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Abstract The challenge in shift scheduling lies in the construction of a set of work
shifts, which are subject to specific regulations, in order to cover fluctuating staff de-
mands. This problem becomes harder when multi-skill employees can perform many
different activities during the same shift. In this paper, we show how formal lan-
guages (such as regular and context-free languages) can be enhanced and used to
model the complex regulations of the shift construction problem. From these lan-
guages we can derive specialized graph structures that can be searched efficiently.
The overall shift scheduling problem can then be solved using a Large Neighbour-
hood Search. These approaches are able to return near optimal solution on traditional
single activity problems and they scale well on large instances containing up to 10
activities.

Keywords Shift scheduling · Employee timetabling · Large neighborhood search ·
Very-large scale neighborhood · Regular languages · Context-free languages

1 Introduction

Shift scheduling is described as the problem of constructing a global work schedule
so that enough employees are performing tasks at a given time to satisfy the demand.
The schedule of an employee is subject to many regulations such as break and meal

C.-G. Quimper
Omega Optimisation, 4200 St-Laurent #407, Montréal, Qc H2W 2R2, Canada
e-mail: quimper@alumni.uwaterloo.ca

L.-M. Rousseau (�)
Mathématiques et Génie Industriel, École Polytechnique de Montréal,
2500 chemin de Polytechnique, Montréal, Canada
e-mail: louism@crt.umontreal.ca

mailto:quimper@alumni.uwaterloo.ca
mailto:louism@crt.umontreal.ca


374 C.-G. Quimper, L.-M. Rousseau

placement. In some organization, such as contact center or grocery stores for instance,
employees have multiple skills and are asked to perform different activities within one
shift. Sequencing these activities in time is again subject to many complex rules.

In this paper, we show how regular and context-free languages can be used to
model the regulations dealing with the construction of a shift. General algorithms ad-
dressing both formal languages are derived and used in a Large Neighborhood Search
(Shaw 1998) to derive good solutions to typical shift scheduling problems. The ability
to completely schedule one individual (through these large neighborhoods) is a key
issue in rapidly producing very good results to complex shift scheduling problems.

Formal languages have been introduce to solve combinatorial optimization prob-
lems in the context of Constraint Programming (we refer the reader to Apt 2003;
Dechter 2003 for more information on this paradigm). Pesant (2004) introduced the
REGULAR constraint that forces a sequence of characters to belong to a regular lan-
guage and Demassey et al. (2006) extended this constraint to the COST-REGULAR

constraint in order to accept only sequences whose costs are below a certain threshold.
Both Sellmann (2007) and Quimper and Walsh (2006) introduced the GRAMMAR

constraint that forces a sequence of characters to belong to a context-free lan-
guage.

The idea of using grammars to model an operator that modifies a sequence of vari-
ables has been introduced by Bonaparte and Orlin (2005). They show how grammars
can be used to model most of the previously known neighborhoods of the traveling
salesman problem (TSP) and show how a general algorithm, based on these gram-
mars, can be used to search these neighborhoods. What is proposed here is somewhat
different since we use automata and grammars to model the scheduling problem itself
and search the associated graph to generate the best solution to a complete sequence
of variables. This would be impossible with the TSP since one would need an au-
tomaton or a grammar of exponential size to capture the Hamiltonian nature of the
problem.

The contribution of this approach lies in using the modeling power of these lan-
guages, which allow describing in a formal way the many complex realities of multi-
activity shift scheduling problems. Furthermore, the structure induced by the graph
representation of these models can be very efficiently searched with either path or tree
based algorithms. These structures are thus used to define Very Large Scale Neigh-
borhoods (K Ahuja et al. 2002) which are search spaces exponential in size that
can be traversed in polynomial time through the use of specialized algorithms. The
motivation to use such a neighbourhood comes from the intuition that larger neigh-
borhoods tend to minimize the probability of getting caught in a local minimum (see
for instance Rousseau et al. 2001; Meyers and Orlin 2006).

The structure of the paper is as follows. We first introduce in Sect. 2 the shift
scheduling problem and propose a brief overview of the vast related literature. Sec-
tion 3 (resp. Sect. 4) shows how one can model and solve the individual shift construc-
tion problem using automata (resp. context-free grammars). The difference between
regular and context-free grammars is discussed in Sect. 5. Experimental results are
presented in Sect. 6 for both realistic instances and known benchmarks. We finally
conclude and suggest some future work.
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2 The shift scheduling problem

This section first describes in detail the shift scheduling problem and introduces the
notation that will be used throughout the rest of the paper. It then reviews some im-
portant related work, addressing both the single and multiple activity shift scheduling
problem.

2.1 Problem description: the multi-activity context

This shift scheduling model describes a multi-activity work environment in which
employees may perform several tasks within each shift and can have limited availabil-
ity. In this case, the shift scheduling problem is no longer limited to the specification
of work periods but must also handle the assignment of activities to employees.

The multi-activity shift scheduling problem consists of determining when and on
which activities a set of n employees should work at a given time. The time span to be
scheduled is usually divided into T time slots of equal durations. For each time slot,
an employee can either work on one of the m activities or rest. A schedule is a set of
n sequences of length T denoted by S = {s1, . . . , sn}. The schedule of an employee
e is given by the sequence se of T characters. The ith character denoted by se[i]
represents the state of the employee during the ith time slot. For instance, se[i] =
〈break〉 indicates that the employee is in break while se[i] = 〈activity1〉 indicates that
the employee is working on the activity number one. The schedule of an employee is
subject to some scheduling rules defining when an employee can work, be on break,
switch activities, etc.

