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Abstract The performance of an evolutionary algorithm strongly depends on the
design of its operators and on the management of these operators along the search;
that is, on the ability of the algorithm to balance exploration and exploitation of the
search space. Recent approaches automate the tuning and control of the parameters
that govern this balance. We propose a new technique to dynamically control the
behavior of operators in an EA and to manage a large set of potential operators. The
best operators are rewarded by applying them more often. Tests of this technique on
instances of 3-SAT return results that are competitive with an algorithm tailored to
the problem.

Keywords Parameter control · Adaptive search · Hyper-heuristics · Algorithm
design

1 Introduction

Evolutionary algorithms (EA) (Eiben and Smith 2003; De Jong 2006; Holland 1975;
Goldberg 1989) have been widely used for discrete and continuous optimization

J. Maturana (�)
Instituto de Informática, Universidad Austral de Chile, General Lagos 2086, Campus Miraflores,
5111187 Valdivia, Chile
e-mail: jorge.maturana@inf.uach.cl

F. Lardeux · F. Saubion
Laboratoire LERIA, Département Informatique, UFR Sciences, Université d’Angers, 2 Boulevard
Lavoisier, 49045 Angers, France

F. Lardeux
e-mail: lardeux@info.univ-angers.fr

F. Saubion
e-mail: saubion@info.univ-angers.fr

mailto:jorge.maturana@inf.uach.cl
mailto:lardeux@info.univ-angers.fr
mailto:saubion@info.univ-angers.fr


882 J. Maturana et al.

problems, covering a wide range of applications. Originally inspired by the principles
of natural evolution, evolutionary algorithms manage a set of possible configurations
of the problem, which are progressively modified by variation operators, in order to
converge to an optimal solution or, at least, to a sub-optimum of good quality. The
evolutionary metaphor considers configurations as individuals that belong to a popu-
lation which evolves by means of genetic operators, namely mutation and crossover.
Evolutionary algorithms belong to the more general class of metaheuristics (Glover
and Kochenberger 2003).

Algorithm design and parameters The performance of evolutionary algorithms re-
lies mainly on the definition of an appropriate encoding of the problem and on the
design of efficient operators. Once this structure is defined, the user has to adjust the
behavior of the algorithm by means of parameters.

The most straightforward parameters are the operator application rates. These pa-
rameters, along with population size, are generally considered as minor modifiers
since the algorithm remains essentially unchanged, regardless of their values. Recent
advances in parameter setting techniques have lead to handle other parameters, such
as them related to the encoding, the evaluation and the selection processes, which may
modify substantially the algorithm. For instance, Simulated Annealing could be seen
as a particular instance of an Evolutionary Algorithm using a one-individual popula-
tion, without crossover nor mutation, but with specialized local search and reinsertion
operators.

It is difficult to assess when—by modifying parameter values—an algorithm be-
comes another one. Designing and tuning the most suitable algorithm for a given
problem is an important issue that has been studied for many years. The algorithm
selection problem was formerly defined by John Rice in the 70s (Rice 1976) and is
now at the crossroad of several computer science research areas (Smith-Miles 2008).

Although it is difficult to clearly assess which parameters can lead to an algo-
rithm transformation, we may intuitively distinguish between two general classes of
parameters: the behavioral parameters (mainly operator application rates or popula-
tion size) and the structural parameters, that could eventually transform an algorithm
(e.g., those related with the encoding and the choice of operators). This classification
is related to the distinction between numerical and symbolic parameters pointed out
by Smit and Eiben (2009).

Even though the setting of behavioral parameters has been widely studied (see the
recent textbook Lobo et al. 2007), it remains a particularly difficult task for the user.
This setting often relies on empirical rules and/or problem-domain knowledge. Typi-
cally, the adjustment of parameters relies on a series of time-consuming experiences.
These approaches reduces the generality of the obtained values when considering
other problems. On the other hand, control methods work directly on the values of
the parameters while solving the problem, i.e., on-line. Such kind of mechanisms for
modifying parameters during an algorithm execution were invented early in EC his-
tory, and most of them are still being investigated nowadays. Indeed, there is at least
two strong arguments to support the idea of changing the parameters during an EA
run:
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– As evolution proceeds, more information about the landscape is known by the
algorithm, so it should be possible to take advantage of it. This applies to global
properties (for example, knowing how rugged is the landscape) and to local ones
(for example, knowing whether a solution has been improved lately or not).

– As the algorithm proceeds from a global (early) exploration of the landscape to
a more focused, exploitation-like behavior, the parameters should be adjusted to
take care of this new reality. This is quite obvious, and it has been empirically and
theoretically demonstrated that different values of parameters might be optimal at
different stages of the search process (see Eiben et al. 2007 and references therein).

In addition to behavioral parameters, the choice of the structural components of the
evolutionary algorithm also requires expertise from the user. In many application do-
mains, that directly pertain to standard representations, users who are not EA-experts
can simply use off-the-shelf EAs, with classic (and thus non-specialized) variation
operators to solve their problems. However, the same users will encounter great dif-
ficulties when faced to problems that fall out of the basic frameworks. Even if stan-
dard variation operators exist in literature (such as the uniform crossover in Sywerda
1989), acceptable results depend necessarily on the specialization of the algorithmic
scheme, which usually requires the definition of appropriate operators. The design
of problem-specific operators requires much expertise, though some advanced tools
are now available (Da Costa and Schoenauer 2007). In any case, the impact on the
computation process of problem-specific operators is even more difficult to forecast
than those of well-known operators, and thus their associated parameters are harder
to be correctly estimated a priori.

Hyper-heuristics and related works The problem of finding the best configuration
in a search space of heuristic algorithms is related to the more recent notion of
Hyper-heuristics (Burke et al. 2003, 2009a; Cowling et al. 2002). Hyper-heuristics
is a family of methods that aim at automating the process of selecting, combining,
generating or adapting multiple simpler heuristics (or components of such heuris-
tics) to efficiently solve computational search problems. Hyper-heuristics, defined
as “heuristics to choose heuristics” (Cowling and Soubeiga 2000) or “heuristics to
generate heuristics” (Bader-El-Den and Poli 2008), address the problem of finding a
(quasi-)optimal solution in the (meta)heuristics search space. This idea was pioneered
in the early 60s with the combination of scheduling rules (Fisher and Thompson
1963; Crowston et al. 1963). Hyper-heuristics have been widely used for solving
combinatorial problems (see Burke et al. 2009a for a recent survey).

Burke et al. (2009b) propose a comprehensive classification of hyper-heuristics
considering two dimensions: the nature of the search space and the source of the
feedback for learning. They distinguish between heuristics that select heuristics from
a pre-existing set and heuristics that generate new and more complex ones, from basic
components. Concerning the feedback, they identify three categories: online learning,
offline learning and no learning. The distinction between online and offline learning
was previously proposed in order to classify parameter setting in evolutionary algo-
rithms (Eiben et al. 1999), differentiating parameter tuning (offline) from parameter
control (online).
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As classical offline mechanisms, we may mention portfolio algorithms (Hutter et
al. 2006; Xu et al. 2008), where previously acquired knowledge is used in order to
select a suitable resolution method for a given problem instance. Hutter et al. (2007)
have also proposed to use a local search algorithm that automatically finds the correct
configuration in a search space composed of solving algorithms.

