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Abstract Quantum-inspired evolutionary algorithms, one of the three main research
areas related to the complex interaction between quantum computing and evolution-
ary algorithms, are receiving renewed attention. A quantum-inspired evolutionary
algorithm is a new evolutionary algorithm for a classical computer rather than for
quantum mechanical hardware. This paper provides a unified framework and a com-
prehensive survey of recent work in this rapidly growing field. After introducing
of the main concepts behind quantum-inspired evolutionary algorithms, we present
the key ideas related to the multitude of quantum-inspired evolutionary algorithms,
sketch the differences between them, survey theoretical developments and applica-
tions that range from combinatorial optimizations to numerical optimizations, and
compare the advantages and limitations of these various methods. Finally, a small
comparative study is conducted to evaluate the performances of different types of
quantum-inspired evolutionary algorithms and conclusions are drawn about some of
the most promising future research developments in this area.

Keywords Quantum-inspired evolutionary algorithm · Evolutionary computation ·
Quantum computing · Optimization

Glossary
QIEA Quantum-inspired evolutionary algorithm
EDQA Evolutionary-designed quantum algorithm
Q-bit Quantum-inspired bit

This work is partially supported by the National Natural Science Foundation of China (60702026),
the Scientific and Technological Funds for Young Scientists of Sichuan (09ZQ-026-040) and the
Open Research Fund of Key Laboratory of Signal and Information Processing, Xihua University
(SZJJ2009-003).

G. Zhang (�)
School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
e-mail: zhgxdylan@126.com

mailto:zhgxdylan@126.com


304 G. Zhang

EA Evolutionary algorithm
GA Genetic algorithm
Q-gate Quantum-inspired gate
QEA Quantum evolutionary algorithm
bQIEAcm bQIEA with crossover and mutation operators
bQIEAn bQIEA with a novel update method for Q-gates
bQIEAi Hybrid algorithm of bQIEA and immune algorithms
DS-CDMA Directed-sequence code-division multiple access
bQIEApso Hybrid algorithm of bQIEA and PSO
bQIEAcga Hybrid algorithm of bQIEA and CGA
bQIEAo Original version of bQIEA
bQIEAh Hybrid bQIEA
rQIEA Real observation QIEA
EDA Estimation of distribution algorithm
bQIEA Binary observation QIEA
OMUD Optimal multiuser detector
PGA Polyploid GA
PSO Particle swarm optimization
MFD Matched filter detector
CGA Conventional GA
iQIEA QIEA-like algorithm

1 Introduction

The last twenty years have seen the application of various properties from quan-
tum physics to building a new kind of computers, quantum computers (Nielsen and
Chuang 2000; Glassner 2001a). In contrast to classical computers that deal with bi-
nary digits (bits), quantum computers work by manipulating quantum bits (qubits);
these are the smallest units of information that can be stored in a two-state quan-
tum computer (Hey 1999). Besides the usual ‘0’ and ‘1’ states, a qubit can also
be in a superposition of these two states, so that a quantum particle may effec-
tively be in lots of incompatible states at the same time (Nielsen and Chuang 2000).
Each superposition, |ψ〉, can be represented as a linear sum of the basis states,
|ψ〉 = α|0〉 + β|1〉, where α and β are numbers that denote the corresponding states’
probability amplitudes. The values |α|2 and |β|2 are the probabilities that the ob-
servation of a qubit in state |ψ〉 will render a ‘0’ or ‘1’ state, respectively (Glass-
ner 2001b), and normalization requires that |α|2 + |β|2 = 1. Various quantum gates
such as the NOT gate, AND gate, OR gate, NAND gate, Hadamard gate and ro-
tation gates can be applied to modify the state of a qubit (Hey 1999). A quantum
system |ψn〉 with n qubits can represent 2n states simultaneously (Grover 1999;
Bennett and DiVincenzo 2000) as

|ψn〉 =
2n∑

j=1

Cj |Sj 〉, (1)
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Fig. 1 Pseudocode algorithm
for evolutionary algorithms
(Bäck et al. 1997)

where Cj is the probability amplitude of the j th state Sj described by the binary
string (x1x2 · · ·xn), where xi , i = 1,2, . . . , n, is either 0 or 1. However, the sys-
tem will “collapse” to a single state if a quantum state is observed. Since the early
1990s, some significant quantum algorithms including the quantum search algorithm
(Grover 1997) and quantum factorization algorithm (Shor 1994), have been proposed
to show that quantum computers are in some sense more powerful than classical
computers at least with respect to solving some specific problems (Narayanan 1999;
Kent and Williams 1999).

Inspired by natural selection (Darwin 1859) and molecular genetics (Burian 1996),
evolutionary algorithms (EAs) define practical and robust optimization and search
methodologies. As compared with conventional optimization methods, EAs provide
a general approach to solving complex problems. Their global search capabilities,
their flexibility, robust performance and adaptability are all considered as outstand-
ing characteristics of EAs when searching for optimal solutions (Bäck et al. 1997).
Although the primary ideas of evolutionary computation came from the influential
works of Fraser (1957), Box (1957), Friedberg (1958), Friedberg et al. (1959) and
Bremermann (1962) in the late 1950s, it was not until the 1970s that evolutionary
computation started to be taken seriously. Evolutionary computation includes three
main branches: genetic algorithms (GAs) introduced by Holland (1975); evolutionary
programming, introduced by Fogel et al. (1966); and evolution strategies, introduced
by Rechenberg (1973) and Schwefel (1975). The representation of chromosomes, the
mutation and/or recombination operators, and selection/reproduction methods are the
key features that differentiate these three approaches.

The pseudocode algorithm for a canonical EA (Bäck et al. 1997) is shown in Fig. 1,
in which Q(t) represents a population with n individuals at generation t . The individ-
uals in P(t) are evaluated by using an auxiliary objective function, and after applying
the variation operators an offspring population Q(t + 1) evolves from the popula-
tion Q(t). The selection operation is applied to select better individuals in terms of
encoded fitness values to make the population evolve forward.

The possible interplay between quantum computing and evolutionary computation
has been explored since the late 1990s. Three kinds of algorithms have been identified
in this context and are respectively called in this paper:

– Evolutionary-designed quantum algorithms (EDQAs): the automated synthesis of
new quantum algorithms using evolutionary algorithms such as genetic program-
ming and GAs has been explored in Spector et al. (1999), Koza et al. (2005), Grig-
orenko and Garcia (2001, 2002), Sahin and Tomak (2005).
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– Quantum evolutionary algorithms (QEAs): QEAs focus on trying to implement
evolutionary algorithms in a quantum computation environment (Spector et al.
1998; Rylander et al. 2000; Malossini et al. 2004; Sofge 2006; Sahin et al. 2005;
Udrescu et al. 2006) in order to take advantage of quantum computation’s expo-
nential parallelism.

– Quantum-inspired evolutionary algorithms (QIEAs): QIEAs concentrate on gen-
erating new evolutionary algorithms using some concepts and principles of quan-
tum computing such as standing waves (Moore and Narayanan 1995), interference
(Zhou and Sun 2005), coherence (Pötz and Fabian 2006), etc.

This paper will focus on the QIEA. In recent years, research into QIEA, a new and
promising branch of evolutionary algorithms, has become a rapidly expanding field.
To date, however, there is no survey of the various types of QIEA, and furthermore,
some confusing QIEA concepts that have appeared in the literature need to be clari-
fied. Finally, some potential research developments aimed at advancing the theory of
QIEAs and their applications will be discussed.

Quantum-inspired computation uses computational methods based on the con-
cepts and principles of quantum mechanics, such as qubits, superposition, quantum
gates and quantum measurement, in order to solve various problems in the context
of a classical computing paradigm (Moore and Narayanan 1995). Like a quantum
mechanical system, a quantum-inspired system can be regarded as a probabilistic
system, in which the probabilities related to each state are utilized to describe the
behavior of the system. QIEAs use quantum-inspired bits (Q-bits), quantum-inspired
gates (Q-gates) and observation processes to specify their structure and steps. More
specifically, Q-bits are applied to represent genotype individuals; Q-gates are em-
ployed to operate on Q-bits to generate offspring; and the genotypes and phenotypes
are linked by a probabilistic observation process. In quantum mechanical systems,
the act of observation causes a quantum particle to take on one and only one state in
the measurement basis (i.e., one of the states |0〉 and |1〉) (Glassner 2001a). Similarly,
a superposition state represented by Q-bits in QIEAs will become a single state in the
process of observation.

QIEAs were firstly introduced by Narayanan and Moore in the 1990s to solve the
traveling salesman problem (Narayanan and Moore 1996), in which the crossover
operation was performed based on the concept of interference. The contribution of
Narayanan and Moore signaled the potential advantage of introducing quantum com-
putational parallelism into the evolutionary algorithm framework. No further atten-
tion was paid to QIEAs until a practical algorithm was proposed by Han and Kim
(2000, 2002), but they are now viewed as an emergent theme in evolutionary com-
putation. Albeit various variants of QIEA have been presented in the literature, they
can be categorized into three types: binary observation QIEA (bQIEA) (Han and
Kim 2000, 2002, 2004), real observation QIEA (rQIEA) (Zhang and Rong 2007c;
Liu et al. 2008) and QIEA-like algorithms (iQIEA) (Abs da Cruz et al. 2004, 2006;
Sailesh Babu et al. 2008). Inspired by the concepts of quantum computing, such as
qubits and quantum gates, a QIEA has the following main characteristics.

– A QIEA adopts a new representation, Q-bit representation, to describe individuals
of a population. Q-bit representation provides probabilistically a linear superposi-
tion of multiple states.
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Fig. 2 Comparisons of QIEAs and EDAs

– A QIEA uses a Q-gate, which can guide the individuals toward better solutions
(Han and Kim 2002), to generate the individuals at the next generation.

– A QIEA can exploit the search space for a global solution with a small number of
individuals, even with one element (Han and Kim 2002).

The present rapidly increasing interest in QIEAs is reflected in the growth of the
research community, but no survey on QIEAs has yet appeared in the specialized
literature. So the main aim of this paper is to provide basic (mainly descriptive) in-
formation so as to allow newcomers to the area to get a clear understanding of key
research problems and developments in the field, including those that are currently
under way. The significant contribution of this work is to give a comprehensive sur-
vey of QIEAs and their applications and to point out some issues deserving special
attention in this area. At the same time, this work provides researchers with a clear un-
derstanding of such concepts as EDQAs, QEAs, and other notions related to QIEAs.
Furthermore, this paper is intended to advance QIEA-related theoretical research and
to deepen the application of quantum computing techniques and concepts to evolu-
tionary computation.

Since QIEAs can be regarded as a kind of estimation of distribution algorithm
(EDA), a succinct comparison between QIEAs and EDAs (Santana et al. 2008;
Pelikan et al. 2000, 2002; Baluja 1994; Baluja and Davies 1997; De Bonet et al. 1997;
Harik 1999; Harik et al. 1998; Larran̆aga et al. 2000; Mühlenbein and Mahnig 1998,
1999; Pelikan and Mühlenbein 1999; Platel et al. 2009) is presented in Fig. 2.

The relationship between EDAs and QIEAs is worth considering in more detail. As
Figs. 2 and 3 show, EDAs need auxiliary selection methods and replacement strate-
gies to be provided, which are unnecessary for QIEAs. While probability is a fun-
damental property of all EAs, and EDAs may use it in the course of selection and
replacement, QIEAs employ it in the process of observation. However, if we restrict
attention to QIEAs that utilize only one individual and multiple observations at each
generation, then the two models are similar (Zhou and Sun 2005).

The rest of this paper is arranged as follows. Section 2 introduces QIEAs and
their applications, and provides an overview of the QIEA work done so far. Sec-
tion 3 presents a small comparative study. Experiments are carried out on benchmark
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Fig. 3 Comparisons of main schemes of EDAs and QIEAs

problems to evaluate the performances of different types of QIEA. Finally, some con-
clusions and some possible further developments are presented in Sect. 4.

2 Quantum-inspired evolutionary algorithms

Like conventional EAs, QIEAs are characterized by the representation of individu-
als, population diversity, and the use of a fitness evaluation mechanism (Han and Kim
2002). However, unlike the conventional framework for EAs, QIEAs describe indi-
viduals through Q-bit representation, and use of a Q-gate as an evolutionary operator
to obtain fitter individuals by employing an observation process to connect the Q-
bit representation with the optimization variables. This section summarizes the work
done on QIEAs. First, Q-bit representation is introduced in Sect. 2.1. Then the bQIEA
and several of its variants are discussed in Sect. 2.2, the rQIEA and its potential ap-
plications are presented in Sect. 2.3, and several QIEA-like algorithms are discussed
in Sect. 2.4. Finally, a summary follows in Sect. 2.5.