Let act(S, t) = {si[t] | si ∈ S} be the multiset of activities executed at time t (notice
that an activity might occur more than once in a multiset). The supply of activity a in
schedule S at time t is given by occ(a, act(S, t)), i.e. the number of occurrences of
activity a in the multiset act(S, t). The function d(a, t) returns the demand for an ac-
tivity a at time t . There is an under cost of c(a, t) for not satisfying the demand (also
called opportunity cost) and an over cost of c(a, t) for over-satisfying the demand
(typically computed as excess salary minus additional incomes). Moreover, there is
a fixed cost of c(a, t) for asking an employee to work on an activity a at time t . As-
suming that A = act(S, t) is the multiset of activities assigned to the employees at
time t , the cost associated with activity a at time t is given by the cost function.

cost(a,A, t) = occ(a,A)c(a, t) + f (occ(a,A) − d(a, t), a, t)

f (x, a, t) =
{

xc(a, t) if x ≥ 0
−xc(a, t) otherwise

The function cost(A, t) returns the cost for having the multiset of activities A

executed at time t .

cost(A, t) =
m∑

a=1

cost(a,A, t) (1)
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The overall cost associated to a schedule S is the sum of the costs associated with
each time slot.

cost(S) =
T∑

t=1

cost(act(S, t), t) (2)

A satisfiable schedule is a schedule such that each shift si satisfies the scheduling
rules. An optimal schedule is a satisfiable schedule whose cost is minimal.

2.2 Literature review

Employee Scheduling and Rostering Problems have been extensively studied in the
scientific literature, with early papers dating from 1954. For a complete literature
review on the subject, the reader is referred to Ernst et al. (2004a, 2004b) for a survey
on the topic and a detailed annotated bibliography on more than 700 papers (with 64
papers on the more specific Shift Scheduling Problem).

2.3 Single-activity shift scheduling problem

The Shift Scheduling Problem (SSP) was first introduced by Edie (1954) in the con-
text of scheduling toll booth operators and the first integer programming model to
address it was proposed shortly after by Dantzig (1954). In this set covering formu-
lation, all the possible variables (shifts that could be performed by the employees)
are enumerated a priori. The objective is thus to select the set of shifts that covers
demand and minimizes the cost. This approach has since remained very popular with
more than 130 papers applying it to Employee Scheduling and Rostering (Ernst et al.
2004a) and is used in many commercial workforce management systems. Its strength
lies in the fact that the complexity involved in assembling the shifts (choosing length,
placing breaks, etc.) is hidden in the enumeration phase. It also introduces an inte-
grality gap in the mixed integer formulation. However, when flexibility is introduced
in the model through multiple breaks, multiple break types, multiple activities, or
simply longer operating hours, the number of possible shifts becomes quite large.
A natural solution to this problem is a Branch and Price approach (proposed by Trick
et al. (Mehrotra et al. 2000)) where the shifts that are still manually generated are
only introduced in the model when they are necessary.

In an attempt to address this difficulty, Moondra (1976), and Bechtold and Jacobs
(1990, 1996), Thompson (1995), Aykin (1996, 1998) and Rekik et al. (2004) pro-
posed and pursued research on implicit formulations. In these models, shift types,
specified by starting time and length, are not coupled with break positions at first. For
instance, one can independently decide how many employees are going to work from
8 a.m. to 4 p.m. and how many employees are going to be on break at 10 a.m. Specific
constraints (namely forward and backward constraints) have been introduced and re-
fined over time to ensure the existence of a valid schedule. The actual schedule can
later be reconstructed with a polynomial-time algorithm. The main advantage of this
approach is that the number of decision variables is significantly reduced compared
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to the covering formulations. However, it is now much harder to express difficult con-
straints that regard the construction of individual shifts or even cost structures that de-
pend on the global composition of one shift. Furthermore, none of these approaches
are able to schedule multiple activities (even if Rekik et al. 2004 does mention it as
future work).

Some problems are often too large to be solved with an exact method. This is
the case for the Tour Scheduling problem where one wants to construct the shifts
over one week or more. In such cases, heuristics and metaheuristics are appealing
methods. We note the use of tabu search (Glover and McMillan 1986), simulated
Annealing (Brusco and Jacobs 1993), and genetic algorithms (Easton and Mansour
1999). These approaches, which rely on clever neighborhood structures, are able to
quickly produce good solutions for large problems.

2.4 Multiple-activity shift scheduling problem

If the literature on single-activity shift scheduling is very rich, problems dealing with
multiple activities have however been seldom studied.

Loucks and Jacobs (1991) and Ritzman et al. (1976) are among the few papers that
attempt to address the multi-activity context. Both papers model the tour scheduling
problem (shift scheduling over one week) with Boolean assignment variables, spec-
ifying the number of employees assigned to a given task at a given hour. Since such
approaches yield very large MIP formulations, they both proposed heuristic tech-
niques to construct and improve the solutions. Furthermore, they do not place breaks
or meals during the shift, nor do they handle regulations concerning the transition
between activities.

Vatri (2001) proposed using a column generation with an heuristic approach to
build a schedule for air traffic controllers. The problem solved is limited to a slid-
ing time window (of typically a few hours) and breaks are not taking into accounts.
Bouchard (2004) extends the work of Vatri to include break placement but both dom-
inance and the search for solutions are done heuristically.

Demassey et al. (2006) proposed a column generation approach based on con-
straint programming and regular languages that can solve the multiple activity case
presented here. If computing the linear relaxation through column generation is done
efficiently for problems containing up to 10 activities, branching to find integer so-
lutions is much more difficult as the approach can only find solutions to some of the
smaller instances, when the linear relaxation is also integer.