Online control of algorithms has been fully integrated in evolutionary computa-
tion through self-adaptive algorithms (Meyer-Nieberg and Beyer 2007) and adaptive
strategies (Thierens 2007). Focusing initially on local search algorithms, Battiti et al.
(2008), Battiti and Brunato (2009) have also federated a reactive search community
around online control. This general paradigm, that aims at producing autonomous
algorithms (Hamadi et al. 2008b), is now emerging mixing several computer sci-
ence areas, including machine learning, combinatorial optimization and constraint
programming (Battiti and Brunato 2008; Hamadi et al. 2008a).

Hyper-heuristics may also be used to discover new heuristics and thus automati-
cally design new solving algorithms. For instance, Fukunaga (2008) has used genetic
programming to learn new performing heuristics for local search algorithms in order
to solve SAT problems.

An autonomous approach for operator management In this work, we propose a
new approach to build an autonomous EA, that handles parameters that determine its
behavior, and also decides which operators will be included in the algorithm. Since
both operations are performed online, our approach qualifies as a two-stage online
selection hyper-heuristic. In this paper, the operators are generated by composing
basic sub-operators, thus this approach could also be classified as a hyper-heuristic
that discover new good operators by combination.

The performance of the evolutionary algorithm is assessed by means of measures
that evaluate the current state of search. Two well-known criteria are commonly used:
diversification and intensification. Diversification reflects the trend to explore various
areas of the search space. Intensification is related to the convergence of the search in
a specific area. As a consequence, we use two measures previously introduced to con-
trol the balance between intensification and diversification (Maturana and Saubion
2007b), namely the average quality of the population and its genetic diversity.

This measures are considered in order to control the algorithm at two different lev-
els: the behavioral level deals with the application of the operators while the struc-
tural level corresponds to the inclusion and/or deletion of operators, according to
their observed performance.

For experimental purposes, we use an evolutionary algorithm that solves the
canonical problem of satisfaction in propositional logic (SAT) (Garey and Johnson
1979; Sais 2008; Biere 2009). The algorithm GASAT (Lardeux et al. 2006), proposed
a few years ago, has obtained interesting results at the SAT competition in 2004. We
have modified this algorithm in order to create more than 300 varieties of crossover
operators, that will be managed by our controller.

Our goal is twofold:

– Show that an evolutionary algorithm may select and apply autonomously operators
adapted to the current state of the search, thanks to our control mechanism and,
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– Show that, without any previous knowledge about the most successful operators,
the controller can identify the most successful ones and reach a comparable perfor-
mance w.r.t. those obtained with the GASAT using hand-crafted operators issued
from a long and deep study.

The article is organized as follows. After this general introduction to settle down
our approach, some key concepts related to parameter settings for evolutionary algo-
rithms are presented in Sect. 2. A short review about evolutionary algorithms applied
to the SAT problem is provided in Sect. 3. The details of our implementation and
the experimental settings are presented in Sects. 4 and 5. Experimental results are
discussed in Sect. 6 to finally draw conclusions in Sect. 7.

2 Autonomous parameter control for evolutionary algorithms

Besides the classification of hyper-heuristics presented in the previous section, an-
other taxonomy of parameters setting can be considered. Many previous studies have
addressed the problem of parameter setting for evolutionary algorithms (Nannen et
al. 2008). We refer the reader to an exhaustive survey published recently (Lobo et
al. 2007). In this section, we will focus on the points that are directly related to our
method.

2.1 Parameter setting in evolutionary algorithms

Parameter setting can be classified using the taxonomy proposed by Eiben et al.
(1999), shown in Fig. 1.

In this taxonomy, setting methods are classified depending on whether they at-
tempt to set parameters before the run (tuning) or during the run (control). The goal
of parameter tuning is to obtain parameters values that could be useful over a wide
range of problems. Such results require a large number of experimental evaluations
and are generally based on empirical observations.

Parameter control is divided into three branches according to the degree of au-
tonomy of the strategies. Control is deterministic when parameters are changed ac-
cording to a previously established schedule, adaptive when parameters are modified
according to rules that take into account the state of the search, and self-adaptive
when parameters are encoded into individuals in order to evolve conjointly with the
other variables of the problem. In this work, we focus on adaptive control.

Fig. 1 Control taxonomy proposed by Eiben et al. (1999)
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Fig. 2 General approach for the
adaptive selection of operators

2.2 Adaptive operator selection

During the last years, Adaptive Operator Selection (AOS) have been used as a generic
framework to control parameters of evolutionary algorithms. The main idea (illus-
trated by Fig. 2) is to consider the impact of an operator over the search and update
a credit registry, that keeps a trace of the success or failure of operators during the
last applications. The knowledge stored in this registry is then used to choose the
next operator to apply. The update of the registry is done by the Credit Assignment
module, while the selection of the operator to apply is performed by the Operator
Selection module. Therefore, adaptive operator selection uses reinforcement learning
to control parameters of heuristics.

2.2.1 Credit assignment

Traditionally, operator evaluation is exclusively based on population quality (Thierens
2007; Fialho et al. 2008). This quality can be measured comparing the offspring and
their parents (Lobo and Goldberg 1997; Tuson and Ross 1998) or by considering the
best (Davis 1989) or median (Julstrom 1995) individuals. It may be interesting to use
more sophisticated statistical tools that detect high fitness values in order to reward
operators that have a beneficial effect at some specific instant instead of a good av-
erage behavior, such as in Whitacre et al. (2006). The genealogy of the individual
(i.e., the fitness of the ancestors), can be also considered (Lobo and Goldberg 1997;
Tuson and Ross 1998).

In previous works, we have proposed to use conjointly the average quality of the
population and its diversity (Maturana and Saubion 2007a). These two measures can
be handled differently. The main objective is to propose a reward system as generic
and as robust as possible. This reward system should also be sensitive enough to vari-
ations in the effect of the operators, in order to promptly adapt to the new situation.

2.2.2 Operator selection

Operator selection selects the operator to apply for the next search step, based on
the credits previously assigned. Again, there are many possible choices, such as se-
lecting operators with a probability proportional to their rewards (Goldberg 1990),
or using more sophisticated models. Fialho et al. (2008) use a multi-armed bandit,
issued from game theory, to select the operator, ensuring that an operator cannot be
infinitely unused. Other approaches include adaptive pursuit (Thierens 2005) or AP-
GAIN (Wong 2003), where learning and solving stages alternate in order to adjust
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the operator selection. The main idea is to propose a selection mechanism able to
automatically adapt to the current performance of the operators, in order to always
use the best suited ones.

3 Evolutionary algorithms for SAT

This section describes the evolutionary algorithm that will be used by the controller
in order to solve the SAT problem, focusing on its crossover operators.

3.1 The SAT problem

The seminal SAT problem (Garey and Johnson 1979; Sais 2008) consists in find-
ing an assignment that satisfies a Boolean expression. An instance of this problem
is a Boolean formula written in conjunctive normal form (CNF), i.e. a conjunction
of clauses. Clauses are disjunctions of literals. A literal is a variable or a negated
variable. When all the clauses can be satisfied, the problem is said to be satisfiable.
Whether the problem is satisfiable or not, it is always interesting to minimize the num-
ber of false clauses (MaxSAT). Traditionally, two families of methods can be used to
solve this problem: exact methods, which find an answer to the decision problem
(i.e., if it is satisfiable or not) and approximate methods that address the optimization
problem (i.e., minimize the number of false clauses).

The motivation of considering the SAT problem as testbed is that there exists a
large variety of instances, coming from different kinds of problems (random, hand-
made and industrial). The instances have then different properties and search land-
scapes.

