
J Heuristics (2010) 16: 239–258
DOI 10.1007/s10732-008-9100-4

Alternating control tree search for knapsack/covering
problems

Lars Magnus Hvattum · Halvard Arntzen ·
Arne Løkketangen · Fred Glover

Received: 15 August 2007 / Revised: 7 November 2008 / Accepted: 7 November 2008 /
Published online: 26 November 2008
© Springer Science+Business Media, LLC 2008

Abstract The Multidimensional Knapsack/Covering Problem (KCP) is a 0–1 Inte-
ger Programming Problem containing both knapsack and weighted covering con-
straints, subsuming the well-known Multidimensional Knapsack Problem (MKP) and
the Generalized (weighted) Covering Problem. We propose an Alternating Control
Tree Search (ACT) method for these problems that iteratively transfers control be-
tween the following three components: (1) ACT-1, a process that solves an LP relax-
ation of the current form of the KCP. (2) ACT-2, a method that partitions the variables
according to 0, 1, and fractional values to create sub-problems that can be solved with
relatively high efficiency. (3) ACT-3, an updating procedure that adjoins inequalities
to produce successively more constrained versions of KCP, and in conjunction with
the solution processes of ACT-1 and ACT-2, ensures finite convergence to optimality.
The ACT method can also be used as a heuristic approach using early termination
rules. Computational results show that the ACT-framework successfully enhances
the performance of three widely different heuristics for the KCP. Our ACT-method
involving scatter search performs better than any other known method on a large set
of KCP-instances from the literature. The ACT-based methods are also found to be
highly effective on the MKP.

L.M. Hvattum
Department of Industrial Economics and Technology Management, Norwegian University of Science
and Technology, Trondheim, Norway
e-mail: Lars.M.Hvattum@himolde.no

H. Arntzen · A. Løkketangen (�)
Molde University College, Molde, Norway
e-mail: Arne.Lokketangen@himolde.no

H. Arntzen
e-mail: Halvard.Arntzen@himolde.no

F. Glover
Leeds School of Business, University of Colorado, Boulder, CO, USA
e-mail: fred.glover@colorado.edu

mailto:Lars.M.Hvattum@himolde.no
mailto:Arne.Lokketangen@himolde.no
mailto:Halvard.Arntzen@himolde.no
mailto:fred.glover@colorado.edu

240 L.M. Hvattum et al.

Keywords Knapsack · Covering · Tree search · Heuristic

1 Introduction

In this work we present the Alternating Control Tree Search (ACT) method, and
give an implementation for solving the Multidimensional Knapsack/Covering Prob-
lem (KCP). The KCP subsumes the classical 0–1 Multidimensional Knapsack Prob-
lem (MKP) and the Generalized Covering Problem (the latter being transformed
into the former by complementing the variables), with associated applications to
a broad range of problems, including capital budgeting (Lorie and Savage 1955;
Manne and Markowitz 1957), cargo loading (Shih 1979), allocation (Gavish and
Pirkul 1982), and cutting stock problems (Gilmore and Gomory 1966). When com-
bining the knapsack and cover constraints, the resulting KCP problem has further ap-
plications in portfolio selection and capital budgeting (Beaujon et al. 2001), as well as
in obnoxious and semi-obnoxious facility location (Cappanera 1999; Plastria 2001;
Romero-Morales et al. 1997). Note that the KCP is sometimes referred to as the Mul-
tidemand Multidimensional Knapsack Problem (MDMKP).

We formulate the Multidimensional Knapsack/Covering Problem (KCP) as fol-
lows.

max z =
∑

j∈N

cjxj

s.t.
∑

j∈N

aij xj ≤ bi for i ∈ MA (1)

∑

j∈N

aij xj ≥ bi for i ∈ MB (2)

xj ∈ {0,1} for j ∈ N (3)

Here, N = {1, . . . , n} is the set of variable indices, and MA = {1,2, . . . ,m} and
MB = {m + 1,m + 2, . . . ,m + q} are the sets of indices for the knapsack constraints
and the cover constraints respectively. We assume that all coefficients, cj , aij , and bi

are non-negative for all j ∈ N and i ∈ MA ∪ MB.
The rest of the paper is structured as follows. In Sect. 2, we present the Alternat-

ing Control Tree Search (ACT) method for the Multidimensional Knapsack/Covering
Problem. In Sect. 3 we discuss different alternatives for solving the subproblem as-
sociated with each iteration of ACT, leading to both heuristic and exact implementa-
tions. Computational results follow in Sect. 4. Finally, our conclusions are summa-
rized in Sect. 5.

2 The alternating control tree search method

We propose an Alternating Control Tree Search (ACT) framework for the KCP, and
show how to use various alternative solution methods for the KCP within the ACT-
framework. The framework bears resemblance to the method used by Soyster et al.

Alternating control tree search for knapsack/covering problems 241

(1978), later refined by Hanafi and Wilbaut (2006), but with some important differ-
ences. We note that the ACT-framework is quite general in the sense that it can be
used both as an exact method as well as a heuristic algorithm, with the latter as an
integrated combination of exact and heuristic methods (Puchinger and Raidl 2005).

The ACT-framework operates by transferring control successively to three com-
ponents, ACT-1, ACT-2 and ACT-3, by the following design. We allow the possibility
of knowing an initial integer feasible solution xLB with associated value zLB for the
original KCP. If no starting integer feasible solution is known, zLB is taken to be an
arbitrary negative number. Supporting comments will subsequently be provided to
elaborate on the method’s summary description.

ACT-framework

ACT-1
1. Solve the LP relaxation LP(KCP) of the KCP to obtain a solution x′ with

value z′.
2. If LP(KCP) has no feasible solution, or if z′ ≤ zLB, then the method ter-

minates with one of the following conclusions.
(a) If zLB ≥ 0 then xLB is optimal for the original KCP.
(b) Otherwise, KCP is proven to have no feasible solution.

ACT-2
1. With reference to the solution x′ of LP(KCP), let N0(x′) = {j | x′

j = 0},
N1(x′) = {j | x′

j = 1}, and NF(x′) = {j | 0 < x′
j < 1}.

