3 and compare its features to existing
heuristics in Sect. 4. In Sect. 5, we analyze the computational performance of our
heuristic against both randomized and highly structured benchmark instances from
the literature. We offer concluding remarks in Sect. 6.

2 Background information

In this section, we briefly review research on heuristics which contain features rele-
vant to our work. For a comprehensive review of planar ESTP heuristics, see Zachari-
asen (1999).

An optimal solution to an ESTP instance is called a Steiner minimal tree (SMT).
The SMT is closely related to the well-known minimum spanning tree (MST), which
is the shortest network connecting a set of terminal points, X, without the addition
of extra (Steiner) points (S =). The MST for a graph of n points can be computed
in O(nlogn) time (Preparata and Shamos 1988). In M2, the ratio of the length of the
SMT and the length of the MST, is always greater than or equal to +/3/2 ~ 0.866 (Du
and Hwang 1992), and the minimum Steiner ratio is achieved for a network of termi-
nal points located at the vertices of an equilateral triangle. Toppur and Smith (2005)
conjecture the optimal Steiner ratio in %> is not achieved by a single simplex, but

@ Springer

A randomized Delaunay triangulation heuristic for the Euclidean 355

rather by placing terminal points at the vertices of a Ji-sausage, an object created by
linking an infinite number of regular tetrahedral simplices. Toppur and Smith (2005)
empirically calculate the Steiner ratio in i to be approximately 0.784190.

Given the optimal number and location of all Steiner points, the SMT can be
formed by constructing the MST of X U S, the union of the set of terminal points
and the set of Steiner points. This relationship between the MST and SMT motivates
many ESTP heuristics which attempt to identify “good” candidate Steiner points and
then form the MST of X U S.

To identify candidate Steiner points, heuristics utilize well-known properties of
SMTs. The angle condition states that each pair of edges in a SMT meet at an angle
of no less than 120°. The degree condition states that the degree of each terminal
node is at most three and the degree of each Steiner point is exactly three. Together,
these conditions imply that the three edges incident to a Steiner point meet at exactly
120°. Gilbert and Pollak (1968) provide mathematical proofs of these and other facts
regarding Steiner trees.

In one of the first heuristic approaches for the planar ESTP, Thompson (1973) de-
scribes a constructive approach that utilizes the MST to generate candidate Steiner
points. Beginning with S = ¢, Thompson’s algorithm iteratively inserts Steiner points
to correct violations of the angle condition. At each iteration, a single Steiner point is
inserted into Auvw for which the edges (u, v) and (u, w) violate the angle condition
and have the largest dot product of all such violating pairs of edges. An insertion
is performed by removing the edges (u#, v) and (4, w), inserting a Steiner point s at
its optimal location relative to the three neighboring points, and adding edges (u, s),
(v,s), and (w, s). After executing up to n — 2 insertions (an SMT on n terminal
points has at most n — 2 Steiner points Gilbert and Pollak 1968), the positions of the
Steiner points are iteratively optimized (treating neighboring points as fixed) until
improvement drops below a specified threshold. This latter step can be viewed as an
early relatively minimal tree (RMT) algorithm; RMT algorithms solve for the optimal
locations of Steiner points for a prespecified topology. Dreyer and Overton (1998)
present an extension of Thompson (1973) which capitalizes on improved RMT algo-
rithms by placing the inserted Steiner points on top of one of the terminal points and
determining the optimal location of the Steiner points after all insertions have been
executed.

The simple edge insertion heuristics of Thompson (1973) or Dreyer and Overton
(1998) essentially perform “local Steinerizations™ and are generally oblivious to any
global structure. This approach fairs moderately well on random instances, but can
suffer severe shortcomings on clustered instances. Figure 1 illustrates the MST for a
nine-point triangle instance in which these edge insertion heuristics miss the optimal
solution. The edge insertion heuristic only positions the Steiner points in the three
smaller triangles as in Fig. 2, but is unable to detect the Steiner point needed in the
middle for the optimal solution as shown in Fig. 3.

Beasley and Goffinet (1994) present an algorithm which generates candidate
Steiner points for the planar ESTP using computational geometry. Specifically,
Beasley and Goffinet (1994) iteratively apply the Delaunay triangulation to X U S.
For Z, a set of points in E)’td, the Delaunay triangulation, DT(Z), is a subdivision of
the convex hull of Z into d-dimensional simplices such that: (i) any two simplices

@ Springer

356 J.W. Van Laarhoven, J.W. Ohlmann

Fig. 1 The MST for the
nine-point instance, which
provides the initial solution for
Steiner insertion heuristics

-2 0 2 4] 8 10 12

Fig. 2 Edge insertion achieves
a sub-optimal solution to the 10k
nine-point instance
8,
6,
4,
2,
d A
2 0 2 4 6 g 10 12

in DT(Z) intersect in a common face or not at all, (ii)) Z corresponds to the set of
points that are vertices of the subdividing simplices, and (iii) no z € Z is inside the
circum-hypersphere of any simplex in DT(Z).

The Delaunay triangulation is the straight-line dual graph of the Voronoi diagram.
The Voronoi diagram of Z, a set of points in R, is determined by partitioning the
Euclidean space into convex polyhedra (called Voronoi regions) with one node in each
region. For every point z € Z, the Voronoi region about z denoted vor(z) consists of
all points closer to z than to any other point in Z. That is vor(z) = {u : |lu — z|| <
lu—yll Vy e Z}.