3.2 Evolutionary algorithms for SAT

Evolutionary algorithms for SAT (De Jong and Spears 1989; Fleurent and Fer-
land 1996; Marchiori and Rossi 1999; Gottlieb and Voss 2000; Rossi et al. 2000;
Lardeux et al. 2006) belong to approximate methods. Different operators can be used
in evolutionary algorithms: mutation, crossover and local search operators. Special-
ized operators are often used in order to improve the performance of these algorithms.

We use an evolutionary algorithm based on GASAT (Lardeux et al. 2006). GASAT
is currently one of the most effective evolutionary algorithms for SAT. Its basic prin-
ciples can be sketched in Algorithm 1.

Several stopping conditions can be used, including finding a solution to the prob-
lem, or a maximum number of elapsed crossovers, to name a couple.

Since the purpose of our work is to highlight the properties of the controller,
GASAT has been slightly modified in order to keep only its basic skeleton and to
focus on the effects of the controller. Therefore, the selection is performed randomly
and the local search has been removed. The new individuals always replaces the old-
est one, regardless of their quality.
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Algorithm 1 General GASAT formulation

3.3 A family of crossover operators for SAT

The design of operators has a great influence over the search. One way to measure
their impact is to consider their effect over the diversity of the population. Some op-
erators may induce a concentration of individuals in some specific area of the search
space (exploitation), while others may promote exploration by spreading them. These
two tendencies are required at different steps of the search, and it is desirable to
use appropriate operators. In this work, we define a wide set of crossover opera-
tors, that have different effects in terms of Exploration versus Exploitation (EvE). All
crossovers produce one child from two parents. Most of these crossovers aim to trans-
fer the good properties of the parents into their descendants. Consider for instance the
following operators (note that since an individual represents a Boolean assignment,
we say that a clause is true for an individual if the corresponding assignment satisfies
the clause):

– The Uniform crossover (Sywerda 1989) keeps the value of variables that are iden-
tical in both parents.

– The FF crossover, proposed by Fleurent and Ferland (1996), uses the set of clauses
that are true in one parent and false in the other. Only the values of the true literals
appearing in these clauses are kept.

– The CC crossover (Lardeux et al. 2004) deals only with clauses that are simultane-
ously false in both parents and turn them into true in the child by flipping a variable
in each one of them.

– The CCTM crossover (Lardeux et al. 2004) operates like CC but it also works on
clauses that are true in both parents to ensure that the clauses will be also true into
the child.

Most of the time, few crossover operators are designed for diversification pur-
poses. In order to induce different levels of EvE, we have modified several crossovers
in order to detect similar properties and break them. Consider for instance, the fol-
lowing possible basic actions:

– A “reverse” uniform crossover, that flips all true values of variables that are iden-
tical in both parents.

– The Not True Maintenance crossover that deals only with clauses that are true in
both parents and makes them false in the child.
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We have defined a large set of crossover operators (307 in total), which correspond
to combinations of four basic features. In this set, we find some crossovers that are
able to diversify, others that will improve quality and finally many of them whose
effect lies in between. Most crossovers are built with the following basic features,
being defined by a quadruplet as follows:

I. Selection of clauses that are false in both parents:
1. select none
2. select them in chronological order
3. choose randomly one
4. choose randomly one from the set of smallest clauses
5. choose randomly one from the set of biggest clauses.

II. Action on each of the false clauses:
1. do nothing
2. flip the variable that maximizes the number of false clauses that become true
3. same as previous one, but also minimizing the true clauses that become false
4. flip all the variables
5. flip the literal which appears less often in the rest of them clauses.

III. Selection of clauses that are true in both parents:
1. select none
2. select them in chronological order
3. choose randomly one
4. choose randomly one from the set of smallest clauses
5. choose randomly one from the set of biggest clauses.

IV. Action on each of the true clauses:
1. do nothing
2. set to true the variable whose flip minimizes the number of false clauses
3. set all literals to true
4. set to true the literal whose negation appears less often in the rest of the

clauses
5. set all literals to false.

All variables that remain undefined in the child are valued using the uniform
crossover process explained before. We can obtain many different crossover oper-
ators. For instance 2211 corresponds to CC and 2222 to CCTM. Some quadruplets
are not valid (1i** or **1i with i ∈ {2,3,4,5}).

Finally, the FF crossover is combined with all the basic features previously men-
tioned, and the reverse uniform crossover is added, obtaining a total of 307 operators.

4 Controller description

This section presents the general control mechanism, whose architecture is depicted
by Fig. 3. Two main components can be identified:

– Adaptive Operator Selection (AOS) (Maturana et al. 2009): as discussed in Sect. 2,
adaptive operator selection communicates with the evolutionary algorithm in order
to decide which operator will be applied. Adaptive operator selection also receives
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Fig. 3 General scheme of the
controller, depicting its two
main components, adaptive
operator selection and
Blacksmith

feedback from the algorithm in order to update the credit registry, that stores the
rewards assigned to each operator. This component deals with behavioral para-
meters, related with the application rate of the operators that are available to the
algorithm at a given time.

– Blacksmith is related to the structural parameters of the EA. It constitutes the “op-
erator manager” that decides which operators will included in the adaptive operator
selection (and therefore available to the EA) at each step of the search. The oper-
ators are built according to a specification or simply taken from a list of operator
names.

We want to highlight the conceptual difference between the two components of
the controller. Blacksmith designs the evolutionary algorithm that is managed by the
Adaptive Operator Selection. Back to the classification of hyper-heuristics (Burke et
al. 2009b), adaptive operator selection can be seen as a heuristic to select the suitable
operator while Blacksmith is a heuristic to generate operators. In our approach, the
choices concerning the adaptive operator selection are thus dependent on those con-
cerning Blacksmith. The next sections will be devoted to the description of these two
components.

4.1 Adaptive operator selection

Roughly speaking, given a set of operators, we want to apply the best possible ones.
However, an optimal choice is difficult because of the dynamic nature of evolution-
ary algorithms. On the one hand, it is preferable to apply operators that have shown a
good performance in the recent past. On the other hand, other operators must be tried
occasionally, in order to discover those that could become appropriated to the cur-
rent state of the search. This situation is indeed a typical Exploration vs Exploitation
dilemma, not at the evolutionary algorithm level, but at adaptive operator selection
level.
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4.1.1 Credit assignment

As mentioned in Sect. 2, it is necessary to evaluate the performance of the oper-
ators after their application. The Compass (Maturana and Saubion 2008) and Ex-
CoDyMAB (Maturana et al. 2009) methods consider three different criteria: variation
of diversity, variation of quality and execution time. ΔDiversity represents the geno-
typic diversity variation, according to the chosen diversity measure, and ΔQuality is
the variation of mean quality, according to the fitness function of the problem. The
objective is then to maximize the first two criteria and to minimize the third one. Since
these objectives may be contradictory, we need to precisely define how to combine
these criteria in order to obtain a single evaluation value.

The method Compass (C) (Maturana and Saubion 2008) (Fig. 4a), considers the
distance from a point that represents the operator o in the (ΔDiversity,ΔQuality)
space to a line tilted with an angle of Θ = π/4, which correspond to the desired
balance between quality and diversity.