2. Choose an assignment set N#(x′) as a subset of N0(x′) or N1(x′). Define
the sub-problem KCP-SUB to be the current KCP, subject to xj = x′

j for

j ∈ N#(x′) and
∑

j∈N

cj xj ≥ zLB + 1 (4)

(adjoining Eq. 4 to the inequalities 2).
3. Apply some method to solve KCP-SUB. If a feasible solution xSUB is

found, the solution yields zSUB > zLB, and this solution is recorded as the
new xLB, zLB.

ACT-3
1. If the assignment set N#(x′) is a subset of N0(x′), adjoin the following

constraint to the system 2:
∑

j∈N#(x′)
xj ≥ 1 (5)

Or, alternatively, if N#(x′) is a subset of N1(x′), adjoin the following con-
straint to the system 1:

∑

j∈N#(x′)
xj ≤ |N#(x′)| − 1 (6)

2. Return to ACT-1 to solve the resulting new version of KCP.

242 L.M. Hvattum et al.

We clarify the operation of the method with the following preliminary observa-
tions.

Remark 1 The problem KCP-SUB has the form

max z =
∑

j∈NSUB

cj xj + cSUB (7)

s.t.
∑

j∈NSUB

aij xj ≤ bSUB
i for i ∈ MA (8)

∑

j∈NSUB

aij xj ≥ bSUB
i for i ∈ MB (9)

xj ∈ {0,1} for j ∈ NSUB (10)

where cSUB = ∑
j∈N#(x′) cj x

′
j , bSUB

i = bi − ∑
j∈N#(x′) aij x

′
j for i ∈ MA ∪ MB, and

NSUB = N \ N#(x′).

Remark 2 The choice of the assignment set N#(x′) as a subset of N0(x′) or N1(x′)
in ACT-2, rather than as a subset of their union, assures that the inequalities adjoined
in ACT-3 will fit in with the KCP structure. Our intention is to exploit the special
structure that is maintained in both the master problem and KCP-SUB. In Soyster et
al. (1978) and Hanafi and Wilbaut (2006), the assignment set is N#(x′) = N0(x′) ∪
N1(x′), which leads to smaller sub-problems, but a more general solver is required
for handling the subsequent sub-problems.

Remark 3 The ACT method is clearly finite, since the inequalities adjoined in ACT-3
prevent the LP solution in ACT-1 from creating a situation where a currently selected
assignment set N#(x′) can duplicate any assignment set previously chosen. Likewise,
the inclusion of these ACT-3 inequalities within KCP-SUB (as inherited from the
current KCP) prevents the solution to this sub-problem from duplicating any solution
previously obtained.

Remark 4 The ACT method leads to an exact algorithm for the KCP as long as an
exact method is applied to solve KCP-SUB in ACT-2. Alternatively, the ACT method
can take the role of a metaheuristic approach, by introducing early termination rules
in ACT-1 and also in the solver of KCP-SUB. Also the method allows for using other
heuristic solution methods to explore KCP-SUB. In these cases the method can no
longer prove optimality or infeasibility upon termination.

Remark 5 It may happen that in some iteration, the solution x′ to LP(KCP) is purely
fractional. Then, the assignment set is empty and KCP-SUB equals KCP. Thus the
subsolver in ACT-2 will work on the complete KCP rather than on a proper sub-
problem. If the subsolver is an exact method, it will terminate with proven optimum
or infeasibility of the KCP.

Alternating control tree search for knapsack/covering problems 243

Remark 6 A reasonable initial choice for the assignment set N#(x′) in many instances
is to select N#(x′) = N1(x′), with the provision for selecting N#(x′) = N0(x′) if
N1(x′) is somewhat smaller than N0(x′). On the other hand, choosing the assignment
set N#(x′) to be smaller than N1(x′) (or N0(x′)) in ACT-2 permits the KCP-SUB
problem to be more encompassing, and produces a stronger inequality to be added
in ACT-3. (If N#(x′) is chosen to be empty, then of course the problem KCP-SUB is
simply the full KCP.) Opposing this, taking N#(x′) to be larger has advantages not
only for the ease of solving KCP-SUB, but more particularly for allowing the solution
of LP(KCP) to guide the determination of new KCP-SUB problems.

Remark 7 By adding constraints 5 and 6, the ACT method essentially keeps an ex-
plicit store of previously visited partial assignments. Naturally, this causes worst-case
exponential memory requirements.

Remark 8 Inequalities adjoined in ACT-3 may be selectively discarded from KCP
as the method progresses. This may be done simply by removing older inequalities,
or by reference to the dual weights received by these inequalities in the solution of
LP(KCP). In particular, if an inequality receives a 0 dual weight (or receives such a
weight on k successive iterations, for a small k value), then the inequality is a natural
candidate to be discarded. Note however that removal of inequalities invalidates the
finiteness property of the method, as the exhaustion of the solution space as described
in Remark 3 is no longer guaranteed.

Remark 9 Under conditions where N0(x′) and N1(x′) are both small (or, in the ex-
treme, empty), the method can embed a subset of NF(x′)) in N0(x′) or N1(x′), so that
N#(x′) can include some variables with fractional values from LP(KCP). This weak-
ens the inequality introduced in ACT-3, but provides a heuristic supplement. Under
such conditions, ACT-1 is only re-visited upon choosing N#(x′) so that the inequality
of ACT-3 is not satisfied by the most recent LP solution.

Remark 10 The subproblem, KCP-SUB, can frequently be reduced by preprocess-
ing techniques (see e.g. Savelsbergh 1994), such as coefficient update routines and
variable fixing based on reduced costs from the solution of the LP-relaxation.

One way of depicting the basic idea of the ACT method is shown in Fig. 1. The
whole solution space for the KCP is here denoted by S. In ACT iteration i, let the
subspace Si ⊂ S be the feasible region for the current KCP-SUB. As long as the
ACT-3 inequalities are accumulated into the KCP and included in the KCP-SUB,
the sets Si will be disjoint. Moreover, a finite (but typically large) number of Si will
cover the entire feasible region for the original KCP (see Remark 3). Viewed in this
way, the ACT method basically works by focusing the computational effort to smaller
subspaces which are iteratively selected with the guidance from LP relaxations.