The Delaunay triangulation possesses important properties that explain its use as
a mechanism for generating candidate Steiner points in ESTP heuristics. First, the
Delaunay triangulation generates simplices such that the smallest angle in any sim-
plex is maximized, i.e, the simplices are approximately equilateral. This is a desirable
trait as the maximum length reduction resulting from a Steiner point insertion in the

@ Springer

A randomized Delaunay triangulation heuristic for the Euclidean 357

Fig. 3 The optimal solution for
the nine-point instance contains
a centrally-located Steiner point ~ 10r .,

plane occurs in an equilateral triangle. In %>, a large reduction is achieve for the reg-
ular tetrahedral simplex and Toppur and Smith (2005) demonstrate that by linking
many regular tetrahedral simplices together, even larger reductions can be obtained.
A second property is that the edges of the Delaunay triangulation of a set of points,
Z, contain the MST of Z. Thus, an algorithm considering Steiner point insertion
in Delaunay simplices is more general than an insertion mechanism targeting non-
degenerate simplices which have two edges in the MST, as in Smith et al. (1981).

Additionally, the Delaunay triangulation encodes information about the global
structure of the set of points. As Zachariasen (1999) notes, connection via Steiner
point is largely a local property. However, as Figs. 1, 2, and 3 illustrate, focusing
Steiner insertion only for adjacent edges in the MST can be myopic. To avoid this
myopic behavior, a type of generalized Steiner insertion is required (Chung and Gra-
ham 1978). From the (dJ"r]) sets of simplices for potential Steiner point insertion,
the Delaunay triangulation narrows down the candidates for insertion to those corre-
sponding to the sets of vertices that are “close” in the sense that they share a face in the
Voronoi diagram. Thus, the Delaunay triangulation provides an intuitive mechanism
to consider broader set of candidate Steiner points than the edge insertion approach of
Thompson (1973). In Fig. 4, an insertion in the center Delaunay triangle is sufficient
for finding the global solution, as the other three Steiner points can be found via an
edge insertion algorithm.

To generate a neighbor solution in their heuristic approach, Beasley and Goffinet
(1994) iterate between an expansion phase and a reduction phase. The expansion
phase augments S, the set of Steiner points, (initially S =) by placing a Steiner point
in each Delaunay triangle of DT(X U §) containing no angle greater than or equal to
120°. The subsequent reduction phase forms the MST of X U S and applies the degree
condition to reduce the number of potential Steiner vertices. This reduction step,
referred to as a “cleanup” operation, results in a tree with a Steiner topology, i.e., the
degree of each terminal point is at most three and the degree of each Steiner point is
exactly three. Following the reduction phase, a re-expansion akin to the edge insertion
algorithm of Thompson (1973) is performed to correct any violation of the angle

@ Springer

358 J.W. Van Laarhoven, J.W. Ohlmann

Fig. 4 The Delaunay
triangulation for the nine-point 10k
instance identifies the central
Steiner point location requisite
for the SMT 8-
6,
4,
2,
o N __— /\
2 0 2 3 6 § 10 12

condition. A simulated annealing framework governs the evaluation of the neighbor
solution generated by this process and upon rejection or acceptance of the neighbor
solution, the algorithm returns to the expansion phase.

Another well-known SMT property is that a SMT of X is a concatenation of full
Steiner trees on subsets of X, where a full Steiner tree (FST) is a network on n termi-
nal points which contains (n — 2) Steiner points. For example, the SMT in Fig. 3 is a
concatenation of four FSTs, each of three terminal points. This observation forms the
basis of the Geosteiner algorithm (Warme et al. 2001), which builds a list of all can-
didate FSTs which could appear in the SMT and executes a branch-and-bound proce-
dure to concatenate elements of the candidate list into the optimal SMT. Zachariasen
and Winter (1999) present a heuristic approach for the planar ESTP which utilizes
geometric structures (Gabriel graphs, Delaunay triangles, minimal spanning trees,
etc.) to construct a restricted candidate list F' of FSTs on subsets of terminal points.
The FSTs are then greedily concatenated into a candidate Steiner tree.

Relative to the planar ESTP, the literature on heuristics for the ESTP in R4 for
d > 2 is limited. Smith et al. (1995) utilize the Delaunay triangulation and MST to
decompose specially-structured sausage-shaped instances into smaller subproblems
which are then solved by an exact algorithm. Toppur and Smith (2005) extend the
heuristic to random instances in %> using decomposition by Delaunay tetrahedrons.
Ravada and Sherman (1994) apply a partitioning technique for the problem in %<,
d =2,3. A parameter ¢ governs the size of the subproblems created in the partition,
and each of these subproblems is solved by the exact algorithm of Smith (1992).

3 Algorithm description

In this section, we describe our heuristic. The algorithm utilizes the Delaunay triangu-
lation to generate candidate Steiner points for insertion, the MST to identify Steiner
points to be removed, second-order cone programming to optimize the location of the

remaining Steiner points, and an edge insertion similar to Dreyer and Overton (1998)

@ Springer

A randomized Delaunay triangulation heuristic for the Euclidean 359

Algorithm 1 Local Search

Input: Set of terminal points, X, in %t¢
Output: A tree, T, with Steiner topology on X U S, where S is a set of Steiner
points.
Initialization:
Set counter = 1 and § = @.
Set T = MST(X).
while counter < trial limit do
Construct DT(X U S).
Randomly generate the insertion probability, p, from the range [/, u].
for each Delaunay simplex do
With probability p, insert a Steiner point s and let S’ = S U's.
end for
Set T’ =MST(X U S").
T’ < Clean(T”) via Algorithm 2.
T’ < Edgelnsertion(T”) via Algorithm 3.
if £(T") — £(T) < x£(T) then
T’ < Recover(T") via Algorithm 4.
end if
if £(T") — £(T) < 0 then
Set S=S',T =T, and counter = 1.

else
counter <— counter + 1.
end if
end while

as an attempt to correct any violations of the angle condition. We govern this neigh-
bor generation procedure with a first-improvement local search framework, which we
outline in Algorithm 1.

