
J Heuristics (2009) 15: 283–312
DOI 10.1007/s10732-007-9064-9

Benders decomposition, Lagrangean relaxation
and metaheuristic design

Marco Boschetti · Vittorio Maniezzo

Received: 15 November 2006 / Revised: 30 March 2007 / Accepted: 3 April 2007 /
Published online: 23 October 2007
© Springer Science+Business Media, LLC 2007

Abstract Large part of combinatorial optimization research has been devoted to the
study of exact methods leading to a number of very diversified solution approaches.
Some of those older frameworks can now be revisited in a metaheuristic perspective,
as they are quite general frameworks for dealing with optimization problems. In this
work, we propose to investigate the possibility of reinterpreting decompositions, with
special emphasis on the related Benders and Lagrangean relaxation techniques. We
show how these techniques, whose heuristic effectiveness is already testified by a
wide literature, can be framed as a “master process that guides and modifies the op-
erations of subordinate heuristics”, i.e., as metaheuristics. Obvious advantages arise
from these approaches, first of all the runtime evolution of both upper and lower
bounds to the optimal solution cost, thus yielding both a high-quality heuristic solu-
tion and a runtime quality certificate of that same solution.

Keywords Combinatorial optimization · Lagrangean relaxation · Benders’s
decomposition · Metaheuristic

1 Introduction

It has been 20 years since metaheuristics were introduced as such (Glover 1986),
mainly with the objective of overcoming the brittleness of problem-specific ap-
proaches and to enable the fast design of effective procedures. Several different meta-
heuristic paradigms have been presented in the literature, but the current trend seems

M. Boschetti (�)
Department of Mathematics, University of Bologna, Bologna, Italy
e-mail: boshett@csr.unibo.it

V. Maniezzo
Department of Computer Science, University of Bologna, Bologna, Italy
e-mail: vittorio.maniezzo@unibo.it

mailto:boshett@csr.unibo.it
mailto:vittorio.maniezzo@unibo.it

284 M. Boschetti, V. Maniezzo

to emphasize more and more the role of local search as an essential ingredient of any
of them. In fact, most paradigms are either directly based on local search (simulated
annealing, tabu search, variable neighborhood search, iterated local search, guided
local search, . . .) or definitely benefit from hybridization with it (genetic algorithms,
scatter search, . . .). The literature shows that such techniques are often able to pro-
duce the best known heuristic solutions on the instance sets used for benchmarking.
However, the harder it is to find feasible neighbors, the more ineffective they become,
the set partitioning problem being a paradigmatic example thereof.

All current metaheuristics are primal-only methods. Possibly, the use of dual in-
formation and more in general of mathematical programming based results, could
help designing different approaches. This implies revisiting much mathematical pro-
gramming theory, which was usually devised for exact approaches, in a metaheuristic
framework. In this work, we propose to investigate the possibility of reinterpreting
decompositions, with special emphasis on the related Benders and Lagrangean relax-
ation techniques, from a metaheuristic perspective.

Lagrangean and Benders heuristics have been around for decades and are men-
tioned in a number of papers. However, they were either seen as the poor relatives of
accompanying exact methods—thus deserving at most some hints as a subsection of
a paper—or they were proposed as very problem-specific heuristics, thereby repro-
ducing the ante-metaheuristics setting. We propose to show here that, on the contrary,
the structure of such approaches can be sufficiently robust to propose them as full-
fledged metaheuristics, with the accompanying bonus of the entailed well-grounded
structure.

The naming “metaheuristic” was introduced by F. Glover, who denoted tabu search
“as a ‘meta-heuristic’ superimposed on another heuristic” (Glover 1986). This defi-
nition was made more normative by stating that a metaheuristic “refers to a master
strategy that guides and modifies other heuristics to produce solutions beyond those
that are normally generated in a quest for local optimality” (Glover and Laguna 1997).
A discussion on this topic by S. Voss concludes that a metaheuristic is “an iterative
master process that guides and modifies the operations of subordinate heuristics to ef-
ficiently produce high-quality solutions. (. . .) The family of meta-heuristics includes,
but is not limited to, adaptive memory procedures, tabu search, ant systems, greedy
randomized adaptive search, variable neighborhood search, evolutionary methods,
genetic algorithms, scatter search, neural networks, simulated annealing, and their
hybrids” (Voss 2001). The need for problem specialization is made even more ex-
plicit in P. Hansen’s position, according to which “a metaheuristic is a schema for
designing heuristics”.

According to this, decompositions such as Benders’ or Lagrangean (but the same
would apply also to Dantzig-Wolfe) provide a rich framework for designing meta-
heuristics. There is an entrance barrier to acknowledge, in that these model-based
approaches require some familiarity with basic decomposition techniques, but this is
rewarded by the possibility to obtain:

• Both an upper and a lower bound, thus an a posteriori quality check of the solu-
tion obtained, which is a feature totally absent in primal-only methods but of both
theoretical and practical significant importance;

Benders decomposition, Lagrangean relaxation and metaheuristic 285

• Optimality conditions, which could permit an early process closure, other than
standard termination conditions;

• Reduction of search space, as dual information can be used to prune expensive
decision variables;

• Multiple quality starting points for local search, provided by the different solutions
constructed by the heuristics.

Examples of such model-based metaheuristics are proposed in Sect. 2 of this paper.
Section 3 introduces the problems used for validating the algorithms put forth, a very
standard one (Single Source Capacitated Facility Location) used as a direct example,
and two more complex ones (Membership Overlay and Multi-Mode Project Schedul-
ing) used to introduce some research issues. Section 4 shows the application and the
results obtained with the Lagrangean approach, while Sect. 5 shows those obtained
with the Benders approach.

2 Methodologies

This section briefly overviews the two decomposition techniques we will use as a
basis for metaheuristics design and shows how metaheuristic frameworks can be di-
rectly derived. Notice that the proposed algorithms are not the only ones that could be
derived from the used decompositions, but they represent reasonable frameworks we
already use with success on different problems. Hopefully, this paper could also serve
as a means to foster research on different or more general metaheuristic frameworks,
including the main heuristic approaches deriving from decomposition techniques.