2.1 Q-bit representation

In conventional EAs, encoding the solutions onto chromosomes uses many different
representations, which may be generally grouped into three classes: symbolic, binary,
and numeric (Hinterding 1999). In contrast, a QIEA uses the Q-bit representation, a
novel probabilistic description of Q-bit individuals as strings of Q-bits. The Q-bit is
the basic computing unit in a QIEA and is defined as a column vector

[α β]T , (2)

where the numbers α and β satisfy the normalization condition |α|2 + |β|2 = 1. We
often write Eq. 2 in quantum mechanical ket-notation, α|0〉 + β|1〉, and as in quan-
tum theory, the values |α|2 and |β|2 denote the probabilities that the Q-bit will be
found in the ‘0’ or ‘1’ state, respectively (Han and Kim 2002). By a process of prob-
abilistic observation, each Q-bit can be rendered into one binary bit. This observation
process is shown in Fig. 4, in which x is the observed value of the Q-bit shown in
Eq. 2. Whereas binary representation uses 0 or 1 to deterministically represent a bit,
the Q-bit representation employs a Q-bit to describe a probabilistic linear superposi-
tion of 0 and 1, and this representation extends naturally to multi-Q-bit systems. For



Quantum-inspired evolutionary algorithms: a survey and empirical 309

Fig. 4 Observation process in
the QIEA (Han and Kim 2002)

example, consider a three-Q-bit system with three pairs of amplitudes, such as

[
α1|α2|α3
β1|β2|β3

]
=

[−√
3

3 |
√

2
3 |−√

5
3√

6
3 |

√
7

3 |−2
3

]
, (3)

where |αi |2 + |βi |2 = 1, i = 1,2,3. This represents a linear probabilistic su-
perposition of 23 = 8 states |000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, and
|111〉. In the process of observation, each of these eight states can be selected,
and the associated probabilities are |α1α2α3|2 = 30/729, |α1α2β3|2 = 24/729,
|α1β2α3|2 = 105/729, |α1β2β3|2 = 84/729, |β1α2α3|2 = 60/729, |β1α2β3|2 =
48/729, |β1β2α3|2 = 210/729 and |β1β2β3|2 = 168/729, respectively. Taking the
signs of the various αi , βi , into account, the states of the system can be represented
as

|ψ3〉 =
√

30

27
|000〉 +

√
24

27
|001〉 −

√
105

27
|010〉 +

√
84

27
|011〉

+
√

60

27
|100〉 −

√
48

27
|101〉 +

√
210

27
|110〉 −

√
168

27
|111〉. (4)

As this example illustrates, the Q-bit representation can represent a linear super-
position of states probabilistically; thus a QIEA’s population, i.e., the encoded geno-
types, potentially map to a larger phenotype space than other EAs with binary repre-
sentation.

2.2 bQIEA

The binary observation QIEA (bQIEA) was initially proposed in 2000 by Han and
Kim (2000, 2002) to solve combinatorial optimization problems; we refer to their
model as the original bQIEA (bQIEAo). Since then, various variants of the bQIEA
have been developed and they can be classified into three categories: bQIEA with
crossover and mutation operators (bQIEAcm), bQIEA with a novel update method
for Q-gates (bQIEAn), and hybrid bQIEA (bQIEAh). In what follows these bQIEA
variants will be introduced step by step.

2.2.1 bQIEAo

The structure of bQIEAo was first expounded in Han and Kim (2002), although pre-
liminary work was initiated in Han and Kim (2000). As the kernel of several variants
of bQIEA, bQIEAo will be explained in detail, since a clear understanding of bQIEA
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Fig. 5 Pseudocode algorithm for bQIEAo (Han and Kim 2002)

is required if we are also to understand the other bQIEA variants. The pseudocode
algorithm for bQIEAo is illustrated in Fig. 5.

Each step of this algorithm is described below.

(i). In the “initialize Q(t)” step, a population Q(0) with n multi-Q-bit individuals
is generated, Q(t) = {q t

1,q
t
2, . . . ,q

t
n}, at the generation moment t = 0, where

q t
i (i = 1,2, . . . , n) is an arbitrary individual in Q(t), represented as

q t
i =

[
αt

i1|αt
i2| · · · |αt

im

βt
i1|βt

i2| · · · |βt
im

]
, (5)

where m is the number of Q-bits used in each individual’s representation,
i.e., the string length of the Q-bit individual. The value αt

ij and βt
ij , j =

1,2, . . . ,m, t = 0, are initialized to the same probability amplitude 1/
√

2, so
that all possible states are superposed with the same probability at the begin-
ning.

(ii). By independently observing each Q-bit of Q(t) (where at this stage t = 0),
using the process described in Fig. 4, binary solutions in P(t), P(t) =
{xt

1,x
t
2, . . . ,x

t
n}, are obtained, where each xt

i (i = 1,2, . . . , n) is a binary solu-
tion with m bits. Each bit ‘0’ or ‘1’ is the observed value of a Q-bit [αt

ij βt
ij ]T

in q t
i , respectively, j = 1,2, . . . ,m.

(iii). The binary solution xt
i (i = 1,2, . . . , n) in P(t) is evaluated thus obtaining its

fitness.
(iv). In this step, all solutions in P(t) are stored into B(t), where B(t) = {bt

1,b
t
2,

. . . ,bt
n} and bt

i = xt
i (i = 1,2, . . . , n) (again, at this stage, t = 0). Furthermore,

the best binary solution b in B(t) is also stored.
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(v). This step is similar to step (ii). Observation of the states of Q(t − 1) produces
the binary solutions in P(t).

(vi). This step is similar to step (iii).
(vii). In this step, all the individuals in Q(t) are modified by applying Q-gates. The

bQIEAo use a quantum rotation gate as a Q-gate. To be specific, the j th Q-bit
in the ith Q-bit individual q t

i , j = 1,2, . . . ,m, i = 1,2, . . . , n, is updated by
applying the current Q-gate Gt

ij (θ)

Gt
ij (θ) =

[
cos θ t

ij − sin θ t
ij

sin θ t
ij cos θ t

ij

]
, (6)

where θ t
ij is an adjustable Q-gate rotation angle. Thus, the update procedure

for the Q-bit [αt
ij βt

ij ]T can be described as

[
αt+1

ij

βt+1
ij

]
= Gt

ij (θ)

[
αt

ij

βt
ij

]
, (7)

where θ t
ij is defined as

θ t
ij = s(αt

ij , β
t
ij )�θt

ij , (8)

and s(αt
ij , β

t
ij ) and �θt

ij are the sign and the value of θ t
ij , respectively. The

particular values used in bQIEAo are illustrated in Table 1, in which f (·) is
the fitness function, s(αt

ij , β
t
ij ) depends on the sign of αt

ijβ
t
ij , and b and x are

certain bits of the searched best solution b and the current solution x, respec-
tively (Han and Kim 2002). It is worth pointing out that Table 1 was derived
from a maximum problem and hence the condition f (x) ≥ f (b) should be
replaced by f (x) ≤ f (b) if a minimum problem is to be considered.

(viii). This step is similar to step (iv). The better candidate between xt
i in P(t) and

bt−1
i in B(t − 1), i = 1,2, . . . , n, is selected and stored into B(t). Simultane-

ously, the best candidate b in B(t) is also stored.
(ix). This step includes local and global migrations, where a migration in this al-

gorithm is defined as the process of copying bt
j in B(t) or b to B(t). A global

migration is realized by substituting b for all the solutions in B(t), and a lo-
cal migration is realized between each pair of neighboring solutions in B(t),
i.e., by substituting the better one of two neighboring solutions for the other
solution. For more information about the migrations, see Han and Kim (2002).

The knapsack problem, a well-known NP-hard combinatorial optimization prob-
lem, was chosen by Han and Kim as a suitable application example to investigate
the setting of parameters for, and the performance of, bQIEAo. Empirical guidelines
for setting the Q-gate parameters were drawn up following extensive experiments,
and to show the advantages of bQIEAo over conventional GAs (CGAs) with various
crossover and mutation probabilities, a large number of experiments were conducted
on the knapsack problems with different number of items. In Han and Kim (2002),
the bQIEAo’s convergence properties were also analyzed by observing the changing
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Table 1 Lookup table of θt
ij

,
where f (·) is the fitness,
s(αt

ij
, βt

ij
) is the sign of θt

ij
, and

b and x are certain bits of the
searched best solution b and the
current solution x, respectively
(Han and Kim 2002)

x b f (x) ≥ f (b) �θt
ij

s(αt
ij

, βt
ij

)

αt
ij

βt
ij

≥ 0 αt
ij

βt
ij

< 0

0 0 false 0 ±1 ±1

0 0 true 0 ±1 ±1

0 1 false 0.01π +1 −1

0 1 true 0 ±1 ±1

1 0 false 0.01π −1 +1

1 0 true 0 ±1 ±1

1 1 false 0 ±1 ±1

1 1 true 0 ±1 ±1

trends of probabilities of all solutions using a single Q-bit individual in the process
of finding the optimal profit for a knapsack problem with ten items.

Han and Kim further studied the termination criterion, a modified Q-gate Hε and
the initial values’ setting of Q-bits in Han and Kim (2004). Whereas EAs generally
use the maximal number of generations as a termination condition, bQIEAo could
employ a Q-bit convergence termination criterion due to its probability-based repre-
sentation of the individuals. In terms of our notation in Eq. 5, the Q-bit convergence
Ci in Han and Kim (2004) was defined as

Ci = 1

m

m∑

j=1

||αt
ij |2 − |βt

ij |2| (9)

and the termination criterion was of the form, Ci ≥ λ, where λ is some appropriately
selected number such as 0.9. This termination criterion gives a clear meaning to how
much closely Q-bit individuals converge to 0 or 1. The introduction of the Hε gate
is to prevent the premature convergence of bQIEAo by keeping a Q-bit away from
0 or 1 to a certain degree. Moreover, how to merge prior knowledge into the initial
values of Q-bits was also discussed to improve bQIEAo performance. The bQIEAo
algorithm was applied to solve 6 numerical optimization problems in Han and Kim
(2004), and experimental results compared with Yao et al. (1999) show that bQIEAo
is competitive with classical evolutionary programming and fast evolutionary pro-
gramming.

In Han and Kim (2006), a simplified model of the segment process bQIEAo
was considered to analyze the convergence for exploitation, and Shannon entropy
was used to investigate the exploration strategy. Theoretical analysis indicates that
bQIEAo with a single Q-bit individual for ONE-MAX problem guarantees the global
solution within the expected number of generations. The exploration mechanisms
applied clearly demonstrate that bQIEAo starts with a global search and then auto-
matically turns into a local search as the number of generations increases, due to its
inherent probabilistic nature, which achieves to a good balance between exploration
and exploitation.

Further studies considered parallelization (Han et al. 2001; Kim et al. 2006; Yang
et al. 2003a, 2003b), the extension to multi-objective algorithm (Zhou and Sun 2005),
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and other advanced features of the bQIEAo (Li et al. 2004b, 2009; Zhang and Gao
2007a; Khorsand 2005; Chen et al. 2004; Han and Kim 2003a, 2003b; Platelt et al.
2007; Imabeppu et al. 2008). A summary of this research is shown in Fig. 12.

In the study of bQIEAo, attention was given not only to research issues, but
also to applications. In Jang et al. (2004a), bQIEAo was applied to improve prin-
cipal component analysis methods by optimizing the weight factors of distance
measures, and consequently a bQIEAo-based classifier was presented to enhance
face verification performances. Experiments carried out on the face and non-face
images extracted from Aleix and Robert’s face database (Martinez and Benavente
1998) show that the proposed classifier performs better than the distance-from-face
space classifier and the maximum likelihood classifier both in terms of the face
verification rate and the false alarm rate. In Kim et al. (2003), a bQIEAo-based
disk allocation method was proposed for distributing buckets of a binary Cartesian
product file among an unrestricted number of disks to maximize concurrent disk
I/O. The experimental results show that the introduced method achieves equal or
shorter average query response times and 3.2–11.3 times faster convergence speed
than those of disk allocation methods using CGA. Additionally, bQIEAo was also
applied to solve various problems, such as parameter selection for support vector
machines (Luo et al. 2008), clustering gene expression data (Zhou et al. 2006b),
neural network training (Ganesh and Singhal 2005) and so on (Lu et al. 2008;
Liu et al. 2005, 2006; Huo and Stojkovic 2006, 2007; Akbarzadeh-T 2005; Xiao
et al. 2006; Khorsand 2006; Feng et al. 2006; Vlachoglannis 2008; Zhao et al. 2006;
Jang et al. 2003, 2004b, 2009; Lv and Liu 2007; John and John 2009; Gu et al. 2009b;
Zhou et al. 2005, 2006a; Lau et al. 2009; Araujo et al. 2008; Jeong et al. 2009;
Xing et al. 2009a, 2009b; Gu et al. 2009a). Various problems solved by bQIEAo
are summarized in Tables 3 and 4. The above applications show that bQIEAo is a
practical and efficient optimization algorithm.

Remarks As compared with binary, numeric and symbolic representations, the Q-
bit representation can achieve a linear superposition of states given its probabilistic
approach and is conductive to population diversity. Using a Q-gate as a variation op-
erator, instead of crossover, recombination and mutation operators, bQIEAo can find
the optimal or close-to-optimal solutions with a small number of individuals, even
with a single individual, as verified in Han and Kim (2002), Zhou and Sun (2005).
Furthermore, bQIEAo uses the current best solution to control different searching
directions and only a small amount of information needs to be exchanged between
multiple subpopulations; as a result, bQIEAo is suitable for parallel implementation
and has the potential to greatly reduce the communication and synchronization costs.
More importantly, the performance analysis and extensively convincing experiments
in Han and Kim (2002, 2004, 2006) show further the soundness of bQIEAo, although
the details would take us beyond the scope of this survey. As can shown by the exper-
iments and analysis in the literature, bQIEAo can achieve good experimental results,
and can also balance well between exploration and exploitation.

