
J Heuristics (2011) 17: 97–118
DOI 10.1007/s10732-010-9128-0

Neighborhood analysis: a case study
on curriculum-based course timetabling

Zhipeng Lü · Jin-Kao Hao · Fred Glover

Received: 30 January 2009 / Revised: 14 October 2009 / Accepted: 14 February 2010 /
Published online: 2 March 2010
© Springer Science+Business Media, LLC 2010

Abstract In this paper, we present an in-depth analysis of neighborhood relations
for local search algorithms. Using a curriculum-based course timetabling problem
as a case study, we investigate the search capability of four neighborhoods based on
three evaluation criteria: percentage of improving neighbors, improvement strength
and search steps. This analysis shows clear correlations of the search performance of
a neighborhood with these criteria and provides useful insights on the very nature of
the neighborhood. This study helps understand why a neighborhood performs better
than another one and why and how some neighborhoods can be favorably combined
to increase their search power. This study reduces the existing gap between reporting
experimental assessments of local search-based algorithms and understanding their
behaviors.

Keywords Neighborhood structure · Neighborhood combination · Local search ·
Timetabling · Metaheuristics

Z. Lü (�) · J.-K. Hao
LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
e-mail: lu@info.univ-angers.fr

Z. Lü
e-mail: zhipeng.lui@gmail.com

J.-K. Hao
e-mail: hao@info.univ-angers.fr

F. Glover
OptTek Systems, Inc., 2241 17th Street, Boulder, CO 80302, USA
e-mail: glover@opttek.com

mailto:lu@info.univ-angers.fr
mailto:zhipeng.lui@gmail.com
mailto:hao@info.univ-angers.fr
mailto:glover@opttek.com

98 Z. Lü et al.

1 Introduction

Neighborhood search or local search is known to be a highly effective metaheuris-
tic framework for solving a large number of constraint satisfaction and optimization
problems (Hoos and Stützle 2004). For a given neighborhood and starting from an ini-
tial solution, local search attempts to improve progressively the present solution by
exploring its neighborhoods. In this way, the current solution is iteratively replaced
by one of its neighbors (often improving) until a specific stop criterion is satisfied.

One of the most important features of local search is thus the definition of its
neighborhood. In general, good neighborhoods offer a high search capability and
consequently lead to good results largely independent of the initial solution while
the search performance induced by weak neighborhoods is often highly correlated
to the initial solution (Papadimitriou and Steiglitz 1998). Moreover, the behavior of
local search depends strongly on the characteristics of its neighborhood. For instance,
some neighborhoods allow the search to obtain solution improvements in a quick
and important manner, but the improvement occurs only for a limited number of
iterations. On the contrary, other neighborhoods only enable small improvements,
but for a long time.

In addition, if two or more neighborhoods present complementary characteristics,
it is then possible and interesting to create more powerful combined neighborhoods.
The advantage of such an approach was demonstrated using a tabu search strategic os-
cillation design in Glover et al. (1984), and additional variants of strategic oscillation
for transitioning among alternative neighborhoods are discussed in Glover (1996).
More recently, the metaheuristic approach called Variable Neighborhood Search in
Mlandenovic and Hansen (1997) has effectively used a transition scheme that always
returns to the simplest neighborhood when improvement occurs, while the transition
scheme that cycles through higher levels before returning to the simplest (also stud-
ied in Glover et al. (1984)) was examined in Di Gaspero and Schaerf (2006) and
elaborated more fully in the metaheuristic context in Goëfon et al. (2008).

However, one finds few studies in the literature concerning a number of important
and basic questions (Johnson 2002): why does one particular neighborhood lead to
better computational results than another one? what are the main characteristics of a
good neighborhood? When would a combination of two or more neighborhoods be
preferred to a single neighborhood and in which manner?

Without claiming to answer all these important questions, we present in this work
an experimental analysis of neighborhoods. For this purpose, we introduce three eval-
uation criteria to characterize the search capability of a neighborhood: percentage
of improving neighbors, improvement strength and search steps. As a case study,
we consider the so called curriculum-based course timetabling problem (CB–CTT),
which is the topic of the Second International Timetabling Competition1 (see McCol-
lum 2007; McCollum et al. 2008). In particular, we investigate three existing neigh-
borhoods (with three moves called SimpleMove, SimpleSwap, KempeMove) from

1Track 3: curriculum based course timetabling, http://www.cs.qub.ac.uk/itc2007/.

http://www.cs.qub.ac.uk/itc2007/

Neighborhood analysis: a case study on curriculum-based course 99

the literature as well as a newly proposed neighborhood (with a move called Kem-
peSwap). The analysis shows that the computational results are strongly correlated
with the values and trends of the above evaluation criteria. Furthermore, the analysis
sheds light on why and how some neighborhoods can be used in a combined manner.

The remaining part of this paper is organized as follows. Section 2 gives the de-
scription of the CB–CTT problem of ITC–2007. Following that, four distinct neigh-
borhoods are described in Sect. 3. Section 4 is dedicated to the computational exper-
imentations based on Steepest Descent (SD) method and the corresponding neigh-
borhood analysis. In Sect. 5, we investigate whether the conclusions drawn in Sect. 4
could be expected on more advanced local search methods. Eventually in Sect. 6,
conclusions are drawn.

2 Curriculum-based course timetabling

The CB-CTT problem consists of a set of n courses C = {c1, c2, . . . , cn} to be
scheduled in a set of p periods T = {t1, t2, . . . , tp} and a set of m rooms R =
{r1, r2, . . . , rm}. Each course ci is composed of li same lectures to be scheduled. In
the CB–CTT problem, the set of lectures of n courses must be assigned into the p pe-
riods and m rooms subject to a given set of hard constraints and soft constraints. Note
that conflicts between courses for the CB-CTT problem are set according to the cur-
ricula published by the university, which is quite different from the post enrollment-
based course timetabling where the course timetable is scheduled on the basis of the
students’ enrollment data (McCollum et al. 2008). Hard constraints must be strictly
satisfied under any circumstances, while soft constraints are not necessarily satisfied
but their violations should be desirably minimized. A timetabling assignment that sat-
isfies all the following four hard constraints H1–H4 is called a feasible assignment.
Then, the objective of the CB-CTT problem is to minimize the number of soft con-
straint violations in a feasible solution. The four hard constraints H1–H4 and four soft
constraints S1–S4 are:

H1. Lectures: All lectures of a course must be scheduled to a distinct period and a
room.

H2. Room Occupancy: Any two lectures cannot be assigned in the same period and
the same room.

H3. Conflicts: Lectures of courses in the same curriculum or taught by the same
teacher cannot be scheduled in the same period, i.e., any period cannot have an
overlapping of students or teachers.