3 The shift scheduling problem and regular languages

The scheduling rules defining what is a valid feasible schedule may vary from one
instance to another. It is essential to define a framework that is flexible enough to
encode most cases encountered when modeling a shift scheduling problem.

3.1 Modeling the scheduling rules

We recall the notion of an automaton and show how automata can model the schedul-
ing rules.
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Fig. 1 Automaton accepting
any shift an employee can work
according to the scheduling
rules stated in Example 1.
Ending states are depicted with
a double circle.

An automaton is a tuple A = 〈Q,q0,F,�, δ〉 where Q is a set of states, q0 ∈ Q is
the initial state, F ⊆ Q are the final states, � is an alphabet, and δ ⊆ Q × � × Q is
a transition table. A sequence S ∈ �n is accepted by the automaton A if there exists
a sequence of n + 1 states r0, . . . , rn ∈ Q such that 〈ri−1, S[i], ri〉 is a transition
in δ, where r0 = q0 is the initial state, and rn ∈ F is a final state. Automata are
often depicted with a directed graph where each state is a node and each transition
〈q, c, r〉 ∈ δ is a directed edge between node q and node r labeled with character c.
A language L over an alphabet � is a set of sequences of elements taken from an
alphabet �. The sequences recognized by an automaton A form a regular language.
The reader is referred to Hopcroft et al. (2001) for more detailed explanations on
regular languages and automata.

We now present an automaton that models the scheduling rules as follows.

Example 1 Consider the following scheduling rules.

1. An employee works for a maximum of two consecutive periods (w).
2. Two consecutive working periods are followed by at least two breaks (b).
3. A day may not start nor end on a break.

The automaton depicted in Fig. 1 accepts all shifts satisfying the three scheduling
rules.

3.2 VLSN using regular languages

We show how local search can solve the shift scheduling problem when there exists a
regular language that fully captures the scheduling rules. Using a simple large neigh-
bourhood approach based on dynamic programming, we find a set of work shifts that
fits the demand curve and minimizes the overall cost.

Let A = 〈Q,q0,F, δ〉 be an automaton that recognizes the work shifts satisfying
the scheduling rules. We want to find a set of sequences S = {s1, . . . , sn} accepted by
the automaton such that the overall cost stated in Eq. 2 is minimized.

Following Pesant (2004), we create a layered graph G that we call the expanded
graph. For every state q ∈ Q of the automaton, we create T + 1 nodes labeled
q0, . . . , qT . Each node belongs to a different layer of the graph. For every transi-
tion (q, c, r) ∈ δ, we add the edges (qi, ri+1) to G, for 0 ≤ i < T , that we label with
the character c. Finally we remove from the graph G every edge and every node that
do not lie on a path connecting the node q0

0 to one of the nodes qT
f where qf ∈ F
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Fig. 2 Expanded graph
associated with the automaton
presented in Fig. 1 with T = 6

is a final state. Using the automaton of Example 1 presented in Fig. 1, we obtain the
expanded graph of Fig. 2.

We define what is a feasible path.

Definition 1 (Feasible Path) A feasible path is a path in an expanded graph G that
has exactly T edges.

Notice that a feasible path starts with the node q0
0 and finishes with a node qT

f

where qf ∈ F is a final state. Consider any feasible path p. If one follows the edges
of this feasible path and prints the characters associated with every edge, we obtain a
sequence accepted by the automaton A. In fact, every feasible path in the expanded
graph G is associated with a sequence accepted by the automaton and every sequence
accepted by the automaton can be retrieved by following a feasible path.

To construct an initial feasible schedule, we randomly select n feasible paths and
obtain n sequences s1, . . . , sn. We then aim at improving the overall cost of this solu-
tion using Large Neighborhood Search (Shaw 1998). To do so, we select a sequence
sr among the n sequences and replace it by a new sequence N that maximizes the
improvement of the global solution. The rest of this section discusses how to obtain
this new sequenceN .

Suppose that at time t , employee r was scheduled to accomplish an activity a

but we reschedule this employee to work on activity b i.e. sr [t] = a and N [t] = b.
The two activities a and b might be identical or not. With this new assignment, the
cost associated with the time slot t can potentially change. Recall that the multiset
of activities executed at time t is act(S, t). The cost of the schedule S at time t is
cost(act(S, t), t). If we replace activity a by activity b, the cost of the new schedule
at time t becomes cost(act(S, t) \ {a} ∪ {b}, t).

We assign a cost to every edge in the expanded graph G as follows. Let
e = (at , bt+1) be an edge in G labeled with character c. We assign to the edge e a
cost of cost(act(S, t) \ {sr [t]} ∪ {c}, t). The expanded graph G now has the following
property.

Lemma 1 Let p be a feasible path and N be the sequence associated with this fea-
sible path. The cost (or length) of p is equal to the cost of the schedule obtained by
replacing sr by N .
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Proof The t th edge in the path has a cost of cost(act(S, t) \ {sr [t]} ∪ {N [t]}). The
sum of the cost of each edge gives cost(S \ {sr} ∪ {N}) which is exactly the cost of
the schedule obtained by replacing the sequence sr with N . �

It follows from Lemma 1 that the sequence associated with the shortest path in
the expanded graph G is the one that better replaces sequence sr in S. The running
time complexity of finding the shortest path in a layered graph is proportional to the
number of edges in the graph. In our case, finding the shortest path in the expanded
graph G requires O(T |δ|) steps.