The ACT method exhibits some similarity to other frameworks designed to al-
low focused attention on selected subspaces. The Local Branching (LB) framework
described in Fischetti and Lodi (2003) and the Relaxation Induced Neighborhood
Search (RINS) from Danna et al. (2005) are noticeable examples. Both of these are

244 L.M. Hvattum et al.

Fig. 1 Solution subspaces Si

related to the ACT-2 step

formulated for general MIP’s. In the LB framework, the subspaces are defined as
neighborhoods of the incumbent solution, using a generalized Hamming distance to
define the neighborhood. Each subproblem is solved by a MIP solver, and when the
incumbent solution is updated, a new subproblem emerges. The framework can yield
either an exact method or a heuristic, depending on the approach taken when handling
the subproblems.

The RINS framework is based on a branch-and-cut approach to solving a MIP.
In certain nodes of the tree, one halts the branch-and-cut process temporarily. A sub-
problem is defined by fixing the variables that take on the same value in the incumbent
solution and in the solution to the LP relaxation at the current node. This subproblem
is explored, before resuming the branch-and-cut process. The underlying assumption
is that solving the subproblem is likely to provide a better incumbent solution faster
than the ordinary branch-and-cut routine would otherwise do. If the incumbent solu-
tion is improved, this will be helpful when the branch-and-cut is resumed. In addition,
when the MIP must be explored within a fixed time limit, it can be beneficial to in-
crease the focus on early improvement in the branch-and-bound, which is just what
RINS is supposed to do.

These two approaches are different from the ACT method in several ways. ACT is
specially tailored for the KCP problem structure, while the others are more general.
The subspace selection in LB and RINS is based on having a feasible solution of the
MIP, thus the frameworks can not be properly put to work before the first feasible
solution is found. In contrast, ACT starts immediately from the solution of the LP
relaxation to the original KCP.

A different type of cuts from those generated by ACT, are the conflict cuts in-
troduced in Achterberg (2007). These cuts are designed to cut off infeasible regions
earlier (Achterberg reports a general 18 percent reduction in the number of nodes for
general MIP’s in his tests). These aspects would be important in particular when ACT
is used as a complete solver.

The idea of focusing the search on small subspaces at the time goes back at least
to Glover (1977), with the concept of consistent and strongly determined variables,
and is also pointed out many places in Glover and Laguna (1997). This idea is also

Alternating control tree search for knapsack/covering problems 245

used successfully in Holmberg and Yuan (2000), Sellmann et al. (2002) and Gomes
and Sellmann (2004).

Finally a word on the type of relaxation used for search guidance. We are using
the LP relaxation for partioning the variables, as this is readily available. Other relax-
ations might be more efficient, as stated by Gomes et al. (2006). They show that in
their case (MAX SAT) the predictive power of variable fixing based on semi-definite
relaxations is much higher than that of LP relaxations. This is also an interesting
avenue for further investigations.

Additional options available for applying the ACT method, and those we have
elected to implement for solving the KCP, are described in Sects. 3 and 4. We now
turn to describe different solution methods suitable for solving KCP-SUB in ACT-2.

3 Solving the subproblem

As noted in Sect. 2, the subproblem, KCP-SUB, has the same structure as the KCP
itself. As a consequence, any method for solving the KCP can be used as a subsolver
in ACT-2. In this section we outline several methods for solving the KCP, based on
using different subsolvers for KCP-SUB.

3.1 CPLEX

A natural benchmark for measuring the performance of our ACT-implementations
is to solve the instances using a standard, commercial IP-solver. The solver we use
for this purpose is CPLEX (version 9.0), with standard settings. We will refer to the
method as CPLEX. In addition, it is clear that CPLEX is a candidate for solving
the KCP-SUB problem. Hence, we obtain a method ACT-CPLEX-EXACT, which
implements the ACT-framework, using CPLEX as a subsolver.

Based on some initial testing to calibrate the method, we found the following set-
tings to work well for ACT-CPLEX-EXACT. Firstly, we always select the larger of
N0(x′) and N1(x′) to be the assignment set N#(x′) in ACT-2. The initial testing fur-
ther indicated that keeping the canonical cuts added in ACT-3 also in the KCP-SUB
leads to improved solution speeds, and any attempt at removing these over time, based
on the ideas presented in Remark 8, decreases the solution quality. We do not add any
preprocessing of the KCP-SUB (as suggested in Remark 10), since CPLEX already
includes many preprocessing techniques. Lastly, the CPLEX-method, as used for the
KCP-SUB, was instructed to focus on feasibility first, which seems to improve the
overall results slightly. Note that these specifications apply to CPLEX as used in
ACT-CPLEX-EXACT, and not to the stand-alone CPLEX-method.

Even though both CPLEX and ACT-CPLEX-EXACT are, in principle, able to
prove optimality, in practice the available time is usually too short to get such a proof.
In these cases, one might consider looking for heuristic solutions only, and hence we
consider another way of including CPLEX within the ACT-framework, creating an
implementation we refer to as ACT-CPLEX. In ACT-CPLEX we use the solver
CPLEX as in ACT-CPLEX-EXACT with the exception that it is terminated after a
given time limit has expired. In addition, to make ACT-CPLEX more easily com-
parable to the methods described in Sects. 3.2 and 3.3, the following adjustments

246 L.M. Hvattum et al.

are made. First, an additional preprocessing step for each subproblem to potentially
reduce the size of KCP-SUB before applying the subsolver is included. The pre-
processing consists of removing redundant constraints, locking variables (based on
logical tests, as well as on reduced costs from the associated Linear Programming
relaxation), and updating the constraint coefficients (see Savelsbergh 1994 for some
standard ideas). Second, the canonical cuts added in ACT-3, of type (Eq. 5) or (Eq. 6),
are not included in the subproblem when tackled by the subsolver.

3.2 Tabu search

The option of looking for heuristic solutions also opens up the possibility of con-
sidering metaheuristic solution methods. We now move on to present a Tabu Search
method for the KCP, which can be used either as a stand-alone method, or as a sub-
solver within the ACT-framework.

A Tabu Search (Adaptive Memory Search) for the KCP problem is described in de-
tail in Arntzen et al. (2006), and only the main structure is outlined here. The search
was initially developed for problem instances with both knapsack and cover con-
straints, and due to the difficulty of finding feasible solutions for such instances (and
since the search space can be separated into different feasible regions, Cappanera and
Trubian 2005), it is important for a Local Search based method to be able to search
in both the feasible space and the infeasible space. Thus, the Tabu Search method,
here referred to as TS, is based on an oscillation around the feasibility boundaries
by coordinating the interplay between changes in the objective function values and
changes in primal feasibility. The search has the following components.