2.1 Benders’ and Lagrangean decompositions

Both decompositions can be applied from continuous up to pure integer linear pro-
gramming. Since the topic is quite standard in any basic mathematical programming
textbook, we will only sketch here the basic formulae in the case of a MIP problem,
where we will assume, for ease of presentation, that the feasibility region is non-null
and bounded.
Consider the following problem P:

zP = min c1x + c2y (1)

s.t. Ax + By ≥ b (2)

Dy ≥ d (3)

x ≥ 0 (4)

y ≥ 0 and integer (5)

Lagrangean relaxation suggests to penalize some constraints, for example con-
straints 2, by means of Lagrangean penalties λ, λ ≥ 0, thereby obtaining the follow-
ing formulation L:

286 M. Boschetti, V. Maniezzo

zL = min c1x + c2y + λ(b − Ax − By) (6)

s.t. Dy ≥ d (7)

x ≥ 0 (8)

y ≥ 0 and integer (9)

It is easily shown that zL ≤ zP. Being interested in the best possible lower bound,
the Lagrangean dual problem arises, asking to identify the lambdas which maximize
the lower bound. Mathematically, the following formulation

zL = max λb + zLR(λ) (10)

s.t. λ ≥ 0 (11)

with

zLR(λ) = min (c1 − λA)x + (c2 − λB)y (12)

s.t. Dy ≥ d (13)

x ≥ 0 (14)

y ≥ 0 and integer (15)

shows the structure of the internal subproblem LR and of the external Lagrangean
Dual. Notice that it is possible to add to problems L and LR constraints that are
redundant in the original formulation, but can help the convergence.

Benders decomposition (Benders 1962) suggests to iterate through two phases,
where the first one fixes the y variables to some ȳ value, then the second one solves
the resulting subproblem. This translates into decomposing problem P as follows:

zB = min c2y + zSP(y) (16)

s.t. Dy ≥ d (17)

y ≥ 0 and integer (18)

where

zSP(y) = min c1x (19)

s.t. Ax ≥ b − By (20)

x ≥ 0 (21)

The internal subproblem SP can be equivalently formulated in dual form, by asso-
ciating dual variables w to constraints 20. The result is the following problem DP:

zDP = max w(b − By) (22)

s.t. wA ≤ c1 (23)

w ≥ 0 (24)

Benders decomposition, Lagrangean relaxation and metaheuristic 287

This is a standard LP problem that, under the assumption of boundedness, has the
optimum at an extreme point. By denoting as {wt , t = 1, . . . , T } the set of the extreme
points of the feasible region (which we have assumed finite and non-null), the sub-
problem becomes maxt=1,...,T wt (b − By). Therefore, upon denoting by Y the feasi-
ble region induced by constraints 3 and 5, i.e. Y = {y : Dy ≥ d,y ≥ 0 and integer},
problem B can be reformulated as miny∈Y{c2y + maxt=1,...,T wt (b − By)}, or, equiv-
alently, as maxt=1,...,T miny∈Y c2y + wt (b − By).

The internal maximization problem can thus be reformulated as:

zMP = min z (25)

s.t. z ≥ c2y + wt (b − By), t = 1, . . . , T (26)

y ∈ Y (27)

Usually one starts with a small number T ′ of Benders’ cuts 26, i.e., T ′ � T . In
this case problem MP is called the master problem, it is solved with the T ′ available
cuts, then the subproblem DP is solved, in order to ascertain whether an additional
cut should be added to the master or the solution is already optimal. Even for prob-
lems MP and SP, it is possible to add constraints that are redundant in the original
formulation, but can help the convergence.

Notice that, upon refactoring formulation L, the Lagrangean relaxation of problem
P becomes:

zL = min c2y + zSL(y) (28)

s.t. Dy ≥ d (29)

y ≥ 0 and integer (30)

where

zSL(y) = max (c1 − λA)x + λ(b − By) (31)

s.t. x,λ ≥ 0 (32)

The analogy with problem B is apparent, all the more so when using w instead of
λ to denote the penalties. Building upon this, van Roy (1986) developed his cross de-
composition approach, an intriguing technique, unfortunately not directly applicable
in our case.

2.2 A Lagrangean metaheuristic

The literature is rich with heuristics based on the decomposition structure outlined
above. An excellent introduction to the whole topic of Lagrangean relaxation, and of
related heuristics, can be found in Beasley (1993). A general structure is, however,
common to most applications, which is the following.

288 M. Boschetti, V. Maniezzo

LAGRHEURISTIC()
1 identify an “easy” subproblem LR(x,λ)

2 repeat
3 solve subproblem LR(x,λ)

4 check for unsatisfied constraints
5 update penalties λ

6 construct problem solution using x and λ

7 until (end_condition)

The pseudocode is obviously underspecified for a direct application, being at the
same abstraction level metaheuristics are usually presented, see Genetic Algorithms
or Scatter Search. However, notice that this structure already shows the essential in-
gredients of a metaheuristics, i.e., it is “an iterative master process that guides and
modifies the operations of a subordinate heuristic” at Step 6.

Steps 1 and 3 are problem-dependent, such as neighborhoods definition or
crossover implementation in other contexts. Step 4 is trivial, while Step 5 can be
implemented by means of any state of the art techniques, usually subgradient opti-
mization or bundle methods. Notice moreover that some of these techniques have
been proved to converge not only to the optimal λ, but also to the optimal x of the
linear relaxation (see Sherali and Choi 1996 and Barahona and Anbil 2000), thereby
possibly providing a particularly “intelligent” starting point for Step 6.

2.3 A Benders’ metaheuristic

The identification of a common structure for Benders’ based heuristics is more dif-
ficult than for Lagrangean ones, since the proposals in the literature vary much, and
usually Benders is utilized in a very problem-dependent fashion. We will thus pro-
pose here one possible structure, which already proved effective, but alternative ones
are possible.

The structure can be applied both to MIP problems, as sketched in Sect. 2.1, and
to pure IP problems. The subproblem SP(x) could be defined over integer or binary
variables, in this case it is necessary its linear relaxation in order to obtain its dual
DP(w).

BENDHEURISTIC()
1 identify a master MP(z,y) and an “easy” subproblem SP(x), set t = 0
2 repeat
3 solve (heuristically) master problem MPt . Solution (zt ,yt)

4 if x are requested to be integer
5 then solve (heuristically) problem SP(x), solution (zH,xt)

6 solve problem DP(wt), solution (zd,wt), and add to MP the
corresponding cut

7 if no more cuts can be added
8 then STOP else set t = t + 1
9 until (end_condition)

Benders decomposition, Lagrangean relaxation and metaheuristic 289

Taking into account the intrinsic difficulty of both MP and SP, we thus propose to
consider solving them both heuristically.

The effect of solving heuristically MP at Step 3 is that it is not guaranteed to
produce a lower bound to problem P. When a lower bound is needed, MP must be
solved to optimality, or approximated from below. Notice, however, that the main
purpose of MP is to produce alternative y sets, of possibly increasing qualities, and
this can be effectively accomplished by heuristic solutions.