Improving a schedule S can therefore be done by choosing a sequence sr ∈ S,
computing the costs of the edges in the expanded graph according to S and sr , com-
puting the shortest path in the expanded graph, and finally replacing sr by the se-
quence associated with the shortest path. This operation can be repeated until a local
minimum is reached, i.e. until the length of the shortest path in the expanded graph
G is equal to the cost of the current schedule for any sr ∈ S. Notice that the graph
needs to be computed only once. Only the weights on the edges need to be computed
at each iteration.

3.3 Enhancing regular languages

One can easily enrich a regular language by modifying the expanded graph. For in-
stance, one could make a state inaccessible for a specific time slot by removing the
corresponding node from the appropriate layer. Some transitions could also become
unavailable between some layers. Such modifications to the expanded graph are use-
ful to model operations that can only be accomplished at particular times of the day.
For instance, if lunches must be taken inside a specific period of the day, one can
remove any transition associated with a lunch break outside of that period. Finally,
one can set a fixed cost to every transition in the graph. This cost is added to the
cost already computed for every edge. Fixed costs are useful to model exceptions in
a schedule that involves cost. For instance, employees working after 6 p.m. might
require a higher salary.

4 The shift scheduling problem and context-free languages

Context-free grammars are useful since they can encode richer languages than au-
tomata. We first formally define what context-free grammars are and then explain
how they can encode scheduling rules.

A context-free grammar is a tuple G = 〈N,S,�,P 〉 where N is a set of symbols
called the non-terminals, S ∈ N is the starting non-terminal, � is a set of symbols
called the terminals, and P is a set of productions of the form A → w where A ∈ N

is a non-terminal and w is a sequence of terminals and non-terminals. A parsing tree
is a tree where the leaves are terminal symbols and the inner-nodes are non-terminal
symbols. The root of a parsing tree is the starting non-terminal S. The children of
an inner-node A form a sequence w such that the production A → w belongs to the
grammar. A context-free grammar recognizes a sequence T ∈ �n if there exists a
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parsing tree whose leaves, when visited from left to right, reproduce the sequence T .
We represent non-terminals with capital letters and terminals with lower case letters
unless otherwise specified. The abbreviation A → w | u refers to two distinct produc-
tions A → w and A → u.

The sequences recognized by a context-free grammar G form a context-free lan-
guage. A grammar is in the Chomsky normal form if every production is either of the
form A → BC or A → a, i.e. if a non-terminal produces either two non-terminals
or one terminal. Every context-free language can be recognized by a grammar writ-
ten in the Chomsky normal form. Context-free grammars can recognize any regular
language but automata cannot recognize every context-free languages. Context-free
grammars therefore encode a richer class of languages.

Context-free grammars can model the scheduling rules as showed in Example 1.
Notice that the grammar is not in its Chomsky normal form.

B → b | bB (3)

S → wBS | wwbBS | w | ww (4)

4.1 VLSN using context-free languages

We present a large neighbourhood operator for shift scheduling problems modeled
with context-free languages. In the previous section, the certificate proving that a
sequence of characters belongs to a regular language was a path in an automaton.
We therefore looked for the path in the automaton that induces the smallest cost. The
certificate proving that a sequence belongs to a context-free grammar is a parsing tree.
We will therefore find the parsing tree that induces the smallest cost to the schedule.

We assume that the grammar modeling a valid schedule for an employee is in its
normal Chomsky form such as the grammar introduced in Example 2.

Example 2 The grammar G presented below ensures that an employee executes ac-
tivity a for an undefined period of time followed by activity b for another undefined
period of time.

S → AB, A → AA | a, B → BB | b

The CYK parser (Cocke and Schwartz 1970; Kasami 1965; Younger 1967) is an
algorithm based on dynamic programming that decides whether a sequence belongs
to a context-free language. If the sequence belongs to the language, the algorithm
returns a parsing tree.

Following Quimper and Walsh (2007), we use the CYK parser to build a graph em-
bedding all possible parsing trees (see Fig. 3). Algorithm 1 creates a DAG such that
the leaf nodes are associated with a terminal character and a position in the sequence.
The inner node N(A, i, j) is associated with a non-terminal A, a starting position i,
and a span of j . The inner node N(A, i, j) belongs to the graph if there exists a sub-
string of length j starting at the ith position that can produce the non-terminal A. If
such a node exists, it has children which are a list of pairs of nodes. For instance
the node N(A, i, j) could have children a pair of nodes 〈N(B, i, k),N(C, i + k,
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Fig. 3 The grammar graph
obtained with the grammar
introduced in Example 2 and
T = 3. Each plus-node
represents a pair of children. For
instance, the plus-node below
N(A,1,2) represents the
relation Children(N(A,1,2)) =
〈N(A,1,1),N(A,2,1)〉

for all non-terminals A do1

for i ∈ [1, T ] do2

Create node N(A, i,1)44

Children(N(A, i,1)) ← {t | A → t ∈ G}5

for j ∈ [2, T ] do6

for i ∈ [1, T − j + 1] do7

for all non-terminals A do8

Create node N(A, i, j)9

Children(N(A, i, j)) ←1111

{〈N(B, i, k), N(C, i + k, j − k)〉 |12

k ∈ [1, j), A → BC ∈ G,13

Children(N(B, i, k)) �= ∅,14

Children(N(C, i + k, j − k)) �= ∅}1616

Delete any node that does not have the node N(S,1, T ) among its ancestors.1818

Algorithm 1: This algorithm based on the CYK parser (Cocke and Schwartz 1970;
Kasami 1965; Younger 1967) constructs a graph embedding all possible parsing
trees of sequences of length T recognized by the grammar G

j − k)〉. The relation between the parent and the children indicates that the produc-
tion A → BC ∈ G can produce the non-terminal A at position i with a span of j

by concatenating the sub-string of length k starting at position i and the sub-string
of length j − k starting at position i + k. After building all relations between the
nodes, the algorithm removes any nodes that do not contribute to the production of a
parsing-tree, i.e. any node that does not have for ancestor the node N(S,1, T ). Note
that Children(x) is the set of all nodes for which x is a direct parent.