Recall that X denotes the set of terminal points in Euclidean space, and S is the
set of Steiner points. We initialize S = #J, and begin the algorithm by constructing the
Delaunay triangulation of X U S. We sequentially consider each Delaunay simplex,
inserting a Steiner point at the simplex centroid with probability p; we randomly
select the value of p from the range [I, u#] for 0 <! <u < 1. We generate a candidate
tree, T’, by forming the MST on X and the newly augmented set of Steiner points.

After forming the MST on X US’, T’ may have a non-Steiner topology and warrant
cleanup operations. Therefore, via Algorithm 2, we iteratively remove all Steiner
points of degree one or two (and appropriately repair the tree) until there are no
Steiner points of degree less than three. Then, we (locally) optimize the location of
each Steiner point of degree three (treating its neighbors as fixed); we determine
these optimal locations analytically in the plane and computationally via SeDuMi’s
second-order cone solver (Sturm and Polik 2006) for d > 2. After the removal of the
low-degree Steiner points and the subsequent repair, the tree may contain ill-suited
Steiner connections between distant terminal points. As an intermediate check on
the validity of the topology, we form the MST on the terminal points and current

@ Springer

360 J.W. Van Laarhoven, J.W. Ohlmann

Algorithm 2 Cleanup Procedure

Input: A tree, 7/, on a union of terminal points and Steiner points, X U S’.
Output: A tree, T”, on a union of terminal points and Steiner points, X U S”.

Initialization:
SetS"=8"and T" =T'.
repeat

for each Steiner point s € S” do
if degree(s) = 1 then
Delete the edge adjacent to s from 7.
S« 8" —s.

else
if degree(s) = 2 then
Delete the two edges, (s,x) and (s, y), adjacent to s from
T".
Insert a new edge, (x, y), into T”.
S« 8" —s.
end if
end if
end for

for each Steiner point s € S” do
if degree(s) = 3 then
Optimize the location of s.
end if
end for
Set T =MST(X U S”)
until each Steiner point s € S” has degree > 3
if there exists at least one edge between Steiner points in 7” then
Optimize location of the Steiner points in S” via SeDuMi (Sturm and Polik
2006).
end if

set of Steiner points. This reformation of the MST will eliminate unnecessarily long
edges, but may re-introduce Steiner points of degree one or two, requiring removal
operations to be repeated.

Before exiting the cleanup subroutine, we optimize the location of the Steiner
points using the second-order cone solver of SeDuMi (Sturm and Polik 2006) if
Steiner point to Steiner point edges exist in the tree. In such a case, the previous
local optimization of Steiner points (treating neighbor points as fixed) may not have
resulted in the globally optimal location for all Steiner points in the tree. For de-
tails regarding formulating the problem of locating the Steiner points for a given full
Steiner topology as a conic optimization problem, we refer to Fampa and Anstreicher
(2008). The optimization of the Steiner point locations can result in Steiner points
coalescing with neighboring Steiner or terminal points, and in such a case we remove
the degenerate Steiner point and appropriately reattach the tree.

@ Springer

A randomized Delaunay triangulation heuristic for the Euclidean 361

Algorithm 3 Edge Insertion (Dreyer and Overton 1998)
Input: A tree, 7, on a union of terminal points and Steiner points, X U S.
Output: A tree, 7', on a union of terminal points and Steiner points, X U S’.
Initialization:
Let E be the set of edges in T'.
SetT'=T, S8 =S, and edge list = @.
fori=1,...,|XUS|do
for j such that (x;, x;) € E do
for [such that (x;,x;) € E do
if (x;, x;) meets (x;, x;) at angle less than 120° then
edge list < edge list U (x;, x;).
end if
end for
if edge list # ¢ then
From edge list, select (x;, xx) which maximizes dot product with
(xi, xj).
Lets=ux;,letS'=SUs.
Remove edges (x;, x;) and (x;, x) from T’.
Add edges (x;, s), (x},s), and (xx,s) to T'.
Set edge list = 0.
end if
end for
end for
Optimize location of the Steiner points in S’ via SeDuMi (Sturm and Polik 2006).

After completing the cleanup operations of Algorithm 2, we perform an edge in-
sertion as outlined in Algorithm 3 as a final adjustment to the candidate tree. The
steps of this edge insertion procedure are the same as in Dreyer and Overton (1998),
but differ in the edge selection criteria. We select violating edges based on largest
dot product, while Dreyer and Overton (1998) prioritize via smallest violating angle.
Following the edge insertion, we compute the length of the candidate tree, £(7"), and
if it is within x percent of the current tree’s length, we execute Algorithm 4 to ensure
the candidate tree possesses a Steiner topology. An iteration concludes with compar-
ing the lengths of the candidate tree and current tree to execute the first-improvement
local search. If the current solution is not improved in trial limit iterations, the algo-
rithm terminates.

4 Discussion of algorithm features

Our algorithm maintains many features of other ESTP heuristics relying upon Delau-
nay triangulation, but with several important differences. One key difference is that
we probabilistically insert Steiner points into each Delaunay triangle (including the
degenerate Delaunay triangles) rather than deterministically inserting Steiner points
into all non-degenerate Delaunay triangles (Beasley and Goffinet 1994) or only in-
serting Steiner points into Delaunay triangles with two edges in the MST (Smith et al.