In this work, two other schemes of evaluation are compared, both based on the
concept of Pareto dominance (Pareto 1896). In an n-dimensional space, we say that a
point a = (a1, a2, . . . , an) dominates another point b = (b1, b2, . . . , bn) if ai is better
than bi ∀i = 1 . . . n. Here the word “better” is used in the context of the aim of the op-
timization problem: if we consider a maximization problem in the dimension i, then
a dominates b if ai > bi , on the opposite, if the objective is to minimize, then a dom-
inates b if ai < bi . When none of the two points dominate each other, they are said
incomparable. In our case, we have a 2-dimensional space (ΔDiversity,ΔQuality)
with two criteria that we want to maximize.

The first method, Pareto Dominance (PD), counts the number of operators domi-
nated by each one (see Fig. 4b). The best one corresponds to the highest value. The
Pareto Rank (PR) method counts the number of operators that each operator domi-
nate, (Fig. 4b) and lowest values are thus the best ones. Operators with a PR value of
0 belong to the Pareto frontier. There is an important difference between these two
evaluations: whereas PR encourage exclusively non-dominated operators, PD also
rewards those which are in strong competition with the others.

After the application of an operator, the values of ΔDiversity and ΔQuality are
sent to the controller. The credit assignment module computes the evaluation (using
C, PD or PR), and normalizes the values w.r.t. all operators. Normalized values are
stored into the Credit Registry as the assigned rewards. A list of the last m rewards of
each operator (corresponding to its last m applications) is recorded in the registry, in
order to provide updated information about the performance of each operator to the
operator selection module.

Fig. 4 Credit Assignment
Schemes. Compass (a), Pareto
Dominance (b), Pareto Rank (c)
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4.1.2 Operator selection

The operator selection module selects the next operator to be applied. Ex-DMAB
(Maturana et al. 2009) is inspired by the methods of multi armed bandits used in
game theory. This strategy always chooses the most efficient operator according to
the formula:

MABo,t = ro,t + C

√
log

∑
k nk,t

no,t

(1)

where ro,t is the reward obtained by the operator o at current time t , and no,t is the
number of times that the operator o has been applied so far. The left term (rot ) favors
the use of the best operators, while the right term favors the operators that have been
applied less often. Additionally, the values of ro,t and no,t are reset when a change
of the operators behavior is detected, in order to speed up the identification of better
operators.

The expression 1 relies on the assumption that all operators are present in the
evolutionary algorithm from the beginning of the run. If an operator is inserted during
the execution, its value of no,t would be so low that it would have to be applied many
times to adjust the value of the expression 1 w.r.t. the rest of the operators.

Here we have reformulated the expression 1 in order to deal with a dynamic set
of operators. The measure corresponding to the number of times that an operator
has been applied is replaced by another criterion that corresponds to the number of
generations elapsed since the last application of the operator (i.e., its idle time). The
evaluation of a new operator is immediately raised by applying it only once. The new
MAB formula is then defined as:

MAB2o,t = ro,t + 2 × exp(p × io,t − p × x × NOt ) (2)

where io,t is the idle time of operator o at time t . NOt is the number of operators
considered by the adaptive operator selection at time t , x expresses how many times
NOt the controller must wait before applying o compulsory. The behavior of the
exploration component is highlighted by Fig. 5. The value stays close to zero except
when io,t is close to x×NOt . Since ro,t ∈ [0,1] (normalization), if an operator has not
been applied for a long time then its application becomes mandatory. p is a parameter
that adjusts the slope of the exponential.

In our work, we compare the following four different operator selection modules:

– Random (R), that simply chooses randomly among the operators currently avail-
able to the EA.

Fig. 5 Behavior of exploratory
component of expression 2
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– Probability Matching (PM), that chooses the operator with a probability propor-
tional to the reward values stored by the credit assignment module.

– MAB2 (M2) (already described), that always chooses the operator that maximizes
the expression 2.

– MAB2 + Stuck detection (M2D), that adds to M2 a method to detect if the popu-
lation is trapped into a local optimum. This test is performed by considering the
mean quality of the population. The detection is performed thanks to the linear
regression of the values of mean quality during the last generations. If the value of
the slope is close to zero and the difference between maximum and minimum val-
ues of mean quality is small enough, a diversification stage is decided, carried on
by choosing exclusively operators with an exploratory profile. This diversification
stage is maintained until the diversity reaches a range over the original value, when
there are no exploration operators, or when a number of generations have passed
without being able to reach the desired diversity.

4.2 Blacksmith

Blacksmith is the component that manage the inclusion or exclusion of the operators,
in order to provide the evolutionary algorithm with the best suited ones. Since deleted
operators could eventually be useful in the future, Blacksmith keeps a trace of them.
An operator may have three main states (Fig. 6).

– Unborn, corresponds to the operators that have never been used during the execu-
tion of the algorithm.

– Alive, corresponds to operators that are currently in the Credit registry and there-
fore available to the EA. Operators in this state have two pieces of information
attached: the data, that corresponds to recent measures of performance, and the
profile, which summarizes the information in data, by calculating meaningful sta-
tistics.

– Dead, corresponds to operators that have been deleted from the Credit Registry.
Dead operators lost their data structure, but keep their profile. In this way, a future
reinsertion into the credit registry (revival) would not be performed blindly.

Note that, besides their performance measures, all the information known by the
controller about the operators is their name. The controller is independent from the

Fig. 6 Operator states and
corresponding information
associated to operators
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evolutionary algorithm and thus no implementation details are included in the al-
gorithm. The evolutionary algorithm must implement and apply the operators. This
architecture ensures the independence of the controller, and its possible use along
with different evolutionary algorithms without any noticeable change.

Blacksmith controls the structural parameters, deciding whether and when the op-
erators will be available to the EA. As shown in Fig. 3, its specific tasks, are the
following:

– Create the operators, according to their definition. This task could be performed
by combining different basic features or simply by taking their definition from a
list of possible operators. In this work, the creation is done by combining the basic
features given in Sect. 3.3.

– Add operators to the Credit registry, to make them available to the EA. This corre-
sponds to the birth transition shown in Fig. 6.

– Analyze the operators that currently belong to the Credit Registry, in order to decide
if some of them must die or if a new operator (either unborn or dead) must be
(re)inserted to the registry.

– Eliminate operators from the registry (death transition shown in Fig. 6).
– Stores the profile of eliminated operators.
– Restitute dead operators back into the Registry when needed (revival transition

shown in Fig. 6).

Note that the elimination of an operator does not necessarily mean that it is es-
sentially bad since its performance is measured according to the current state of the
search and the remaining operators in the registry. If the registry contains several
good diversification operators, but the search requires an intensification stage, one
of them will be deleted. The deleted operator could be useful later reason why dead
operators keep their profile.

We used a simple strategy to manage the operators in the registry. A fixed number
of operators is kept in the registry, and evaluated at regular intervals. Operators that
have been applied a sufficient number of times are considered for deletion. This con-
dition is required to guarantee that the operator has a low performance. The weakest
of those “known-enough” operators is deleted and a new one is inserted in the registry.
In order to give all operators a chance to show their skills, all unborn operators are
tried before Blacksmith starts reviving dead operators. Unborn operators are inserted
in a random order.