Algorithm 1 constructs a graph called the grammar graph. Since Algorithm 1
runs in �(|G|n3) steps, the size of the grammar graph is bounded by O(n3|G|).
In practice, the grammar graph is usually much smaller as its size is considerably
reduced by line 18. The grammar graph obtained from the grammar introduced in
Example 2 over a sequence of length T = 3 is depicted in Fig. 3. The grammar graph
contains the parsing tree of the two sequences of length 3 belonging to the language.
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In fact, any sequence of length T has its parsing tree embedded in the grammar graph
as guaranteed by the following lemma.

Lemma 2 The grammar graph produced by Algorithm 1 embeds the parsing tree of
any sequence of length T accepted by the grammar G.

Proof Let S be an arbitrary sequence recognized by the grammar G. There exists a
parsing tree certifying that the sequence S belongs to G. The nodes corresponding to
the leaves of this parsing tree are necessarily created on line 3 as the algorithm creates
a node for all possible terminals. Every inner node of the parsing tree is connected
to its children on line 11. This observation results from the correctness of the CYK
parser (Cocke and Schwartz 1970; Kasami 1965; Younger 1967). Finally, since the
root of the parsing tree corresponds to the node N(S,1, T ), no nodes belonging to
the parsing tree are removed on line 18. �

We can produce a random sequence accepted by the grammar G by traversing the
grammar graph from the root and randomly branching on a pair of children until we
reach the leaves. Repeating this for every employee, we can produce an initial random
schedule S = {s1, . . . , sn}.

As with regular languages, we improve the schedule S by choosing a sequence
sr ∈ S that we replace with a new sequence N . This new sequence N minimizes the
overall cost of the new schedule. The cost of the time slot t in the schedule S is given
by cost(S[t], t). If the activity executed in the work shift N at time t is N [t] = a,
the new cost for the time slot t becomes cost(S[t] \ {sr [t]} ∪ {a}, t). We will assign
weights to the nodes in the grammar graph function of these new costs.

Each leaf of the grammar graph is associated with a particular time slot. A leaf-
node N(A, t,1) is associated with the time slot t . For every leaf-node N(A, t,1) and
for every character a appearing in a production A → a ∈ G, Algorithm 2 computes
the cost of the assignment N [t] = a. The algorithm selects the character a that in-
duces the smallest cost on the time slot t and assigns a weight equal to this cost to the
leaf-node N(A, t,1). The weight of a parsing tree is equal to the sum of the weights
assigned to its leaves. The following relation holds between a sequence N , its parsing
tree, and the cost of the schedule S \ {sr} ∪ {N}.

Lemma 3 Algorithm 2 assigns to node N(S,1, T ) a weight equal to the smallest
cost of a schedule obtained by replacing the sequence sr by a sequence N .

Proof Algorithm 2 computes the cost of the parsing tree with the smallest weight.
This fact follows from the proof of optimality of the weighted-CYK algorithm (Man-
ning and Schütze 1999). Let N be the sequence associated with this parsing tree.
Any parsing tree has exactly one leaf per time slot t with cost cost(S[t] \ {sr [t]} ∪
{N [t]}, t). The sum of the costs of every leaf is cost(S \ {sr} ∪ {N}), which is exactly
the cost of the schedule S where we replaced the individual sequence sr by N . �

To retrieve the sequence N whose cost is computed by Algorithm 2, one simply
needs to backtrack in the grammar graph to the nodes that minimize the expressions
on lines 3 and 6.



384 C.-G. Quimper, L.-M. Rousseau

for every leaf node N(A, i,1) do1

weight(N(A, i,1)) ← min{cost(S[i] \ {sr [i]} ∪ {a}, i) | A → a ∈ G}33

for every inner node N(A, i, j) in post-order do4

weight(N(A, i, j)) ← min{weight(N(B,x, y)) + weight(N(C,w, z)) |66

〈N(B,x, y), N(C,w, z)〉 ∈7

Children(N(A, i, j))}8

return weight(N(S,1, T ))9

Algorithm 2: Compute the cost of the best schedule obtained by replacing sr ∈ S

by another sequence

The local search repeatedly chooses a sequence sr from S and replaces it by the
sequence N that minimizes the cost of the overall schedule. This process continues
until it reaches a local minimum. Notice that the grammar graph only needs to be
constructed once. Only the weights need to be recomputed at each iteration.

4.2 Enhancing context-free languages

Following Quimper and Walsh (2007), one can enrich a context-free language by im-
posing some conditions on the applicability of a production A → BC. For instance,
one can restrict A to represent a sequence of a specific length. The non-terminals B

and C might also have to meet some requirements about the length of the sequences
they represent. Similarly, a production can be restrained to be effective only at partic-
ular times of the day. We denote a constrained literal A with AP

S where P ⊆ N is the
set of positions where A can occur in the sequence and S ⊆ N is the set of valid spans
for the subsequence A. If the symbol S or P are omitted, we assume that the set of
valid positions and valid spans is N. A weight w can also be associated with a pro-
duction. Each time a production is used in the schedule of an employee, the weight
of the production is added to the weight of the parsing tree. We indicate the weight
w of a production on the arrow as follows: A

w→ BC. One can omit to mention the
weight whenever it is null.