@ Springer

362 J.W. Van Laarhoven, J.W. Ohlmann

Algorithm 4 Steiner Topology Recovery

Input: A tree, 7, on a union of terminal points and Steiner points, X U S.
Output: A tree, T’, with a Steiner topology on X U §’.
Initialization:
Let E be the set of edges in T'.
SetT'=T, S8 =S, and edge list =@.
fori=1,...,|XUS|do
if degree(x;) > 3 then
Set edge list=0
for j such that (x;, x;) € E do
edge list < edge list U (x;, x;).
end for
for j =1,...,degree(x;) —3 do
Select edges, (x;, xx) and (x;, x;), from edge list with largest dot
product.
Lets =x;,let S’ =S Us.
Remove edges (x;, xx) and (x;, x;) from T’ and from edge list.
Add edges (x;, s), (xk, s), and (x;,s) to T".
end for
end if
end for
Optimize location of the Steiner points in S’ via SeDuMi (Sturm and Polik 2006).

1981). The difference in insertion strategy allows our algorithm to achieve different
FSTs on subsets of terminal points.

Figures 5, 6, 7, and 8 demonstrate how our probabilistic Steiner insertion can
quickly achieve FSTs that a deterministic procedure may not. Figure 5 illustrates
the minimal spanning tree and corresponding Delaunay triangulation for the sixth
instance of size-10 ESTP instances from the OR-Library (Beasley 1990). The ap-
proaches of Smith et al. (1981) and Beasley and Goffinet (1994) struggle to achieve
a SMT for This is an instance for which t. Our local search heuristic finds the opti-
mal solution in Fig. 6. The key region is the two lower left-hand Delaunay triangles.
Figure 7 shows that deterministic insertion in all non-degenerate Delaunay triangles
results in a pair of degree-two Steiner points in this lower left-hand region that will
be removed after cleanup. Performing six iterations of expansion/reduction phase as
prescribed by Beasley and Goffinet (1994) fails to uncover the lower FST existing in
the SMT of Fig. 6. While this empirical observation does not unequivocally guarantee
that Beasley and Goffinet (1994) cannot achieve a SMT for this instance (a SMT may
be reachable from another solution visited in the simulated annealing run), it reveals
insight on the effectiveness of probabilistic Steiner point insertion. In this example,
Fig. 8 shows how probabilistically inserting in the left Delaunay triangle in the lower
left-hand region, but not the right Delaunay triangle, quickly results in the key FST
being formed in the lower left corner, eventually leading to the SMT of Fig. 6.

While Beasley and Goffinet (1994) do not consider randomization in the gener-
ation of their candidate solutions, they accept non-improving solutions probabilisti-

@ Springer

A randomized Delaunay triangulation heuristic for the Euclidean 363

Fig. 5 As demonstrated by the
sixth instance of the size-10
ESTP instances from the 0.9}
OR-Library, the Delaunay
triangulation contains the edges
of the MST (highlighted in bold)

1+

08+~

0.7

06

0.5]

04

0.3}

0.2+

0.1}

.
=]
()
o-
=]
()
<
S
o
L2}
=]
oo
<

Fig. 6 A SMT for the sixth

instance of the size-10 ESTP
instances from the OR-Library 0.9}
contains a FST on three terminal

points in the lower left-hand 0.81

region of the network 0.7l

0.6/
0.5+
0.4}
0.3}
0.2}

0.1}

cally depending on the current temperature of the simulated annealing scheme. That
is, Beasley and Goffinet (1994) generate neighbor solutions deterministically and ac-
cept them probabilistically, while our heuristic generates neighbor solutions proba-
bilistically and accepts them deterministically. As our computational results in Sect. 5
attest, our probabilistic neighbor generation scheme quickly generates a diverse set
of topologies to allow an effective sampling of the search space.

In addition to a difference in insertion criteria, we simplify the method for ini-
tially locating the inserted Steiner points. We insert via centroid rather than optimally
locating the Steiner point relative to its neighbors. This location is more efficient to
calculate than the floating point arithmetic operations to analytically locate a Steiner
point or to solve a second-order cone program via SeDuMi (Sturm and Polik 2006).
Furthermore, it is unclear how to optimally place a single Steiner point in Delaunay
simplices for d > 2 as a Delaunay simplex in dimension d is defined by d + 1 points

@ Springer

364 J.W. Van Laarhoven, J.W. Ohlmann

Fig. 7 Deterministic Steiner
point insertion in all nine
non-degenerate Delaunay 0.9
triangles results in a pair of

degree-two Steiner points in the 98
lower left-hand region which
will be removed by a cleanup
operation 0.6+

0.7

0.5~

0.4+

0.3~

0.2

0.1

ol
o
[
o
E-
o
o
o
@
.

-0.2

Fig. 8 Probabilistic Steiner
point insertion identifies the
lower left FST in the SMT 09t

0.8F
0.7r
0.6f
05
0.4F
0.3r
0.2f

0.1F

ol
=]
(%]
Q
=
o
]
o
w

02

which requires d — 1 Steiner points to form a FST. We address this issue by sim-
ply inserting a single point at the simplex centroid and allow later iterations of the
algorithm to insert additional Steiner points in this simplex.