On the other hand, some issues concerning bQIEAo require further study. First, it
is worth asking how best to present the parameters of a Q-gate. The Q-gate in bQIEAo
has 8 parameters to be preset before its update process. This issue was investigated in
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Han and Kim (2002, 2003a, 2003b, 2004), Zhang and Gao (2007a), Khorsand (2005)
and an effective heuristic approach was derived empirically by considering the para-
meters as fixed values throughout the whole process of evolution. But ways of reduc-
ing the number of Q-gate parameters, and dynamically adjusting these parameters,
is worth further discussion. For instance, the parameters could be set to relatively
bigger values at the beginning of the evolution process so that the algorithm explores
the whole solution space, which then decrease gradually to relatively small values so
as to exploit the neighboring areas of the searched solutions. Also, as pointed out in
Han and Kim (2002, 2004, 2006), the universality and effectiveness of the heuristic
strategy in Han and Kim (2002) for Q-gate parameters need to be further verified in
other problems and applications. Second, the searching direction is dominated by the
current best solution, and consequently bQIEAo may get stuck in local minima when
the probabilities of the current best solution become 0 or 1. In Han and Kim (2004),
a Hε gate was introduced to solve the problem to a certain degree, but an additional
parameter ε was also brought into bQIEAo’s definition. Finally, more comparisons
are necessary not only between bQIEAo and the latest optimization methods such
as particle swarm optimization and estimation of distribution algorithms, but also in
solving other well-known optimization problems.

2.2.2 bQIEAcm

The bQIEAcm is a modified version of bQIEAo. It uses crossover and mutation op-
erators to replace the bQIEAo migration operators. According to the bQIEAcm re-
ported in Li et al. (2005a), Xu et al. (2005), Meshoul et al. (2005a, 2005b), Wang
et al. (2005c), Yang et al. (2004a, 2004b, 2005); Talbi et al. (2004a, 2004b, 2004c),
Li and Zhuang (2002), Abdesslem et al. (2006), Yang and Jiao (2003), Guo et al.
(2007), Yang and Ding (2007), Shu (2007), Wei et al. (2008), Ding et al. (2008),
Zhao et al. (2009), the pseudocode algorithm can be summarized as shown in Fig. 6.
In bQIEAcm, the crossover and mutation operators are performed on Q-bit individu-
als, so they are called quantum crossover and quantum mutation, respectively, so as to
differentiate them from those in CGA. In Fig. 6, the first three steps and steps (v)–(vii)
are the same as those in Fig. 5. In steps (iv) and (viii), storing the best solution among
P(t) is sufficient. Quantum crossover in step (ix) and quantum mutation in step (x)
are explained in Figs. 7 and 8, respectively, in which qi , qj (i, j = 1,2, . . . , n) are
any two individuals of the population Q(t) and q ′

i , q ′
j are the resulting individuals. It

is worth noting that Fig. 6 only shows one-point crossover and Fig. 8 shows uniform
mutation, but obviously, other crossover and mutation operators in CGA may also be
introduced into bQIEAcm.

In Abdesslem et al. (2006), Meshoul et al. (2005a), the bQIEAcm was successfully
applied to solve a multiple sequence alignment problem, which is a well-known NP-
hard combinatorial optimization problem in bioinformatics (Wang and Jiang 1994).
Experiments were conducted on two benchmarks with 24 data sets (Thompson et
al. 1999; Gardner et al. 2005). The results show that bQIEAcm is much better than
several leading alignment techniques (Eddy 2009; Notredame et al. 1998) includ-
ing CLUSTAL, DIALIGN, MATFFT, PROALIGN and COFFEE. In Meshoul et al.
(2005b), the applicability of bQIEAcm to multi-objective knapsack problems was
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Fig. 6 Pseudocode algorithm
for bQIEAcm

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

qi

[
αi1 αi2 . . . αih . . . αim

βi1 βi2 . . . βih . . . βim

]

qj

[
αj1 αj2 . . . αjh . . . αjm

βj1 βj2 . . . βjh . . . βjm

] ⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q ′
i

[
αi1 αi2 . . . αjh . . . αim

βi1 βi2 . . . βjh . . . βim

]

q ′
j

[
αj1 αj2 . . . αih . . . αjm

βj1 βj2 . . . βih . . . βjm

]

Fig. 7 Quantum crossover operation (the h Q-bits have been swapped)

{
qi

[
αi1 αi2 . . . αih . . . αim

βi1 βi2 . . . βih . . . βim

]
⇒

{
q ′
i

[
αi1 αi2 . . . βih . . . αim

βi1 βi2 . . . αih . . . βim

]

Fig. 8 Quantum mutation operation (the h Q-bits has been reversed)

discussed and experiments carried out on two benchmark data sets (Zitzler and Lau-
manns 1999; Ruiz 2009) show that a significant improvement over a state-of-the-art
algorithm SPEA2 (Zitzler et al. 2001). Additionally, more applications of bQIEAcm
and results regarding the performances of this method (Li et al. 2005a; Xu et al. 2005;
Li and Zhuang 2002; Wang et al. 2005c; Yang et al. 2004a, 2004b, 2005; Yang and
Jiao 2003; Talbi et al. 2004a, 2004b, 2004c; Guo et al. 2007; Yang and Ding 2007;
Shu 2007) are listed in Table 4.

Remarks The crossover operator, a method for sharing information between chro-
mosomes, and the mutation operator, a way of increasing the structural variability of
a population, play a central role in improving CGA behavior because the former may
produce additional diversity (divergence) or the refinement of the solutions (conver-
gence) and the latter may restore lost or unexplored genetic materials to the popula-
tion (Auger and Hansen 2005; Herrera et al. 1998). Quantum crossover and quantum
mutation can be regarded as extensions of the crossover and mutation operators in
CGA. It can be seen from Li et al. (2005a), Xu et al. (2005), Meshoul et al. (2005a),
Yang and Ding (2007), Abdesslem et al. (2006), Meshoul et al. (2005b), Wang et
al. (2005c), Yang et al. (2004a, 2004b, 2005), Talbi et al. (2004a, 2004b, 2004c), Li
and Zhuang (2002), Shu (2007), Yang and Jiao (2003), Guo et al. (2007) that good
results have been obtained in several applications. Like the crossover and mutation
operators in CGA, quantum crossover and mutation operators are helpful to prevent
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Fig. 9 Pseudocode algorithm
for bQIEAn (Zhang et al. 2006)

bQIEAcm from mature convergence to suboptimal solutions because they are bene-
ficial to population diversity, especially in the latter stage of evolution. But to what
degree they function and what is the contribution of each operator to the success of
bQIEAcm is still worth investigating further because they are applied to Q-bit indi-
viduals, rather than the standard individuals for which results are normally quoted. In
addition, more convincing experiments need to be conducted to compare bQIEAcm
with bQIEAo and other good optimization algorithms.

2.2.3 bQIEAn

Zhang et al. (2006) presented a modified bQIEA called bQIEAn, in which a novel
update method for Q-gates and a catastrophe operator were used. The pseudocode
algorithm for bQIEAn is shown in Fig. 9. The eight steps (i)–(vi), (viii) and (ix) are
the same as those in bQIEAo. In the step (vii), the Q-gate angle θ was defined as

θ = k · f (α,β), (10)

where f (α,β) and k are the sign and the value of θ , respectively. The k value has a
direct effect on the convergence speed. In bQIEAn, k was defined as a variable related
to evolutionary generations so as to dynamically adjust the search grid:

k = 0.5π · e−5t/tmax , (11)

where t is the current evolutionary generation, and tmax is the maximum number of
generations. f (α,β) is a searching direction function for guiding bQIEAn toward
better solutions. The value of f (α,β) can be obtained from Table 2, in which d1 =
α1β1 and ξ1 = arctan(β1/α1), where α1, β1 are the probabilities of the searched best
solution, and d2 = α2β2, ξ2 = arctan(β2/α2), where α2, β2 are the probabilities of
the current solution.

In the “catastrophe” step, if the best solution is maintained unchanged over a cer-
tain number of generations, the population catastrophe operation will be executed,
causing the best individual in b(t) to be replaced by the best individual of a new
population.

In Zhang et al. (2004a, 2004b, 2006), bQIEAn was employed to select the most
discriminatory feature subsets from a large number of features of radar emitter sig-
nals. The work shows that bQIEAn based feature selection algorithm can search for
a good feature subset to identify different types of signals. Using a Markov chain
method, the convergence of bQIEAn was analyzed mathematically in Zhang et al.
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Table 2 Look-up table of
function f (α,β) in bQIEAn d1 ≥ 0 d2 > 0 f (α,β)

|ξ1| ≥ |ξ2| |ξ1| < |ξ2|

true true +1 −1

true false −1 +1

false true −1 +1

false false +1 −1

(2003b). The applicability of bQIEAn to physical distribution vehicle routing, FIR
and IIR digital filter design and time-frequency atom decomposition was also dis-
cussed in Gao et al. (2006), Wang et al. (2007b), Zhang et al. (2003a, 2003c), Zhang
and Rong (2006, 2007b). Table 4 summarizes the work done on bQIEAn.

Remarks The bQIEAn can be regarded as a modified type of bQIEAo. As com-
pared with bQIEAo, bQIEAn has far fewer parameters in a Q-gate to preset, as there
is only one parameter defined as a variable that changes dynamically with the evolu-
tionary generation. Furthermore, the catastrophe operator helps the bQIEAn to avoid
evolutionary stagnation and local minima by changing the search direction due to
the replaced best individual on Q-gates. However, some aspects of the bQIEAn need
further study. First, we need a systematic analysis of the bQIEAn so as to understand
clearly its update method for Q-gates and the significance of the catastrophe opera-
tor. Extensive comparative experiments between dynamic adjustments and prescribed
values should be carried out to find the best approach for adjusting the parameter used
by the Q-gate operator. Next, more convincing experiments need to be conducted to
compare bQIEAn with bQIEAo, as well as with other good optimization algorithms.
Finally, the update method introduced in bQIEAn is a potentially promising scheme
for numerical optimization problems, and this needs to be investigated further.

2.2.4 bQIEAh

To improve bQIEA performance, other optimization techniques have been introduced
(Li et al. 2004a, 2004c, 2005b, 2006; Wang et al. 2005a, 2005b, 2005d, 2007a, 2007c;
You et al. 2006a, 2006b, 2006c, 2007; Li and Jiao 2005, 2007, 2008; Li and Liu
2006; Jiao and Li 2005; Bi and Jin 2007; Huang et al. 2007; Malossini et al. 2008;
Pan et al. 2007; Li and Wang 2006, 2007; Shu and He 2007; Qin et al. 2007; Yu
et al. 2006; Su et al. 2010; Wu et al. 2009; Wang and Li 2010; Jiao et al. 2008;
Niu et al. 2009; Zhang et al. 2008; Du et al. 2007). The class bQIEAh concentrates on
the interactions between bQIEA and CGAs, immune algorithms and particle swarm
optimization (PSO). These algorithms can essentially be divided into three groups:
immune bQIEA (bQIEAi), PSO-based bQIEA (bQIEApso) and CGA-based bQIEA
(bQIEAcga). We review these in turn.



318 G. Zhang

Fig. 10 Pseudocode algorithm
for bQIEAi

(a) bQIEAi
The bQIEAi was studied in Li et al. (2004a, 2004c, 2005b, 2006), Li and Jiao
(2005, 2007, 2008), You et al. (2006a, 2006b, 2006c, 2007), Du et al. (2007), Li
and Liu (2006), Jiao and Li (2005), Bi and Jin (2007), Jiao et al. (2008), Wu et
al. (2009), Niu et al. (2009), where immune concepts were introduced into bQIEA
model. The pseudocode algorithm for bQIEAi can be summarized as the nine steps
listed in Fig. 10, in which bQIEAi reuses the first five steps and the steps (vi)–(viii)
of bQIEAcm as steps (i)–(v) and (vii)–(ix), respectively. So the following description
focuses on step (vi). The immune operation consists of two steps: vaccination and
immune selection (Li et al. 2004c). Based on prior knowledge about the problem, a
vaccination is used to modify certain genes of some genotype individuals, and then
the immune selection is implemented using the following two processes. One is the
immune test, i.e., calculating the fitness of the vaccinated individuals. The other is
annealing selection, in which an individual q i (i = 1,2, . . . , n) is chosen as offspring
with probability P(qi ) given by

P(q i ) = e(f (qi )/Tk)

∑n
i=1 e(f (qi )/Tk)

, (12)

where f (q i ) is the corresponding fitness of qi and Tk is called an annealing tem-
perature. The value Tk is taken from a strictly decreasing sequence {Tk} of values
converging 0 (Zhang et al. 1997). In Li et al. (2004c), the sequence

Tk = ln

(
T0

k
+ 1

)
, T0 = 100 (13)

was used, where k is the evolutionary generation.
In Li et al. (2004c), comparisons were drawn between bQIEAi and immune GAs

and bQIEAo to show the advantages of bQIEAi, using knapsack problems. Li et al.
(2006) discussed the application of bQIEAi to multiuser detection, which is an impor-
tant and difficult optimization problem in directed-sequence code-division multiple-
access (DS-CDMA) communication systems. bQIEAi was compared with the opti-
mal multiuser detector (OMUD), matched filters detector (MFD) and immune GAs.
Experimental results show that bQIEAi obtained better performances for DS-CDMA
systems than the other three techniques (Li et al. 2006). In addition to the above
applications, the applicability of bQIEAi to other problems is summarized in Table 5.
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Fig. 11 Pseudocode algorithm
for bQIEApso

Remarks The main aim of introducing immune concepts into bQIEA is to make
good use of prior knowledge in optimization problems so as to improve the bQIEA
performance. Therefore, bQIEAi mainly suits a class of optimization problem with
available prior information. Based on the principles of immune operators, it is more
like a special kind of local search technique, which can improve the bQIEA per-
formance to a considerable degree. However, parameter setting, more analysis and
systematic comparisons between bQIEAi and bQIEAo and other algorithms are re-
quired.