5 Experimental setting

In this section we present the experimental framework to test our method on the
resolution of the SAT problem. We compare different configurations of the controller
against the state of the art crossovers presented in Sect. 3.3 (i.e., FF, CC and CCTM).
As baseline, we use uniform crossover and a controller that simply chooses randomly
among the 307 possible operators, called R307.
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5.1 Testbed

In our experiments we have selected 8 instances from different SAT and Beijing com-
petitions (Simon and Le Berre 2005; Le Berre et al. 2007). These benchmarks were
selected from different families of instances (random, handmade and industrial):

– f500 and uf250-010 are randomly generated threshold instances,
– aim-100-1_6-yes1-1 (noted aim-100 in the following) is a random instance modi-

fied to have only one solution,
– engine_4_nd.cnf (noted engine in the following) is an instance of very large scale

integration (VLSI),
– ibm-2004-29-k55 (noted ibm in the following) is an industrial instance of bounded

model checking (BMC),
– simon-s02b-r4b1k1.2 (noted simon in the following) is a difficult instance from

SAT competition,
– bw_large.d is a planning instance (blocks world),
– flat200-19 is a graph coloring instance.

The algorithm (see Sect. 1) is applied 50 times for each controller (or crossover)
and instance. The population has 100 individuals and the number of allowed fitness
evaluations (corresponding, in this case, to crossover applications) is 100 000.

5.2 Controller meta-tuning

Our objective is to test different combinations of Credit Assignment and Operator Se-
lection mechanisms introduced in Sects. 4.1.1 and 4.1.2. These combinations will be
identified by the notation X − Y , where X ∈ {C,PD,PR} denotes the Credit assign-
ment mechanism used, and Y ∈ {M2,R,M2D,PM} is the mechanism for operator
selection.

The parameters of the controller are the parameters of Blacksmith and the para-
meters of MAB2 and M2D. The registry has a fixed size of 20 operators. Every 50
generations,1 the Analyzer is invoked in order to find a weak operator and replace
it by a fresh one. If an operator has been sufficiently applied ( 1

2 of the size of the
registry, i.e., 10 times) and if its reward is in the lower third compared to the other
operators, it is selected to be deleted.

The parameters of M2 are p = 0.2 and x = 1.5. M2D uses the data of the last 100
generations to compute the linear regression. The diversification stage is triggered
when the value of the slope is within ±0.0001 and the difference between maximal
and minimal values is less than 0.001.

Of course, it can be argued that we have replaced the original parameters of the
evolutionary algorithm by new ones, so the problem of their setting remains the same.
We must remark that we are dealing with several hundred operators, deciding whether
they will be included or not in the evolutionary algorithm and when they will be ap-
plied. The combinatorial nature of this problem produces a huge number of parame-
ters, compared to the few ones of the controller. Moreover, a bad parameterization of

1According to the usual taxonomy, this algorithm is a steady state evolutionary algorithm, thus a generation
corresponds to the application of one operator.
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the controller produces less noticeable impact than a bad setting of the original para-
meters. We must also consider a temporal issue: it is not only a matter of finding the
correct set of operators, but also to find them at each step. If we consider the number
of operators, their effect on the performance and their impact on the execution time,
the few parameters of the controller are justified.

6 Results and discussion

In this section we present the experimental results, focusing on the most interesting
aspects. For the sake of readability, we recall the notations in Table 1.

Figure 7 shows the convergence of the best individual of the population for differ-
ent configurations of controllers and state-of-the-art crossovers on the instance ibm.

Figure 8a shows the diversity of the population produced by two controllers with
quite similar results (PR-R and PD-M2). Note that controllers that obtain similar
levels in terms of quality, do not produce necessarily the same level of diversity.
We observe different behaviors: while PD-M2 induces a strong exploitation that im-
proves the quality quickly until generation 30 000, PR-R explores the search space
and produce slower but constant improvements along the search. Figure 8b shows
the diversity of the population for controllers that obtained the best results (PD-PM,
PD-R), together with state of the art crossovers. An intermediate level of diversity
can be observed on the best configurations, mainly due to their operator selection
methods (PM and R), which allow a fast—though prudent—convergence to better
results.

Table 1 Summary of notations

Notation Description

Credit Assignment

C Compass

PD Pareto Dominance

PR Pareto Rank

Operator Selection

M2 MAB2

R Random

M2D MAB2 + Stuck detection

PM Probability Matching

Crossover

Unif Uniform crossover

R307 Random choice among 307 crossovers

FF Fleurent and Ferland crossover

CC Corrective Clause crossover

CCTM Corrective Clause and Truth Maintenance crossover
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Fig. 7 Number of false clauses of best individual so far, obtained by different controllers and state of the
art crossovers, solving the instance ibm

Fig. 8 Diversity of different methods solving the instance ibm. (a) That obtain similar results, (b) of better
ones, and state of the art crossovers

The upward trend of diversity for PD-PM starting from generation 8 000 (Fig. 8a)
is due to the diversification criteria in the evaluation of the operators. At the begin-
ning of the search, the initial population consists of randomly generated individuals.
It favors the exploitation operators, which decrease diversity at the same time that
quality increases. However, from a given search step, improvements become harder,
thus the controller turns to exploration, aiming at escaping from local optima. This
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Fig. 9 Diversity of credit assignments C, PD and PR, jointly with operator selection R, showing the shift
from exploitation to exploration

behavior is precisely what we looked for when including diversity in the measures
sent to the controller.

This tendency is particularly strong for the credit assignment methods C and RP.
Figure 9 shows the evolution of the diversity for different credit assignment methods:
C, PD and PR, combined with the operator selection R, on the instance simon. In this
figure, one may remark the excessive exploration induced by C. This could explain
why its results are not the best of the series.

Table 2 shows the average number of false clauses and their standard deviation
(between brackets) over 50 executions of the different controllers against the state of
the art crossovers, Uniform, FF, CC and CCTM. The best results appear in boldface.
We assess the statical significance of the results with a T Student test with an 95% of
confidence (therefore, several results can be boldfaced).

The best results are obtained by the configurations PD-PM and PD-R, that outper-
form state of the art crossovers on 7 out of 8 instances. All the results are significantly
different. Table 3 shows the percentage of improvement of PD-PM and PD-R, com-
pared to state of the art crossovers.

The uniform crossover produces clearly the worst results and will be ignored in
the following experiments. One may notice that controllers PD-PM and PD-R get
results comparable with those obtained by the best operators without controller (CC
and CCTM). However, let us remark that the design of CC and CCTM (the best
crossovers) relies on a work of several weeks of comparisons, analysis and exper-
iments (Lardeux et al. 2006). The controller shows a similar performance in a few
minutes, without human intervention. We want also to remark the performance of
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Table 2 Average number of false clauses and standard deviation of controllers, state of the art crossovers
and baseline methods

f500 aim-100 ibm simon

C-M2 25.9 (24.0) 2.4 (1.9) 6009.7 (3024.6) 189.0 (17.3)

C-M2D 16.8 (19.7) 2.6 (1.9) 6063.4 (2171.8) 194.4 (23.9)

C-PM 56.3 (33.6) 2.2 (1.9) 5151.9 (2758.8) 209.2 (41.8)

C-R 21.0 (14.4) 1.1 (0.2) 4908.4 (1623.0) 183.7 (16.7)

PD-M2 67.4 (62.7) 3.3 (2.2) 2712.0 (3523.9) 94.3 (103.0)

PD-M2D 53.3 (59.0) 2.5 (1.5) 2567.1 (4206.3) 107.9 (102.5)

PD-PM 6.0 (1.4) 1.0 (0.0) 423.8 (75.2) 93.5 (7.7)

PD-R 5.6 (1.2) 1.0 (0.0) 491.1 (66.9) 102.9 (9.7)

PR-M2 98.2 (53.8) 2.9 (1.7) 12370.3 (5214.2) 201.0 (188.7)

PR-M2D 104.2 (52.5) 2.6 (1.8) 12050.3 (5141.1) 277.9 (200.0)