For instance, the production A[2,4]
8.9→ BC

{2,5,7}
[1,3] can be applied only if the se-

quence obtained has a length between 2 and 4 characters, the span of the literal C is
between 1 and 3, and the subsequence C appears at positions 2, 5, or 7. The weight
associated with this production is 8.9 and the literal B is unconstrained.

These new restrictions on the productions are useful to model situations where a
worker must work a certain amount of time before changing activities or can have a
lunch break only at lunch time. Weights on production can be used to encode pref-
erences or to model the case when extra salary must be given to an employee doing
some over-time.

Implementing these constraints only require minor modifications to the algorithm.
On line 16 in Algorithm 1, when processing the production A

Pa

Sa

w→ B
Pb

Sb
C

Pc

Sc
, we add

the extra-conditions that i ∈ Pa , i ∈ Pb , and i + k ∈ Pc as well as j ∈ Sa , k ∈ Sb, and
j − k ∈ Sc.
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Each time a production appears in the parsing tree of a sequence, its weight is
added to the total weight of the parsing tree. Line 3 in Algorithm 2 can take into
account the weight of the production A

w→ a when computing the weight of a leaf.
Line 6 could also take into account the weight of production A

w→ BC when comput-
ing the combined weight of a pair of children.

5 Regular languages vs. context-free languages

The choice between an automaton or a context-free grammar to model the scheduling
rules does not influence the local search since the large neighbourhood operators re-
turn the same sequence in either case. However, we observed that the grammar graph
generally has fewer nodes and fewer pairs of children than the expanded graph has
nodes and edges. Nodes in an expanded graph must carry the information accumu-
lated from the beginning of the sequence to the end. This information can include,
for instance, the number of breaks encountered so far in the sequence. In grammar
graphs, nodes only need to carry the information about a subsequence which is inde-
pendently of what precedes or succeeds this subsequence.

Consider for instance a language that encodes any sequence starting with either
an a or a b followed by a sequence of c’s and finishing with the same character it
started with. The automaton and the context-free grammar on Fig. 4 both encode this
language. The states 2 and 3 of the automaton encode the same pattern as the states 4
and 5. This redundancy is necessary to carry the information about the first character
of the sequence. However, the production C → cC | c does not carry any information
about what precedes or follows the subsequence of c’s. In many cases, the duplication
of states in an automaton produces expanded graphs larger than grammar graphs.
Since the running time of the large neighbourhood operators are proportional to the
size of the graph containing all the valid parsings, the context-free grammars often
offer lower computational time.

It is also generally easier to model the scheduling rules with context-free grammars
than with automata. Context-free grammars are more expressive. For the scheduling
problem solved in our experiments, a context-free grammar of 14 productions cap-
tures all the scheduling rules while the equivalent automaton requires thousands of
states.

Fig. 4 An automaton and a
context-free grammar encoding
the language ac∗a | bc∗b. The
states 2 and 3 encode the same
pattern as the states 4 and 5
while the context-free grammar
has only one production to
encode the pattern c∗
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6 Experimental results

6.1 Problem description

We consider the following shift scheduling problem with n employees and m activ-
ities over a period of time discretized into T = 96 time slots of 15 minutes each.
During each time slot, an employee can either rest, be on a break, lunch, or work on
a given activity.

The schedule of an employee must respect the following rules.

1. A break has a duration of 15 minutes.
2. A lunch has a duration of 1 hour.
3. A part-time employee can take one break during his shift.
4. A full-time employee is entitled to one break, one lunch, and another break in

this order.
5. When an employee starts working on an activity, he works for at least one hour

on the same activity.
6. Lunches and breaks are scheduled between two periods of work.
7. An employee must have a break or a lunch before changing activities.
8. Periods of rest are to be scheduled at the beginning or the end of the day.
9. A part-time employee must work a minimum of 3 hours and fewer than 6 hours

a day.
10. A full-time employee must work a minimum of 6 hours and a maximum of

8 hours a day.
11. At specific times of the day, when the business is closed, every employee must

either rest, lunch, or be on a break.

As an example, a full time employee could rest between midnight and 9 a.m.,
then work on activity 1 from 9 a.m. to 10:30 a.m., break, work on activity 2 from
10:45 a.m. to 12:00 p.m., lunch, work on activity 3 from 1:00 p.m. to 2:30 p.m.,
break, work on activity 4 from 2:45 p.m. to 5:00 p.m., and rest until midnight.

We model the rules using the following context-free grammar. Identifiers between
delimiters 〈. . .〉 are terminal symbols.

R → 〈rest〉R | 〈rest〉 Ai → 〈activityi〉Bi Ai | 〈activityi〉Bi

W[4,∞) → Ai for 1 ≤ i ≤ m P → W 〈break〉W
F → PLP S → RP[13,24]R | RF[30,38]R
L → 〈lunch〉〈lunch〉〈lunch〉〈lunch〉

Following Sect. 4.2, we constrained some productions in the following way. The
production W[4,∞) → Ai can only produce a sequence of at least four characters rep-
resenting a minimum of one hour of work. In the production S → RF[30,38]R, F must
be a sequence of 30 to 38 characters as a full time employee must work between 6
and 8 hours without counting breaks and lunch. In the production S → RP[13,24]R,
the length of the sequence produced by P must be between 13 and 24 characters
long which corresponds to the amount of work time assigned to a part-time em-
ployee plus a 15-minutes break. Finally, to model rule 11, we restrict the productions
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Ai → 〈activityi〉Bi |Ai〈activityi〉Bi to be applied only at positions Bi associated with
business hours for activity i.