1. The starting solution is based on a random assignment of values to the variables,
with equal probabilities of assigning 0 or 1. This solution is usually infeasible.

2. A move is the flip of a variable. A flip means assigning the opposite value to a
variable.

3. The search neighborhood is the set of solutions reachable in one flip.
4. Move evaluation is based on both the change in objective function value, and the

change in amount of infeasibilities.
5. The move selection is greedy.
6. Simple tabu and aspiration criteria are enabled.
7. The stopping criterion is a simple time limit.

For further details, and a summary of parameter settings, we refer the reader to
Arntzen et al. (2006), whereas a general introduction to Tabu Search can be found in
Glover and Laguna (1997). We now describe how TS can be applied as a subsolver
in the ACT-framework, either alone as in ACT-TS or together with CPLEX as in
ACT-CPLEX-TS.

For ACT-TS, where TS is used as the only subsolver, the settings of TS remain
the same as when TS is used as a stand-alone method. The same changes made in the
ACT-framework for ACT-CPLEX compared to the ACT-CPLEX-EXACT-method
is applied. This refers to adding a preprocessing step to reduce the size of KCP-SUB
before applying the Tabu Search, and to exclude the canonical cuts added in ACT-3,
of type (Eq. 5) or (Eq. 6), from the subproblem when tackled by the subsolver. Again,
the subsolver is set to terminate after a given amount of time.

Alternating control tree search for knapsack/covering problems 247

In ACT-CPLEX-TS, both CPLEX and TS are applied, in sequence, as solvers for
the KCP-SUB. CPLEX is used first, and if this method returns a proven optimum,
TS is not used. If, after a set time limit, CPLEX has not proved optimality, TS is
started. The best solution to KCP-SUB, found by either method, is returned to the
ACT-framework.

3.3 Scatter search

The final solution method for the KCP presented here is based on Scatter Search
(see, e.g. Laguna and Martí 2003 for an introduction), and is presented with details in
Hvattum and Løkketangen (2007). As for the Tabu Search in Sect. 3.2, this method
can be applied both alone and as a subsolver in the ACT-framework.

Five different Scatter Search implementations are given in Hvattum and Løkke-
tangen (2007), and the one used in this work was entitled SB SS (we refer to it here
simply as SS). This variant seemed to be the most robust of the choices examined
in Hvattum and Løkketangen (2007), being the only one to find feasible solutions to
all of the problem instances for which it was tested. We now summarize briefly the
components of this Scatter Search implementation.

1. The Diversification Generation method creates an initial pool of randomly gener-
ated solutions.

2. The Improvement method is based on what we call a jagged Local Search, which
is a Local Search that continues as long as the best neighbor is better than the
previous solution (unlike a standard Local Search, which continues as long as
the best neighbor is better than the current solution). The neighborhood structure
includes both flip-moves as well as double-flip moves (where two variables are
flipped at once).

3. The Reference Set Update method creates and maintains a reference set with a mix
of good solutions and diverse solutions as well as solutions that have contributed
to the creation of other good solutions.

4. The Subset Generation method generates all subsets of size two of the reference
set, with the added condition that at least one of the solutions in the subset was
added to the reference set in the previous iteration.

5. Finally, the Solution Combination method is based around a generalization of a
score based method, as proposed in Laguna and Martí (2003).

Again, we leave further details and information about parameter settings to Hvat-
tum and Løkketangen (2007). For usage within the ACT-framework, we use the same
settings as for ACT-TS and ACT-CPLEX-TS, but with SS instead of TS, to create
ACT-SS and ACT-CPLEX-SS.

4 Computational results and analyzes

All computational testing is done on PCs with Pentium IV 2.4 GHz processors and
1 GB of RAM. In the following we report and discuss the results for the following
nine methods.

248 L.M. Hvattum et al.

• CPLEX is the use of the standard settings for CPLEX version 9.0.
• TS is the Tabu Search as described in Sect. 3.2.
• SS is the Scatter Search as described in Sect. 3.3.
• ACT-CPLEX-EXACT is an implementation of the ACT-framework as an exact

solution method, using CPLEX to solve each of the subproblems.
• ACT-CPLEX is an implementation of the ACT-framework as an heuristic solution

method, using CPLEX with a given time limit to solve each of the subproblems.
• ACT-TS is an implementation of the ACT-framework as a heuristic solution

method, using TS to produce solutions to each of the subproblems.
• ACT-SS is similar to ACT-TS, except that SS is used to produce solutions to the

subproblems.
• ACT-CPLEX-TS is also similar to ACT-TS, but uses a combination of CPLEX

and TS to produce solutions to the subproblems.
• ACT-CPLEX-SS is similar to ACT-CPLEX-TS, except that

CPLEX and SS is used to produce solutions to the subproblems.

Preliminary testing gave us the following timing scheme. All the methods are lim-
ited to a running time of at most 1 hour, except when used as subsolvers within
another method. Based on some calibration runs, the following schemes were used to
distribute the computational effort among the components of the different methods.
In ACT-CPLEX-EXACT, the subsolver (CPLEX) was allowed to run until optimal-
ity was proved or until the overall time limit was reached. For both ACT-TS and
ACT-SS, the TS and SS was run for 100 seconds on each subproblem. The same
time limit was used for CPLEX when applied within ACT-CPLEX. When using
both CPLEX and TS or SS as subsolvers, CPLEX was first allowed to execute for
25 seconds (or until optimality was proved, whichever occurred first). If optimality
for the subproblem was not proved, TS or SS was run for 100 seconds respectively
in ACT-CPLEX-TS and ACT-CPLEX-SS.

The test instances used in the computational results reported here reflect the fact
that the KCP subsumes the MKP. From Chu and Beasley (1998) we have 9 classes,
with 30 instances each, for the MKP. These have n = 100, n = 250, or n = 500
variables, and m = 5, m = 10, or m = 30 knapsack constraints. Another class (with
results reported in Vasquez and Hao 2001) contains 11 MKP-instances with between
n = 100 and n = 2500 variables, and from m = 15 to m = 100 knapsack constraints,
which gives a total of 281 MKP instances. In addition, results are reported for a set
of 405 instances with both knapsack and cover constraints, from Cappanera and Tru-
bian (2005). This set is a subset of the instances presented in Cappanera and Trubian
(2005), obtained by disregarding instances with negative coefficients in the objective
function. The KCP instances have the same number of variables and knapsack con-
straints as the MKP instances, but have in addition q = 1, q = �m

2 	, or q = m cover
constraints (15 instances of each type).