H4. Availability: If the teacher of a course is not available at a given period, then no
lectures of the course can be assigned to that period.

In addition, a feasible timetable satisfying the above hard constraints incurs a
penalty cost for the violations of the following four soft constraints.

S1: Room Capacity: For each lecture, the number of students attending the course
should not be greater than the capacity of the room hosting the lecture.

100 Z. Lü et al.

S2: Room Stability: All lectures of a course should be scheduled in the same room.
If this is impossible, the number of occupied rooms should be as few as possible.

S3: Minimum Working Days: The lectures of a course should be spread into the
given minimum number of days.

S4: Curriculum Compactness: For a given curriculum a violation is counted if
there is one lecture not adjacent to any other lecture belonging to the same curricu-
lum within the same day, which means the agenda of students should be as compact
as possible.

We choose a direct solution representation for simplicity reasons. A candidate
solution is represented by a p × m matrix X where xi,j corresponds to the course
label assigned at period ti and room rj . If there is no course assigned to period ti
and room rj , then xi,j takes the value “−1”. For the mathematical formulation of the
CB–CTT problem, please refer to Lü and Hao (2010) for more details.

3 Neighborhoods and algorithms

3.1 Initial solution and search space

Starting from an empty timetable, our initial feasible solution is generated in a con-
structive way by means of a fast greedy procedure. This feasible solution is obtained
by sequentially selecting one appropriate lecture of a course each time and assigning
the lecture to a period and a room. In our initial solution generator, we also take into
account the soft constraints by introducing a weighted cost function. We simply men-
tion that for all the 21 competition instances, this greedy heuristic can easily obtain
feasible solutions. The main ideas of this greedy heuristic are given in Lü and Hao
(2010).

When a feasible assignment is reached, i.e. satisfying all the hard constraints, the
local search procedure is used to reduce the number of soft constraint penalties with-
out breaking any hard constraint. Therefore, the search space of our local search
algorithm is limited to the feasible timetables, composed of the set X of assignment
matrices for which the four hard constraints H1–H4 hold.

3.2 Neighborhoods

In a local search procedure, applying a move mv to a candidate solution X leads to a
new solution denoted by X ⊕ mv. Let M(X) be the set of all possible moves which
can be applied to X and does not create any infeasibility, then the neighborhood of
X is defined by: N(X) = {X′ ∈ X | X′ = X ⊕ mv, mv ∈ M(X)}. For the CB–CTT
problem, we consider four distinct moves denoted by SimpleMove, SimpleSwap, Kem-
peMove and KempeSwap, leading to four neighborhoods denoted by N1, N2, N3 and
N4, where only the moves producing those neighbors that do not incur any violation
of the hard constraints are accepted. Let us mention that N4 is a new neighborhood
while other three ones have been proposed for solving other timetabling problems in
the literature (Burke and Newall 2004; Burke et al. 2006; Chiarandini et al. 2006;
Lewis 2008; Schaerf 1999).

Neighborhood analysis: a case study on curriculum-based course 101

Neighborhood N1 A move of type SimpleMove consists simply in moving one lec-
ture of course xi,j at period ti and room rj to a free position (period ti′ and room
rj ′) where i′ �= i or j ′ �= j . After this move, xi′,j ′ = xi,j and xi,j = −1. xi,j = −1
means that there is no any lecture scheduled at period ti and room rj . The size of
neighborhood N1 is bounded by O(l · (p · m − l)) where l = ∑n

i=1 li because there
are l lectures and the total number of free positions is bounded by O(p ·m− l). Note
that if the total number of lectures l is equal to that of the available positions (m · p),
the size of this neighborhood is zero.

Neighborhood N2 A SimpleSwap move consists in exchanging the hosting periods
and rooms assigned to two lectures of different courses. Applying the SimpleSwap
move to two different courses xi,j and xi′,j ′ for the solution X consists in assigning
the value of xi,j to xi′,j ′ and inversely the value of xi′,j ′ to xi,j . Since there are l

lectures, the size of N2 is bounded by O(l2).

Neighborhood N3 A move of type KempeMove is defined by Kempe chain inter-
changes. For the CB–CTT problem, a candidate solution X can be considered as a
graph G where nodes are lectures and edges connect lectures with students or teacher
in common. Note that an edge exists between any two lectures belonging to a same
course. A Kempe chain is defined as a set of lectures that form a connected compo-
nent in the subset of lectures that belong to two distinct periods. Let K be a Kempe
chain with respect to two periods ti and tj and Li (Lj) be the set of lectures in pe-
riod ti (tj), a Kempe chain interchange produces an assignment by replacing Li with
(Li\K)∪ (Lj ∩K) and Lj with (Lj\K)∪ (Li ∩K) (Chiarandini et al. 2006). Notice
that in each KempeMove, at least three lectures are involved, i.e., |K| ≥ 3.

Once lectures have been scheduled to a period, the room assignment can be solved
by an exact bipartite matching algorithm (Rossi-Doria et al. 2002; Sedgewick 1988).
Since KempeMove can be considered as moving one lecture and afterward several
other related lectures in the Kempe chain being moved, the size of N3 is bounded
by O(l · p).

For example, Fig. 1 depicts a subset of lectures deduced by two periods ti
and tj with each room having one lecture. In this small example, there are four
Kempe chains: K1 = {c1}, K2 = {c5, c11}, K3 = {c2, c3, c7, c8, c10} and K4 =
{c4, c6, c9, c12}. However, only K4 can produce a feasible KempeMove since other
three are forbidden. For K1 and K2, the number of involved lectures are less than 3.
For K3, it is not able to lead to a feasible solution, since interchanging {c2, c3} and
{c7, c8, c10} makes the number of lectures in period ti greater than the total number
of the available rooms. We call this restriction the so called room allocation viola-
tion. Indeed, the asymmetry property of lecture numbers largely restricts the number
of acceptable candidate solutions for this neighborhood and constitutes its weakness.
Compared with KempeMove move, the next neighborhood is much more flexible and
will avoid this limitation.

Neighborhood N4 In the KempeMove (i.e. N3), only one connected component
of a subset of lectures is considered concerning two distinct periods. We intro-

102 Z. Lü et al.

Fig. 1 Kempe chain
illustrations

duce now a new move called KempeSwap which consists in interchanging the lec-
tures of two distinct Kempe chains. Formally, let K1 and K2 be two Kempe chains
in the subgraph with respect to two periods ti and tj , a KempeSwap produces an
assignment by replacing Li with (Li\(K1 ∪ K2)) ∪ (Lj ∩ (K1 ∪ K2)) and Lj

with (Lj\(K1 ∪ K2)) ∪ (Li ∩ (K1 ∪ K2)). It is noteworthy to notice that our dou-
ble Kempe chains interchange can be considered as a generalization of the sin-
gle Kempe chain interchange known in the literature (Casey and Thompson 2003;
Chiarandini et al. 2006; Côté et al. 2005; Merlot et al. 2003).