We tested our model on the first benchmark introduced in Demassey et al. (2006).
The benchmark has 10 instances with m activities where m ranges from 1 to 10 for a
total of 100 instances.

Experimental settings

We implemented the solver in C++ using the compiler gcc 4.1.0 provided in SUSE
Linux. The experiments were run on an AMD Opteron 2.3 GHz. The sequence sr ∈ S

are replaced in a round-robin way and the search is performed for one hour for every
instance. Each time the search reached a local optimum, the search was restarted
from a random initial solution. We used both the grammar described above and an
automaton encoding the same language, but since this automaton contains thousands
of states, it was generated by a another C++ program.

Table 1 compares the differences between a local search using an automaton and
the same local search using a grammar. The columns are: m the number of activities,
|Gg|/|Ga| is the ratio between the size of the grammar graph and the size of the
expanded graph, T a

g and T a
a (resp. T m

g and T m
a ) are the average (resp. median) time,

in milliseconds, to evaluate a neighbor using a grammar and an automaton, σg/xg

(σa/xa) is the average standard deviation of the solutions returned by search using a
grammar (automaton). To obtain these figures we first compute the standard deviation
over all the runs for each single instance and then average them over the 10 instances.
Finally σ 1

g /x1
g (σ 1

a /x1
a) is the average standard deviation when we compare the best

solution obtain after 1 second of computation time. To evaluate this we divided the
results into 3600 independent sets of 1-second runs and compared the best solution
of each set. Note that since the operator based on grammars and the operator based
on automata define the same neighborhood, using either operator lead to the same
search path and consequently yield the same results.

Table 1 Comparison of a one-hour search using an automaton and a search using a grammar

m |Gg |/|Ga | T a
g T a

a T m
g T m

a σa/xa σ 1
a /x1

a σg/xg σ 1
g /x1

g

1 1.22 9 5 9 3 3.49% 0.84% 3.22% 0.69%

2 0.92 14 13 13 10 6.64% 2.79% 6.35% 2.97%

3 0.75 33 33 32 33 7.21% 3.00% 6.99% 2.88%

4 0.64 54 64 50 61 5.57% 2.20% 5.51% 1.96%

5 0.54 80 94 78 90 3.82% 1.66% 3.75% 1.53%

6 0.47 112 145 108 140 3.88% 2.13% 3.95% 1.86%

7 0.41 139 194 135 187 3.58% 2.06% 3.41% 1.69%

8 0.39 165 251 161 242 3.42% 2.21% 3.40% 1.80%

9 0.38 173 276 167 265 3.13% 2.04% 3.26% 1.78%

10 0.35 234 378 227 368 3.11% 2.29% 3.05% 1.88%
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Analysis

The ratio |Gg|/|Ga | between the size of the grammar graph and the expanded graph
shows that the grammar graph grows slower than the expanded graph when the num-
ber of activities increases. Indeed, the expanded graph is on average smaller than the
grammar graph for instances with one activity but is bigger than the grammar graph
for larger instances.

Since both search algorithms have a time complexity that is proportional to the
size of the graph they traverse, it is thus normal that the average time to compute a
neighbor is larger using the grammar operator than the automaton one. We can also
deduce that, given graphs of equivalent size, computing a parsing tree is slightly more
time consuming than computing a path, since the advantage in favor of grammars
only occurs after three activities. Thus for the more classical instances, with only
one activity, the approach using an automaton clearly outperformed the grammar
since the graph generated by the grammars is about 22% larger than the expanded
graph and the search for neighborhoods takes about twice the time. However, when
the number of activities increases, the model using grammars becomes much more
interesting as it generates graphs which are about three times smaller and allows to
explore the neighborhoods almost 40% faster. Furthermore, the grammar model is
generally easier to define than the automaton, which needs to be programmed when
its size becomes too large.

The local minimums reached by both methods are generally of good quality, as
the standard deviation is always below 10%. However, if we allow the algorithm to
run for 1 second and keep the best solution obtained within that time limit, then the
standard deviation is significantly reduced and never exceeds 3%.

Comparison on single activity problems

To evaluate the effectiveness of our approach on the more typical one-activity shift
scheduling problem, we compare our method against the MIP model described in
Côté et al. (2007), which is an exact approach also relying on regular languages.
In Côté et al. (2007), the authors introduced a relaxation in Rule 4 by allowing a
full-time employee to have both breaks before or after the lunch. In order to allow
comparisons and test the robustness of our solution, we also relaxed the problem by
adding the following productions to the grammar. Note that this relaxation simplifies
the automaton, but it makes the problem more complex as it allows the existence of
more possible shifts.

Q → P 〈break〉W, F → QLW | WLQ

The model proposed by Côté et al. (2007) was solved using Cplex 10.0 on a 3.2 GHz
Intel Pentium 4 while the local search was run on an AMD Opteron clocked at
2.3 GHz. The reader should thus be careful when comparing the computation times.
Cplex was configured to stop when the solution reached an integrality gap of 1% or
after one hour of computation.