Before embarking on the discussion of the results, we emphasize that we start with
relative comparisons. These may graphically give the impression that the differences
in performance between some methods are larger than they actually are. The absolute
results are presented in Table 2, towards the end.

Our discussion around the results start with Fig. 2, which shows, for each method,
the ratio of problems for which the method has the best found solution as a function

Alternating control tree search for knapsack/covering problems 249

Fig. 2 Ratio of best solutions as a function of time for the different solution methods, on all instances

of time. For example, after 300 seconds CPLEX has found at least as good results
as any other method for about 62% of the instances, and after 3600 seconds this ratio
has decreased to just under 58% for CPLEX.

In this and the following figures, all methods are applied to the same set of in-
stances. In Fig. 2 the set of instances is the complete collection of MKP and KCP
instances, while subsequent figures show results for different subsets this collection.

Actually, CPLEX is an exception by having a deteriorating performance; i.e., its
relative performance becomes worse over time. In terms of the number of best so-
lutions found, CPLEX loses its lead at around 1700 seconds, and the best method
from then on is the ACT-CPLEX-SS method (having about 67% of the best results
after 3600 seconds). After one hour, ACT-CPLEX and ACT-SS is also better than
CPLEX. for ACT-CPLEX-TS the performance is equal to that of CPLEX whereas
the other methods are inferior.

A general finding, which is illustrated in Fig. 2, is that using the heuristic solu-
tion methods (SS and TS) within the ACT-framework gives better results than using
them alone. We can also note that the same is not true for CPLEX when used as
an exact subsolver (ACT-CPLEX-EXACT is not shown in Fig. 2, but final results
are listed in Table 1), since ACT-CPLEX-EXACT gives a smaller number of best
solutions (about 48% versus 57%) than CPLEX. Also of interest is the fact that ACT-
CPLEX-EXACT finds more feasible solutions than CPLEX. However, there is also a
difference in the usage, as CPLEX as a subsolver is not terminated until optimality

250 L.M. Hvattum et al.

Fig. 3 Ratio of best solutions as a function of time for the different solution methods for the problem
instances with 30 knapsack constraints

of the subproblem has been proven in ACT-CPLEX-EXACT, while SS and TS both
are terminated after a given amount of time. A consequence is that for some of the dif-
ficult problems, ACT-CPLEX-EXACT actually spends all the time allotted having
CPLEX working on the first subproblem. This may prevent this method from finding
a good (or any) feasible solution, which would only appear in the investigation of
a later subproblem. To complete the picture, when CPLEX is applied as a heuristic
subsolver, as in ACT-CPLEX, it does indeed perform better than as a stand-alone
method.

The same type of graph is plotted in Fig. 3, but only for the subset of instances with
30 knapsack constraints (and 0, 1, 15, or 30 cover constraints). The best performance
is now by ACT-CPLEX-SS and ACT-SS, and in this subset also the ACT-CPLEX-
TS as well as ACT-CPLEX performs better than CPLEX. The results obtained with
ACT-TS, ACT-CPLEX-EXACT, and TS are comparable to CPLEX while SS is a
bit behind. It thus seems that the best problem instances to be handled by CPLEX
are those with few constraints.

Figure 4 shows only the instances with 500 variables. Again, CPLEX seems best
early in the runs, but is then overtaken by ACT-CPLEX-SS, ACT-CPLEX and later
also by ACT-SS. A notable feature with respect to the instances with 500 variables is
that the lone SS method does not find any of the best solutions (at any point in time).
This is consistent with the findings in Hvattum and Løkketangen (2007) that Scatter

Alternating control tree search for knapsack/covering problems 251

Fig. 4 Ratio of best solutions as a function of time for the different solution methods for the problem
instances with 500 variables

Search (in the versions employed there) needs a lot of time to find good solutions,
especially on the larger instances. It seems that the partitioning of the search space as
done within the ACT-framework is very beneficial for Scatter Search, enabling ACT-
SS to perform well even for these larger problem instances. Since the subproblems
are significantly smaller than the original problem, Scatter Search can find reasonably
good solutions to the subproblems quite quickly, even though the full problem would
take a long time to solve similarly well.

Finally, Fig. 5 shows results for the subset of instances with at least one cover con-
straint, whereas Fig. 6 shows results for the instances without any cover constraints.
The most notable feature is that CPLEX performs very well on the pure MKP prob-
lems, especially early in the runs. There could be several explanations for this. First
of all, the other methods are to some extent tuned to perform well on the general
KCP, with both TS and SS having search strategies and parameters that reflect the
existence of cover constraints. In addition, the overall ACT-framework is constructed
around the interplay between knapsack and cover constraints. Finally, we expect that
the ease of finding feasible solutions for the MKP problems helps the branch-and-
bound approach of CPLEX to cut off parts of the search space more efficiently than
for the problem instances with cover constraints. It is also interesting to observe in
Figs. 5 and 6 that more or less all of the ACT-based methods are gaining steadily on
CPLEX and the other non-ACT methods. The expected outcome of longer running

252 L.M. Hvattum et al.

Fig. 5 Ratio of best solutions as a function of time for the different solution methods for the instances
with both cover and knapsack constraints

times would thus be to see even more favorable relative results for the ACT-based
methods.

An additional remark is appropriate. Figures 2–6 seem to indicate that there is a
huge difference between the good and the bad methods. E.g., in Fig. 5, SS finds the
best solution for only about 24% of the instances, whereas ACT-CPLEX-SS finds the
best solution for more than 64% of the instances. However, if we compare the value
of the best solution found by SS with the best value found overall, the difference is
typically much less than 1%, and for the MKP instances of Chu and Beasley (1998)
the difference is on average 0.057%. This remark also applies to Table 1, as discussed
next.