Our post-processing procedures applied to the candidate tree after the trial inser-
tion of Steiner points are simplified relative to those of Beasley and Goffinet (1994).
Beasley and Goffinet (1994) run an optimization subroutine on Steiner points of de-
gree four in order to determine the best FST on those four points, and delete all Steiner
points of degree greater than or equal to five. In contrast, our cleanup procedure (Al-
gorithm 2) addresses only Steiner points of less than degree three and attempts to
address the remaining untenable Steiner points by inserting edges via Algorithm 3.
Our application of Algorithms 2 and 3 may result in a candidate tree that still lacks a
Steiner topology (and thus could possibly be shortened). Rather than attain a Steiner
topology for all candidate solutions, we utilize Algorithm 4 to directly address points
with degree larger than three only in candidate trees within x percent of the current

@ Springer

A randomized Delaunay triangulation heuristic for the Euclidean 365

solution. Our computational work, e.g., Table 6 in Sect. 5, suggests that addressing
high-degree points via Algorithm 4 typically does not result in a large improvement.
Thus, setting x to be a small value will reduce computational effort by only con-
firming a Steiner topology for candidate trees with a strong potential to improve the
current solution.

5 Computational results

We implement our algorithm in Matlab and execute the computational experiments
on dual core 2.4 GHz Pentium processor with 2 GB of RAM and a Windows operat-
ing system. We compare our approach to Beasley and Goffinet (1994) and Zachari-
asen (1999) on 195 planar ESTP instances from the OR-Library (Beasley 1990). We
also test our algorithm on 20 random instances in MY 3 <d <5 from Fampa and
Anstreicher (2008) for which the exact solution is known. To determine the quality
of solutions computed over highly structured sets in 93, we test the algorithm on 10
R-sausage instances of varying size as well as 16 sausage-type instances appearing
in Smith et al. (1995) and Toppur and Smith (2005). We compute solution quality
using percent reduction over the MST. That is, if T is a candidate Steiner tree for
a set of points X, we define o = 100 x (((MST) — £(T))/¢(MST) as the percent
reduction over the MST. The ratio p = ¢(7)/¢£(MST) is also commonly used as a
measure of quality, and we adopt this for comparison to Smith et al. (1995) and Top-
pur and Smith (2005). One converts easily between these two measures of quality as
o =100 (1 — p).

Due to its stochastic nature, we run our algorithm twenty times on each instance
and report statistics regarding the best solution, average solution, and performance
variability. Tables 2 and 3 present results by aggregating individual instances by
problem size. Each entry in Table 2 is computed over 15 instances. Each entry of
Table 3 is calculated over ten instances for d = 3 and over five instances for d =4
and 5. Specifically, let U[j- denote the percent reduction obtained on run j of in-
stance i of problem size n. For an individual instance i of size n, let the best percent
reduction be 07", = max{o}}, ..., 0/} and let the average percent reduction be
o =(j+--+ crl.”’zo) /20. For a problem class of m instances of size n, we report
the overall best percent reduction as oy, , = (07, + -+ +0,; ,,,)/m and the over-
all average percent reduction as 6" = (61 +- - - +0,,.)/m. We measure the variability
of solution quality for the aggregated results by calculating a pooled estimate of the
common variance for each of the instances in the problem class. The pooled estimate
is given by +/SSg/(19m), where m is the number of different instances within the
problem class, and SSg = Y /L, Z?i 1(oij — 5:.)? is the sum of the squares due to
error within instances (Montgomery 2001). We report the computation time (in CPU
seconds) as the average time per run.

We report the performance for individual instances from Smith et al. (1995) and
Toppur and Smith (2005) for the benchmarks in Tables 4 and 5 in terms of p.
Specifically, ppess = min{p1, ..., p2o} represents the best solution obtained out of
twenty runs on a specified instance. Similarly, average solution quality is given by
o =(p1+---+ p20)/20 and performance variability is given by the standard devia-

tion of p1, ..., po.

@ Springer

366 J.W. Van Laarhoven, J.W. Ohlmann

Table 1 Insertion probabilities between 0.3 and 0.6 consistently achieve the largest average percent re-
duction for the OR-Library ESTP instances (Beasley 1990)

Insertion probability, p
n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 OPT

10 287 304 316 320 320 321 322 320 316 312 295 325
20 282 303 309 312 310 312 310 310 3.06 301 241 3.16
30 280 298 3.00 302 301 301 303 300 297 291 269 3.07
40 279 306 3.08 308 3.08 307 307 306 301 299 285 314
50 273 295 298 299 299 299 296 295 289 286 265 3.03
60 274 319 320 321 321 320 320 317 315 306 278 327
70 262 302 305 306 306 306 305 304 301 297 274 311
80 263 296 29 297 296 295 294 292 283 282 261 3.04
90 279 301 302 303 302 300 301 299 294 291 257 312
100 280 3.17 318 3.8 3.17 316 315 311 3.08 301 259 327

Fig. 9 For instances of size 10, Performance of Algorithm 1 versus k
40, and 80 from the OR-Library
(Beasley 1990), this graph of 3.25}¢
average percent reduction versus
k, where trial limit = k/7, 3.2
demonstrates that a value of ks 8.15¢
k = 3 results in an iteration % 34
count that provides an o
acceptable tradeoff between 2 3.05r
solution quality and solution -% al
time =
o 2.95¢
[an
R 2.9
2.85r
28 B Noto
275 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ i o S
0O 05 1 15 2 25 3 35 4 45 5 55

To demonstrate the role of the insertion probability, p, we perform computational
experiments in which we fix p at various values ranging from 0 to 1 and execute
Algorithm 1 on the planar ESTP instances from the OR-Library (Beasley 1990). Each
entry of Table 1 represents ¢” corresponding to a value of p on instances of size n.
As values of p between 0.3 and 0.6 consistently achieve the best average percent
reductions, we set / = 0.3 and u = 0.6 in the remainder of our computational testing.