Step 5 provides an upper bound, i.e., a feasible solution, to the whole problem.
Step 6 finds a lower bound to the problem obtained by fixing the y variables.
The terminating condition at Step 7 depends on whether the master is solved

heuristically or to optimality. In this last case, the condition would be “if zt ≥ zd”,
which in fact implies the impossibility to generate new cuts. However, in a heuristic
context such as that admitted by Steps 3 and 5, new cuts could be further generated,
which could prove useful for continuing search.

3 Problems

The algorithms presented in Sect. 2 are meant as metaheuristics. They are relatively
simple, yet effective robust structured approaches. To get state of the art results some
sophisticated elements are needed, for these as for any other metaheuristic. In order
to show robustness, we report about the application of each proposed approaches to
two different problems. The first problem, which is used to show a simple straight-
forward application of the pseudocodes of Sect. 2, is the Single Source Capacitated
Facility Location. Then, we show how very effective procedures can be obtained
by including more advanced elements in the basic framework, reporting an applica-
tion of LAGRHEURISTIC to the Membership Overlay problem and an application of
BENDHEURISTIC to the Multi-Mode Project Scheduling problem.

In the following subsections we will introduce these problems, before describing
the applications.

3.1 Single source capacitated facility location

The Single Source Capacitated Facility Location Problem (SCFLP), is a well-known
problem that arises in many sectors, from clustering problems in data mining to net-
works design. The problem asks to locate a number of facilities (e.g., plants, ware-
houses or hubs), that must provide a service to a set of customers, minimizing a global
cost. The cost includes fixed charges for opening the facilities and transportation costs
for satisfying customer demands.

Let J = {1, . . . , n} be the index sets of customers and I = {1, . . . ,m} the index
set of possible facility locations. Each customer j has an associated demand, qj , that
must be served by a single facility; a facility located at site i has an overall capacity
of Qi .

The costs are composed of a cost cij for supplying the demand of a customer j

from a facility established at location i and of a fixed cost, fi , for opening a facility
at location i.

290 M. Boschetti, V. Maniezzo

Let xij , i = 1, . . . ,m, j = 1, . . . , n, be binary variables such that xij = 1 if cus-
tomer j is assigned to a facility located at i, 0 otherwise, and let yi , i = 1, . . . ,m, be
binary variables such that yi = 1 if a facility is located at site i, 0 otherwise.

A mathematical formulation of the SCFLP is as follows:

zSCFLP = min
∑

i∈I,j∈J

cij xij +
∑

i∈I

fiyi (33)

s.t.
∑

i∈I

xij = 1, j ∈ J (34)

∑

j∈J

qj xij ≤ Qiyi, i ∈ I (35)

xij ∈ {0,1}, i ∈ I, j ∈ J (36)

yi ∈ {0,1}, i ∈ I (37)

The objective function 33 asks to minimize the sum of fixed and service costs.
Assignment constraints 34 ensure that all customers are serviced by exactly one fa-
cility; knapsack constraints 35 are the facility capacity constraints and, finally, con-
straints 36 and 37 are the integrality constraints.

SCFLP is an NP-hard problem, and it has often been used for benchmarking new
approaches given its simple structure. Some variants of it exist, the most studied one
permitting a split assignment of customers to location, thus relaxing constraints 36 to
xij ≥ 0, i ∈ I, j ∈ J . Most approximation results, such as Chudak and Shmoys’s 3-
approximation algorithm (Chudak and Shmoys 1999), refer to this problem version.
Closely related problems are also the Capacitated p-medians and the Generalized
Assignment. Several exact approaches have been proposed for SCFLP, one of the
best known being Neebe and Rao (1983), where a branch and bound scheme based
on a partitioning formulation is proposed. However, exact methods cannot scale up
to big problem size.

Large instances have been tackled by means of different kinds of heuristics, from
VLSN (Ahuja et al. 2003) to reactive GRASP and tabu search (Delmaire et al. 1999).
Extensive research has been devoted to Lagrangean heuristic for the SCFLP. Most
authors start by relaxing assignment constraints, obtaining a Lagrangean subprob-
lem which separates into n knapsack problems, one for each facility, whose com-
bined solutions provide a lower bound to the problem (Barcelo and Casanova 1984;
Pirkul 1987; Sridharan 1991; Holmberg et al. 1999; Holt et al. 1999). However, dif-
ferent relaxations have also been used. Klincewicz and Luss (1986) on the contrary
relax the capacity constraints 35, thereby obtaining as Lagrangean subproblem an
uncapacitated facility location problem, which is solved heuristically. Beasley (1993)
and Agar and Salhi (1998) relax both the assignment and the capacity constraints,
and obtain a very robust solution approach, which provides good quality solutions to
a number of different location problems, including p-median, uncapacitated, capaci-
tated and single source facility location problems.

Benders decomposition, Lagrangean relaxation and metaheuristic 291

3.2 Membership overlay

The Membership Overlay Problem (MOP) is a problem that arises in peer-to-peer
(P2P) network design. P2P computing is a new field of distributed computing that
supports several novel applications, such as file sharing, grid computing, distributed
search, distributed hash tables, etc. This new field poses a large number of new opti-
mization problems, most of which are dynamic in nature.

The MOP arises in all P2P applications that are large and fully decentralized:
lacking a central service, participating nodes talk to each other directly, typically
using a relatively small list of peer nodes they are aware of. The optimization problem
arises through the fact that the peers have to intelligently select the other peers they
communicate with, so that no participant gets overloaded but available bandwidth
is reliably utilized by all network nodes. Current solutions are typically based on
random or pseudo-random topologies (Ganesh et al. 2003). These topologies have a
number of advantages from a theoretical point of view, but they ignore bandwidth and
other constraints. We refer the interested reader to (Boschetti et al. 2006) for further
details.

The set of known peers at each node defines the overlay network, where there
is a directed link between nodes i and j if i has the IP address of j in its list of
peers. That is, node j is connected to, or a neighbor of, i if i allocates non-zero
bandwidth for communicating with j . This network defines the membership in the
P2P group. The structure of this network has a major impact on the performance of
the communication.

A mathematical model of the MOP can be formulated on a graph G = (V ,E) of
n vertices, where the nodes correspond to peers and the edges correspond to pos-
sible connections: if there is an edge (i, j) then i can possibly send a message to
j using the underlying routing infrastructure, and j to i. When two nodes i and j

establish a connection, each one must allocate part of its bandwidth. Each node can
dynamically enter and exit the network, and when it is connected it can make use of
a limited bandwidth. In the model, each node has two associated weights, pi and wi ,
i = 0, . . . , n, corresponding to its uptime (measured as the percentage of time that the
peer is available and responding to traffic (Saroiu et al. 2002), normalized to 1) and
to the available bandwidth of its connection to the Internet, respectively.