The results in Table 1 are interpreted as follows. For each problem class and each
method a number is given that represents the relative performance of the method for
that particular class. The number is scaled so that it lies in [0,1], being 1 for the
method that has the best average objective function value for the class, and being 0
for the method that has the worst average objective function value. This means that,
for example, for class KCP 100-5, where TS has an average objective function value
within 0.034% of the best method, it is still assigned a value of 0, on account of
being the method with the worst average objective function value. The classes are
listed based on type (KCP has both knapsack and cover constraints, MKP has only
knapsack constraints) and size (n–m gives the number of variables and the number of

Alternating control tree search for knapsack/covering problems 253

Fig. 6 Ratio of best solutions as a function of time for the different solution methods for the MKP in-
stances

knapsack constraints). The column # gives the number of instances in each class. If
the method fails to find feasible solutions to some of the instances in a class, instead
of reporting the scaled average objective function of the solved instances, we report
the ratio of solutions found in brackets.

Summarizing the results of Table 1, the main impression is similar to that of
Figs. 2–6. Overall, ACT-CPLEX-SS and ACT-CPLEX give the best results, but
ACT-SS, CPLEX, ACT-CPLEX-EXACT, and ACT-CPLEX-TS all perform nearly
as well. However, it is necessary to stress that the average results (in the row entitled
AVERAGE∗) exclude the three KCP-classes with m = 30 knapsack constraints (since
these are the classes where some methods fail to produce feasible solutions to all the
instances). Excluding these latter three classes from the average gives a favorable
bias to CPLEX, ACT-CPLEX and ACT-CPLEX-EXACT in particular. It should
be noted that all methods except TS and SS fail to find feasible solutions for some of
the KCP-instances. As Table 1 shows though, CPLEX and ACT-CPLEX-EXACT
fail to find feasible solutions in more instances than the other methods (with 33 and
25 failed instances, respectively).

Table 2 gives average values of the best solutions found for each method and
each class. All numbers are rounded to the nearest integer. If a method does not find
feasible solutions to all instances in a class, we report as in Table 1. The best average
results for each class are emphasized by boldface numbers. The table confirms the

254 L.M. Hvattum et al.

Ta
bl

e
1

Su
m

m
ar

y
of

re
la

tiv
e

pe
rf

or
m

an
ce

w
ith

in
ea

ch
pr

ob
le

m
in

st
an

ce
cl

as
s

n–
m

#
A

C
T-

A
C

T-
A

C
T-

C
P

L
E

X
A

C
T-

A
C

T-
A

C
T-

T
S

SS
C

P
L

E
X

-
C

P
L

E
X

SS
C

P
L

E
X

-
C

P
L

E
X

-
T

S
SS

T
S

E
X

A
C

T

K
C

P
10

0–
5

45
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
0.

72
3

0.
00

0
0.

83
0

K
C

P
10

0–
10

45
0.

99
1

1.
00

0
0.

63
0

0.
93

1
0.

94
4

0.
99

1
0.

47
2

0.
55

1
0.

00
0

K
C

P
10

0–
30

45
(3

9/
45

)
(3

4/
45

)
(3

8/
45

)
(2

7/
45

)
(3

9/
45

)
(3

3/
45

)
(3

8/
45

)
1.

00
0

0.
00

0

K
C

P
25

0–
5

45
0.

72
5

1.
00

0
0.

68
8

0.
75

0
0.

68
8

0.
73

8
0.

55
0

0.
23

8
0.

00
0

K
C

P
25

0–
10

45
0.

97
2

0.
90

5
1.

00
0

0.
80

4
0.

92
7

0.
64

2
0.

87
7

0.
79

9
0.

00
0

K
C

P
25

0–
30

45
1.

00
0

(4
3/

45
)

0.
99

6
(3

5/
45

)
0.

76
8

(3
7/

45
)

0.
76

1
0.

53
7

0.
00

0

K
C

P
50

0–
5

45
1.

00
0

0.
98

9
0.

98
4

0.
97

3
0.

90
8

0.
87

6
0.

81
1

0.
24

9
0.

00
0

K
C

P
50

0–
10

45
1.

00
0

0.
93

2
0.

99
1

0.
91

1
0.

91
1

0.
78

9
0.

86
4

0.
59

1
0.

00
0

K
C

P
50

0–
30

45
1.

00
0

(4
0/

45
)

0.
96

1
(4

0/
45

)
0.

91
6

(4
0/

45
)

0.
88

0
0.

51
0

0.
00

0

M
K

P
10

0–
5

30
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
0.

78
3

0.
00

0
1.

00
0

M
K

P
10

0–
10

30
1.

00
0

1.
00

0
0.

45
2

1.
00

0
1.

00
0

1.
00

0
0.

45
2

1.
00

0
0.

00
0

M
K

P
10

0–
30

30
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
0.

97
7

1.
00

0
0.

00
0

M
K

P
25

0–
5

30
0.

92
9

0.
92

9
0.

78
6

1.
00

0
0.

92
9

1.
00

0
0.

50
0

0.
00

0
0.

07
1

M
K

P
25

0–
10

30
0.

98
2

1.
00

0
0.

93
0

1.
00

0
0.

98
2

0.
91

2
0.

89
5

0.
82

5
0.

00
0

M
K

P
25

0–
30

30
0.

95
3

1.
00

0
0.

91
5

1.
00

0
0.

96
9

0.
71

3
0.

96
1

0.
86

0
0.

00
0

M
K

P
50

0–
5

30
1.

00
0

1.
00

0
0.

94
5

1.
00

0
1.

00
0

0.
96

4
0.

87
3

0.
69

1
0.

00
0

M
K

P
50

0–
10

30
0.

96
8

0.
98

9
0.

95
2

1.
00

0
0.

95
2

0.
86

6
0.

95
7

0.
71

0
0.

00
0

M
K

P
50

0–
30

30
0.

95
3

1.
00

0
0.

90
8

0.
94

5
0.

95
5

0.
83

4
0.

87
4

0.
71

6
0.

00
0

G
K

-M
K

P
11

0.
99

8
1.

00
0

0.
97

2
0.

99
6

0.
99

9
0.

99
8

0.
94

5
0.

00
0

0.
01

5

U
N

SO
LV

E
D

68
6

6
18

7
33

6
25

7
0

0

A
V

E
R

A
G

E
∗

55
1

0.
96

3
0.

98
1

0.
88

1
0.

94
5

0.
93

8
0.

88
2

0.
76

6
0.