For instance, in Fig. 1, interchanging lectures {c1, c2, c3} and {c7, c8, c10} is a
move of KempeSwap which concerns two distinct connected components K1 and K3.
Feasible KempeSwap moves also include interchanging K2 and K4. Note that the
room allocation procedure after period interchange is the same as KempeMove. For
each move of N4, at least three lectures are involved too, i.e., |K1| + |K2| ≥ 3. Since
KempeSwap can be considered as an extended version of SimpleSwap (i.e., swapping
two lectures), the size of neighborhood N4 is bounded by O(l2).

As mentioned above, except for neighborhood N4, the other three neighborhoods
have been proposed in the previous literature (Chiarandini et al. 2006). However,
we will show in the following sections (Sects. 4 and 5) that our newly proposed
neighborhood N4 is more powerful and explain why this is the case.

3.3 Neighborhood combinations

In order to increase the search capability of single neighborhoods, it has become a
popular practice to combine two or more different neighborhoods, especially when
those neighborhoods have complementary characteristics. In fact, there are many
ways for combining different neighborhoods. In this paper we focus on two of

Neighborhood analysis: a case study on curriculum-based course 103

them: neighborhood union and token-ring search (see Di Gaspero and Schaerf 2006;
Glover et al. 1984).

In neighborhood union, at each iteration the neighborhood structure includes all
the moves of two different neighborhoods. If we consider two different neighbor-
hoods Na and Nb, then the neighborhood union of these two neighborhoods can be
represented as Na ∪ Nb .

In token-ring search, different neighborhoods are consecutively used on the local
optimum of the previous neighborhood until no improvement is possible. More pre-
cisely, we start one local search procedure with one neighborhood. When the search
ends with its best local optimum, we restart the local search from this local optimum,
but with the other neighborhood. This process is repeated until no improvement is
possible (Di Gaspero and Schaerf 2006; Glover et al. 1984). The token-ring search
of two neighborhoods can be denoted as Na → Nb (starting from Na) or Nb → Na

(starting from Nb).
If there are more than two neighborhoods and we want to combine them in a more

meaningful way, it is possible to produce more complex neighborhood combinations.
For example, neighborhood combination (Na ∪Nb) → Nc denotes that neighborhood
union of Na and Nb is combined with neighborhood Nc in a token-ring way and the
search starts from Na ∪ Nb .

3.4 Local search algorithms

In this paper, a study of the behaviors of different neighborhoods and their combina-
tions is conducted. For this purpose, we employ a steepest descent (SD) algorithm in
Papadimitriou and Steiglitz (1998). This choice can be justified by the fact that the
SD algorithm is completely parameter free, and thus it allows a direct comparison of
different neighborhoods without bias. Notice that SD is also the basic search strategy
commonly used in several advanced metaheuristics, such as Tabu Search in Glover
and Laguna (1997), Variable Neighborhood Search in Hansen and Mladenovi (2001),
Mlandenovic and Hansen (1997), Iterated Local Search in Lourenco et al. (2003) and
so on.

From a feasible timetable X ∈ X , the SD algorithm repeatedly replaces the current
solution X by a best improving solution in its neighborhood until no improving neigh-
bor exists. The reason for not using a First Improvement strategy (FI) lies in the fact
that the SD algorithm generally obtains slightly better results than the FI algorithm
according to our experience. Moreover, in our implementations, the computational
cost for an SD move is practically the same as for an FI move. This is possible thanks
to an incremental evaluation of neighborhood moves, enabling the fast identification
of the move. The main idea of this incremental evaluation technique is to maintain in
a special data structure the move value for each possible move of the current solution.
Each time a move is carried out, the elements of this data structure affected by the
move are updated accordingly.

In addition, in order to further verify whether similar conclusions can be expected
with more advanced local search-based metaheuristics, we implement three other
metaheuristic algorithms: Tabu Search (TS), Iterated Local Search (ILS) and Adap-
tive Tabu Search (ATS). The details of these algorithms are described in Sect. 5.

104 Z. Lü et al.

4 Experimental results and analysis

In this section, we first test the SD algorithm on a set of 14 competition instances
for the four neighborhoods N1 ∼ N4 (Sect. 3.2) and their various combinations
(Sect. 3.3). Based on the computational results, we carried out our experiments to an-
alyze the search capability of single neighborhoods and their combinations in terms of
three criteria: percentage of improving neighbors, improvement strength and search
steps. Following that, some concluding remarks are presented.

4.1 Computational results based on SD algorithm

In order to assess the practical performance of the four neighborhoods and their dif-
ferent combinations, we apply the SD algorithm with each of the four neighborhoods
to solve the 14 competition instances. The main features of these instances are listed
in Table 1. The last two columns denoted by occupancy and conflicts represent the
percentage of occupancy of rooms (denoted by l/(p · m)) and the density of the con-
flict matrix (denoted by 2 ·ne/l · (l −1) where ne represents the total number of edges
connecting two conflicting lectures), respectively.

The average soft costs for neighborhoods N1 ∼ N4 over 50 independent runs are
given in Table 2 and the average CPU time are given in brackets (best results for
each instance are indicated in bold). Note that these results are all rounded up. From
Table 2, it is easily observed that neighborhood N4 outperforms all the others in terms
of solution quality. When comparing the three neighborhoods N1, N2 and N3 with
each other, one finds that the average soft costs of N1 are the best and those of N2 are
the worst. We performed a 95% confidence t-test for each pair of neighborhoods to
compare the results of Table 2. Except some rare cases, the observed differences are
statistically significant and the dominance of N4 is confirmed. We can confirm that
the search capability of these four neighborhoods with respect to solution quality can
be ranked as follows: N4 > N1 ≈ N3 > N2.