The MOP asks to find a subgraph G′ = (V ,E′) of G. The edges in the graph G′
define the fact that two nodes actually decide to allocate some bandwidth to commu-
nicate with each other. If bi and bj are the bandwidths which could be allocated by
i and j , then the bandwidth of the connection can be at most bij = min{bi, bj }. The
two values bi and bj could be equal to wi and wj or could be less than that, due to
other connections already maintained by the peers. Moreover, there is a lower bound
lij on the bandwidth of acceptable connections and it is anyway possible to put a limit
uij on the maximal value that bij can take.

The algorithm for solving this problem has to be local: no global knowledge of
the network is provided, each node i can exchange information only with the nodes
in δ′(i), that is, with its neighbors in G′. A mathematical formulation of the static
version of the problem (SMOP), where nodes cannot enter or exit the network, is as
follows.

292 M. Boschetti, V. Maniezzo

Two sets of decision variables are used: {xij } and {yij }, (i, j) ∈ E. The deci-
sion variables xij specify the bandwidth allocated to the connection between peers
i and j . Therefore they are continuous variables 0 ≤ xij ≤ uij , which will be further
constrained when they are not 0 to be at least lij . Decision variables yij are binary
variables which are 1 if arc (i, j) is used for a connection, 0 otherwise.

The formulation is the following:

zSMOP = max
∑

(i,j)∈E

pij xij (38)

s.t.
∑

j∈δ(i)

xij ≤ bi, i ∈ V (39)

∑

i∈Sh

∑

j∈V \Sh

yij ≥ 1, ∀Sh ⊂ 2V (40)

lij yij ≤ xij ≤ uij yij , (i, j) ∈ E (41)

yij ∈ {0,1}, (i, j) ∈ E (42)

where pij = pi × pj , for each edge (i, j) ∈ E, and δ(i) represents the neighborhood
of i in G (e.g., δ(i) = V \ {i} if graph G is complete). Constraints 40 enforce con-
nectivity, but they have to be dropped in dynamic settings, such as MOP’s, since the
probability of survival of any path is small. Connectivity emerges as a property of
networks having average node outdegree sufficiently greater than 1. Problem SMOP
is NP-hard even without constraints 40. An effective LP-relaxation of problem P can
be obtained by replacing constraints 42 with constraints in the form 0 ≤ yij ≤ 1, for
each (i, j) ∈ E.

The literature on MOP is currently limited to Maniezzo et al. (2005) and Boschetti
et al. (2006), apart from Maniezzo et al. (2004) were a preliminary version of the
problem was reported.

3.3 Multi-mode project scheduling

The Multi-Mode Project Scheduling Problem (MPSP) asks to determine the starting
times of the activities of a project with the objective of minimizing the total project
duration (makespan). The activities cannot be interrupted once put in progress, and
are subject to constraints that impose a partial precedence relation among them and
a limit to their resource usage. Moreover, the activities can be executed in different
modes, involving different durations and resource requirements. This problem is NP-
hard being a generalization of the Resource-Constrained Project Scheduling Problem
(RCPSP), which is also NP-hard.

The MPSP problem can be formulated as follows (Maniezzo and Mingozzi 1999).
A set X = {1, . . . , n} of activities (jobs) and two sets RR and NR of resources are
given. The set RR is the set of renewable resources, resources whose quantities are
renewed from period to period, while NR is the set of nonrenewable resources, i.e.,
the set of resources which have a limited overall availability over all project duration.

In each period of the planning horizon t, t = 1, . . . , Tmax, Kr units of renewable
resource r are available, r ∈ RR, while there is a global availability of Ws units of

Benders decomposition, Lagrangean relaxation and metaheuristic 293

nonrenewable resource s, s ∈ NR. We assume that time period t corresponds to the
time interval [t, t + 1).

Every activity i is associated with a set Mi of possible modes it can be executed
in. When activity i is executed in mode m, it has a processing time (duration) dim and
it requires a constant amount kimr of renewable resource r , during each time interval
of its execution, and an amount wims of nonrenewable resource s. All quantities, dim,
kimr , wims , Kr and Ws , are assumed to be non-negative integers, no pre-emption is
allowed and setup times are included in the processing times.

With each activity j is associated a set δ(j)−1 ⊆ X\{j} of immediate prede-
cessors. The precedence constraints can be represented by an acyclic digraph G =
(X,H) where H = {(i, j) : i ∈ δ(j)−1, j ∈ X}. We assume, without loss of general-
ity, that activities are topologically ordered. Activities 1 and n are used to represent
the beginning and the end of the whole project: activity 1 must be completed before
starting any other activity and activity n can start after the completion of all other
activities. Let X′ = X\{1, n} and n′ = |X′|. Both activities 1 and n have only one
execution mode, no duration and no resource consumption.

The objective is to assign a mode to each activity and to find a schedule that
minimizes the project completion time (project makespan), satisfying precedence and
resource constraints.

An obvious upper bound Tmax to the project makespan is given by the sum of
the maximum possible duration of each activity. A time window [esi, lsi] of earliest
and latest start times for each activity i ∈ X can be computed by performing a for-
ward and backward recursion on the graph G, by setting es1 = 0 and lsn = Tmax (see
Elmaghraby 1977).

A (0–1) integer programming formulation of the MPSP can be obtained as follows.
Let Bi = {(i,m) : m ∈ Mi} and B = ⋃

i∈X′ Bi . For a given subset F ⊆ B , we de-
note with X(F) = {i : (i,m) ∈ F } the different activities of F . A subset F is called a
feasible subset if the activities in F satisfy precedence and resource constraints and
if |X(F)| = |F |. Any feasible MPSP solution of cost t∗ can be represented by a se-
quence S = (F�1 ,F�2, . . . ,F�t∗) where each F�t of S represents the feasible subset of
activities in progress at time t . Let F = {1,2, . . . , nf } be the index set of all feasible
subsets of B , and let Fim ∈ F be the index set of all feasible subsets containing the
pair (i,m) ∈ B .

Let ζ�t be a (0–1) variable equal to 1 if and only if all activities of the feasible
subset F� are being executed at time period t , and let xit be a (0–1) variable equal to
1 if and only if activity i terminates its execution at time period t and yim be a (0–1)
binary variable equal to 1 if and only if job i is executed in mode m.