(b) QIEApso
bQIEApso is the result of the interplay between bQIEA and PSO, studied in Pan et
al. (2007), Wang et al. (2005d, 2007c), Yu et al. (2006), Huang et al. (2007). The
pseudocode algorithm for bQIEApso is given in Fig. 11, in which only one step (vii)
is different from bQIEAo in Fig. 5. In this step, bQIEApso uses one of two approaches
to update the population Q(t) as explored in Wang et al. (2007c) and Yu et al. (2006).
They are shown in Eqs. 14 and 15, respectively.

⎧
⎪⎪⎨

⎪⎪⎩

θ t
ij = c1(p

t
ij − xt

ij ) + c2(pgj − xt
ij )[

αt+1
ij

βt+1
ij

]
=

[
cos θ t

ij − sin θ t
ij

sin θ t
ij cos θ t

ij

][
αt

ij

βt
ij

]
(14)

{
αt+1

ij = cos θ t+1
ij , βt+1

ij = sin θ t+1
ij

θ t+1
ij = θ t

ij + c1(p
t
ij − xt

ij ) + c2(pgj − xt
ij )

(15)

where c1 and c2 are two positive constants; xij , pij and pgj (i = 1,2, . . . , n, j =
1,2, . . . ,m) are the j th element of position vector of the ith particle, the j th element
of the best position vector of the ith particle obtained based on its own experience
and the j th element of the best position vector of the ith particle based on the overall
swarm’s experience, respectively.

Wang et al. (2007c) utilized two well-known combinatorial optimization prob-
lems, knapsack problems and traveling salesman problems, to test the advantages
of bQIEApso over bQIEAo. In Yu et al. (2006), applications of bQIEApso to knap-
sack problems, function optimization and multiuser detection in DS-CDMA com-
munication systems were discussed to draw comparisons between two versions of
bQIEApso, versus PSO and bQIEAo. Experimental results show that bQIEApso per-
forms better than bQIEAo and PSO. Additional work related to bQIEApso is listed
in Table 5.
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Remarks bQIEA and PSO are both heuristic search algorithms. bQIEA was devel-
oped based on concepts and principles of quantum computing, whereas PSO was de-
rived from the simulation of social behavior. Both of them have their own features, so
investigating their interactions is an attractive issue. In Pan et al. (2007), Wang et al.
(2005d, 2007c), Yu et al. (2006), Huang et al. (2007), two paradigms were designed
using the evolutionary strategy of PSO to produce offspring for bQIEA, instead of a
lookup table for Q-gates, whence the algorithm structure is simplified. Nevertheless,
a systematic analysis of this combined approach needs to be undertaken both theo-
retically and experimentally so that the characteristics of bQIEApso can be clearly
understood. Furthermore, more convincing experiments could be carried out on var-
ious problems to compare bQIEApso with bQIEAo, improved PSO and other good
optimization methods.

(b) QIEAcga
Combining bQIEAcm with CGA, a new framework (bQIEAcga) was presented in
Wang et al. (2005a). In bQIEAcga, bQIEAcm and CGA were applied to search for
solutions in micro-space and in macro-space, respectively. In Wang et al. (2005a),
several numeric optimization problems, and an application for estimating parameters
of a non-linear state-space model and a Hammerstein model, were taken as examples
to show that bQIEAcga performs better than bQIEAo. Li and Wang (2007) extended
bQIEAcga to multi-objective flow shop scheduling problems. Experiments conducted
on nine testing problems and five random instances show that bQIEAcga is superior
to permutation-based GAs in terms of several metrics including overall nondominated
vector generation, distance metrics, Tan’s spacing, maximum spread, average quality
and running time. Further results concerning bQIEAcga are shown in Table 5, based
on work in Li and Wang (2006, 2007).

Remarks Strictly speaking, bQIEAcga is a hierarchical EA because its bQIEA and
CGA components are performed independently and cannot interact with each other.
The transformation between the Q-bit and binary (or numeric) representation is unidi-
rectional, i.e., from bQIEA to CGA. Due to the many genetic operators in bQIEAcga,
it is really difficult to analyze the role and contribution of each operator to the overall
performance, and there is reason to suspect that bQIEAcga may be a rather time-
consuming optimization algorithm. So further work is needed to investigate the com-
putational complexity aspects of this algorithm in order to prove its potential.

2.2.5 Summary of bQIEA

This section provides an overview on bQIEA and its variants. Initially, the compar-
isons between different types of bQIEA are drawn in Fig. 12, where similarities and
differences, their performances and suggestions for further work are summarized.
Subsequently, some of the main bQIEA flavors studied in the literature and the prob-
lems they have been applied to are summed up in Tables 3–5. Finally, a short remark
concerning bQIEA is given.

Unlike numeric, binary or symbolic representations, bQIEA uses Q-bit represen-
tation to describe the individuals, and this representation is beneficial for population
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Fig. 12 Comparisons of various types of bQIEA

diversity. By introducing a binary observation process, a connection between a Q-bit
and binary solutions was built into bQIEA. Instead of crossover, recombination and
mutation operators in CGA, bQIEA adopted a Q-gate as its evolutionary operator to
implement the evolutionary process. As compared with CGA, bQIEA can balance
well between exploration and exploitation, and even with a small number of individ-
uals, bQIEA can explore the search space. However, several research issues listed in
Fig. 12 are worth discussing further with respect to bQIEA. When bQIEA is applied
to solve numerical optimization problems, there are disadvantages: Hamming cliffs,
discretization error and computational complexity. In the case of binary observation,
we can define a Hamming distance between the binary codes of adjacent integers.
Although gray codes can alleviate the problem, the Hamming distance does not in-
crease monotonously with the difference in integer values. Thus, this phenomenon
introduces Hamming cliffs at other levels (Srinivas and Patnaik 1994). In bQIEA, a
real-valued variable corresponds to a string of Q-bits. When bQIEA is employed to
solve high-dimensional numerical optimization problems, the binary observation and
Q-gate update are time-consuming processes.

Hence, how to develop a QIEA for numerical optimization is an ongoing issue.
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Table 3 Summarization of the bQIEA work. ‘ >′ means better than

Types Problems References Contributions Compared results

bQIEAo Knapsack
problem

Han and Kim (2002)
Han and Kim (2004)

bQIEAo bQIEAo>CGA

Zhang and Gao (2007a)
Han and Kim (2003a)
Han and Kim (2003b)
Platelt et al. (2007)

Parameter setting for
Q-gates

bQIEAo>CGA

Han et al. (2001) Applicability to a
parallel scheme

bQIEAo>CGA

Kim et al. (2006) Multiobjective bQIEAo>NSGA2

Zhou and Sun (2005) Single-chromosome
bQIEAo

bQIEAo>CGA

Imabeppu et al. (2008) Introducing pair swap
into bQIEAo

/

Zhao et al. (2006) Application /

Li et al. (2009) Convergence
performance
comparisons of 3
Q-gates

bQIEAo>MOEA,
SPEA2, NSGA2

Function
optimization

Han and Kim (2004) Stopping criteria, Hε

gate & setting of initial
values

bQIEAo>CEP and FEP
(Yao et al. 1999)

Khorsand (2005) Parameter setting bQIEAo>CGA

Chen et al. (2004) Chaos update method
for Q-gate

bQIEAo>CGA

Han and Kim (2006) Performance analysis /

Disk
allocation

Kim et al. (2003) Application bQIEAo>CGA-based
disk allocation

Face
verification
or detection

Jang et al. (2004a)
Jang et al. (2003)
Jang et al. (2004b)

bQIEAo-based
classifiers

bQIEAo>Distance-
from-face space &
maximum likelihood
classifiers

Clustering Zhou et al. (2006b)
Zhou et al. (2005)
Zhou et al. (2006a)

Applications bQIEAo>K-means,
self-organizing maps

SVM
parameter
selection

Luo et al. (2008) Application bQIEAo>Cross-
validation
approach

Multiple
sequence
alignment

Huo and Stojkovic (2006)
Huo and Stojkovic (2007)

Application bQIEAo>CLUSTAL
(Eddy 2009), Sequence
alignment by CGA

Image edge
detection

Li et al. (2004b) Applicability to a
parallel scheme

/

Blind source
separation

Yang et al. (2003a)
Yang et al. (2003b)

Applicability to a
parallel scheme

bQIEAo>CGA

Bandwidth
adaptation

Xiao et al. (2006) Application /

Image
segmentation

Liu et al. (2005) Application bQIEAo>CGA



Quantum-inspired evolutionary algorithms: a survey and empirical 323

Table 3 (Continued)

Types Problems References Contributions Compared results

Neural
network
training

Ganesh and Singhal (2005)
Akbarzadeh-T (2005)
Lu et al. (2008)

Application bQIEAo>CGA and
PSO

Minimal
reduct

Lv and Liu (2007) Application bQIEAo>CGA

TSP Feng et al. (2006) Application /

Pattern design Khorsand (2006) Application /
Real &
reactive
power
dispatch

Vlachoglannis (2008)
John and John (2009)

Probability distribution
of Q-bit individuals

bQIEAo>ACO, EGA,
SA, HPSO, PSOPC,
CLONEPAC, CGA

State
assignment
for FSM

Araujo et al. (2008) Application bQIEAo>CGA, NOVA

QoS multicast
routing
problem

Xing et al. (2009b)
Xing et al. (2009a)

Multigranularity
adaptive evolution
methods for Q-gate

QIEAo>CGA, CQGA

2.3 Real observation QIEA

In Zhang and Rong (2007c) and Liu et al. (2008), a real-observation QIEA
(rQIEA) was proposed to solve global numerical optimization problems with con-
tinuous variables. The pseudocode algorithm for rQIEA is illustrated in Fig. 13. The
detailed explanation of the rQIEA algorithm is as follows.

(i). In the “initialize Q(t)” step, a population Q(0) with n Q-bit individuals is
produced, Q(t) = {q t

1,q
t
2, . . . ,q

t
n}, at the generation moment t = 0, where q t

i

(i = 1,2, . . . , n) is an arbitrary individual in Q(t), represented as

q t
i =

[
αt

i1|αt
i2| · · · |αt

im

βt
i1|βt

i2| · · · |βt
im

]
, (16)

where m is the number of Q-bits, which corresponds to the number of variables
to optimize. The value αt

ij (j = 1,2, . . . ,m) is randomly chosen between −1

and 1, and the value βt
ij (|βt

ij |2 = 1 − |αt
ij |2) is either positive or negative,

which means that rQIEA starts a search process from a random point.
(ii). In this step, a real observation is used. By observing the states of Q(t), this step

makes real solutions in P(t), where P(t) = {xt
1,x

t
2, . . . ,x

t
n} at generation t .

One real solution xt
i (i = 1,2, . . . , n) is a real number string of length m, i.e.

xt
i = {xt

i1, x
t
i2, . . . , x

t
im}, where xt

ij (j = 1,2, . . . ,m) is a real number in the
range [0,1] and is formed by selecting a real number between 0 and 1 for each
Q-bit using the probability |αt

ij |2 (j = 1,2, . . . ,m), of q t
i . For the probability

amplitude [αt
ij βt

ij ]T of the ith Q-bit in q t
i , a random number r in the range

[0,1] is generated. If r ≤ 0.5, the corresponding observed value is set to |αt
ij |2,
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Table 4 Summarization of the bQIEA work. ‘ >′ means better than

Types Problems References Contributions Compared results

bQIEAo Job shop
scheduling
problem

Gu et al. (2009a);
Gu et al. (2009b)

Introducing strategies
(competitive hunter,
cooperative surviving &
big fish eating small fish)

bQIEAo>CGA

Unit
commitment
problems

Jang et al. (2009)
Jeong et al. (2009)
Lau et al. (2009)

Simplified update method
for Q-gate

/

bQIEAn Feature
selection

Zhang et al. (2006)
Zhang et al. (2004a)
Zhang et al. (2004b)

Modified Q-gate bQIEAn>bQIEAo,
two conventional
approaches

Logistics
distribution

Gao et al. (2006)
Wang et al. (2007b)

Application bQIEAn>bQIEAo,
CGA

FIR filter
design

Zhang et al. (2003c) Catastrophe operator bQIEAn>bQIEAo,
CGA

IIR digital
filter design

Zhang et al. (2003b)
Zhang et al. (2003a)

Q-gate, convergence
analysis, Applicability
to parallel approach

bQIEAn>CGA

Time-
frequency
analysis

Zhang and Rong (2007b)
Zhang and Rong (2006)

Application bQIEAn>Greedy
algorithm

bQIEAcm Knapsack
problem

Yang et al. (2004a)
Yang et al. (2004b)
Meshoul et al. (2005b)

Quantum crossover
mutation; Multiobjective
bQIEAcm

bQIEAcm>CGA,
Greedy algorithm
bQIEAcm>SPEA

Multiple
sequence
alignment

Abdesslem et al. (2006)
Meshoul et al. (2005a)

Applications bQIEAcm>CLUSTAL,
DIALIGN, PROALIGN,
MAFF (Eddy 2009;
Notredame et al. 1998)

Image
registration

Talbi et al. (2004a)
Talbi et al. (2004c)

Quantum crossover
Quantum mutation

/

Image
detection

Li et al. (2005a) Quantum crossover
Quantum mutation

bQIEAcm>CGA

TSP Talbi et al. (2004b) Application /
Flow shop
scheduling

Wang et al. (2005c) Application bQIEAcm>NEH

Function
optimization

Li and Zhuang (2002)
Yang and Jiao (2003)
Yang and Ding (2007)