To implement our algorithm, we must establish a value for trial limit to control
the loop iterations for the local search. Figure 9 illustrates the effectiveness of our
algorithm, in terms of average percent reduction, when trial limit = k\/n for vari-
ous values of k. In the remainder of the computational experiments, we set k = 3,
i.e., trial limit = 3,/n. In addition, we set x = 0 so that we only confirm the Steiner
topology of candidate trees that are shorter than the current solution.

@ Springer

A randomized Delaunay triangulation heuristic for the Euclidean 367

Table 2 compares the performance of our randomized Delaunay triangulation
heuristic to two leading heuristics for the planar ESTP instances from the OR-Library
(Beasley 1990). The problem size ranges from 10 terminal points to 100 terminal
points, with 15 instances at each problem size. As Table 2 shows, our heuristic typ-
ically dominates the simulated annealing approach of Beasley and Goffinet (1994).
Based on average performance, our approach does not achieve as large of percent
reduction as the FST-local search approach of Zachariasen (1999), which utilizes
planar-specific rules to generate a good, short list of FST candidates for concate-
nation. Our general approach does not take advantage of problem dimension, but
we note that our best percent reductions are competitive with the average results
of Zachariasen (1999) and that our performance variability is small, suggesting that
these best percent reductions are not sampling anomalies (Zachariasen 1999 does
not report results analogous to our o;,, , calculations). Comparing computation time
across platforms is precarious, but taking into account machine speeds, the running
time of our approach is longer than either Beasley and Goffinet (1994) or Zachari-
asen (1999). We attribute much of this discrepancy to the inefficiency of our MAT-
LAB implementation relative to the FORTRAN and C++ implementations of Beasley
and Goffinet (1994) and Zachariasen (1999), respectively. We note that a comparison
of our termination criteria and the termination criteria of the FST-local search in
Zachariasen (1999), which limits the number of descents to 10,/7 and the maximum
total iterations to 504/n, suggests that our termination criteria results in significantly
iterations.

We demonstrate our heuristic’s robustness by considering the randomized in-
stances from Fampa and Anstreicher (2008) in R for3<d <5. Fampa and Anstre-
icher (2008) use the Smith+ algorithm to determine optimal solutions for ten in-
stances in N> and five instances each in %* and M. Fampa and Anstreicher (2008)
create these instances by randomly generating ten points in the [0, 10]¢ hypercube.
As Table 3 illustrates, our approach produces optimal or near-optimal solutions. For
R for3 <d <35, our average solutions are within 1.4 percent, 3.4 percent, and 3.3
percent of optimality, respectively. Our best solutions are optimal for all instances. In
addition to the best and average percent reduction calculations, we also provide the
number of times our algorithm finds the optimal solution in Table 3 to demonstrate
that our approach consistently achieves the optimal solution. While exact compar-
isons of computation time are difficult due to varying machine speeds and software
implementations (Fampa and Anstreicher 2008 implement the Smith+ algorithm in
C, while we implement our approach in MATLAB), we can safely claim that our
approach achieves comparable results in the fraction of the time.

We also test our heuristic on 10 9%-sausage and 16 sausage-type networks in 9>
appearing in Smith et al. (1995) and Toppur and Smith (2005). The 9i-sausage is a
chain of regular tetrahedra joined together face-to-face, and the sausage-type network
instances are concatenations of small sausages meeting at a common face. Toppur and
Smith (2005) establish the optimal Steiner topology for the specially-structured -
sausage instances in Table 4, and provide the optimal solutions. As Table 4 shows,
our heuristic consistently achieves optimal solutions on the fi-sausage instances. Al-
though these instances are specially structured to accommodate the sausage heuris-
tic of Toppur and Smith (2005), our general randomized Delaunay triangulation ap-
proach is very competitive.

@ Springer

J.W. Van Laarhoven, J.W. Ohlmann

368

LTE oy 1900 F 61°¢ 9T’ Sve e orI'8 L0'€ 001
e £6¢ 90 0F¥0'¢c Ire |4 Ire 008'L $6'C 06
70°¢ (44 800 F+86'C €0 ol €0'¢ 90¢'9 °6'C 08
e S'LI 0S0°'0F80°¢ Ire el Ire LOS'E S6'C 0L
LTE 6'Cl 8C0°0F €T¢E LTE 96 LTE §6S'C 8I'c 09
€0'¢ 06 6¥0'0 F00°¢ €0'¢ L €0'¢ 626’1 °6'C 0S
145 89 I1SO0F I1°¢ yi'e vy 483 88C'1 L6'C oy
L0€ 6'¢ 8900 F €0'¢ LO€ [90°¢ 609°0 S6'C 0€
ore 07¢C 8S00FEl'E Slh'e 60 Ssl'e 9LT0 cre 0C
§Te L0 IST'0FCCe e 0 £€Ce LS00 e 0l
(099) (09s) uononpal (urur) uononpalr
uonoNpal ndo () /ASS N F 40 1o ndo % ‘SAY ndo % SAY
9% 1O uone[n3ueLs Aeune[o(] POZIopueRy (6661) IIUIA PUEB UISBLIBYIRZ (+661) 12uyjon) pue Ao[seaq u