The mathematical formulation of MPSP becomes:

zMPSP = min
lsn∑

t=esn

txnt (43)

s.t.
∑

�∈Fim

lsi∑

t=esi

ζ�t = dimyim, m ∈ Mi, i ∈ X′ (44)

∑

�∈F

ζ�t ≤ 1, t = 1, . . . , Tmax (45)

294 M. Boschetti, V. Maniezzo

∑

m∈Mi

yim = 1, i ∈ X (46)

xit ≥
∑

�∈Fi

ζ�t −
∑

�∈Fi

ζ�t+1, t = esi, . . . , lsi , i ∈ X′ (47)

lsj∑

t=esj

txjt −
lsi∑

t=esi

txit ≥
∑

m∈Mj

djmyjm, (i, j) ∈ H (48)

∑

i∈X

∑

m∈Mi

wimsyim ≤ Ws, s ∈ NR (49)

xit ∈ {0,1}, i ∈ X, t = 1, . . . , Tmax (50)

ζ�t ∈ {0,1}, � ∈ F, t = 1, . . . , Tmax (51)

yim ∈ {0,1}, m ∈ Mi, i ∈ X (52)

Constraints 44 force the solution to have feasible subsets contained in Fim in
progress for exactly dim time periods, if activity i is executed in mode m. Con-
straints 45 ensure that at each time period t at most one feasible subset is in progress.
Constraints 46 force each activity to be executed in only one mode. Constraints 47
ensure that the execution of activity i terminates at time period t if the activity i is
contained in the feasible subset in execution at time period t but is not contained in
the feasible subset in execution at time period t + 1. Finally, constraints 48 and 49
are the precedence and the nonrenewable resource constraints, respectively.

Note that, since a feasible subset F� is executed for a number of time periods equal
to

∑
t ζ�t , the objective function 43 can be rewritten as zMPSP = min

∑
�∈F

∑Tmax
t=1 ζ�t .

Several exact and heuristic techniques have been proposed for the MPSP. Talbot
(1982) was the first to propose an exact enumeration scheme. These early methods
were able to solve instances up to 15 activities. Sprecher and Drexl (1998) proposed
new dominance criteria, which enabled their branch and bound algorithm to solve
problems up to 20 activities.

With reference to heuristic approaches, Talbot (1982) and Sprecher and Drexl
(1998) proposed the truncated versions of their tree searches. Different heuristic
strategies have also been investigated, such as biased random sampling (Drexl and
Grunewald 1993), local search (Kolisch and Drexl 1994) and constraint-based ap-
proaches (Ulusoy and Ozdamar 1994).

3.3.1 Reformulations and lower bounds

The reported results are not directly derived from formulation MPSP, but on a
more manageable one (see Maniezzo and Mingozzi 1999). First of all, a lower
bound, called BND3, can be obtained from MPSP by removing precedence and non-
preemption constraints 45, 47 and 48, defining h� = ∑Tmax

t=1 ζ�t to be the total exe-
cution time of feasible subset �, and, finally, by relaxing equations 44 by replacing
“=” with “≥”. Let M ⊆ F be the set of maximal feasible subsets, i.e., subsets which
are not contained in any subset of F. We denote with Mim ⊆ M the index set of all

Benders decomposition, Lagrangean relaxation and metaheuristic 295

maximal feasible subsets containing job i executed in mode m. The relaxed problem
RP2 is the following:

zRP2 = min
∑

�∈M

h� (53)

s.t.
∑

�∈Mim

h� ≥ dimyim, m ∈ Mi, i ∈ X′ (54)

∑

m∈Mi

yim = 1, i ∈ X (55)

∑

i∈X

∑

m∈Mi

wimsyim ≤ Ws, s ∈ NR (56)

h� ≥ 0, � ∈ M (57)

yim ∈ {0,1}, m ∈ Mi, i ∈ X (58)

The cost of the optimal solution of the LP-relaxation of RP2 gives lower bound
BND3.

4 Solving problems with Lagrangean metaheuristics

Having introduced the basic techniques and the problem they have been applied to,
we move on describing how the basic pseudocode for the Lagrangean metaheuristic
can be specialized for each problem. Specifically, we first present a very straightfor-
ward application of LAGRHEURISTIC to the SCFLP. This is not enough to produce
edge-level results, but it shows that already by means of a simple code it is possible to
get good results. A more sophisticated algorithm will be later described for the MOP.

4.1 Single capacitated facility location

The steps of LagrHeuristic have been specified as follows, for the case of the Single
Capacitated Facility Location problem.

Step 1: identify an “easy” subproblem LR. The relaxation of assignment con-
straints 34 in problem SCFLP yields the following problem.

zLR(λ) = min
∑

i∈I,j∈J

(cij − λj)xij +
∑

i∈I

fiyi +
∑

j∈J

λj (59)

s.t.
∑

j∈J

qjxij ≤ Qiyi, i ∈ I (35)

xij ∈ {0,1}, i ∈ I, j ∈ J (36)

yi ∈ {0,1}, i ∈ I (37)

where λj , j ∈ J , is an unrestricted penalty.

296 M. Boschetti, V. Maniezzo

Step 3: solve subproblem LR. Problem LR decomposes naturally into |I | knapsack
problems, with objective function

∑
i∈I (

∑
j∈J (cij − λj)xij + fiyi). Thus, for each

i ∈ I for which
∑

j∈J (cij − λj)xij < −fi , the corresponding yi is set to 1, it is set to
0 otherwise.

Step 4: check for unsatisfied constraints. The solution of LR can have customers
assigned to multiple or to no location. This can be ascertained by direct inspection.

Step 5: update penalties λ. We used a standard subgradient algorithm for updating
penalties, see Pirkul (1987) for details.

Step 6: construct problem solution using x and λ. Let Ī be the set of locations cho-
sen in the solution obtained at Step 3. The SCFLP is transformed into a Generalized
Assignment Problem (GAP) as follows:

zGAP = min
∑

i∈Ī ,j∈J

cij xij (60)

s.t.
∑

i∈Ī

xij = 1, j ∈ J (61)

∑

j∈J

qj xij ≤ Qi, i ∈ Ī (62)

xij ∈ {0,1}, i ∈ Ī , j ∈ J (63)

This is still an NP-hard problem, but efficient codes exist to solve it, which we did
once per Lagrangean iteration (see the following computational results section for
further details).

Notice that for some iterations Step 3 may provide a set of locations Ī for which
GAP is unfeasible. In this case no feasible SCFLP solution is generated and La-
grHeuristic goes on.

4.1.1 SCFLP, computational results

Computational testing of the above described algorithm was carried out after imple-
menting it in C# and Fortran, where the latter was used by linking algorithms MT1R
for solving knapsack problems and MTHG for getting a heuristic solution of GAP
problems (Martello and Toth 1990).1 The code was run on a 1.7 GHz laptop with
1 Gb of RAM and .NET framework 2.0.