Quantum crossover and
Quantum mutation

bQIEAcm>CGA,
bQIEAo

Blind source
separation

Xu et al. (2005)
Yang et al. (2005)

Applications /
bQIEAcm>CGA

Embedded
system

Guo et al. (2007) Applications bQIEAcm>bQIEAo

Grid
resource
allocation

Shu (2007) Applications /

Hardware–
software
cosynthesis

Wei et al. (2008) Applications /

Evolving
quantum
circuits

Ding et al. (2008) Applications /

Fuzzy NN
training

Quantum crossover
Quantum mutation

/
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Table 5 Summarization of the bQIEA work. ‘ >′ means better than

Types Problems References Contributions Compared results

bQIEAh Knapsack
problem

Li et al. (2004c)
Li et al. (2005b)
You et al. (2006b)
Li and Jiao (2007)
Jiao et al. (2008)
Wu et al. (2009)
Niu et al. (2009)

Immune algorithm +
bQIEAo

bQIEAi>Intelligent EA,
bQIEAo, SPEA, NSGA,
VEGA, NPGA, CGA,
FEP, OGA/Q, BGA,
CMA-ES, AEA

Wang et al. (2005d)
Wang et al. (2007c)

PSO + bQIEAo bQIEApso>bQIEAo

Zhang et al. (2008) P systems+bQIEAo QEPS>bQIEAo

Function
optimization

You et al. (2006a)
You et al. (2006c)
You et al. (2007)
Li and Jiao (2005)
Li and Liu (2006)

Immune algorithm +
bQIEAcm

bQIEAi>bQIEAcm,
OGA/Q, breeder GA

Li et al. (2004a) Clonal algorithm +
bQIEAo

/

Wang et al. (2005a) CGA + bQIEAcm bQIEAcga>bQIEAcm

Qin et al. (2007) Multi-agent + bQIEAcm bQIEAh>MAGA

Wang et al. (2007a) ACO + bQIEAcm bQIEAh>bQIEAo,PSO

Huang et al. (2007) PSO + bQIEAo bQIEApso>CGA

Flow shop
scheduling

Wang et al. (2005b) CGA + bQIEAcm for
single-objective problems

bQIEAcga>NEH,
bQIEAcm, PGA

Li and Wang (2007)
Li and Wang (2006)

CGA + bQIEAcm for
multi-objective problems

bQIEAcga>PGA

Shu and He (2007) Simulated annealing +
bQIEAcm

bQIEAh>CGA,
bQIEAcm

Multiuser
detection

Li and Jiao (2008)
Li and Jiao (2005)
Li et al. (2006)
Jiao et al. (2008)

Immune + bQIEAo bQIEAi>MFD, OMUD,
IGA

Yu et al. (2006) PSO + bQIEAo bQIEApso>bQIEAo,
PSO

SVM parameter
selection

Pan et al. (2007) PSO + bQIEAo bQIEApso>PSO
bQIEApso-based
SVM>SVM

Image
segmentation

Bi and Jin (2007) Immune + bQIEAcm bQIEAi>CGA

Tourism
emergency
event prediction

Du et al. (2007) Immune + bQIEAcm

Parameter of
estimation in
chaotic systems

Wang and Li (2010)
Su et al. (2010)

Differential evolution +
bQIEAo

bQIEAh>Ant-Miner,
CN2
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Fig. 13 Pseudocode algorithm
for rQIEA

otherwise, the observed value is set to |βt
ij |2. Because |αt

ij |2 and |βt
ij |2 are in

the range [0,1], a simple mapping need be employed to transform the range
[0,1] into any desired range of optimization variable.

(iii). Each real solution xt
i (i = 1,2, . . . , n) of P(t) is evaluated thus obtaining its

fitness.
(iv). The initial best solution is selected among P(t) and stored into b(t).
(v). Real solutions in P(t) are generated by observing the states Q(t − 1) as step

(ii).
(vi). Each real solution is evaluated for the fitness value as step (iii).

(vii). The best solution among P(t) is selected and stored into b(t).
(viii). In this step, the probabilities of all Q-bits in population Q(t) are updated by

using Q-gates, i.e., the j th Q-bit in the ith Q-bit individual q t
i , j = 1,2, . . . ,m,

i = 1,2, . . . , n, is modified by using the current Q-gate Gt
ij (θ)

Gt
ij (θ) =

[
cos θ t

ij − sin θ t
ij

sin θ t
ij cos θ t

ij

]
, (17)

where θ t
ij is defined as

θ t
ij = k · f (αt

ij , β
t
ij ), (18)

where k is a coefficient

k = π

100 + mod(t,100)
, (19)

In Eq. 18, f (αt
ij , β

t
ij ) is a function for determining the search direction of

rQIEA to a global optimum and can be obtained from Table 6, in which ξb =
arctan(βb/αb) and ξ t

ij = arctan(βt
ij /α

t
ij ), where αb , βb are the probabilities of

the best solution stored in b(t) and αt
ij , βt

ij are the probabilities of the current
solution.

(ix). The recombination operation on Q-bits is shown in Fig. 14, in which qi , qj

(i, j = 1,2, . . . ,m), are any two arbitrary individuals of the population Q(t),
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Table 6 Look-up table for the
function f (α,β), where
ξb = arctan(βb/αb), and
ξ t
ij

= arctan(βt
ij

/αt
ij

), and αb ,
βb are the probabilities of the
best solution stored in b(t) and
αt

ij
, βt

ij
are the probabilities of

the current solution

ξb > 0 ξ t
ij

> 0 f (αt
ij

, βt
ij

)

ξb ≥ ξ t
ij

ξb < ξt
ij

True True +1 −1

True False sign(αb · αt
ij

) sign(αb · αt
ij

)

False True −sign(αb · αt
ij

) −sign(αb · αt
ij

)

False False +1 −1

ξb, ξ t
ij

= 0 or ±π/2 ±1 ±1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

qi

[
αi1 . . . αih . . . αih . . . αim

βi1 . . . βih . . . βih . . . βim

]

qj

[
αj1 . . . αjh . . . αjh . . . αjm

βj1 . . . βjh . . . βjh . . . βjm

] ⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q ′
i

[
αi1 . . . βjh . . . βjh . . . αim

βi1 . . . αjh . . . αjh . . . βim

]

q ′
j

[
αj1 . . . βih . . . βih . . . αjm

βj1 . . . αih . . . αih . . . βjm

]

Fig. 14 The recombination in rQIEA

respectively; q ′
i , q ′

j are the recombined individuals, respectively; h and h′
(h,h′ ∈ [1,m], and h′ ≥ h) are any two arbitrary positions in qi and qj , re-
spectively.

Remarks By extending two states ‘1’ and ‘0’ to an arbitrary pair of states between
‘1’ and ‘0’ in quantum system, rQIEA is characterized by the modified Q-bit repre-
sentation for briefly representing a Q-bit individual, the use of real observation for
generating real-valued solutions from Q-bit individuals, and the modified Q-gate for
adaptively guiding the individuals toward better solutions. In rQIEA, there is only one
parameter to adjust in the modified Q-gate. This issue was preliminarily discussed in
Zhang and Rong (2007a). In contrast, bQIEA’s Q-gate has eight angle parameters
which remain unchanged throughout the evolutionary process and have to be pre-
scribed. Relative to bQIEA, rQIEA is more suitable for a wide range of real-world
numerical optimization problems, as shown by the experiments reported in the next
section. rQIEA may be appropriate to some problems such as optimization design of
digital filters, system identification, controller design and signal processing.

2.4 iQIEA

Several EAs for numerical optimization problems are called QIEAs in Abs da Cruz
et al. (2004, 2006, 2007, 2005), Sailesh Babu et al. (2008), Al-Othman et al. (2007),
Fan et al. (2007), Li and Li (2008), Alfares et al. (2004), Alfares and Esat (2006),
Zhang and Gao (2007b), but they are a bit different from the above QIEA that are
characterized by the Q-bit representation, observation process and Q-gates. In this
paper, they are grouped under the heading iQIEA. In what follows two representative
variants of iQIEA (Sailesh Babu et al. 2008; Abs da Cruz et al. 2007) are taken as
representative of the iQIEA work done in the literature.
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In Abs da Cruz et al. (2007), a pair of values, (ρ,σ ), consisting of the mean ρ and
the width σ of a square pulse, was proposed to represent a gene. A probability density
function and then a cumulative distribution function of a train of square pulses were
calculated to connect pulse representation with real-valued variables. The evolution-
ary rules are made up of three steps: crossover, translation and resize. The crossover
operator exchanges some individuals in the current population and the searched best
population. Translation and resize operators are applied to modify the mean ρ and the
width σ of the square pulse, respectively. Experiments conducted on four benchmark
functions show that the algorithm is competitive to stochastic GA, fast evolutionary
programming (Yao et al. 1999) and PSO.

In addition to using the Q-bit representation, a Q-gate and migration operator as
in bQIEAo, Sailesh Babu et al. (2008) presented two neighbourhood operators, NO1
and NO2, to produce neighbourhood solution strings and choose the best out of them.
NO1 and NO2 play the same roles as the observation process of rQIEA, i.e., trans-
forming encoded genotypes to real-valued candidate solutions. The algorithm was
tested by using three load dispatch problems and experimental results verify its ad-
vantages over several load dispatch approaches reported in the literature, such as
variants of simulated annealing, hybrid PSO.

The main points relating to iQIEAs and the problems they have been applied to
are summarized in Table 7.

Remarks The evolutionary operators of iQIEA in Abs da Cruz et al. (2007) are
performed on pulse parameters instead of real values, which is similar to the way
in which evolutionary rules are carried out on QIEA Q-bits. However, the iQIEA
algorithm in Abs da Cruz et al. (2007) differs from that used by QIEAs and seems
to be more of an estimation of distribution algorithm (EDA) (Santana et al. 2008;
Pelikan et al. 2000, 2002; Baluja 1994; Baluja and Davies 1997; De Bonet et al.
1997; Harik 1999; Harik et al. 1998; Larran̆aga et al. 2000; Mühlenbein and Mahnig
1998, 1999; Pelikan and Mühlenbein 1999) due to the calculation of the probability
density function and cumulative distribution function. It makes sense, therefore, that
future studies should concentrate on comparing the iQIEA algorithm with QIEAs
and EDAs to better estimate their relative performances. To build the connection
between Q-bit representation and real-valued variables, two neighborhood operators
in Sailesh Babu et al. (2008) were applied to replace the binary observation process
of bQIEA, however, they are rather complicated and the probabilistic observation of
QIEAs remains of little importance. So the practicability and usability of the iQIEA
(Sailesh Babu et al. 2008) is questionable and future studies should test how powerful
and useful this approach is.

2.5 Summary of QIEAs

In summary, a brief overview of the three types of QIEA discussed in Sects. 2.2–2.4
is given in Fig. 15, which illustrates their similarities and differences, together with
relative advantages and some suggestions for further work.
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Table 7 Summarization of the iQIEA work, ‘ >′ means better than

No. Ref. Main points Problems Compared results

1 Abs da Cruz et al. (2004)
Abs da Cruz et al. (2006)
Abs da Cruz et al. (2007)
Abs da Cruz et al. (2005)

• Pulse representation;
• Generation of
real-valued candidate
solutions using probability
density functions and
cumulative distribution
functions;
• Evolutionary rules:
crossover, translation and
resize operators

Function
optimization

iQIEA>CGA, PSO,
stochastic GA, FEP

Fan et al. (2007) Option pricing
model calibration

/

2 Alfares et al. (2004)
Alfares and Esat (2006)

• Triploid representation;
• Producing candidate
solutions using register
process;
• Hadamard gates

Gear train design;
Pressure vessel
design; Ten-
sion/Compression
spring design;
Welded bean design

iQIEA>Augmented
Lagrange, Branch
and bound, CGA,
PSO, DE

Al-Othman et al. (2007) Economic dispatch
in power system

iQIEA>CGA,
Quadratic
programming

3 Sailesh Babu et al. (2008) • Q-bit representation;
• Generating candidate
solutions using two
neighbourhood operators;
• Q-gates;
• Migration operator

Economic load
dispatch in power
systems

iQIEA>SA, Hybrid
PSO, Hybrid
stochastic search

4 Li and Li (2008) • Spherical coordinate
representation;
• Coordinate values
corresponding to candidate
solutions;
• Coordinate transformation
matrix

Function
optimization;
Neural network
training

iQIEA>bQIEAo,
CGA

5 Zhang and Gao (2007b) • Triploid representation;
• Complementary double
mutation operator;
• Q-gate;
• Discrete crossover;
• Hill climbing selection

Function
optimization

iQIEA>Improved
evolution strategy

3 Experimental results

In order to better illustrate the performance of and differences among the various
types of QIEA discussed in this paper, we have conducted a small experimental study.
We have also conducted experiments that compare QIEAs with other state-of-the-art
EAs presented in the recent literature. The QIEA algorithms were implemented by
using Matlab. All the programs involved in this section were made by the author.
Upon the readers’ request, the author can provide the source codes of the programs.
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Fig. 15 Comparisons of three types of QIEAs

3.1 Comparisons of QIEAs

In this subsection, we focus on the knapsack problem, a well-known NP-hard combi-
natorial optimization problem (Han and Kim 2002), and use benchmark functions to
test the performances of different variants of QIEAs.