51
4

0.
12

6

Alternating control tree search for knapsack/covering problems 255

Ta
bl

e
2

Su
m

m
ar

y
of

ab
so

lu
te

pe
rf

or
m

an
ce

w
ith

in
ea

ch
pr

ob
le

m
in

st
an

ce
cl

as
s

n–
m

#
A

C
T-

A
C

T-
A

C
T-

C
P

L
E

X
A

C
T-

A
C

T-
A

C
T-

T
S

SS
C

P
L

E
X

-
C

P
L

E
X

SS
C

P
L

E
X

-
C

P
L

E
X

-
T

S
SS

T
S

E
X

A
C

T

K
C

P
10

0–
5

45
46

52
0

46
52

0
46

52
0

46
52

0
46

52
0

46
52

0
46

51
6

46
50

4
46

51
8

K
C

P
10

0–
10

45
38

75
4

38
75

4
38

74
6

38
75

3
38

75
3

38
75

4
38

74
3

38
74

5
38

73
3

K
C

P
10

0–
30

45
(3

9/
45

)
(3

4/
45

)
(3

8/
45

)
(2

7/
45

)
(3

9/
45

)
(3

3/
45

)
(3

8/
45

)
29

96
0

29
88

9

K
C

P
25

0–
5

45
12

78
81

12
79

03
12

78
78

12
78

83
12

78
78

12
78

82
12

78
67

12
78

42
12

78
23

K
C

P
25

0–
10

45
10

17
34

10
17

22
10

17
39

10
17

04
10

17
26

10
16

75
10

17
17

10
17

03
10

15
60

K
C

P
25

0–
30

45
85

46
1

(4
3/

45
)

85
46

1
(3

5/
45

)
85

40
2

(3
7/

45
)

85
40

0
85

34
2

85
20

5

K
C

P
50

0–
5

45
26

44
99

26
44

97
26

44
96

26
44

94
26

44
82

26
44

76
26

44
64

26
43

60
26

43
14

K
C

P
50

0–
10

45
22

27
59

22
27

29
22

27
55

22
27

20
22

27
20

22
26

66
22

26
99

22
25

79
22

23
19

K
C

P
50

0–
30

45
17

94
46

(4
0/

45
)

17
94

16
(4

0/
45

)
17

93
81

(4
0/

45
)

17
93

53
17

90
67

17
86

73

M
K

P
10

0–
5

30
42

64
0

42
64

0
42

64
0

42
64

0
42

64
0

42
64

0
42

64
0

42
63

8
42

64
0

M
K

P
10

0–
10

30
41

60
6

41
60

6
41

60
4

41
60

6
41

60
6

41
60

6
41

60
4

41
60

6
41

60
2

M
K

P
10

0–
30

30
40

76
8

40
76

8
40

76
8

40
76

8
40

76
8

40
76

8
40

76
7

40
76

8
40

76
3

M
K

P
25

0–
5

30
10

70
88

10
70

88
10

70
86

10
70

89
10

70
88

10
70

89
10

70
82

10
70

75
10

70
76

M
K

P
25

0–
10

30
10

63
64

10
63

65
10

63
61

10
63

65
10

63
64

10
63

60
10

63
59

10
63

55
10

63
08

M
K

P
25

0–
30

30
10

46
98

10
47

04
10

46
93

10
47

04
10

47
00

10
46

67
10

46
99

10
46

86
10

45
75

M
K

P
50

0–
5

30
21

41
65

21
41

65
21

41
62

21
41

65
21

41
65

21
41

63
21

41
58

21
41

48
21

41
10

M
K

P
50

0–
10

30
21

28
24

21
28

28
21

28
21

21
28

30
21

28
21

21
28

05
21

28
22

21
27

76
21

26
44

M
K

P
50

0–
30

30
21

13
79

21
13

99
21

13
60

21
13

76
21

13
80

21
13

29
21

13
46

21
12

79
21

09
77

G
K

-M
K

P
11

25
72

6
25

72
7

25
72

0
25

72
6

25
72

6
25

72
6

25
71

5
25

50
6

25
51

0

U
N

SO
LV

E
D

68
6

6
18

7
33

6
25

7
0

0

A
V

E
R

A
G

E
∗

55
1

12
49

10
12

49
10

12
49

07
12

49
05

12
49

05
12

48
90

12
48

96
12

48
61

12
47

88

256 L.M. Hvattum et al.

general pattern of results from Table 1. In most cases the differences between the
best method and the runner-ups within the classes are marginal.

As a curiosity, we mention that two new best solutions were found on the 500-
variable MKP instances. The best known results on these 90 instances are reported
in Vasquez and Vimont (2005). For problem instance number 13 in the class with
n = 500 and m = 10 of MKP-instances, where the previous best result was 217806,
CPLEX finds a solution with a value of 217847. For problem instance number 24
in the same class, the improvement is from 300757 to 300784, which is found by
ACT-CPLEX-SS and ACT-SS. In addition, for the MKP problem with 500 vari-
ables the previous best known solutions are replicated for 35 out of the 90 problem
instances (though not by all of the methods). One should note here that the running
time in Vasquez and Vimont (2005) is 50–100 hours per instance on average, whereas
our results were achieved within one hour of running time (per method). Considering
ACT-CPLEX-SS alone, this method run for one hour replicates best known solutions
for 16 of the 90 instances and improves the result on one instance. Looking at the re-
sults for ACT-CPLEX, which appears to be the most effective of our methods for the
MKP, we find that this method alone replicates 23 best known results. Comparing the
results for ACT-CPLEX directly to those reported in Hanafi and Wilbaut (2006) we
get better solutions on 32 instances and worse on 27 instances. Our results on these
90 instances are thus on par with those from Hanafi and Wilbaut (2006), which were
obtained with somewhat shorter running times.

5 Conclusions

We have proposed, implemented, and tested the Alternating Control Tree Search
(ACT) method, which is a framework that can be used both for exact and for heuristic
solution methods. Four different solution methods for the Multidimensional Knap-
sack/Covering Problem (KCP) was implemented both as stand-alone methods and as
subsolvers within the ACT-framework.

Among the stand-alone methods, which do not integrate ACT with other proce-
dures, CPLEX found more best solutions than the other methods (implemented in
isolation), though, in reverse, it also failed to find feasible solutions to more of the
problems than any of the other methods. For the methods based on ACT, ACT-
CPLEX-SS and ACT-CPLEX were the best and outperformed CPLEX, except
for ACT-CPLEX-SS on instances of the pure Multidimensional Knapsack Problem
(MKP). We note that in general, using a heuristic method within the ACT-framework
(as in ACT-SS and ACT-TS) gives better results than using the heuristic alone (as in
SS and TS). The same observation can be made when CPLEX is used as a heuristic,
for ACT-CPLEX. Our testing furthermore shows that TS tends to give somewhat
better results than SS, when used alone. When used with the ACT, the SS is set to
work on smaller subproblems and it seems to work better than the TS in this role.