Table 1 Features of the 14
competition instances Instances n m p l Occupancy Conflicts

comp01 30 6 30 160 88.89% 13.2%

comp02 82 16 25 283 70.75% 7.97%

comp03 76 12 25 251 62.75% 8.17%

comp04 79 18 25 286 63.56% 5.42%

comp05 54 9 36 152 46.91% 21.7%

comp06 108 18 25 361 80.22% 5.24%

comp07 131 20 25 434 86.80% 4.48%

comp08 86 18 25 324 72.00% 4.52%

comp09 76 18 25 279 62.00% 6.64%

comp10 115 18 25 370 82.22% 5.3%

comp11 30 5 45 162 72.00% 13.8%

comp12 88 11 36 218 55.05% 13.9%

comp13 82 19 25 308 64.84% 5.16%

comp14 85 17 25 275 64.71% 6.87%

Neighborhood analysis: a case study on curriculum-based course 105

Table 2 Average soft costs for
N1 to N4 obtained by the SD
algorithm over 50 independent
runs

Instances f̄

N1 N2 N3 N4

comp01 42 (0.04) 33 (0.05) 49 (0.03) 24 (0.12)

comp02 194 (0.39) 228 (0.17) 204 (0.37) 143 (1.42)

comp03 217 (0.37) 248 (0.20) 245 (0.28) 193 (1.09)

comp04 153 (0.71) 199 (0.37) 194 (0.61) 132 (3.45)

comp05 1016 (0.25) 995 (0.17) 847 (0.81) 684 (0.38)

comp06 207 (0.70) 260 (0.36) 255 (0.65) 158 (4.56)

comp07 203 (1.07) 247 (0.63) 230 (1.27) 140 (8.23)

comp08 154 (0.70) 205 (0.28) 185 (0.63) 139 (3.22)

comp09 238 (0.43) 273 (0.19) 244 (0.43) 193 (2.01)

comp10 195 (0.82) 250 (0.44) 249 (0.88) 145 (5.12)

comp11 16 (0.07) 16 (0.06) 25 (0.03) 9 (0.11)

comp12 807 (0.47) 874 (0.31) 885 (1.61) 746 (0.54)

comp13 197 (0.68) 233 (0.38) 224 (0.65) 151 (3.68)

comp14 180 (0.46) 213 (0.23) 206 (0.34) 151 (1.23)

Fig. 2 Average solution quality comparisons for the SD algorithm over 50 runs

When it comes to the average CPU time, it is clear that N4 costs more than oth-
ers. This can be explained by the fact that neighborhood N4 involves much more
neighborhood moves than N3 and the neighborhood move evaluation is more time-
consuming than N1 and N2.

Figure 2 shows the comparisons of the normalized average costs for the SD al-
gorithm over 50 independent runs. For each instance, the normalized average soft

106 Z. Lü et al.

Table 3 Average soft costs for various neighborhood combinations

Instance Average soft costs

N1∪N2 N3∪N4 N1∪N4 N1∪N3 ∪N4 N1 → N4 N2 → N4 (N1∪N2) → N4

comp01 31 (0.1) 23 (0.1) 19 (0.2) 18 (0.2) 24 (0.1) 20 (0.1) 19 (0.1)

comp02 186 (0.4) 143 (1.8) 136 (2.2) 135 (2.5) 132 (1.5) 140 (2.1) 122 (1.6)

comp03 210 (0.4) 187 (1.2) 177 (1.8) 172 (2.2) 173 (1.0) 184 (1.1) 170 (1.0)

comp04 152 (0.7) 131 (3.5) 116 (6.5) 109 (7.4) 103 (2.7) 121 (2.9) 105 (3.1)

comp05 871 (0.4) 627 (0.4) 591 (0.5) 547 (0.6) 574 (0.8) 609 (0.6) 580 (0.8)

comp06 197 (0.8) 162 (4.7) 151 (8.9) 150 (8.9) 139 (3.3) 155 (4.4) 141 (3.1)

comp07 190 (1.2) 141 (8.4) 123 (16) 114 (17) 113 (5.2) 126 (7.1) 114 (5.0)

comp08 154 (0.7) 129 (3.4) 112 (7.3) 113 (7.7) 103 (2.9) 119 (3.4) 105 (2.5)

comp09 231 (0.5) 189 (2.1) 182 (3.0) 183 (3.5) 176 (1.8) 189 (1.9) 177 (1.8)

comp10 186 (0.9) 147 (5.3) 128 (8.8) 128 (9.5) 118 (3.3) 130 (4.7) 127 (3.0)

comp11 11 (0.1) 11 (0.1) 6 (0.2) 6 (0.2) 9 (0.1) 8 (0.1) 7 (0.1)

comp12 774 (0.5) 743 (0.5) 684 (0.8) 663 (0.9) 639 (1.1) 685 (1.1) 668 (1.1)

comp13 186 (0.8) 151 (3.9) 135 (7.5) 137 (7.8) 131 (2.7) 145 (3.6) 131 (2.7)

comp14 175 (0.5) 156 (1.3) 132 (2.6) 139 (2.6) 125 (1.5) 148 (1.4) 121 (1.6)

cost g is represented as g = (f − fmin)/(fmax − fmin), where f is the original aver-
age soft cost while fmax and fmin respectively denote the worst and the best average
soft costs obtained by the four neighborhoods. According to its definition, the value
of the normalized soft cost g lies in the interval [0,1]. It is obvious that the modified
cost function for the best neighborhood is equal to 0 while for the worst it is equal
to 1. Figure 2 discloses that the SD algorithm with N4 performs much better than
N1 ∼ N3 in terms of the average cost.

We now consider the performance of several combined neighborhoods. In fact,
the number of possible combinations to be considered is extremely large and thus
we attempt to limit the combinations to be examined by using the results mentioned
above. According to the definitions of neighborhood structures, it is obvious that N1

and N2 are basic neighborhoods and N3 and N4 are advanced ones. From the com-
putational results above, one observes that N3 is worse than N1 in terms of solution
quality yet requires a CPU time similar to that of N1. This fact convinces us that
N3 is a poor neighborhood. On the other hand, N4 is a good neighborhood in terms
of solution quality. Therefore, we focus on the different combinations of N4 with
others, especially N1. According to the above analysis and our experience, we con-
sider the following typical neighborhood combinations: N1 ∪ N2, N3 ∪ N4, N1 ∪ N4,
N1 ∪ N3 ∪ N4, N1 → N4, N2 → N4 and (N1 ∪ N2) → N4.

We run the SD algorithm with these neighborhood combinations on the set of 14
competition instances. Table 3 shows the average soft costs over 50 independent runs
for different neighborhood combinations. One finds that for the four ways of neigh-
borhood union, N1 ∪N4 and N1 ∪N3 ∪N4 produce much better results than N1 ∪N2

and N3 ∪ N4. However, in N1 ∪ N3 ∪ N4, the introduction of N3 does not contribute
much to the neighborhood union N1 ∪ N4, i.e., there is only 1.8% improvement in

Neighborhood analysis: a case study on curriculum-based course 107

terms of the average solution quality. This further implies that N3 is not a value-added
neighborhood for this problem.

With respect to the token-ring search combinations, one observes that N1 → N4

performs much better than N2 → N4, even better than (N1 ∪ N2) → N4. Therefore,
one of the most promising ways for token ring search of the four neighborhoods is
probably N1 → N4.

We now directly compare the elite neighborhood union (N1 ∪ N4) and token-ring
search (N1 → N4). For this purpose, we performed a 95% confidence t-test to com-
pare these two elite neighborhood combinations and found that for 11 out of the 14
instances (except for comp02, comp11 and comp13), the computational results ob-
tained by N1 → N4 are significantly better than the ones with N1 ∪ N4.