3.1.1 Combinatorial optimization

The knapsack problem is the optimization problem that requires us to select a subset
from a given set of items so that the profit f (x) is maximum, where

f (x) =
m∑

i=1

pixi (20)

subject to
m∑

i=1

wixi ≤ C (21)

where m is the number of the items given; C is the capacity of the given knapsack; pi

and wi are the profit and weight of the ith item, respectively; and xi is 0 or 1 (where
xi = 1 if and only if item i is one of those selected). In order to compare bQIEAo,
bQIEAn, bQIEAcm and CGA, strongly correlated sets of data are considered. We
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Table 8 Comparisons of bQIEAo, bQIEAcm, bQIEAn and CGA using the knapsack problems: the num-
ber of items 50, 200 and 400, the maximal number of generations 1000, the number of runs 30. BS,
MBS, WS, STD and ET represent best solution, mean best solution, worst solution, standard deviation and
elapsed time per run, respectively. The bold style highlights the best result for each criterion

Items Criteria CGA bQIEAo bQIEAcm bQIEAn

50 BS 296.45 312.17 312.13 307.25

MBS 287.29 307.40 306.86 304.24

WS 282.00 307.21 302.24 299.23

STD 3.06 0.90 1.80 2.77

ET 3.41 36.91 30.37 39.03

200 BS 1047.98 1178.22 1173.18 1102.08

MBS 1027.13 1166.67 1156.22 1090.64

WS 1017.15 1153.27 1143.20 1077.45

STD 7.34 7.11 6.79 6.61

ET 9.84 142.25 129.29 149.76

400 BS 2120.54 2341.36 2336.41 2211.12

MBS 2100.85 2322.47 2315.92 2190.67

WS 2086.29 2300.49 2291.25 2165.62

STD 9.01 11.52 10.46 11.41

ET 18.64 284.93 270.86 301.51

take wi to be uniformly random [1, v] and pi = wi + r , where v = 10, r = 5. The
average knapsack capacity C = 0.5

∑
wi is used. The data are unsorted and three

knapsack problems with 50, 200, and 400 items are considered.
The pseudocode algorithms for the bQIEAo, bQIEAcm and bQIEAn have been

shown in Figs. 5, 6 and 9, respectively. The CGA utilizes fitness proportional se-
lection, two-point crossover and uniform mutation. As for bQIEAcm and CGA, the
crossover probability has seven choices including 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9
and the mutation probability varies in the values of 0.001, 0.01, 0.05, 0.1. Thus, there
are 28 combinations for bQIEAcm and CGA and the best results are selected. In all
experiments, a random repair scheme is adopted. The termination criterion for all ex-
periments is the maximal number of generations, 1000. The performances of the four
algorithms are evaluated by using the criteria: the best solution and the worst solution
searched within 1000 generations over 30 runs, the mean best solution, the standard
deviation and the elapsed time per run. When the population size is set to 20, exper-
imental results for the three cases of 50, 200, and 400 items are shown in Table 8, in
which three versions of bQIEA produce much better results than CGA (bQIEAo and
bQIEAn obtain the best and the worst results among the several versions of bQIEA,
respectively). To further investigate the effects of population size on the four algo-
rithms’ performance, six additional cases, in which the population sizes are 10, 40,
60, 80, 100 and 200, respectively, are considered, in more experiments conducted
on the knapsack problem with 200 items. The relationship between the population
size and the mean best profits over 30 runs is illustrated in Fig. 16. The experimental
results show that each of the four algorithms can achieve an increase of mean best
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Fig. 16 Mean best profits as the
population sizes

Table 9 Comparisons of bQIEAo-R, bQIEAo-H and rQIEA using six functions. The results of bQIEAo-
R and bQIEAo-H are referred from Han and Kim (2004). The number of runs is 50. Mean, Std and NoFE
represent the mean best, the standard deviation and the number of function evaluations, respectively. The
bold style highlights the best result for each function

Problems FSph FAck FGri FRas FSch FRos

NoFE 1.5e+5 1.5e+5 2.0e+5 5.0e+5 9.0e+5 2.0e+6

bQIEAo-H Mean 1.8e−4 2.5e−3 3.6e−2 3.9e−2 3.8e−4 1.2e+1

Std 1.3e−4 8.1e−4 3.2e−2 1.9e−1 3.0e−9 1.8e+1

bQIEAo-R Mean 4.3e−6 4.8e−4 5.8e−2 18.7 2.2e+2 7.2e+0

Std 0.0e+0 0.0e+0 7.5e−2 7.4 1.6e+2 6.8e+0

rQIEA Mean 1.8e−30 2.3e−9 1.9e−15 1.6e−15 3.7e+3 1.3e−2

Std 1.3e−30 1.0e−8 1.1e−15 7.5e−15 5.3e+2 3.8e−4

profits when the population size varies from 10 to 200, and the four algorithms have
similar climbing tendency.

3.1.2 Numeric optimization

Six benchmark numeric optimization problems with 30 dimensions, including Sphere
(fSph), Ackley (fAck), Griewank (fGri ), Rastrigin (fRas ), Schwefel (fSch) and Rosen-
brock, (fRos ), were employed in Han and Kim (2004) to test the performance of two
versions of bQIEAo, i.e., bQIEAo with a rotation Q-gate (bQIEAo-R) and bQIEAo
with an Hε Q-gate (bQIEAo-H). We use the same functions to conduct comparative
experiments so as to draw a comparison between rQIEA and bQIEAo. The popu-
lation size is set to 50 for rQIEA. The stopping criterion is the number of function
evaluations. Each test function is performed with 50 independent runs. The mean best
values and the standard deviations are recorded for each test function. Table 9 lists the
statistical results, which show that rQIEA provides better results than two versions of
bQIEAo in searching for optimal solutions and maintaining their robustness.
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3.2 Comparisons with other EAs

In order to show the superiority of the QIEA over other techniques, this subsection
provides experimental comparisons between QIEAs and other EAs. We firstly com-
pare bQIEAo with polyploid GA (PGA) in terms of population diversity and then
compare rQIEA with several state-of-the-art EAs.

3.2.1 Comparisons between bQIEAo and PGA

Population diversity is very important for EAs to explore the search space (Goldberg
1989; Collingwood et al. 1996; Corne et al. 1996; Eshelman 1991; Chaiyaratana et
al. 2007; Koumousis and Katsaras 2006; Lozano et al. 2005, 2008). PGA (Goldberg
1989) is regarded as an algorithm with good population diversity. So we compare
bQIEAo with PGA with respect to population diversity in the process of finding an
optimal solution. The experiments are carried out on the knapsack problem with 300
items described in Sect. 3.1. PGA uses rank-based selection, two-point crossover and
uniform mutation operators. The crossover probability has 12 choices: 0.0, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, and the mutation probability is assigned one
of 14 values: 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0.
Thus, there are 168 combinations and the best result is selected to compare PGA
with bQIEAo. In the experiments, diploid, triploid, tetraploid and pentaploid PGAs
are employed and are labeled 2-PGA, 3-PGA, 4-PGA and 5-PGA, respectively. The
stopping criterion is the maximal number of generations, 1000, and the population
size is set to 60 for bQIEAo and all PGAs. So 2-PGA, 3-PGA, 4-PGA and 5-PGA
have 60 masks and 120, 180, 240 and 300 chromosomes, respectively. The perfor-
mances are evaluated using Hamming distance and the quality of solutions (Herrera
and Lozano 1996). The former includes the mean Hamming distance dmh of all phe-
notypic individuals and the Hamming distance dbwh between the worst and best phe-
notypic individuals. The latter consists of the best fitness searched, the best fitness
at each generation, the mean fitness at each generation and the worst fitness at each
generation. The distances dmh and dbwh are defined as

dmh = 2

n(n − 1)
d(xi ,xj ), i, j = 1,2, . . . , n and i 	= j (22)

dbwh = d(xb,xw) (23)

where d(·) is the Hamming distance between two strings, i.e., the number of posi-
tions for which the corresponding bits are different; n is the number of individuals in
the population, and xi and xj are any two arbitrary selected phenotypic individuals.
To be specific, in bQIEAo, xi and xj are any two binary individuals in the set P(t)

identified in step (ii) of the algorithm, and in PGA, xi and xj are any two pheno-
typic individuals in the population composed of single chromosomes (haploid) in-
stead of polyploid genotypic individuals consisting of multiple sets of chromosomes
and a mask. In Eq. 23, xb and xw are the best and the worst phenotypic individuals
(e.g., in bQIEAo, xb, xw ∈ P(t)) in terms of profits, respectively. Figures 17 and 18
provide the statistically experimental results of 30 independent runs. In Fig. 17, Q-
optimal, Q-best, Q-mean and Q-worst represent the best fitness found among the past
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Fig. 17 Comparisons of bQIEAo and PGA using fitness. Q-optimal, Q-best, Q-mean and Q-worst repre-
sent the searched best fitness, the best fitness, the mean fitness and the worst fitness at each generation of
bQIEAo, respectively. P-optimal, P-best, P-mean and P-worst represent the searched best fitness, the best
fitness, the mean fitness and the worst fitness at each generation of PGA, respectively

evolutionary generations, the best fitness, the mean fitness and the worst fitness at
each generation of bQIEAo, respectively. Likewise, P-optimal, P-best, P-mean and
P-worst represent the best fitness searched among the past evolutionary generations,
the best fitness, the mean fitness and the worst fitness at each generation of PGA,
respectively. In Fig. 18, Q-mh and Q-bwh represent the mean Hamming distance dmh

of all phenotypic individuals and the Hamming distance dbwh between the best and
worst phenotypic individuals of bQIEAo, respectively. P-mh and P-bwh represent the
mean Hamming distance dmh of all phenotypic individuals and the Hamming distance
dbwh between the best and worst phenotypic individuals of PGA, respectively.

It can be seen from Fig. 17 that bQIEAo obtains much better profits than PGA. Fig-
ures 17 and 18 show that among 2-PGA, 3-PGA, 4-PGA and 5-PGA, with the same
population size, there is little difference with respect to profits and Hamming dis-
tances. Similar conclusions were also drawn by Collingwood et al. (1996) who con-
ducted experiments on the ONE MAX problem and showed that there is little differ-
ence when the ploidy values vary from 2 to 10, and that the results of PGA are worse
than a normal GA. In Fig. 18, at the beginning of evolution, bQIEAo has equiva-
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Fig. 18 Comparisons of bQIEAo and PGA using Hamming distance. Q-mh and Q-bwh represent the
mean Hamming distance of all individuals and the Hamming distance between the best and worst individ-
uals of bQIEAo, respectively. P-mh and P-bwh represent the mean Hamming distance of all individuals
and the Hamming distance between the best and worst individuals of PGA, respectively

lent Hamming distances to PGA, which indicates the Q-bit representation has similar
population diversity to PGA. As the generation increases, the Hamming distances of
bQIEAo decrease gradually because it converges toward the optimal solution, while
the Hamming distances of PGA stay at a steady level instead of converging. In the
evolution process implemented by EAs, there is a conflict between population diver-
sity and convergence, whereas bQIEAo attempts to compromise between them and
PGA keeps only the former, which produces the various results shown in Fig. 17. It
is worth pointing out that the studies in Collingwood et al. (1996) and Corne et al.
(1996) shows that a PGA is sometimes better than a normal GA, and sometimes not,
and a PGA seems particularly helpful in cases where a normal GA would be likely to
irretrievably lose important genetic material.

3.2.2 Comparisons between rQIEA and other EAs

In this subsection, experiments are reported for a large number of benchmark numeric
optimization problems to compare the performance of rQIEA with that of several
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Table 10 Comparisons of rQIEA, SGA-ConDiv-NN, RCMA-XHC and CHC. The results of SGA-
ConDiv-NN are referred from Lozano et al. (2008). The results of RCMA-XHC, CHC, CHC-SW-100,
CHC-SW-1000 and CHC-SW-500 are referred from Lozano et al. (2004). The number of runs is 50. The
bold style highlights the best result for each function

fSph fRos fSch fRas fGri Psle Pf ms Ppfp

CHC 5.8e−31 1.9e+1 2.0e−2 1.6e+1 6.5e−3 3.9e+1 1.7e−18 3.3e+2

CHC-SW-100 2.1e−14 1.8e+1 2.4e+2 4.5e+1 3.4e−3 1.4e+1 5.0e+0 1.5e+2

CHC-SW-1000 9.6e−25 1.5e+1 1.4e+1 6.2e+1 2.0e−2 1.5e+2 1.6e+1 6.6e+2

CHC-SW-5000 8.5e−63 1.5e+1 1.2e−1 9.4e+1 4.4e−2 3.6e+2 2.0e+1 1.4e+3

RCMA-XHC 6.5e−101 2.2e+0 3.8e−7 1.4e+0 1.3e−2 5.5e+1 7.7e+0 1.4e+2

SGA-ConDiv-NN 4.3e−50 2.0e+1 5.9e−2 4.4e−1 3.5e−4 3.1e+1 2.9e+2 1.5e+0

rQIEA 1.7e−110 1.2e+1 5.0e−17 5.3e−15 4.0e−12 1.2e+1 1.8e+1 1.58e+2

well-known EAs reported in Auger and Hansen (2005), Herrera et al. (1998, 2003),
Eshelman (1991), Lozano et al. (2004, 2008), Deb et al. (2002), Noman and Iba
(2008), Price et al. (2005).