PR-PM 7.8 (1.4) 1.0 (0.0) 4495.9 (791.9) 148.9 (11.9)

PR-R 6.9 (1.1) 1.0 (0.0) 3228.6 (913.8) 145.2 (9.2)

R307 49.4 (4.3) 1.0 (0.0) 4962.7 364.9) 187.4 (11.7)

Unif 218.4 (5.7) 11.2 (1.0) 34149.6 (138.5) 2872.6 (33.9)

FF 30.2 (4.9) 1.9 (0.6) 3827.8 (160.5) 137.5 (9.7)

CC 7.2 (1.3) 1.9 (0.6) 1247.7 (98.7) 81.6 (5.4)

CCTM 7.3 (1.4) 1.8 (0.6) 1237.2 (78.1) 81.2 (5.3)

bw-large.d flat200-19 uf250 engine

C-M2 427.1 (287.1) 54.4 (40.1) 12.3 (13.9) 761.6 (477.3)

C-M2D 596.3 (329.1) 40.7 (37.4) 7.5 (11.5) 1045.0 (369.8)

C-PM 650.5 (816.6) 67.3 (41.9) 21.9 (15.2) 752.8 (490.4)

C-R 306.4 (194.4) 52.5 (28.9) 6.7 (5.8) 577.3 (262.3)

PD-M2 1575.6 (1697.3) 58.3 (44.9) 30.8 (23.0) 838.9 (836.3)

PD-M2D 1553.9 (1804.1) 52.7 (48.4) 26.3 (25.2) 911.4 (824.0)

PD-PM 78.1 (3.2) 10.7 (2.1) 2.2 (1.3) 15.4 (3.3)

PD-R 83.2 (3.5) 9.2 (2.1) 1.5 (0.9) 18.4 (3.1)

PR-M2 2455.1 (1678.0) 100.7 (56.7) 41.0 (24.3) 1267.1 (966.1)

PR-M2D 2367.9 (1713.0) 99.8 (54.0) 34.9 (24.0) 1064.7 (964.8)

PR-PM 187.9 (146.9) 31.6 (20.5) 1.7 (0.8) 462.1 (328.8)

PR-R 272.5 (268.5) 16.3 (10.5) 1.5 (0.5) 415.6 (302.4)

R307 207.5 (22.9) 25.3 (7.2) 17.8 (2.6) 534.8 (54.0)

Unif 27237.3 (301.9) 408.7 (20.6) 98.8 (3.6) 12663.6 (289.1)

FF 126.6 (10.6) 44.9 (4.4) 15.1 (3.4) 465.3 (49.8)

CC 579.0 (17.6) 12.0 (2.1) 3.4 (1.4) 67.9 (12.8)

CCTM 580.3 (17.6) 12.7 (2.1) 3.2 (1.2) 68.9 (11.4)
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Table 3 Improvement of controllers PD-PM and PD-R, compared with Uniform and the state of the art
crossovers

PD-PM f500 aim-100 ibm simon bw-large.d flat200 uf250-010 engine-4-nd

Unif 97.23% 91.07% 98.76% 96.75% 99.71% 97.37% 97.79% 99.88%

FF 80.01% 47.92% 88.93% 31.99% 38.34% 76.09% 85.58% 96.68%

CC 16.57% 47.92% 66.03% −14.62% 86.52% 10.20% 35.50% 77.25%

CCTM 17.03% 45.05% 65.74% −15.15% 86.55% 15.17% 31.01% 77.59%

PD-R f500 aim-100 ibm simon bw-large.d flat200 uf250-010 engine-4-nd

Unif 97.44% 91.07% 98.56% 96.42% 99.69% 97.75% 98.48% 99.85%

FF 81.46% 47.37% 87.17% 25.16% 34.28% 79.51% 90.07% 96.05%

CC 22.22% 47.37% 60.64% −26.10% 85.63% 23.33% 55.88% 72.90%

CCTM 23.29% 44.44% 60.31% −26.72% 85.66% 27.56% 53.12% 73.29%

controllers PD-PM and PD-R on industrial instances ibm and engine, where the av-
erage number of false clauses is equivalent to at least 1

3 of those obtained by CC and
CCTM.

When comparing the different credit assignment methods, we note that PD is used
in the most efficient controllers, followed by C and PR. In order to compare the two
controllers based on the notions of Pareto dominance and to understand why PD
performs better than the two others, it is necessary to study their behavior during
individual executions. Figure 10 shows the average quality of the populations using
PD-M2, PR-M2 and C-M2 on the instance ibm.

PR considers all the operators placed on the Pareto frontier equally (points in
Fig. 4c with value 0). This induces a balance between exploration and exploitation
and prevents the evolutionary algorithm to lean to one side or to the other. Note that
the attempts to increase the quality of PR-PM are moderated by this balance, forcing
the average quality to come back to an intermediate value. A similar behavior could
be observed when using Compass, according to its performance measure method. On
the other hand, when using PD, the better evaluation of the operators, which follow
the general tendency (points in Fig. 4b with higher values), allows the evolutionary
algorithm to break the status quo and finally to improve the quality of the population.
This “flexible balance” is the main asset of this credit assignment method.

Interestingly, the most exploratory operator selection methods (PM and R) have
produced some of the best results. It could seem surprising—and contradictory with
studies in literature—that a random operator selection could be able to outperform
sophisticated methods that carefully try to balance EvE at the operator selection level.
A possible hypothesis for these good results is that the mix of crossovers works better
than applying a single one. However, the poor results obtained by R307 prove that
this is not the only reason.

When Blacksmith analyzes the set of operators to replace some of them, it always
chooses the worst ones. This corresponds to exploitation, based on the rewards stored
in the Credit Registry. This choice of operators produces a displacement of the ex-
ploitation at EvE level from the operator selection to Blacksmith. In this new scenario,
the operator selection is only in charge of the exploration, which is restricted to the
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Fig. 10 Behavior of Pareto Rank vs. Pareto Dominance: Average number of false clauses in the instance
ibm

operators allowed by Blacksmith. In this AOS+Blacksmith scheme, building credit
assignment and structural control modules is more gainful than designing operator
selection mechanisms.

In order to check the generality of the controllers PD-PM and PD-R, we have
extended the comparison with the state of the art crossovers on a set of 26 new in-
stances, mixing crafted, random and industrial instances presented in Table 4. This
table shows their name, the notation used hereafter, and their size (number of vari-
ables and clauses).

Table 5 shows the mean and standard deviation (between brackets) of 25 execu-
tions of 40 000 generations each one. The best results (and those that are indistin-
guishable from them, using a T Student test with a 95% of confidence) are boldfaced.
The last row shows the number of instances for which each controller or crossover
has obtained the best results of the series.

PD-R obtains top results on 19 instances and PD-PM on 17, while CC and CCTM
are better only 5 times. Even though controller configurations obtained the worst
results on two industrial instances, we observe the best improvements on this family
of instances, especially on I5 and I6, where the controlled evolutionary algorithms
obtained up to 260 times less false clauses than the best state of the art crossover. The
overhead of this improvement is reasonable since the control represents less that 10%
of the total execution time.