Finally, we have tested several other token-ring combinations using N3 as a source
or destination, such as N1 → N3, N3 → N4 and N2 → N3. We observed without sur-
prise that these token-ring combinations produce worse results than those using N4.
This can be explained by the fact that N4 has a dominant performance over N3 as
already demonstrated in several aforementioned experiments.

4.2 Neighborhood analysis

The above computational results show that the proposed neighborhood N4 performs
much better than other three in terms of solution quality. As for the various com-
binations of different neighborhoods, it is clear that the token-ring combination of
the two neighborhoods N1 and N4 produces lower soft costs than other combina-
tions. In this section, we attempt to explain what causes the effectiveness of a single
neighborhood and a certain combination of different neighborhoods. For this purpose,
we introduce three evaluation criteria to characterize the search capacity of different
neighborhoods: percentage of improving neighbors, improvement strength and search
steps.

4.2.1 Evaluation criteria and experimental protocol

For a candidate solution X, a given neighborhood function N : X → 2X and a neigh-
borhood solution X′ ∈ N(X), define �f = f (X′) − f (X), these criteria are then
defined as follows.

– Improving neighbors I (X): the set of the improving neighbors in the neighborhood
N(X), i.e. I (X) = {X′ ∈ N(X) | �f < 0}. Therefore, the percentage of improving
neighbors is defined as |I (X)|/|N(X)| × 100.

– Improvement strength �f ∗: the cost variation between the current solution X and
a best improving neighbor, i.e., �f ∗ = max{|�f | : �f ∈ I (X)}.

– Search steps: the search steps of N is defined as the number of iterations that the
SD algorithm can run to reach a local optimum.

We argue that good neighborhoods should have one or more of these features:
high percentage of improving neighbors (for more improvement possibilities), strong

108 Z. Lü et al.

improvement strength (for important improvements) and long search steps (for long
term improvements).

To calculate the values of each criterion, 50 independent runs of the SD algorithm
with a given neighborhood are carried out for solving each problem instance. For
each run, data corresponding to the above evaluation criteria are calculated; I (X) and
�f ∗ values are collected at each iteration while search steps is simply the iteration
number when SD stops. All the reported results correspond to the average of these 50
independent runs.

4.2.2 Search capability of different neighborhoods

The first experiment aims to evaluate and compare the performance of the four neigh-
borhoods N1 ∼ N4 (see Sect. 3.2) using the above three criteria. The results are based
on the largest instance comp07 (very similar results are observed for other instances).
Figure 3 shows the percentage of improving neighbors for N1 to N4, evolving with
the local search iterations.

Figure 3 shows that N1 and N2 have quite similar evolving trends in terms of the
percentage of improving neighbors, so do N3 and N4. At the beginning of the local
search, the percentage of improving neighbors is above 70% for N3 and N4, while
it is only approximately 2.2% for N1 and 0.5% for N2. In other words, N3 and N4
offer many more opportunities to find improving neighbors during the first iterations
of the search (first 10 iterations for this particular instance).

On the other hand, compared with N2 and N3 respectively, there exist long tails
for the percentage of improving neighbors for N1 and N4, meaning that they allow
the descent algorithm to run a large number of iterations. This property is another im-
portant sign for good neighborhoods. It should be clear now that N4 has not only the

Fig. 3 Percentage of improving neighbors evolving with iterations for N1 to N4

Neighborhood analysis: a case study on curriculum-based course 109

Fig. 4 Improvement strength �f ∗ evolving with iterations for N1 to N4

Table 4 Performance level of
different neighborhoods on the
given criteria

Criteria N1 N2 N3 N4

Improv. neighbors poor poor good good

Search steps good poor poor good

Improv. strength poor poor poor good

largest percentage of improving neighbors but also the greatest number of iterations,
while N1 continues for many iterations but with very small percentage of improving
neighbors and N3 has large percentage of improving neighbors at the very beginning
of the search but its number of iterations is rather small. N2 performs very poorly for
both two criteria.

We then evaluate the four neighborhoods using the improvement strength criterion
(�f ∗). Figure 4 shows how �f ∗ of each neighborhood evolves with the local search
iterations. Once again, one observes that at the beginning of the search, the improve-
ment strength of N4 is much stronger than others, which matches well with the trend
of the percentage of improving neighbors.

In order to have a better understanding of the performance of these four neigh-
borhoods on the three given criteria, we illustrate in Table 4 the performance level
for each neighborhood-criterion pair. One observes that N4 performs well on all the
three criteria, while N1 and N3 only performs well on one criterion. As expected,
N2 performs very poorly on all the criteria, which explains the computational results
reported in Table 2.

Considering these observations, the following conclusions can be formulated.

1. Neighborhood N4 offers a higher percentage of improving neighbors, and greater
improvement strength than the other three neighborhoods during the local search

110 Z. Lü et al.

Fig. 5 Percentage of improving neighbors and improvement strength for N1 ∪ N4 and N4

iterations. As a result, and at least during the first iterations, N4 provides a quick
and effective solution process.

2. Neighborhood N1 offers improving neighbors (with weaker improvement
strengths) for a larger number of iterations than N2 and N3. Consequently, lo-
cal search can continue for a longer time with N1.

3. Although neighborhood N3 offers a larger percentage of improving neighbors dur-
ing the first iterations, its improvements quickly disappear, limiting its search ca-
pability.

4. Neighborhood N2 performs quite poorly on all the three criteria and thus is not a
good neighborhood.

4.2.3 Combinations of multi-neighborhoods

In this section, we turn our attention to neighborhood combinations and aim at ana-
lyzing their computational results reported in Table 3 in terms of the three proposed
criteria. According to the results in Table 3, one observes that the neighborhood union
of the two elite neighborhoods N1 and N4 (N1 ∪N4) obtains much better results than
N1 ∪ N2 and N3 ∪ N4. On the other hand, the token-ring search of these two neigh-
borhood (N1 → N4) performs much better than N2 → N4, even comparable with
(N1 ∪N2) → N4. These results prompt us to focus on investigating in this section the
two representative neighborhood combinations: N1 ∪ N4 and N1 → N4.

Moreover, one finds that N1 ∪ N4 produces slightly better results than N4, while
N1 → N4 obtains much better results than not only N4 but also N1 ∪ N4. In this
section, we attempt to show evidence for these phenomena in terms of the three eval-
uation criteria.