Initially, we compare rQIEA with SGA-ConDiv-NN (Lozano et al. 2008), RCMA-
XHC (Lozano et al. 2004) and CHC (Eshelman 1991). SGA-ConDiv-NN is a steady-
state GA with a replacement strategy and the experiments in Lozano et al. (2008)
show that it can maintain high levels of population diversity and obtains higher
quality of solutions than nine other algorithms. The CHC algorithm in Eshelman
(1991) has become a reference point in the GA literature (Chaiyaratana et al. 2007;
Koumousis and Katsaras 2006; Lozano et al. 2008; Noman and Iba 2008; Whitley et
al. 1996). According to the experimental comparisons (Lozano et al. 2004), RCMA-
XHC and CHC outperforms another 20 real-coded memetic algorithms. We employ
the benchmark problems used in Lozano et al. (2005) and Lozano et al. (2004) includ-
ing five frequently used test functions: the Sphere model (fSph), Generalized Rosen-
brock’s function (fRos ), Schwefel’s problem 1.2 (fSch), Generalized Rastringin’s
function (fRas ), Griewangk’s function (fGri ) and three additional real-world prob-
lems including Systems of Linear Equations (Psle), Frequency Modulation Sounds
Parameter Identification Problem (Pf ms ) and Polynomial Fitting Problem (Ppfp).
The dimension of the search space is 25 for the first five optimization problems and
10, 6, 9 for Psle , Pf ms and Ppfp , respectively. The optimal solution for each problem
is 0. A detailed description of these problems can be found in Lozano et al. (2008)
or Lozano et al. (2004). Three combined CHCs utilized in Lozano et al. (2004), i.e.,
CHC-SW-100, CHC-SW-1000 and CHC-SW-5000, are also compared. In our exper-
iments, rQIEA uses the same number of function evaluations 100000 as the stopping
criterion for each problem and the population size is set to 20. Each test problem is
performed with 50 independent runs. The mean best values of 50 runs are recorded.
Experimental results of the seven algorithms are given in Table 10.

According to the study in Garcia et al. (2009), non-parametric statistical tests are
more appropriate than parametric statistical tests in the analysis of EAs’ behavior
over multiple numeric optimization problems. In this paper, two non-parametric tests,
Wilcoxon’s and Friedman’s tests, are employed to check whether there are significant
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Table 11 The results of Wilcoxon’s and Friedman’s tests for the algorithms in Table 10. + and − represent
significant difference and no significant difference, respectively

rQIEA vs. CHC CHC- CHC- CHC- RCMA-XHC SGA-
SW-100 SW-1000 SW-5000 ConDiv-NN

Wilcoxon (p-value) 0.1094(−) 0.3828(−) 0.0391(+) 0.0078(+) 1.0000(−) 0.1484(−)

Friedman (p-value) 0.0339(+) 0.1573(−) 0.0339(+) 0.0047(+) 0.4795(−) 0.0339(+)

differences for the control algorithm rQIEA. The level of significance considered is
0.05. Table 11 lists the results of Wilcoxon’s and Friedman’s tests.

In Table 10, rQIEA achieves better solutions for five (fSph, fSch, fRas , fGri and
Psle) out of eight problems than the other six algorithms. The better results for the
other three functions (fRos , Pf ms and Ppfp) are obtained by RCMA-XHC, CHC and
SGA-ConDiv-NN, respectively. According to the Friedman’s test in Table 11, rQIEA
is superior to four other algorithms (CHC, CHC-SW-1000, CHC-SW-5000 and SGA-
ConDiv-NN). Wilcoxon’s tests show that there is a significant difference between the
control algorithm rQIEA and CHC-SW-1000 and CHC-SW-5000, but there is not
significant difference between the control algorithm rQIEA and the other algorithms.
So we can conclude that rQIEA is at least as competitive as the other six algorithms.

Secondly, rQIEA is compared with the multiple GAs with best crossover oper-
ators in Herrera et al. (1998, 2003). Herrera et al. (2003) experimentally analyzed
real-coded GAs with 18 crossovers and showed the nine crossovers, including BLX-
0, BLX-0.3, BLX-0.5, SBX-2, SBX-5, FR, DHX, MMAX and LX, surpass the other
ones. We apply the test suite described in Herrera et al. (2003) to conduct our
own experiments. The suite consists of 12 optimization problems: Sphere model
(fSph), Schwefel’s problem 1.2 (fSch), Generalized Rastringin’s function (fRas ),
Griewangk’s function (fGri ), Expansion of F10 (ef10), Generalized Rosenbrock’s
function (fRos ), Systems of Linear Equations (Psle), Frequency Modulation Sounds
Parameter Identification Problem (Pf ms ), Polynomial Fitting Problem (Ppfp), Ack-
ley’s function (fAck), Bohachevsky’s function (fBoh) and Watson’s function (fWat ).
The dimension of the search space is 25 for the first four optimization problems, fRos

and fAck . The other six test functions ef10, Psle, Pf ms , Ppfp , fBoh and fWat have 10,
10, 6, 9, 2 and 6 dimensions, respectively. In our experiments, the number of func-
tion evaluations (100000) in Herrera et al. (2003) is used as the stopping criterion of
rQIEA for each problem. The population size of rQIEA is 20 and the independent
runs are 30. Experimental results and the results of Wilcoxon’s and Friedman’s tests
are shown in Tables 12, 13 and 14, respectively. The level of significance considered
is 0.05.

The experimental results of 12 optimization problems in Tables 12 and 13 show
that rQIEA obtains better performances for half of the functions (fSph, fSch, fRas ,
fGri , fAck and fWat ) than another 9 algorithms, and the optimal result for one func-
tion fBoh, which is also obtained by DHX. FR achieves two better results (ef10 and
Pf ms ) and LX also gets two better results (Psle and Ppfp) than the other algorithms.
The best result of fRos is attained by DHX. According to Friedman’s statistical analy-
sis in Table 14, rQIEA has the advantages over 7 other algorithms (BLX-0, BLX-0.3,
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Table 12 Comparisons of rQIEA and the GAs in Herrera et al. (2003). The results of these algorithms
are referred from Herrera et al. (2003). Mean and Std represent the mean value of best results of 30 runs
and their standard deviation, respectively. The bold style highlights the best result for each function. (To
be continued)

Problems fSph fSch fRas fGri ef10 Psle

BLX-0 Mean 1.28e−8 4.00e+1 4.47e+0 1.55e−2 2.15e+0 2.74e+1
Std 1.09e−8 1.84e+1 2.01e+1 1.82e−2 8.62e−1 1.67e+1

BLX-0.3 Mean 7.51e−11 3.37e+1 7.86e+0 1.54e−2 3.18e−1 2.03e+1
Std 5.35e−11 1.56e+1 1.80e+0 1.56e−2 1.21e−1 2.16e+1

BLX-0.5 Mean 6.31e−6 1.36e+3 8.72e+1 9.29e+1 1.47e+1 2.62e+1
Std 8.11e−6 2.60e+2 1.25e+1 2.16e−1 4.54e+0 2.69e+1

SBX-2 Mean 1.97e−9 7.56e+0 1.36e+1 1.91e−2 1.35e+1 3.54e+1
Std 1.17e−9 4.28e+0 4.56e+0 2.28e−2 8.26e+0 3.82e+1

SBX-5 Mean 2.76e−10 9.54e+1 7.13e+0 2.32e+2 1.99e+1 1.14e+2
Std 2.08e−10 7.97e+1 2.15e+0 2.51e−2 1.46e+1 8.52e+1

FR Mean 1.30e−11 8.97e+0 1.96e+1 7.71e−3 2.45e−1 2.66e+1
Std 6.52e−12 7.08e+0 4.84e+0 9.60e−3 7.29e−2 1.72e+1

DHX Mean 1.37e−14 6.04e+1 1.13e−11 9.67e−3 1.31e+0 1.27e+2
Std 9.63e−15 2.99e+1 1.09e−11 1.32e−2 8.92e−1 5.19e+1

MMAX Mean 3.17e−11 1.77e+2 9.28e−1 1.31e−2 3.15e+0 1.12e+2
Std 3.75e−11 8.32e+1 9.23e−1 1.60e−2 2.20e+0 5.95e+1

LX Mean 3.19e−10 3.86e−1 3.06e+1 2.30e−3 8.89e−1 2.69e+0
Std 1.70e−10 2.66e−1 2.97e+1 5.04e−3 3.14e−1 1.90e+0

rQIEA Mean 1.70e−110 5.10e−17 7.58e−15 6.20e−12 4.82e+0 1.16e+1
Std 7.76e−111 2.11e−17 2.41e−14 3.10e−11 2.08e+0 1.80e+0

BLX-0.5, SBX-2, SBX-5, FR and MMAX). Wilcoxon’s tests show that rQIEA is bet-
ter than BLX-0, BLX-0.3, BLX-0.5, SBX-2 and SBX-5. So these results indicate that
rQIEA is a comparable algorithm with the other real-coded GAs with nine crossovers.

Thirdly, we compare rQIEAs with differential evolution (DE) (Price et al. 2005),
a generalized generation gap GA model with a parent-centric crossover (G3 + PCX)
proposed by Deb et al. (2002), a DE with a crossover-based adaptive local search
strategy (DEahcSPX) (Noman and Iba 2008) and a DE with a crossover hill-climbing
strategy (DExhcSPX) introduced by Lozano et al. (2004). A DE is a population-
based, stochastic globaloptimizer capable of working reliably in nonlinear and multi-
modal environments (Noman and Iba 2008; Price et al. 2005). G3 + PCX was found
to perform consistently and reliably perform better than all the other approaches in-
volved in the study in Deb et al. (2002). DEahcSPX was found to perform well
for a wide range of benchmark functions (Noman and Iba 2008). The crossover
hill-climbing strategy is a self-adaptive crossover local search method with good
performances in real-coded memetic algorithms (Lozano et al. 2004). The experi-
ments were performed on the test suite consisting of the first ten functions from the
newly defined test suite at CEC 2005 Special Session on real-parameter optimization
(Suganthan et al. 2005), F1 − F10, and ten functions commonly used in the litera-
ture, Sphere function (fSph), Rosenbrock’s function (fRos ), Ackley’s function (fAck),
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Table 13 Comparisons of rQIEA and the GAs in Herrera et al. (2003). The results of these algorithms
are referred from Herrera et al. (2003). Mean and Std represent the mean value of best results of 30
runs and their standard deviation, respectively. The bold style highlights the best result for each function.
(Continued)

Problems fRos Ppfp Pf ms fAck fWat fBoh

BLX-0 Mean 2.22e+1 2.89e+2 2.05e+1 5.40e−4 1.11e+0 2.29e−11
Std 5.88e−1 2.16e+2 4.05e+0 2.45e−4 6.04e−3 3.60e−11

BLX-0.3 Mean 2.18e+1 2.19e+2 1.39e+1 3.92e−5 1.11e+0 7.52e−14
Std 7.35e−1 1.55e+2 6.75e+0 1.52e−5 2.79e−3 1.23e−13

BLX-0.5 Mean 2.61e+1 3.16e+2 1.50e+1 1.02e−2 1.16e+0 7.84e−12
Std 1.42e+1 2.58e+2 4.56e+0 6.38e−3 3.50e−2 7.70e−12

SBX-2 Mean 2.99e+1 4.18e+2 1.79e+1 2.27e−4 1.37e+0 1.74e−12
Std 1.98e+1 2.85e+2 4.05e+0 8.51e−5 2.74e−1 2.08e−12

SBX-5 Mean 3.90e+1 8.03e+2 1.08e+1 9.26e−5 1.13e+0 1.91e−13
Std 2.71e+1 8.99e+2 4.98e+0 4.54e−5 4.73e−2 4.30e−13

FR Mean 2.54e+1 4.51e+2 7.30e+0 1.81e−5 1.11e+0 7.33e−14
Std 1.53e+1 3.38e+2 6.67e+0 6.44e−6 1.09e−2 6.92e−14

DHX Mean 2.17e+0 7.40e+2 1.64e+1 3.81e−7 1.11e+0 0.00e+0
Std 5.70e−1 4.65e+2 7.91e+0 1.67e−7 3.69e−3 0.00e+0

MMAX Mean 2.67e+1 1.28e+3 1.57e+1 2.87e−5 1.10e+0 4.07e−16
Std 1.53e+1 9.59e+2 7.62e+0 1.41e−5 4.62e−5 1.03e−15

LX Mean 2.20e+1 6.35e−1 2.06e+1 8.29e−5 1.16e+0 4.39e−14
Std 3.03e−1 9.03e−1 3.31e+0 2.75e−5 2.65e−2 5.51e−14

rQIEA Mean 1.22e+1 1.50e+2 1.75e+1 1.67e−12 1.04e−2 0.00e+0
Std 2.39e−1 6.47e+1 1.06e+1 5.09e−12 2.68e−3 0.00e+0

Table 14 The results of
Wilcoxon’s and Friedman’s tests
for the algorithms in Tables 12
and 13. + and − represent
significant difference and no
significant difference,
respectively

rQIEA vs. Wilcoxon (p-value) Friedman (p-value)

BLX−0 0.0068 (+) 0.0039 (+)

BLX−0.3 0.0425 (+) 0.0209 (+)

BLX−0.5 0.0094 (+) 0.0039 (+)

SBX−2 0.0005 (+) 0.0005 (+)

SBX−5 0.0049 (+) 0.0039 (+)

FR 0.0522 (−) 0.0209 (+)

DHX 0.3203 (−) 0.1317 (−)

MMAX 0.0640 (−) 0.0209 (+)

LX 0.4697 (−) 0.0833 (−)