(0661 A9[seaq) saouejsur A1e1qr]-yO reue(d ay) uo sayoeordde 10y10 Ym 2ANdWOD SI ONSLINAY InQ T J[qRL

pringer

NS

A randomized Delaunay triangulation heuristic for the Euclidean 369

Table 3 Our heuristic achieves results comparable with the exact approach of Fampa and Anstreicher
(2008) with a fraction of the computational effort

d n Smith + algorithm Randomized Delaunay triangulation
Opt. % CPU Ot "+ /SSg Optimal CPU
reduction (sec) runs (sec)
3 10 5.584 754 5.584 5.506 £0.178 171/200 39
10 8.301 5736 8.301 8.019 £ 0.366 57/100 54
5 10 8.229 4681 8.229 7.957 £0.371 47/100 6.8

Table 4 Our heuristic consistently obtains optimal or near-optimal solutions on the R-sausage instances

in 93
n Toppur and Smith (2005) Randomized Delaunay triangulation
o Pbest p =+ st. dev. CPU (min)
6 0.80807 0.80807 0.80807 £0 0.03
7 0.80286 0.80286 0.80286 £ 0 0.04
8 0.80090 0.80090 0.80090 £ 0 0.05
9 0.79870 0.79870 0.79888 £ 0.0008 0.07
10 0.79701 0.79701 0.79759 £ 0.0014 0.07
11 0.79579 0.79579 0.79603 £ 0.0011 0.09
12 0.79472 0.79472 0.79495 £ 0.0010 0.10
31 0.78805 0.78805 0.78841 £ 0.0009 0.71
66 0.78597 0.78597 0.78639 £ 0.0005 3.95
96 0.78541 0.78541 0.78596 £ 0.0005 10.74

Table 5 contains multiple types of the sausage-type network instances in %>, The
naming convention for these instances is listed as an acronym. The first letter is either
“S” or “L” referring to short or long chains. The second letter is either “S” or “A” re-
ferring to symmetric or asymmetric configurations. The final character in the instance
name refers to the cardinality of the junctions at which sausage chains intersect (“M”
stands for “multiway” junction in which more than four chains intersect). We refer to
Smith et al. (1995) for more details on these constructions.

On the 16 sausage-type networks, Smith et al. (1995) and Toppur and Smith (2005)
decompose the instance into subproblems and then compute a suboptimal tree on each
of these sets. They report a value of p (which we call “composite p”) that is actually
the average of the p values over all the subproblems. Their reporting is not directly
commensurable with ours as we report p for the entire tree which our heuristic ob-
tains. Therefore, we present the results here not to make direct comparisons, but to
demonstrate our approach’s ability to handle highly structured instances. While the
optimal solution for the sausage-network instances is not known, relative to the con-
jectured optimal Steiner ratio is 0.78149 (achieved by the infinite-length fi-sausage),
Table 5 attests that our approach performs well as the average solution obtained is
never more than seven percent above this lower bound.

@ Springer

=
M
£
=
o
z
-

m [2000 F 28280 ¢sT80 €9L8°0 6180 9 NV

m Sl 100°0 F 0€08°0 11080 86580 18180 144 V1
<

3 60 200°0 F 25080 92080 09680 €1¢8°0 LE €Vl

W 70 C00°0F 186L°0 996L°0 S9¥8°0 6L08°0 9C 44!

= [200°0 F20€8°0 1L28°0 91060 6CC80 09 INST

- 't 200°0 F LLOB0 8708°0 98980 80 (97 ST

60 100°0 + 8008°0 066L°0 8L¥8°0 61¢8°0 6¢ €51

01 200°0 F ¥96L°0 ¥¥6L°0 L6€8°0 62080 6¢ S

L1 200°0 F $5€8°0 60€8°0 66880 080 123 VS

60 200°0 F $908°0 0%08°0 11980 [qréAt LE AR

90 €00°0 F €508°0 61080 6680 81C80 6¢ £vsS

€0 1000 F €L6L°0 996L°0 10€8°0 <080 1c A

90 200°0F 0618°0 LSI8°0 05680 09180 LT INSS

S0 ¥00°0 F €0¢8°0 0r180 99L8°0 0€180 LT ¥SS

70 200'0F0018°0 69080 1,680 11180 €C €SS

0 £00°0 F £508°0 0€08°0 SPe80 60080 Sl ¢SS

(utwr) NdD "AQp IS F J 15299 d ayisodwo) d ayisodwo)

uone[n3ueL) Aeune[d(] PozIuopuey (S661) T8 19 s (5007) yws pue inddog, u Qoue)suf

(s00?7) yws pue anddoy, pue (Se61) ‘T8 30 Yiwg ur Jurreadde sooueysur clguo uostredwod 2ouBuLIONdd S d[qeL,
o
-

pringer

NS

A randomized Delaunay triangulation heuristic for the Euclidean 371

Table 6 We report the percentage of improving candidate trees which require a Steiner topology to be
recovered and the resulting percent improvement in the tree length

Problem Class % Recoveries % Improvement
Beasley (1990) n
10 0.00 0
20 0.00 0
30 0.00 0
40 0.00 0
50 0.31 0.48
60 0.74 0.36
70 0.35 0.31
80 0.30 0.25
90 0.16 0.21
100 0.20 0.26
Fampa and Anstreicher (2008) d
9n3 4.77 1.28
e 8.48 1.13
"> 3.07 1.04
Toppur and Smith (2005) 26.23 0.29
Smith et al. (1995) 21.03 0.54

As a final remark, we note that our algorithm typically generates improving can-
didate trees which have a Steiner topology (and therefore do not require recovery
via Algorithm 4). For the implemented value of x = 0, we report in Table 6 the per-
centage of improving candidate trees that require Algorithm 4 to recover a Steiner
topology (over twenty runs per instance). In addition, we also compute the average
percent improvement resulting from recoveries by Algorithm 4, where percent im-
provement for a modification of tree T to tree T’ is defined by (£(T) — €(T"))/€(T).