Until now, we have used a simplified evolutionary algorithm to better appreci-
ate the performance of our controller. Compared to the original GASAT, our algo-
rithm selects parents randomly from the whole population and does not perform lo-
cal search on the obtained children. Since the final goal of our study is to create
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Table 4 SAT instances used for algorithms comparisons, notation and size

Name Notation Variables Clauses

Crafted instances

ezfact64_3.sat05-450.reshuffled-07 C1 3073 19785

ezfact64_4.sat05-451.reshuffled-07 C2 3073 19785

ezfact64_5.sat05-452.reshuffled-07 C3 3073 19785

ezfact64_6.sat05-453.reshuffled-07 C4 3073 19785

hgen2-v500-s1216665065.sat05-467.reshuffled-07 C5 500 1750

hgen3-v400-s344840348.sat05-470.reshuffled-07 C6 500 1750

hgen3-v400-s553296708.sat05-471.reshuffled-07 C7 500 1750

hgen3-v500-s1349121860.sat05-473.reshuffled-07 C8 500 1750

pyhala-braun-unsat-40-4-02.sat05-459.reshuffled-07 C9 9638 31795

Random instances

unif2p-p0.9-v630-c2280-S1071799860-07-UNSAT R1 630 2280

unif2p-p0.9-v630-c2280-S1244126495-18-SAT R2 630 2280

unif2p-p0.9-v630-c2280-S1501024241-13-UNSAT R3 630 2280

unif2p-p0.9-v630-c2280-S1788789488-19-SAT R4 630 2280

unif-k3-r4.261-v650-c2769-S1089058690-02.SAT.shuffled R5 650 2769

unif-k3-r4.261-v650-c2769-S1159448555-06.SAT.shuffled R6 650 2769

unif-k3-r4.261-v650-c2769-S1172355929-14.SAT.shuffled R7 650 2769

unif-k3-r4.261-v650-c2769-S1341479044-12.UNSAT.shuffled R8 650 2769

unif-k3-r4.261-v650-c2769-S1470952774-07.SAT.shuffled R9 650 2769

unif-k3-r4.2-v10000-c42000-S1173369833-06 R10 1000 42000

Industrial instances

AProVE07-03 I1 3114 10827

AProVE07-21 I2 3189 11039

eq.atree.braun.13.unsat I3 2010 6802

eq.atree.braun.10.unsat I4 1111 3756

vmpc_26 I5 676 86424

vmpc_24 I6 576 67872

sortnet-6-ipc5-h11-unsat I7 27724 95880

a controller that work in real conditions, we have restored the missing features of
GASAT, selecting parents from the subset of the better individuals and using local
search over the child to improve it.2 However, we still ignore the condition of inser-

2This corresponds to a so-called memetic algorithm, that mixes evolutionary algorithms and local search.
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Table 5 Comparison of PD-PM and PD-R with state of the art crossovers over crafted, random and
industrial instances. Number of false clauses and standard deviation

PD-PM PD-R FF CC CCTM

C1 35.4 (5.4) 34.8 (2.8) 503.2 (41.0) 44.7 (5.2) 42.1 (4.7)

C2 35.8 (2.6) 38.0 (4.2) 509.4 (31.6) 46.0 (4.4) 47.6 (4.9)

C3 35.4 (3.7) 35.6 (3.6) 490.0 (37.7) 48.4 (4.1) 47.1 (3.3)

C4 45.1 (3.8) 43.4 (4.6) 491.6 (36.5) 48.7 (3.0) 48.2 (3.4)

C5 10.5 (1.8) 9.8 (2.8) 47.9 (4.2) 11.6 (1.8) 10.2 (1.5)

C6 8.6 (1.9) 8.3 (1.7) 36.9 (3.3) 8.4 (1.6) 8.7 (1.4)

C7 8.8 (1.8) 8.0 (1.9) 38.7 (4.2) 8.4 (1.2) 8.7 (1.7)

C8 10.0 (2.4) 9.7 (2.5) 48.2 (4.1) 11.3 (1.4) 11.6 (1.6)

C9 150.9 (31.2) 123.3 (28.8) 973.2 (77.4) 214.7 (15.9) 217.0 (14.8)

R1 7.5 (1.5) 7.2 (1.1) 34.2 (5.4) 9.5 (1.9) 9.7 (1.8)

R2 6.4 (1.3) 5.7 (1.4) 30.6 (3.8) 7.3 (1.4) 7.7 (1.6)

R3 8.4 (1.4) 8.2 (1.5) 32.1 (3.8) 10.6 (1.6) 10.9 (1.9)

R4 4.2 (1.5) 3.5 (1.4) 26.3 (3.8) 7.4 (1.2) 7.4 (1.8)

R5 8.2 (2.1) 7.8 (1.8) 40.0 (6.0) 8.4 (1.5) 9.1 (1.4)

R6 6.7 (1.6) 7.9 (1.6) 44.2 (6.4) 8.7 (1.5) 8.8 (1.4)

R7 6.1 (1.7) 5.8 (2.1) 39.4 (5.5) 7.6 (1.6) 7.8 (1.4)

R8 9.0 (1.2) 8.8 (1.6) 49.2 (5.3) 10.3 (1.9) 9.9 (1.7)

R9 9.1 (1.6) 9.0 (1.7) 41.9 (5.7) 10.0 (1.7) 9.0 (1.5)

R10 110.1 (5.7) 115.1 (8.3) 654.0 (39.5) 153.0 (9.2) 150.0 (7.9)

I1 123.6 (11.4) 167.6 (32.3) 439.3 (27.3) 354.4 (11.4) 349.6 (11.7)

I2 99.7 (8.2) 134.7 (22.5) 469.1 (26.3) 372.0 (35.5) 367.8 (32.2)

I3 2.7 (2.9) 8.6 (7.7) 216.5 (18.9) 1.0 (0.0) 1.0 (0.0)

I4 2.8 (2.4) 6.3 (4.8) 116.2 (11.2) 1.0 (0.2) 1.1 (0.4)

I5 59.4 (98.5) 38.0 (1.4) 12567.6 (547.1) 10044.2 (384.4) 9928.1 (382.0)

I6 127.8 (317.1) 35.1 (1.5) 9736.2 (404.9) 7567.7 (238.0) 7521.2 (272.9)

I7 44.2 (1.3) 48.4 (2.2) 1877.6 (195.1) 61.8 (1.7) 61.6 (1.8)

Wins 17 19 0 5 5

tion (because it only accepts individuals with high quality, rejecting those with high
diversity which can be provided by the controller in a diversification phase) and the
intensity of the local search (10 steps instead of 1000), because of execution time
constraints.

Table 6 shows the mean and standard deviation (between brackets) of 25 execu-
tions of 40 000 generations each one, using the complete algorithm. The best results
are marked in boldface. In this scenario controllers keep their advantage mainly in
crafted instances, while random and industrial ones (with a couple of meritorious
cases, I5 and I6) are dominated by state of the art crossovers.