The benchmark instances are those used by Holmberg et al. (1999), they consist of
71 instances whose size ranges from 50 to 200 customers and from 10 to 30 candidate
facility locations. The instances are divided into 4 subsets. Set 1 has customers and
locations with coordinates randomly generated in (10,200), problems p1 to p12 have
50 customers and 10 possible locations, problems p13 to p24 have 50 customers and
20 possible locations. Set 2 has locations generated in (10,300). The assignment
costs are based on a vehicle routing problem cost distribution (see Holmberg et al.
1999 for details). Set 3 is based on vehicle routing test problems used by Solomon

1Codes are freely available at the page http://www.or.deis.unibo.it/knapsack.html.

http://www.or.deis.unibo.it/knapsack.html

Benders decomposition, Lagrangean relaxation and metaheuristic 297

Fig. 1 SCFLP, upper and lower bound evolution

Table 1 SCFLP, computational results, whole testset

Probl. %�LP %�HL %�LL tlagr ttot %�dfs tdfs

1–24 avg 20.14 0.01 0.13 0.09 0.66 0.00 0.54

1–24 max 31.01 0.06 0.66 0.31 1.73 0.00 1.85

25–40 avg 7.41 1.47 1.22 0.11 2.42 0.13 12.67

25–40 max 12.82 14.30 8.47 0.30 4.62 0.79 34.08

41–55 avg 24.19 0.38 0.31 0.14 0.71 0.03 1.62

41–55 max 51.81 2.02 1.86 0.46 1.39 0.18 5.47

56–71 avg 27.08 1.13 0.65 1.02 4.18 0.02 15.97

56–71 max 38.81 13.91 3.48 4.99 8.02 0.14 46.60

(1987), while set 4 is generated as set 1 but the number of potential locations is 30
and the number of customers is 200.

When running LagrHeuristic we let both an upper bound zub and a lower bound
zlb evolve. The algorithm terminated either when an optimal solution was found, i.e.
when zlb = zub, or when 1500 subgradient iterations were made. The initial alpha
subgradient step control parameter (Polyak 1969) was set to 1.5 and multiplied by
0.9 when 5 consecutive non-improving iterations were detected.

Figure 1 shows the evolution of upper and lower bounds on one run (problem
p52), which was solved to optimality. We mention here again how the inclusion of
dual information into the metaheuristic permits to determine the quality of the best
solution found, and possibly of its optimality.

Complete computational results are reported in Tables 1 and 2. The results of
LagrHeuristic are compared against those obtained by the best so far metaheuristic
for SCFLP, which to the best of our knowledge is the VLSN by Ahuja et al. (2003).

298 M. Boschetti, V. Maniezzo

Table 2 SCFLP, computational results, set 3

Probl. opt LP HL LL tlagr ttot %�LP %�HL %�LL dfs %�dfs tdfs

p25 11630 10732 11649 11570 0.04 1.79 7.72 0.16 0.52 11630 0.00 9.63

p26 10771 10022 10773 10722 0.05 1.76 6.95 0.02 0.45 10771 0.00 5.08

p27 12322 11348 12373 12199 0.06 1.80 7.90 0.41 1.00 12322 0.00 12.75

p28 13722 12654 13916 13592 0.27 3.49 7.78 1.41 0.95 13727 0.04 13.60

p29 12371 11721 12544 12317 0.30 2 42 5.25 1.40 0.44 12379 0.07 30.09

p30 11331 10860 11408 11068 0.18 2.15 4.16 0.68 2.32 11392 0.54 23.54

p31 13331 12840 13608 13111 0.01 4.62 3.68 2.08 1.65 13436 0.79 30.01

p32 15331 14820 15808 15078 0.16 2.29 3.33 3.11 1.65 15436 0.69 34.08

p33 11629 10775 11629 11542 0.06 1.87 7.34 0.00 0.75 11629 0.00 11.70

p34 10632 10117 10632 10631 0.04 1.96 4.84 0.00 0.01 10632 0.00 6.30

p35 12232 11602 13981 11196 0.01 2.90 5.15 14.30 8.47 12232 0.00 10.31

p36 13832 13087 13832 13651 0.27 4.10 5.39 0.00 1.31 13832 0.00 10.50

p37 11258 9828 11258 11258 0.10 1.56 12.70 0.00 0.00 11258 0.00 1.52

p38 10551 9374 10551 10551 0.06 1.55 11.16 0.00 0.00 10551 0.00 1.54

p39 11824 10364 11824 11824 0.02 1.51 12.35 0.00 0.00 11824 0.00 0.20

p40 13024 11354 13024 13024 0.09 2.94 12.82 0.00 0.00 13024 0.00 1.79

Notice however that the CPU times for these last results have been obtained on a PC
with a Athlon/1200 Mhz processor and 512 Mb RAM, under the RedHat Linux 7.1.

The columns show: probl identifier of a problem or of a problem set, LP result of
LP-relaxation, HL best result of LagrHeuristic, LL best found lower bound, %�LP
percentage distance from optimality of the LP-relaxation value, %�HL percentage
distance from optimality of LagrHeuristic result, %�LL percentage distance from
optimality of the lower bound, tlagr CPU time in seconds to find the best LagrHeuris-
tic result, ttot CPU time in seconds used by LagrHeuristic before terminating. Con-
cerning the results obtained by the “dfs” variant of the VLSN heuristic proposed by
Ahuja et al. (2003), the columns show: %�dfs percentage distance from optimality
of dfs, tdfs CPU time in seconds taken by dfs.

As repeatedly pointed out, the results we report here are not for showing that we
have the best heuristic in the literature, but for showing that even a straightforward
implementation of algorithm LagrHeuristic can get very close to the state of the art.
This is already apparent on Table 1, and it is made evident in Table 2, where it appears
that the big difference in set 2 (and analogously in set 4) is mainly due to one single
instance. It would be rather easy to close that gap by means of some trick on the
subgradient algorithm, such as an alpha restart or an adaptive anneal (not to mention
a local search on the upper bound), but again, this would obfuscate our point.

One last remark is in order: out of the 71 instances, 3 could be solved to optimality
by the subgradient alone, which evolved weights that lead to the satisfaction also of
the relaxed constraints, while 16 other ones were solved to proved optimality since
the lower and the upper bound converged to the same cost. In all these cases the
computation terminated before the maximum available CPU time, an option which is
not available for primal-only heuristics.

Benders decomposition, Lagrangean relaxation and metaheuristic 299

4.2 Membership overlay

In actual practice of P2P networks it can be observed that nodes continuously enter
and exit the network, some nodes spending more time in the network while others join
only for a short time. The problem formulation is not affected by dynamicity, in the
sense that at any moment in time the problem formulation is as described in formulae
38–42. The only effect is that the graph G and all related elements are time-varying.