In Table 2 where we show the results obtained by the MIP and local search solvers,
m is the number of activities, # is the instance number, MIP cost is the cost of the
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Table 2 Comparison of robustness against a MIP model

m # MIP cost MIP time Lower bound t5% t1% Min cost

1 1 172.67 1.50 172.67 0.22 0.22 172.67

1 2 164.58 1029.01 162.94 0.27 0.67 162.94

1 3 169.44 393.96 168.86 0.24 0.48 169.01

1 4 133.45 39.89 132.12 0.21 0.24 132.67

1 5 145.67 10.41 144.6 0.20 0.20 145.11

1 6 135.06 20.36 134.41 0.32 0.32 134.82

1 7 150.36 6.25 149.42 0.35 22.43 150.06

1 8 148.05 274.92 147.2 1.26 13.86 148.05

1 9 182.54 15.47 182.54 4.32 4.32 182.54

1 10 147.63 5.50 146.44 0.31 16.26 147.42

solution returned by the MIP solver, MIP time is the time in seconds to solve the
problem, LB is a linear relaxation lower bound for the cost, t5% and t1% are the time
for the local search to find a solution at 5%, and 1% of the LB and finally min cost is
the best solution returned by the local search.

The local search solver was run for 1 hour independently from the MIP solver. It
was not aware of the lower bound computed by the linear relaxation. We analysed the
trace of the local search solver to see how fast it reaches solutions similar in quality
with those produced by the MIP solver (columns t5% and t1%). The local search finds
a solution at one percent of the optimal within 25 seconds for every instance with one
activity. For these instances, the solutions returned are either equivalent or better than
those found by the MIP solver.

Detailed results

In order to facilitate a comparison with other approaches, we report the best results
obtained on all 100 instances of our benchmark.1 In Table 3, where m gives the
number of activities considered and # is the instance number, we report the value of
the best solution encountered after one hour of computation and the time (in seconds)
needed to reach that solution.

7 Conclusion and future work

Using the fact that regular languages and context-free grammars can model the
scheduling rules in a shift scheduling problem, we developed two operators that use
regular or context-free languages as large neighbourhood search operators. Using
these operators in a simple large neighborhood approach, we were able to solve all
benchmark problems in only a few minutes.

1Problem instances can be obtained by writing to the authors.
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Table 3 Best value obtained after one hour of computation for each instance of the benchmark with the
time required to fist find a solution of this quality

m # Min cost Time m # Min cost Time

1 1 172.67 0.22 2 1 208.68 3591.15

1 2 162.94 52.88 2 2 213.26 2184.53

1 3 169.01 1596.69 2 3 259.99 2319.64

1 4 132.67 592.01 2 4 243.92 1282.24

1 5 145.11 1.80 2 5 420.70 1350.28

1 6 134.82 0.32 2 6 286.28 180.84

1 7 150.06 467.31 2 7 230.62 1095.49

1 8 148.05 13.86 2 8 552.66 348.34

1 9 182.54 64.66 2 9 330.76 930.09

1 10 147.42 889.28 2 10 263.56 40.98

3 1 304.93 2878.71 4 1 588.55 3493.91

3 2 337.80 716.12 4 2 520.33 2614.55

3 3 469.95 2188.67 4 3 649.25 2335.10

3 4 379.44 2463.37 4 4 424.08 458.62

3 5 417.04 89.78 4 5 473.68 2894.95

3 6 370.05 119.30 4 6 538.26 3100.02

3 7 567.72 2840.81 4 7 688.24 694.98

3 8 340.43 1026.11 4 8 555.74 935.36

3 9 430.78 2594.63 4 9 735.84 99.49

3 10 374.37 1369.19 4 10 566.38 2993.51

5 1 528.00 2272.59 6 1 829.31 1267.89

5 2 607.06 466.10 6 2 987.65 342.66

5 3 580.82 3408.74 6 3 685.74 624.18

5 4 713.43 3234.05 6 4 1005.16 2055.04

5 5 834.36 1744.39 6 5 1042.97 3463.29

5 6 1090.05 3544.46 6 6 1165.45 3283.38

5 7 664.56 846.48 6 7 1414.23 3138.65

5 8 729.09 1946.71 6 8 881.45 715.18

5 9 624.50 166.12 6 9 811.16 584.42

5 10 725.99 431.01 6 10 871.57 1538.90

7 1 1118.30 569.35 8 1 1222.05 2554.16

7 2 1225.69 2162.94 8 2 1068.43 755.97

7 3 1074.22 229.31 8 3 1034.24 3104.31

7 4 1024.56 2028.49 8 4 1348.53 2581.54

7 5 1061.78 3007.32 8 5 1122.49 1849.84

7 6 949.24 3474.08 8 6 1060.05 2733.02

7 7 1087.42 176.15 8 7 1068.75 3165.43

7 8 1069.59 2081.20 8 8 1085.86 1684.18

7 9 1090.97 3054.48 8 9 1178.66 808.76

7 10 858.89 3534.13 8 10 1354.59 991.87
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Table 3 (Continued)

m # Min cost Time m # Min cost Time

9 1 1171.05 3194.06 10 1 1857.48 2172.31

9 2 1514.90 2172.59 10 2 1653.22 1842.59

9 3 1388.28 2343.14 10 3 1547.19 3544.90

9 4 1545.08 1769.96 10 4 1271.69 493.36

9 5 1046.97 2531.93 10 5 1454.84 1280.62

9 6 1040.17 1652.81 10 6 1395.38 256.35

9 7 1335.37 2998.33 10 7 1655.17 2201.11

9 8 1498.00 1737.07 10 8 1355.29 3163.38

9 9 1265.63 1394.97 10 9 1749.34 2712.88

9 10 1083.99 245.76 10 10 1858.83 715.36

In the future, we would like to investigate which sequence rc ∈ S is the most
appropriate to replace. We currently select the sequences in S in a round-robin way.
We would like to choose a sequence that leads to a good local minimum and that
directs the search to an unexplored portion of the search space. We would like to
combine our operators with some meta-heuristics, which would be able to explore
more than one local minimum. Another idea is to implement some kind of long term
memory, to allow each run to benefit from what was learned in the preceding ones.
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