The loss of performance of controllers can be explained by the elitist configuration
of the complete GASAT configuration. The fact that GASAT chooses the breeders
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Table 6 Comparison of PD-PM and PD-R with state of the art crossovers over crafted, random and
industrial instances, using an algorithm near of the complete GASAT implementation. Number of false
clauses and standard deviation

PD-PM PD-R FF CC CCTM

C1 126.5 (9.5) 135.1 (15.8) 1139.9 (51.9) 144.3 (9.8) 136.8 (13.3)

C2 128.8 (10.8) 131.1 (9.4) 1159.0 (53.2) 136.8 (9.2) 136.3 (10.13)

C3 129.3 (14.8) 136.0 (11.4) 1136.1 (49.0) 143.3 (10.9) 137.6 (10.6)

C4 128.9 (9.8) 129.7 (11.2) 1148.8 (58.0) 140.7 (9.5) 140.6 (10.75)

C5 18.8 (3.0) 19.3 (2.8) 111.0 (11.2) 17.7 (2.0) 17.6 (3.45)

C6 13.4 (2.8) 14.8 (3.0) 88.5 (10.8) 13.8 (1.8) 13.4 (2.81)

C7 13.9 (2.4) 13.9 (2.5) 87.7 (12.4) 13.9 (2.8) 13.6 (2.15)

C8 18.2 (2.9) 17.6 (2.8) 108.2 (10.4) 17.1 (2.3) 18.1 (2.25)

C9 504.5 (28.6) 511.4 (30.5) 2923.2 (213.7) 451.6 (18.7) 442.9 (17.2)

R1 18.9 (3.6) 18.2 (3.2) 100.4 (13.6) 17.4 (2.3) 16.8 (1.85)

R2 16.1 (2.5) 17.2 (3.5) 100.4 (16.6) 14.9 (2.9) 14.4 (3.21)

R3 18.4 (2.3) 18.8 (2.1) 112.2 (16.0) 16.2 (2.5) 17.3 (2.41)

R4 13.9 (2.8) 14.3 (2.9) 91.9 (18.4) 12.8 (2.7) 12.2 (2.91)

R5 19.6 (4.5) 19.8 (3.2) 138.6 (15.4) 17.9 (2.5) 16.4 (2.61)

R6 20.8 (4.3) 20.4 (4.1) 136.3 (14.7) 18.4 (3.3) 17.9 (2.87)

R7 20.3 (4.6) 20.2 (4.5) 134.4 (15.2) 16.6 (2.7) 17.8 (3.29)

R8 23.8 (3.6) 25.5 (5.8) 143.0 (13.8) 22.4 (3.0) 20.8 (3.79)

R9 20.6 (5.2) 19.6 (3.6) 137.6 (14.2) 18.0 (2.3) 18.1 (2.6)

R10 387.3 (58.6) 378.3 (31.4) 2343.5 (250.6) 288.5 (19.4) 277.4 (19.41)

I1 173.5 (18.0) 173.0 (11.8) 937.4 (67.6) 143.6 (8.1) 149.7 (7.95)

I2 161.7 (16.1) 166.2 (17.7) 992.9 (56.7) 130.4 (8.2) 126.2 (8.42)

I3 90.3 (10.8) 93.5 (15.0) 576.6 (37.9) 64.6 (5.6) 65.4 (5.75)

I4 48.6 (8.8) 50.6 (10.3) 317.4 (19.6) 39.3 (4.4) 38.4 (6.11)

I5 11.5 (2.4) 10.9 (2.4) 12686.0 (353.3) 9627.4 (407.2) 9800.4 (467.41)

I6 10.2 (2.1) 10.2 (1.7) 9784.3 (291.9) 6135.9 (723.4) 5591.9 (1729.97)

I7 486.1 (415.1) 652.0 (402.1) 7935.0 (645.2) 71.5 (4.3) 71.7 (4.04)

Wins 8 5 0 15 16

from the subpopulation of the better individuals, along with the application of local
search, restrict the attempts of the controller to diversify the population. As explained
in a former research (Lardeux et al. 2006), GASAT uses several operators (selection,
crossover, local search, condition of insertion) and its performance relies on the si-
multaneous use of all of them.

The results obtained by controllers using the simplified configuration of GASAT
are better than those obtained with the complete version. Table 7 shows a comparison
of PD-PM and PD-R using the simplified GASAT, and CC and CCTM using the
complete version. The names of the best solved instances (using a T Student test with
a 95% of confidence) and their number is shown for each configuration.
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Table 7 Comparison of PD-PM and PD-R using the simplified version of GASAT, with CC and CCTM
controllers, using a more complete version

GASAT version Controller/Crossover Successful instances Wins

Simplified PD-PM C1, C2, C3, C5, C6, C8 19

R1, R3, R5, R6, R7, R8, R9, R10

I1, I2, I3, I4, I7

Simplified PD-R C1, C3, C4, C5, C6, C7, C8, C9 18

R1, R2, R3, R4, R5, R7, R8, R9

I5, I6

Complete CC – 0

Complete CCTM – 0

7 Conclusions

We have presented a controller to handle two generic kind of parameters. Behavioural
parameters tune the application of different operators in the algorithm, while struc-
tural parameters design the algorithm by deciding which operators will be included
in the algorithm at each step of the search.

Our controller has two modules: the Adaptive Operator Selection receives feed-
back from the evolutionary algorithm in order to update the credit registry, which is
used later to select the operator to apply. Therefore, the registry characterizes the set
of operators that are currently available to the EA. The second module, called Black-
smith, decides which operators—from a wide set of available ones—will be included
in the EA, based on their observed performance and the needs of the search.

The main contribution of this work is the generic framework that addresses the
problems of selecting which operator to apply and of designing the best suited algo-
rithm at each step of the search.

The controller is implemented independently from the algorithm, setting a sim-
ple and minimal interface between them. The performance evaluation measures are
related to two high-level criteria (exploration and exploitation) that are common to
many search metaheuristics. Such a controller could be easily plugged into another
metaheuristic algorithm.

We have also defined two interesting Credit Assignment methods, based into the
notions of Pareto-dominance (PD and PR), which handles the compromise of several
criteria according to the general tendencies of the operators. We have modified a
previous Operator Selection method (MAB2) in order to deal with a dynamic set of
operators.

We have tested twelve controllers, resulting from the combination of three Credit
Assignment and four Operator Selection modules for the resolution of the satisfiabil-
ity problem SAT. More than 300 crossover operators were delivered to the controller,
and the results were compared with state of the art crossovers. Comparisons on in-
stances from different families and types of benchmarks (crafted, random-generated
and industrial) have highlighted a clear advantage for two of the controller config-
urations (PD-PM and PD-R). In order to measure exploration and exploitation, we
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have used population diversity and mean fitness, respectively. We used a very simple
scheme for Blacksmith, that keeps a fixed-length set of operators.

From a set of 34 instances, PD-PM has obtained the best results on 27 instances,
similar results on 4 and worst results only on 3. For the same number of instances,
PD-R has obtained the best results on 28, similar on 3 and worst on 3. When applying
the controller to a nearest version of the original GASAT algorithm, we did not ob-
serve major improvements. Despite of the fact that the simplified GASAT along with
the controller obtained better results than all the close-to-complete GASAT versions
(both with and without controller), the incorporation of the controller into any algo-
rithm is not as straightforward as we had thought initially. Some analysis to detect
incompatible or superfluous features in the search algorithm must be made in order
to obtain the best outcome from the integration.

Although we have used only crossover operators for SAT as source of structural
parameterization, this schema could be extended to other operators and problems
without too much effort. The extension of our method to other population based ap-
proaches is also conceivable. For instance, to single-individual approaches, where the
population diversity could be replaced by a temporal diversity, in order to evaluate the
variation of the visited configurations.

In order to use the controller as a tool for the design of algorithms, a mechanism
could be included in the controller to identify the most successful operators. It would
be also interesting to detect the relationships between operators. Note that we have
not identified a unique best crossover and the good performance of PD-PM/R may
rather be due to the joint effect of several crossovers.

On most of the instances, we have noticed a stabilization of diversity and quality
levels, from generation 30 000. This situation suggests that we could obtain some im-
provements by incorporating a search strategy (Maturana and Saubion 2007a). This
strategy could include additional criteria in order to better guide the exploration and
exploitation of the search space.
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