Griewangk’s function (fGri ), Rastringin’s function (fRas ), Schwefel’s problem 2.26
(fSch), Salomon’s function (fSal), Whitely’s function (fWht ), Generalized Penalized
function 1 (fpn1) and Generalized Penalized function 2 (fpn2), which were described
in detail in Noman and Iba (2008). The dimension of the search space is 30 for the
20 optimization problems. rQIEA uses 50 individuals and the number of function
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Table 15 Comparisons of rQIEA, DE, DExhcSPX, G3 + PCX and DEahcSPX. The results of the last
four algorithms are referred from Noman and Iba (2008). Mean and Std represent the mean value of best
results of 50 runs and their standard deviation, respectively. The bold style highlights the best result for
each function. (To be continued)

DE DExhcSPX G3 + PCX

Mean Std Mean Std Mean Std

fSph 5.73e−17 2.03e−16 7.66e−29 1.97e−28 3.58e−81 1.36e−81

fRos 5.20e+1 8.56e+1 5.81e+0 4.73e+0 4.18e+0 9.68e+1

fAck 1.37e−9 1.32e−9 5.22e−15 2.62e−15 1.48e+1 4.17e+0

fGrw 2.66e−3 5.73e−3 3.45e−3 7.52e−3 1.07e−2 1.30e−2

fRas 2.55e+1 8.14e+0 1.86e+1 7.05e+0 1.75e+2 3.37e+1

fSch 4.90e+2 2.34e+2 4.91e+2 4.06e+2 4.04e+3 1.09e+3

fSal 2.52e−1 4.78e−2 1.92e−1 4.93e−2 4.64e+0 4.74e+0

fWht 3.10e+2 1.07e+2 2.84e+2 1.10e+2 7.90e+2 1.27e+2

fpn1 4.56e−2 1.31e−1 2.49e−2 8.61e−2 4.35e+0 6.94e+0

fpn2 1.44e−1 7.19e−1 4.39e−4 2.20e−3 1.50e+1 1.58e+1

F1 3.87e−14 2.71e−14 0.00e+0 0.00e+0 3.52e−13 1.22e−13

F2 8.50e−2 7.94e−2 9.40e−4 1.80e−3 4.14e−12 1.21e−12

F3 3.63e+6 2.06e+6 1.54e+6 1.15e+6 1.07e+3 1.29e+3

F4 5.54e+1 6.37e+1 6.69e+0 1.06e+1 9.35e+4 2.66e+4

F5 1.08e+3 5.31e+2 1.01e+3 4.31e+2 8.13e+3 2.65e+3

F6 6.67e+1 1.51e+2 1.41e+1 1.86e+1 1.34e+2 2.48e+2

F7 7.59e−3 8.96e−3 7.98e−3 9.48e−3 2.01e−2 1.85e−2

F8 2.09e+1 1.33e−1 2.09e+1 7.41e−2 2.11e+1 6.67e−12

F9 2.43e+1 6.23e+0 2.80e+1 7.75e+0 2.44e+2 3.98e+1

F10 7.33e+1 6.62e+1 6.79e+1 4.80e+1 3.89e+2 9.96e+1

evaluations 300000 employed in DE, G3 + PCX, DEahcSPX and DExhcSPX as the
stopping criterion. The statistical results for 50 independent runs are shown in Ta-
bles 15 and 16. The results of Wilcoxon’s and Friedman’s tests for these algorithms
are listed in Table 17. The level of significance considered is 0.05.

In Table 17, the Friedman’s and Wilcoxon’s tests show that rQIEA surpasses only
one algorithm G3 + PCX among four algorithms, but Table 15 and Table 16 shows
that rQIEA achieves a little bit better results than the other four algorithms because
rQIEA, DExhcSPX, G3 + PCX and DEahcSPX obtain the best results for 9, as op-
posed to 2, 2 and 8, functions, respectively, in terms of the mean best values.

Finally, we draw an experimental comparison between rQIEA and the algorithm
G-CMA-ES in Auger and Hansen (2005). G-CMA-ES is a restart covariance matrix
adaptation evolution strategy with increasing population size. It was the winner of
the real-parameter optimization competition, organized in the 2005 IEEE congress
on evolutionary computation (Garcia et al. 2009). The test suite is composed of 25
numeric optimization problems with 10 dimensions, F1 − F25, defined for the CEC
2005 Special Session on real-parameter optimization (Suganthan et al. 2005). In the
experiments of rQIEA, the population size is set to 20 and the stopping criterion
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Table 16 Comparisons of
rQIEA, DE, DExhcSPX, G3 +
PCX and DEahcSPX. The
results of the last four
algorithms are referred from
Noman and Iba (2008). Mean
and Std represent the mean
value of best results of 50 runs
and their standard deviation,
respectively. The bold style
highlights the best result for
each function. (Continued)

DEahcSPX rQIEA

Mean Std Mean Std

fSph 1.75e−31 4.99e−31 1.06e−85 1.00e−85

fRos 4.52e+0 1.55e+1 1.15e+1 1.56e+0

fAck 2.66e−15 0.00e+0 1.96e−14 4.35e−14

fGrw 2.07e−3 5.89e−3 1.89e−15 9.17e−16

fRas 2.14e+1 1.23e+1 8.14e−15 1.95e−14

fSch 4.70e+2 2.96e+2 3.95e+3 9.69e+2

fSal 1.80e−1 4.08e−2 3.32e−1 7.12e−2

fWht 3.06e+2 1.10e+2 6.39e+2 1.58e+2

fpn1 2.07e−2 8.46e−2 2.60e−32 5.06e−24

fpn2 1.71e−31 5.35e−31 1.35e−32 3.30e−33

F1 0.00e+0 0.00e+0 8.19e−14 2.85e−14

F2 6.52e−5 4.84e−5 6.22e−13 1.60e−13

F3 1.29e+6 9.22e+5 3.92e+5 1.00e+5

F4 4.62e+0 8.78e+0 1.57e+0 3.59e+0

F5 9.00e+2 4.79e+2 3.60e+3 9.42e+2

F6 3.84e+0 3.75e+0 9.13e+1 8.19e+1

F7 7.39e−3 6.32e−3 6.61e−3 4.44e−3

F8 2.09e+1 1.12e−1 2.01e+1 6.31e−2

F9 2.04e+1 8.19e+0 44.6e+1 1.11e+1

F10 5.27e+1 4.84e+1 2.42e+2 3.93e+1

Table 17 The results of Wilcoxon’s and Friedman’s tests for the algorithms in Tables 15 and 16. + and −
represent significant difference and no significant difference, respectively

rQIEA vs. DE DExhcSPX G3 + PCX DEahcSPX

Wilcoxon (p-value) 1.0000 (−) 0.4552 (−) 0.0276 (+) 0.4115 (−)

Friedman (p-value) 0.3711 (−) 1.0000 (−) 0.0017 (+) 1.0000 (−)

applies the number of function evaluations (100000) in Auger and Hansen (2005).
The statistical results of 25 runs are given in Table 18. The results of Wilcoxon’s
and Friedman’s tests for rQIEA and G-CMA-ES are 0.5605 and 0.8348, respectively.
Compared with G-CMA-ES, Table 18 shows that rQIEA achieves better results for
12 functions (F1, F2, F4, F5, F9, F12 − F15, F21, F22 and F25) and the same results
of two functions (F8 and F24), but is outperformed by G-CMA-ES for the other 11
functions (F3, F6, F7, F10, F11, F16 − F20 and F23), in terms of mean best values.
Examined relative to the level of significance 0.05, there is no significant difference
between them. Therefore, what we can say is that rQIEA is not worse than G-CMA-
ES.
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Table 18 Comparisons of
rQIEA and G-CMA-ES. The
results of G-CMA-ES are
referred from Garcia et al.
(2009). Mean and Std represent
the mean value of best results of
25 runs and their standard
deviation, respectively. The bold
style highlights the best result
for each function with 10
dimensions

Problems G-CMS-ES rQIEA

Mean Std Mean Std

F1 5.20e−9 1.94e−9 1.71e−9 1.67e−9

F2 4.70e−9 1.56e−9 3.82e−9 1.34e−9

F3 5.60e−9 1.93e−9 3.92e+4 1.78e+4

F4 5.02e−9 1.71e−9 4.62e−9 1.53e−9

F5 6.58e−9 2.17e−9 1.62e−9 2.02e−9

F6 4.87e−9 1.66e−9 2.88e+0 1.80e+0

F7 3.31e−9 2.02e−9 1.90e−1 6.67e−2

F8 2.00e+1 3.89e−3 2.00e+1 4.48e−2

F9 2.39e−1 4.34e−1 2.14e−1 1.02e−1

F10 7.96e−2 2.75e−1 1.74e+1 7.41e+0

F11 9.34e−1 9.00e−1 6.17e+0 1.26e+0

F12 2.93e+1 1.42e+2 1.54e+1 4.82e+0

F13 6.96e−1 1.50e−1 6.81e−1 2.29e−1

F14 3.01e+0 3.49e−1 2.91e+0 2.05e−1

F15 2.28e+2 6.80e+1 8.92e+1 6.81e+0

F16 9.13e+1 3.49e+0 1.32e+2 3.49e+1

F17 1.23e+2 2.09e+1 1.79e+2 5.04e+1

F18 3.32e+2 1.12e+2 4.51e+2 5.22e+1

F19 3.26e+2 9.93e+1 4.40e+2 5.83e+1

F20 3.00e+2 0.00e+0 4.38e+2 5.97e+1

F21 5.00e+2 3.48e−13 4.28e+2 9.80e+1

F22 7.29e+2 6.86e+0 4.42e+2 2.45e+2

F23 5.59e+2 3.24e−11 7.44e+2 6.70e+1

F24 2.00e+2 2.29e−6 2.00e+2 1.14e−7

F25 3.74e+2 3.22e+0 3.62e+2 8.59e+0

4 Conclusions and future research paths

The interaction of QIEAs and EAs generates three branches: EDQA, QEA and QIEA.
In this paper we have presented a systematic review of recent efforts to develop a the-
ory of QIEAs. After giving a brief introduction to the algorithms and problems con-
sidered in this overview, we discussed the Q-bit representation and the basic struc-
ture of QIEAs, and reviewed binary observation QIEA, real observation QIEA and
QIEA-like algorithms. Regarding bQIEA, we have summarized the algorithms used
and results obtained with respect to combinatorial optimization problems and nu-
merical optimization problems; some hybrid algorithms of bQIEA and specific op-
timization methods were also presented. Finally, we conducted a small number of
experiments to compare the performances of several QIEA variants and have drawn
comparisons between QIEAs and some state-of-the-art EAs using frequently used
benchmark problems. Currently there is intensive research in this area, but there are
some aspects that need to be addressed. For example, the following issues deserve
special attention:
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– Theoretical research. Despite many developments in the current literature concern-
ing experiments and applications, very few studies regarding theoretical aspects of
QIEAs have been presented. For instance, how does a QIEA work when search-
ing for the optimal solution? To what extent and how can a QIEA escape minima?
Although there are discussions regarding the convergence of QIEAs, there is no
systematic analysis of the advantages and disadvantages of the approach. More-
over, further work is needed on the application of other concepts and principles
from quantum computing, such as quantum registers, entanglement, and interfer-
ence, to EAs to solve more complex optimization problems including those with
dependent variables. For instance, controlled quantum-inspired gates, such as con-
trolled NOT gates and controlled rotation gates, could be used to solve the prob-
lems which depend on two or more Q-bits. A controlled NOT gate suitable for
dealing with interactions between two Q-bits can be defined as in Eq. 24 or Eq. 25
(DiVincenzo 1998; Barenco et al. 1995).

GNOT 1 =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥⎥⎦ (24)

GNOT 2 =

⎡

⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ (25)

In the controlled NOT gates, one of the two Q-bits is taken to be a control bit. If
the control bit is 1, the NOT operation is applied to the other Q-bit; otherwise the
second Q-bit is left unchanged. Thus, it can be used to process dependent variables
in optimization problems. Additionally, a controlled rotation gate might be defined
(DiVincenzo 1998; Barenco et al. 1995) by

G =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 cos θ − sin θ

0 0 sin θ cos θ

⎤

⎥⎥⎦ (26)

It is worth noting that control bits may be multiple and that controlled gates can be
applied to deal with dependencies between multiple Q-bits.

– Engineering applications. The research conducted so far presents the QIEA as
an effective EA with a lot of promising features and many potential applications.
QIEAs have successfully been used to test some important combinatorial optimiza-
tion problems, such as the knapsack problem and some benchmark optimization
functions; they have also been employed to solve some engineering optimizations
such as digital filter design and image processing. However, the potential of QIEAs
has hardly been explored for engineering applications, compared with other opti-
mization methods such as particle swarm optimization. In particular, applications
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research for the rQIEA is still at a preliminary stage, although QIEAs may feasibly
be modified to satisfy specific engineering application requirements.

– Comparative experiments. Most of the experiments that have been published were
conducted to compare QIEAs with CGAs. There are few or no convincing compar-
isons between QIEAs and other optimization methods such as particle swarm opti-
mization, ant colony optimization, evolutionary programming, evolutionary strat-
egy and immune algorithm. The advantages and disadvantages of QIEAs over other
optimization methods are still pending issues.

– Extensions of QIEAs. Except for solving single-objective optimization problems
and unconstrained problems, QIEAs can be extended to other fields such as multi-
objective optimization and constraint-handling techniques. There are many such
problems in real-world applications and QIEAs may be relevant to solving these
problems.

– Hybrid algorithms. Some research approaches have concentrated on combining
QIEAs with CGAs, immune algorithms, clonal algorithms and particle swarm op-
timization, but further theoretical and experimental analysis is needed to provide
an easy and clear description of the combination mechanism.
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