Table 6 shows that for the OR-Library instances (Beasley 1990), fewer than one
percent of improving candidate trees do not possess a Steiner topology and Algo-
rithm 4 improves these trees by less than 0.5 percent. For the higher-dimension in-
stances of Fampa and Anstreicher (2008), Algorithm 4 is required for 4.77, 8.48,
and 3.07 percent of the improving candidate trees in %>, %t*, and %>, respectively,
with corresponding average percent improvements of 1.28, 1.13, and 1.04 percent.
For the two sets of 93 instances of Smith et al. (1995) and Toppur and Smith (2005),
Algorithm 4 is required much more often (over 20 percent of the improving candi-
date trees), but the average percent improvement is only 0.54 percent on the sausage
instances and 0.29 percent on the network instances. These results indicate our ap-
proach is more likely to need Algorithm 4 to attain a Steiner topology for a candidate
tree in a non-planar instance, but there does not appear to be much opportunity for
improving the candidate trees with non-Steiner topologies in any dimension.

@ Springer

372 J.W. Van Laarhoven, J.W. Ohlmann

6 Conclusion

We present a heuristic algorithm for the ESTP in %¢ which utilizes probabilistic in-
sertion of Steiner points in Delaunay simplices. Using a small example, we provide
insight on how probabilistic insertion can obtain FSTs on subsets of terminal points
that deterministic Steiner insertion schemes may be unable to find. Due to its gener-
ality and lack of reliance on dimension-dependent criteria, our approach is agnostic
with respect to problem dimension and effectively extends into higher dimensions.
Relying on simple mechanisms and second-order cone programming, our algorithm
produces competitive solutions within reasonable computational times on both ran-
domized and highly structured instances.

Acknowledgements The authors would like to thank the two anonymous referees for their constructive
comments that lead to the improvement of this paper.

References

Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric
problems. J. Assoc. Comput. Mach. 45(5), 753-782 (1998)

Beasley, J.E.: OR-Library: Distributing test problems by electronic mail. J. Oper. Res. Soc. 41(11), 1069—
1072 (1990)

Beasley, J.E., Goffinet, F.: A Delaunay triangulation-based heuristic for the Euclidean Steiner problem.
Networks 24(4), 215-224 (1994)

Chung, FR.K., Graham, R.L.: Steiner trees for ladders. Ann. Discrete Math. 2, 173-200 (1978)

Dreyer, D.R., Overton, M.L.: Two heuristics for the Euclidean Steiner tree problem. J. Glob. Optim. 13(1),
95-106 (1998)

Du, D.Z., Hwang, FX.: A proof of the Gilbert-Pollak conjecture on the Steiner ratio. Algorithmica 7(1),
121-135 (1992)

Fampa, M., Anstreicher, K.M.: An improved algorithm for computing Steiner minimal trees in Euclidean
d-space. Discrete Optim. 5(2), 530-540 (2008)

Garey, M.R., Graham, R.L., Johnson, D.S.: The complexity of computing Steiner minimal trees. SIAM J.
Appl. Math. 32(4), 835-859 (1977)

Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. Appl. Math. 16(1), 1-29 (1968)

Montgomery, D.C.: Design and Analysis of Experiments, 5th edn. Wiley, New York (2001)

Preparata, F.P., Shamos, M.L.: Computational Geometry: An Introduction, 2nd edn. Springer, New York
(1988)

Rao, S.B., Smith, W.D.: Improved approximation schemes for geometrical graphs via “spanners” and
“banyans”. In 30th ACM Symposium on Theory of Computing, pp. 540-550 (1998)

Ravada, S., Sherman, A.T.: Experimental evaluation of a partitioning algorithm for the Steiner tree problem
in R2 and R3. Networks 24(8), 409—415 (1994)

Smith, W.D.: How to find Steiner minimal trees in Euclidean d-space. Algorithmica 7(1), 137-177 (1992)

Smith, J.M., Lee, D.T., Liebman, J.S.: An O(N log N) heuristic for Steiner minimal tree problems on the
Euclidean metric. Networks 11, 23-29 (1981)

Smith, J.M., Weiss, R., Patel, M.: An O(N 2) heuristic for Steiner minimal trees in E3. Networks 26(4),
273-289 (1995)

Sturm, J.E,, Polik, I.: SeDuMi: self dual minimization version 1.1 (2006)

Thompson, E.A.: The method of minimum evolution, Ann. Hum. Genet. 36(3), 333-340 (1973)

Toppur, B., Smith, J.M.G.: A sausage heuristic for Steiner minimal trees in three-dimensional Euclidean
space. J. Math. Model. Algorithms 4(2), 199-217 (2005)

Warme, D.M., Winter, P., Zachariasen, M.: GeoSteiner 3.1. Department of Computer Science, University
of Copenhagen (DIKU) (2001)

Zachariasen, M.: Local search for the Steiner tree problem in the Euclidean plane. Eur. J. Oper. Res. 119(2),
282-300 (1999)

Zachariasen, M., Winter, P.: Concatenation-based greedy heuristics for the Euclidean Steiner tree problem.
Algorithmica 25(4), 418-437 (1999)

@ Springer

	A randomized Delaunay triangulation heuristic for the Euclidean Steiner tree problem in Rd
	Abstract
	Introduction
	Background information
	Algorithm description
	Discussion of algorithm features
	Computational results
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