At first, we investigate why the neighborhood union N1 ∪ N4 performs only
slightly better than N4. To answer this question, we observe the influence of the ad-
vanced neighborhood N4 over the combined neighborhood N1 ∪ N4. Figure 5 shows
the percentage of improving neighbors (left) and improvement strength (right) for
neighborhoods N1 ∪ N4 and N4, evolving with local search iterations. One finds
that both the percentage of improving neighbors and the improvement strength with
N1 ∪ N4 and N4 evolve in quite similar ways, showing that N4 plays a dominating

Neighborhood analysis: a case study on curriculum-based course 111

Fig. 6 Percentage of improving neighbors and improvement strength for N1 → N4

role in this union neighborhood. This is why N4 and N1 ∪ N4 lead to very similar
results.

As for the token-ring search of N1 and N4 (N1 → N4), one observes that N1 → N4
performs much better than N1 ∪ N4. Figure 6 shows the percentage of improving
neighbors (left) and improvement strength (right) for neighborhood N1 → N4. First,
it is important to notice that in this case, the local optimum obtained with neighbor-
hood N1 can be further improved with neighborhood N4 for a relatively large number
of iterations. Moreover, we can see from Fig. 6 that at the beginning of the search for
N4 in N1 → N4, the percentage of improving neighbors is approximately 74% and
the improvement strength is rather strong. That is to say, the local minimum of N1
is typically not a local minimum of N4 and thus the solution quality can be further
improved. This phenomenon constitutes an important explanation for the excellent
performance of N1 → N4.

We should mention that it is possible and interesting to combine the two neighbor-
hoods N1 and N4 in another token-ring way: starting the search from the advanced
neighborhood N4 (N4 → N1). Although we did not report the results of this combi-
nation in this paper, we confirm that N4 → N1 does produce quite similar results to
N1 → N4 in terms of solution quality. This can be explained by the fact that the two
neighborhoods N1 and N4 are alternately and repeatedly used until no improvement
is possible.

To summarize, the analysis of this last subsection confirms that:

1. Neighborhood union is not an appropriate way for combining N1 and N4 because
of the dominance of N4 in the neighborhood N1 ∪ N4.

2. Token-ring search is a better strategy for combining N1 and N4 due to their com-
plementary characteristics.

5 Extensions to more advanced metaheuristics

5.1 Advanced metaheuristics

In the above section, we carried out a series of computational experimentations and a
detailed analysis to show and explain the performance of the four neighborhoods and

112 Z. Lü et al.

their different combinations in the SD algorithm. One may wonder whether we can
expect the same results with other advanced metaheuristics. In this section, we try to
answer this important question. For this purpose, we implemented three metaheuristic
algorithms: Tabu Search (TS) (Glover and Laguna 1997), Iterated Local Search (ILS)
(Lourenco et al. 2003) and Adaptive Tabu Search (ATS) (Lü and Hao 2010). A brief
overview of these three algorithms is given below.

The TS algorithm is a simple version of TS with a self adaptive tabu list. Within
TS, a tabu list is introduced to forbid the previously visited solutions to be revisited.
In our TS algorithm, when moving one lecture from one position (period-room pair)
to another (using N1 or N2), or from one period to another (using N3 or N4), this
lecture is declared tabu and cannot be moved back to the previous position (for N1 or
N2) or period (for N3 or N4) for a certain number of iterations. In our experiments,
TS is applied to a token-ring search of two neighborhoods. Algorithm 1 gives a brief
description of our TS algorithm based on a token-ring search of neighborhoods Na

and Nb . Each TS phase stops when its best solution cannot be improved within a given
number θ of moves that we call the depth of TS. If there is only one neighborhood,
we can just omit line 6 in Algorithm 1. Interested readers are referred to Lü and Hao
(2010) for more details.

Algorithm 1 Tabu Search Algorithm: TS(X0,θ)

1: Input: X0 ← the feasible initial solution; θ ← the depth of TS
2: Output: X∗ ← the best feasible solution found so far
3: X∗ ← X0
4: repeat
5: X′ ← TSNa (X0) based on neighborhood Na with depth of TS equal to θ

6: X′ ← TSNb
(X′) based on neighborhood Nb with depth of TS equal to θ

7: if X′ is better than X∗ then
8: X∗ ← X′
9: end if

10: X0 ← X′
11: until (stop condition is met)

Our ILS algorithm takes the SD algorithm as the local search procedure and uses
a Critical Element-Guided Perturbation (CEGP) operator to jump out of the local
optima trap. The operator consists of identifying critical lectures by scoring all lec-
tures according to their contribution to the total soft constraints and then adaptively
perturbing the solution using the highly scored lectures. Algorithm 2 is a brief de-
scription of our CEGP-based ILS algorithm and interested readers are referred to Lü
and Hao (2009) for more details.

Our ATS algorithm is a dynamic combination of the above TS and ILS algorithms.
Specifically, the ATS algorithm is a reinforced ILS algorithm that replaces the SD
algorithm by the above TS algorithm. Two additional adaptive procedures are also
used to control the depth of TS and the perturbation strength of ILS. Interested readers
are referred to Lü and Hao (2010) for complete details of this ATS algorithm.

Neighborhood analysis: a case study on curriculum-based course 113

Algorithm 2 Iterated Local Search Algorithm: ILS(X0)

1: Input: X0 ← the feasible initial solution
2: Output: X∗ ← the best feasible solution found so far
3: X′ ← SD(X0)
4: X∗ = X′
5: repeat
6: Score all lectures of X′ according to their contribution to the total soft con-

straints
7: Randomly select a certain number η (perturbation strength) of highly scored

lectures to be perturbed
8: X′′ ← Critical Element-Guided Perturbation Operator(X′)
9: X∗′ ← SD(X′′)

10: if X∗′ is better than X∗ then
11: X∗ = X∗′
12: end if
13: X′ ← Acceptance Criterion(X∗′,X∗)
14: until stop condition met

To make the comparison as fair as possible, all these three algorithms follow the
same stop conditions, i.e., the ITC-2007 competition timeout. On our computer with
3.4 GHz CPU and 2 GB Memory, this corresponds to 390 seconds.

5.2 Computational results using advanced metaheuristics

In what follows, we focus on the computational results of the algorithms TS, ILS
and ATS on the 14 competition instances. We first compare the average soft costs
for different neighborhoods and neighborhood combinations. We consider here the
four neighborhoods N1 ∼ N4 and the two representative combined neighborhoods
N1 ∪ N4 and N1 → N4.

Figures 7 to 9 show the comparisons of the average costs respectively for TS, ILS
and ATS algorithms over 50 independent runs. In order to clearly distinguish among
different neighborhoods and their combinations, we use again the normalized soft
cost function to present these three graphs.