The ACT is similar to the method examined in Soyster et al. (1978) and Hanafi
and Wilbaut (2006), but differs in trying to exploit the special structure of the KCP
while Soyster et al. (1978) and Hanafi and Wilbaut (2006) focus on a general 0–1
Integer Programming formulation, while performing computation tests only for the

Alternating control tree search for knapsack/covering problems 257

MKP. Moreover, Soyster et al. (1978) and Hanafi and Wilbaut (2006) claims that their
method is suitable for problems with few constraints, whereas our findings indicate
that the ACT-framework is indeed successful for problems with many constraints
(see Fig. 3 compared to Fig. 2).

We do reach the same conclusion as in Hanafi and Wilbaut (2006), however, in
that the framework is best suited as a heuristic mechanism. This is mainly due to the
fact that the progression in lowering the upper bounds produced in ACT-1 becomes
increasingly slow as more iterations are performed.

Acknowledgements We thank two anonymous referees for comments and suggestions that improved
on a preliminary version of this paper.

References

Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Optim. 4(1), 4–20 (2007)
Arntzen, H., Hvattum, L.M., Løkketangen, A.: Adaptive memory search for multidemand multidimen-

sional knapsack problems. Comput. Oper. Res. 33, 2508–2525 (2006)
Beaujon, G.J., Marin, S.P., McDonald, G.C.: Balancing and optimizing a portfolio of r&d projects. Nav.

Res. Logist. 48, 18–40 (2001)
Cappanera, P.: Discrete facility location and routing of obnoxious facilities. PhD thesis, University of

Milano (1999)
Cappanera, P., Trubian, M.: A local-search-based heuristic for the demand-constrained multidimensional

knapsack problem. INFORMS J. Comput. 17, 82–98 (2005)
Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack problem. J. Heuristics 4,

63–86 (1998)
Danna, E., Rothberg, E., Pape, C.L.: Exploring relaxation induced neighborhoods to improve MIP solu-

tions. Math. Program. 102(1), 71–90 (2005)
Fischetti, M., Lodi, A.: Local branching. Math. Program. 98(1), 23–47 (2003)
Gavish, B., Pirkul, H.: Allocation of databases and processors in a distributed computing system. In:

Akoka, J. (ed.) Management of Distributed Data Processing, pp. 215–231. North-Holland, Amster-
dam (1982)

Gilmore, P.C., Gomory, R.E.: The theory and computation of knapsack functions. Oper. Res. 14, 1045–
1075 (1966)

Glover, F.: Heuristics for integer programming using surrogate constraints. Decis. Sci. 8(1), 156–166
(1977)

Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Boston (1997)
Gomes, C., Sellmann, M.: Streamlined constraint reasoning. In: Proceedings, CPAIOR 2004 (2004)
Gomes, C., van Hoeve, W., Leahu, L.: The power of semidefinite programming relaxations for MAX-SAT.

In: Proceedings, CPAIOR 2006, pp. 104–118 (2006)
Hanafi, S., Wilbaut, C.: Improved convergent heuristic for 0–1 mixed integer programming. Research

Report, University of Valenciennes (2006)
Holmberg, K., Yuan, D.: A Lagrangian heuristic based branch-and-bound approach for the capacitated

network design problem. Oper. Res. 48(3), 461–481 (2000)
Hvattum, L.M., Løkketangen, A.: Experiments using scatter search for the multidemand multidimensional

knapsack problem. In: Doerner, K.F., et al. (eds.) Metaheuristics: Progress in Complex Systems Op-
timization. Operations Research/Computer Science Interfaces, vol. 39, pp. 3–24. Springer, Berlin
(2007)

Laguna, M., Martí, R.: Scatter Search: Methodology and Implementations in C. Kluwer Academic, Dor-
drecht (2003)

Lorie, J., Savage, L.: Three problems in capital rationing. J. Bus. 28, 229–239 (1955)
Manne, A., Markowitz, H.: On the solution of discrete programming problems. Econometrica 25, 85–110

(1957)
Plastria, F.: Static competitive facility location: an overview of optimization approaches. Eur. J. Oper. Res.

129, 461–470 (2001)

258 L.M. Hvattum et al.

Puchinger, J., Raidl, G.R.: Combining metaheuristics and exact algorithms in combinatorial optimization:
A survey and classification. In: Mira, J., Álvarez, J.R. (eds.) Proceedings of the First International
Work-Conference on the Interplay Between Natural and Artificial Computation, Part II. Lecture
Notes in Computer Science, vol. 3562, pp. 41–53. Springer, Berlin (2005)

Romero-Morales, D., Carrizosa, E., Conde, E.: Semi-obnoxious location models: a global optimization
approach. Eur. J. Oper. Res. 102, 295–301 (1997)

Savelsbergh, M.W.P.: Preprocessing and probing for mixed integer programming problems. ORSA J. Com-
put. 6, 445–454 (1994)

Sellmann, M., Kliewer, G., Koberstein, A.: Lagrangian cardinality cuts and variable fixing for capacitated
network. In: Proceedings of the Tenth Annual European Symposium on Algorithms, pp. 845–858
(2002)

Shih, W.: A branch and bound method for the multiconstraint zero-one knapsack problem. J. Oper. Res.
Soc. 30, 369–378 (1979)

Soyster, A.L., Lev, B., Slivka, W.: Zero-one programming with many variables and few constraints. Eur.
J. Oper. Res. 2, 195–201 (1978)

Vasquez, M., Hao, J.-K.: A hybrid approach for the 0–1 multidimensional knapsack problem. In: Proceed-
ings of the International Joint Conference on Artificial Intelligence 2001, pp. 328–333 (2001)

Vasquez, M., Vimont, Y.: Improved results on the 0–1 multidimensional knapsack problem. Eur. J. Oper.
Res. 165, 70–81 (2005)

	Alternating control tree search for knapsack/covering problems
	Abstract
	Introduction
	The alternating control tree search method
	Solving the subproblem
	CPLEX
	Tabu search
	Scatter search

	Computational results and analyzes
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