Whenever the average uptime of a node in the network is higher than the optimiza-
tion time, it becomes feasible to re-optimize the network, taking into account the new
network conditions. This could be done periodically or whenever significant network
topology changes are detected. All algorithms have been thus formulated in order
to work in a local setting, where processes are run asynchronously on each network
node and no global data structure is maintained.

Problem-specific step details are as follows.
Step 1: identify an “easy” subproblem LR. This relaxation is obtained by associ-

ating non negative penalty λi to each constraint 39 and by removing constraints 40.
The resulting relaxed problem is as follows:

zLR(λ) = max
∑

(i,j)∈E

p′
ij xij +

∑

i∈V

biλi (64)

s.t. lij yij ≤ xij ≤ uij yij , (i, j) ∈ E (65)

yij ∈ {0,1}, (i, j) ∈ E (66)

where p′
ij = pij − λi − λj . It is straightforward to see that in an optimal zLR(λ)

solution, for each edge (i, j) ∈ E, xij = uij , if p′
ij ≥ 0, and xij = 0, if p′

ij < 0.
Therefore, variables yij are unnecessary and the mathematical formulation 64–66 is
equivalent to problem:

zLR(λ) = max
∑

(i,j)∈E

p′
ij xij +

∑

i∈V

biλi (67)

s.t. 0 ≤ xij ≤ uij , (i, j) ∈ E (68)

Notice that penalties are associated to nodes and that each node i ∈ V can compute
its contribution to the global cost if it knows its penalty λi and the penalties λj of its
direct neighbors j ∈ δ(i). The problem thus decomposes into n subproblems LRi ,
i ∈ V , defined as follows:

zLRi
= max

1

2

∑

j∈δ(i)

p′
ij xij + biλi (69)

s.t. 0 ≤ xij ≤ uij , j ∈ δ(i) (70)

Step 3: solve subproblem LR. The optimal LR solution (x,y) of value zLR(λ) =∑
i∈V zLRi

is computed by each node i according the following observations:

• If p′
ij ≥ 0 it uses as much bandwidth as possible, i.e. yij = 1 and xij = uij ;

300 M. Boschetti, V. Maniezzo

• If p′
ij < 0 it does not use the connection, i.e. yij = 0 and xij = 0.

The above steps lead to an agreement on the values to assign to xij and yij , even
when they are independently executed by two neighboring nodes i and j .

Step 4: check for unsatisfied constraints. The solution of the subproblems could be
infeasible for the MOP because some nodes could globally allocate more bandwidth
than they have available or less than the lower limit to a single connection. This is
straightforward to check by direct inspection.

Step 5: update penalties λ. In order to find the values of λ that minimize the up-
per bound zLR(λ) we solved the Lagrangean Dual min{zLR(λ) : λ ≥ 0} by means of
a subgradient algorithm. Special attention had to be put on the fact that the usual
step-defining formula has the norm of all infeasibilities at the denominator. We mod-
ified that obtaining a local step-defining equation, which preserves the property of
guaranteeing asymptotic optimality (see Boschetti et al. 2006 for details). The opti-
mal solution of the Lagrangean Dual is equivalent to the optimal solution of the LP
relaxation of problem MOP when connectivity constraints are removed.

Step 6: construct problem solution using x and λ. The computation of a feasible
global solution is based on two interaction moments: each node i iteratively polls its
neighbors j , j ∈ δ(i), for their current λj values. Having these, a local subgradient
algorithm can update all its local variables and compute its contribution to the upper
bound and to the corresponding solution. The bound solution can be infeasible, thus
a negotiation phase is needed so that each node i can agree with each neighbor j the
bandwidth, if any, to allocate to connection (i, j) to get a globally feasible solution.

Let z∗
LRi

be the solution obtained by the subgradient optimization of problem LRi

using penalties λ∗
j , j ∈ δ(i) ∪ {i}. The solution could be infeasible because of the

relaxed constraints. A heuristic solution is obtained by considering the optimized
costs p∗

ij = (pij − λ∗
i − λ∗

j), ranking all arcs (i, j) ∈ E by non increasing p∗
ij values

and allocating all possible bandwidth to each successively considered connection.
More in detail, the algorithm is the following.

HEUMOP(p∗)
1 Order all arcs (i, j) ∈ E by decreasing p∗

ij

2 Initialize si = bi for each i ∈ V

3 for each arc (i, j) in E in nonincreasing p∗
ij order

4 do slack = min{si , sj }
5 if slack ≥ lij
6 then xij = slack
7 yij = 1
8 si = si − slack; sj = sj − slack

This approach is derived from the exact method for solving continuous knapsack
problems (Martello and Toth 1990). In our case it is not guaranteed to be optimal, but
it consistently produces good quality solutions in time O(m logm), where m is the
number of arcs, the highest cost operation being the ordering of the arcs.

HeuMOP is reported for a centralized environment. In P2P networks, the negotia-
tion process to allocate bandwidth is a local process where each node has only knowl-
edge of the neighborhood data. Therefore, in a distributed and dynamic environment

Benders decomposition, Lagrangean relaxation and metaheuristic 301

HeuMOP must be split in separate threads, one for each node, where network changes
are handled programmatically as events and local data are exchanged between them
(see Boschetti et al. 2006 for a detailed description).

4.2.1 MOP, computational results

Testing of the above procedures is still ongoing. We implemented and tested it on a
desktop, then moved on to distributed environments. On a desktop, the algorithms
were coded partly in C# and partly in C++ and run on a 1000 MHz Pentium III ma-
chine, under Windows XP. Distributed and dynamic tests are being performed both
in a network simulation environment (Peersim 2006) and on the actual Internet, by
means of Planetlab (2006). We have been conducting a number of experiments on dif-
ferent scenarios. For simulations, we generated two sets of instance graphs (Maniezzo
et al. 2005); the first one (set A) has parameters which match those measured on real
P2P networks as reported in Saroiu et al. (2002), the second set (set B) has the nodes
randomly generated on a x-y plane and pij inversely proportional to the Euclidean
distance of nodes i and j , ∀i, j ∈ V , in order to produce meaningful visualizations,
besides modeling location-aware networks.

The computational testing was carried out separately for the static and the dynamic
case. In the static case we wanted to determine the solution quality disruption, w.r.t.
upper bound zP, due to the successive heuristics, while in the dynamic case the ease of
adaptation to a mutated environment was of interest. Table 3 summarizes the results
obtained (see also Maniezzo et al. 2005). The columns show:

• Id: an instance identifier;
• n: number of nodes;
• z∗

LR: cost of best solution found for problem LR;
• %z∗

LH: percentage gap for solution of algorithm LagrHeuristic;
• t∗LH: time to find the solution of algorithm LagrHeuristic.