From Figs. 7 to 9, one observes that these advanced metaheuristic algorithms with
N4 perform much better than N1 ∼ N3 in terms of the average cost, which coincides
with the results obtained by the SD algorithm. In order to confirm this conclusion,
we performed a 95% confidence t-test to compare N4 with N1 ∼ N3 respectively on
TS, ILS and ATS algorithms and found that for at least 11 out of the 14 instances, the
computational results obtained by N4 are statistically better than the ones obtained
by any of other three neighborhoods in any of the three algorithms.

However, one exception is that N3 is even worse than N2 for all the three meta-
heuristic algorithms, which further indicates that the single Kempe chain neighbor-
hood N3 is not a good one for this specific problem. We argue that the poor perfor-
mance of N3 might be caused by the room allocation violation restriction previously
mentioned in Sect. 3.2.

114 Z. Lü et al.

Fig. 7 Average solution quality comparisons for the TS algorithm over 50 runs

Fig. 8 Average solution quality comparisons for the ILS algorithm over 50 runs

For neighborhood combinations, the token-ring search of two complementary
neighborhoods N1 and N4 (N1 → N4) produces much better results than both the
single neighborhoods N1 ∼ N4 and the neighborhood union N1 ∪ N4, which per-
fectly coincides with the results obtained by the SD algorithm. Although the results
of other five neighborhood combinations (N1 ∪N2, N3 ∪N4, N1 ∪N3 ∪N4, N2 → N4

and (N1 ∪N2) → N4) are not reported here, their results are consistent with those for
the SD algorithm.

Neighborhood analysis: a case study on curriculum-based course 115

Fig. 9 Average solution quality comparisons for the ATS algorithm over 50 runs

Table 5 Best results obtained by TS, ILS and ATS algorithms with N1, N4, N1 ∪ N4 and N1 → N4

Instance TS ILS ATS Best in
Müller
(2008)

N1 N4 N1 ∪ N4 N1→N4 N1 N4 N1 ∪ N4 N1→N4 N1 N4 N1 ∪ N4 N1→N4

comp01 8 5 5 5 6 5 5 5 6 5 5 5 5

comp02 123 65 63 55 111 55 54 48 96 52 52 40 43

comp03 145 108 102 92 124 81 80 76 114 79 80 71 72

comp04 89 59 55 47 82 55 52 42 55 51 44 39 35

comp05 431 362 354 320 416 355 346 305 401 345 336 298 298

comp06 136 82 76 58 129 70 68 54 87 67 67 47 41

comp07 133 58 50 35 124 54 50 26 69 44 36 21 14

comp08 98 69 69 53 89 65 59 48 67 60 56 43 39

comp09 167 142 130 110 147 121 119 106 135 115 109 101 103

comp10 110 62 50 28 98 45 40 24 57 35 31 18 9

comp11 0 0 0 0 0 0 0 0 0 0 0 0 0

comp12 446 378 368 332 429 390 385 324 396 380 374 320 331

comp13 120 91 84 71 105 98 90 69 95 90 78 65 66

comp14 96 68 67 57 86 64 61 53 63 58 59 55 53

We now turn our attention to the best costs that the three advanced metaheuristic
algorithms can obtain. To compute the above results, Table 5 presents the best costs
obtained by these three algorithms with neighborhoods N1, N4, N1 ∪ N4 and N1 →
N4 over 50 independent runs. The reasons for discarding N2 and N3 are due to their
relatively poor performance and the space limit. It should be noticed that the trends
of the best costs are perfectly coincident with the average costs mentioned above for
all the considered single neighborhoods and neighborhood combinations.

In order to show the performance of the proposed neighborhood N4 compared with
other reference algorithms, we listed in Table 5 (the last column) the best costs ob-

116 Z. Lü et al.

tained by the winner of the ITC–2007 (Müller 2008). The algorithm in Müller (2008)
uses the same stopping condition as we do. However, one still finds that for the 14
competition instances, ATS with neighborhood N1 → N4 reaches better (respectively
worse) results than the winning algorithm in Müller (2008) for 5 (respectively 6) in-
stances, with matching results for the remaining 3 instances. Note that our algorithm
ATS with a neighborhood combination (N1 ∪ N2)→(N3 ∪ N4) ranks in second place
for the track 3 of the ITC–2007.2

6 Conclusions

Understanding, explaining and predicting the performance of a neighborhood used by
a local search algorithm is an important and difficult topic (Schuurmans and Southey
2001). In this paper, we present an attempt to analyze the intrinsic characteristics
of four neighborhoods and their combinations for a real world application, i.e. the
curriculum-based course timetabling problem. To this end, we introduce three eval-
uation criteria to characterize the search capability of a neighborhood: percentage
of improving neighbors, improvement strength and search steps. The experimental
analysis based on these criteria and a steepest descent allow us to understand to some
extent the relative advantages and weaknesses of the four studied neighborhoods and
identify the possibilities of combining them.

In particular, the analysis provides useful indications as to why the new neigh-
borhood N4 induced by the KempeSwap move is more powerful than the other ex-
isting neighborhoods. This analysis also discloses the complementary characteristics
of SimpleMove and KempeSwap, giving a foundation for a meaningful combination
of the two respective neighborhoods (N1 and N4). Concerning neighborhood com-
binations, the analysis explains why it is more advantageous to use N1 and N4 in a
token-ring search (N1 → N4) than in a neighborhood union (N1 ∪ N4).

To further evaluate the impact of this study on practical problem solving with ad-
vanced metaheuristics, we carried out a series of experiments using three algorithms:
Tabu Search, Iterate Local Search and Adaptive Tabu Search. Results confirm the
advantage of KempeSwap-based neighborhood over other single neighborhoods on
the one hand and the superiority of the token-ring combination of N1 and N4 over
all other single and combined neighborhoods on the other hand. Moreover, using
(N1 → N4) within the Adaptive Tabu Search algorithm has led to very competitive
results on the 14 instances of the ITC–2007 competition compared with the winning
algorithm of the competition.

To conclude, while the evaluation criteria introduced in this paper alone cannot
fully explain or predict the performance of local search for a given neighborhood,
They constitute useful indicators of good neighborhoods. It should be clear that the
approach reported here is general, consequently it can be applied to other problems
for neighborhood analysis and new neighborhood designs.

Finally, we observe that the neighborhood concept deserves to be looked upon in a
more general way than it is customarily viewed in the metaheuristic area, by adopting

2This result is available at: http://www.cs.qub.ac.uk/itc2007/winner/finalorder.htm.

http://www.cs.qub.ac.uk/itc2007/winner/finalorder.htm

Neighborhood analysis: a case study on curriculum-based course 117

the perspective from tabu search whereby moves that are made during constructive
and destructive processes deserve likewise to be conceived as offering types of neigh-
borhoods to be exploited (Glover et al. 1984; Glover 1996). This is relevant not only
for customary multi-start methods, but also for the application of strategic oscillation
approaches that intervene in various stages of iterated construction or destruction to
refine and upgrade the structures produced at these stages (Glover 1995, 1996). Ques-
tions worthy of investigation concern how best to integrate multiple neighborhoods
in this setting as well, and the measures and procedures we have introduced here can
be adapted in a natural manner for application in such contexts.

Acknowledgements We would like to thank the anonymous referees for their helpful comments and
questions. The work is partially supported by a “Chaire d’excellence” from “Pays de la Loire” Region
(France) and regional MILES (2007–2009) and RaDaPop projects (2009–2012).

References

Burke, E.K., Newall, J.P.: Solving examination timetabling problems through adaptation of heuristic or-
derings. Ann. Oper. Res. 129, 107–134 (2004)

Burke, E.K., MacCarthy, B.L., Petrovic, S., Qu, R.: Multiple-retrieval case-based reasoning for course
timetabling problems. J. Oper. Res. Soc. 57(2), 148–162 (2006)

Casey, S., Thompson, J.: Grasping the examination scheduling problem. In: Burke, E.K., Causmaecker,
P.D. (eds.) Proceedings of the 4th PATAT Conference. LNCS, vol. 2740, pp. 232–246. Springer,
Berlin (2003)

Chiarandini, M., Birattari, M., Socha, K., Rossi-Doria, O.: An effective hybrid algorithm for university
course timetabling. J. Sched. 9, 403–432 (2006)

Côté, P., Wong, T., Sabourin, R.: Application of a hybrid multi-objective evolutionary algorithm to the
uncapacitated exam proximity problem. In: Burke, E.K., Trick, M. (eds.) Proceedings of the 5th
PATAT Conference. LNCS, vol. 3616, pp. 151–168. Springer, Berlin (2005)

Di Gaspero, L., Schaerf, A.: Neighborhood portfolio approach for local search applied to timetabling
problems. J. Math. Model. Algorithms 5(1), 65–89 (2006)

Glover, F.: Tabu thresholding: Improved search by nonmonotonic trajectories. ORSA J. Comput. 7(4),
426–442 (1995)

Glover, F.: Tabu Search and adaptive memory programming—advances, applications and challenges. In:
Interfaces in Computer Science and Operations Research, pp. 1–75. Kluwer Academic, Dordrecht
(1996)

Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Boston (1997)
Glover, F., McMillan, C., Glover, R.: A heuristic programming approach to the employee scheduling

problem and some thoughts on managerial robots. J. Oper. Manag. 4(2), 113–128 (1984)
Goëfon, A., Richer, J.M., Hao, J.K.: Progressive tree neighborhood applied to the maximum parsimony

problem. IEEE/ACM Trans. Comput. Biol. Bioinform. 5(1), 136–145 (2008)
Hansen, P., Mladenovi, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res.

130(3), 449–467 (2001)
Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, Else-

vier, San Francisco (2004)
Johnson, D.S.: A theoretician’s guide to the experimental analysis of algorithms. In: Goldwasser, M.H.,

Johnson, D.S., McGeoch, C.C. (eds.) Data Structures, Near Neighbor Searches, and Methodology:
Fifth and Sixth DIMACS Implementation Challenges, pp. 215–250. American Mathematical Society,
Providence (2002)

Lewis, R.: A survey of metaheuristic-based techniques for university timetabling problems. OR Spectrum
30(1), 167–190 (2008)

Lourenco, H.R., Martin, O., Stützle, T.: Iterated local search. In: Handbook of Meta-heuristics, pp. 321–
353. Springer, Berlin (2003)

Lü, Z., Hao, J.K.: A critical element-guided perturbation strategy for iterated local search. In: Cotta, C.,
Cowling, P. (eds.) EvoCop 2009. LNCS, vol. 5482, pp. 1–12. Springer, Berlin (2009)

118 Z. Lü et al.

Lü, Z., Hao, J.K.: Adaptive tabu search for course timetabling. Eur. J. Oper. Res. 200(1), 235–244 (2010)
McCollum, B.: A perspective on bridging the gap between research and practice in university timetabling.

In: Burke, E.K., Rudova, H. (eds.) Proceedings of the 6th PATAT Conference. LNCS, vol. 3867, pp.
3–23. Springer, Berlin (2007)

McCollum, B., McMullan, P., Paechter, B., Lewis, R., Schaerf, A., Di Gaspero, L., Parkes,
A.J., Qu, R., Burke, E.K.: Setting the research agenda in automated timetabling: the
second international timetabling competition. Technical Report http://www.cs.qub.ac.uk/
itc2007/ITC2007_Background_Techreportv1.pdf (2008)

Merlot, L.T.G., Boland, N., Hughes, B.D., Stuckey, P.J.: A hybrid algorithm for the examination
timetabling problem. In: Burke, E.K., Causmaecker, P.D. (eds.) Proceedings of the 4th PATAT Con-
ference. LNCS, vol. 2740, pp. 207–231. Springer, Berlin (2003)

Mlandenovic, N., Hansen, P.: Variable neighbourhood search. Comput. Oper. Res. 24(11), 1097–1100
(1997)

Müller, T.: Solver description: a hybrid approach. In: Burke, E.K., Gendreau, M. (eds.) Proceedings of the
7th PATAT Conference. http://www.unitime.org/papers/itc2007.pdf (2008)

Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover, Mi-
neola (1998)

Rossi-Doria, O., Paechter, B., Blum, C., Socha, K., Samples, M.: A local search for the timetabling prob-
lem. In: Burke, E.K., Causmaecker, P.D. (eds.) Proceedings of the 4th PATAT Conference. Gent,
Belgium (2002)

Schaerf, A.: A survey of automated timetabling. Artif. Intell. Review 13(2), 87–127 (1999)
Schuurmans, D., Southey, F.: Local search characteristics of incomplete sat procedures. Artif. Intell.

132(2), 121–150 (2001)
Sedgewick, R.: Algorithms, 2nd edn. Addison-Wesley, Reading (1988)

http://www.cs.qub.ac.uk/itc2007/ITC2007_Background_Techreportv1.pdf
http://www.cs.qub.ac.uk/itc2007/ITC2007_Background_Techreportv1.pdf
http://www.unitime.org/papers/itc2007.pdf

	Neighborhood analysis: a case study on curriculum-based course timetabling
	Abstract
	Introduction
	Curriculum-based course timetabling
	Neighborhoods and algorithms
	Initial solution and search space
	Neighborhoods
	Neighborhood combinations
	Local search algorithms

	Experimental results and analysis
	Computational results based on SD algorithm
	Neighborhood analysis
	Evaluation criteria and experimental protocol
	Search capability of different neighborhoods
	Combinations of multi-neighborhoods

	Extensions to more advanced metaheuristics
	Advanced metaheuristics
	Computational results using advanced metaheuristics

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