Table 3 Results on different MOP instances

Problem LagrHeuristic

10 iter 20 iter 30 iter

Id n z∗
LR %z∗

HL t∗HL %z∗
HL t∗HL %z∗

HL t∗HL

A20 20 842 0.96 0.00 0.59 0.04 0.27 0.05

A50 50 2137 0.88 0.09 0.52 0.14 0.36 0.17

A100 100 8162 0.83 0.21 0.67 0.33 0.24 0.43

A500 500 20192 0.97 4.08 0.66 7.28 0.23 10.29

A1000 1000 53765 0.91 19.42 0.58 34.15 0.30 49.81

B20 20 53295 4.50 0.16 4.08 0.24 3.74 0.30

B50 50 131891 4.38 0.16 4.02 0.27 3.69 0.36

B100 100 281836 4.50 0.19 4.06 0.33 3.93 0.43

B500 500 1413301 4.63 3.74 4.19 7.52 3.99 9.91

B1000 1000 2940334 4.39 19.29 4.01 37.10 3.88 56.72

302 M. Boschetti, V. Maniezzo

The last two elements are reported for a number of subgradient optimization iter-
ations which is 10, 20 and 30, respectively.

The results show how the proposed problem relaxation is highly effective on both,
structurally very different, instance sets. The gap between the upper bound z∗

LR and
the lower bound z∗

HL is always reasonably small. No alternative approaches so far
have been proposed for this problem, to further validate the results.

The validation of the effectiveness of the distributed algorithm in a dynamic set-
ting has been so far completed only on the PeerSim simulation environment (2006).
This is a java-based environment which has already been used for evaluating other
P2P protocols; it takes care of the multithreading on the nodes and of managing all
message-passing, leaving to the user the task of defining the code to be run at each
node. We linked our code and tested the system under different operational condi-
tions of problems of type A, the only type permitted by the simulator. We used two
settings: one which allows the peers that are much more powerful than others (“su-
perpeers” in the literature) to have high uij on outgoing connections (set A1), while
the second settings permits limited uij on all connections, independently of the power
of the peer (set A2).

Unfortunately the simulator did not prove able to efficiently scale up to more than
a few thousands nodes, however the results obtained over 1000 nodes are already sig-
nificant. Figure 2 shows the evolution of the global bandwidth allocated by the whole
network for a problem A1 (top) and A2 (bottom). Initially there was no allocated
bandwidth and both cases, after a short startup, there is a fast convergence to a stable
level. This was already expected from the results of Table 3, as testified by the so-
lution quality obtained after different numbers of internal iterations. There are wide
oscillations left around the stable level due to the great dynamicity of the settings,
where a high percentage of nodes continuously enter and exit the network (the aver-
age uptime being in both cases equal to time needed for performing 30 subgradient
iterations). Oscillations are wider on the left graphic as dynamicity on superpeers has
a greater impact on global throughput. Figure 3 shows a visual interface for two small
instances of type A1 (top) and A2 (bottom). The radius of a node i is proportional
to its bandwidth bi , the thickness of an edge (i, j) is proportional to the bandwidth
xij allocated for that connection. Notice on the left how a backbone among super
peers emerges, and small peers are connected almost only to one or two superpeers.
On the contrary, on the right, when connections are anyway constrained, there is a
much higher connectivity and no backbone. This is coherent to actual P2P networks
structures.

5 Solving problems with Benders metaheuristics

As it was the case for Lagrangean decomposition, we now present the application of
BENDHEURISTIC to two problems: the SCFLP as a simple application and the MPSP
as a more research-oriented work.

5.1 Single capacitated facility location

Step 1: identify a master MP and an “easy” subproblem SP. A possible Benders de-
composition of SCFLP involves keeping in the master the decision of which facilities

Benders decomposition, Lagrangean relaxation and metaheuristic 303

Fig. 2 Global throughput,
A1 instance (top) and
A2 instance (bottom)

to open, and assigning clients to open facilities as a subproblem. The subproblem is
therefore a GAP again.

More in detail, the master problem is:

zMP = min
∑

i∈I

fiyi + zSP(y) (33)

s.t. yi ∈ {0,1}, i ∈ I (37)

and the subproblem becomes:

zSP(y) = min
∑

i∈I,j∈J

cij xij (71)

s.t.
∑

i∈I

xij = 1, j ∈ J (34)

304 M. Boschetti, V. Maniezzo

Fig. 3 Connectivity, A1 instance (top) and A2 instance (bottom)

∑

j∈J

qj xij ≤ Qiyi, i ∈ I (35)

xij ∈ {0,1}, i ∈ I, j ∈ J (36)

Step 3: solve master problem MP. As the master problem, even though NP-hard
after the addition of Bender’s cuts, was relatively easy to solve, we solved it to opti-
mality at each iteration.

Step 5: solve subproblem SP. The xij are required to be integer, but the subproblem
is the same GAP we met in Sect. 4.1. The same considerations apply.

Step 6: solve problem DP to add cuts to MP. To get the subproblem’s dual we
relaxed constraints 36 into xij ≥ 0, i ∈ I, j ∈ J . After associating dual variables
w′

j , j ∈ J , to constraints 34 and w′′
i , i ∈ I , to constraints 35, problem DP becomes:

Benders decomposition, Lagrangean relaxation and metaheuristic 305

zDP(y) = max
∑

j∈J

w′
j +

∑

i∈I

Qiyiw
′′
i (72)

s.t. w′
j + qjw

′′
i ≤ cij , i ∈ I, j ∈ J (73)

w′′
i ≤ 0, i ∈ I (74)

therefore yielding the following master formulation, which includes the added cut.

zMP = min z

s.t. z ≥
∑

i∈I

(fi + Qiw
′′
i)yi +

∑

j∈J

w′
j (75)

yi ∈ {0,1}, i ∈ I (37)

5.1.1 SCFLP, computational results

We implemented the BendHeuristic for SCFLP and run it under the same setting as
the LagrHeuristic reported in Sect. 4.1.1. The results show a lower competitiveness
of the basic BendHeuristic, when compared to its Lagrangean counterpart. However,
the general working is as expected, as we witness a convergence of upper and lower
bounds. Figure 4 shows a trace in the case of instance p50 of test set 3, one of the
instances where BendHeuristic is particularly effective.

Global results are shown in Table 4. The columns show: probl identifier of a prob-
lem or of a problem set, LP result of LP-relaxation, HB best result of BendHeuris-
tic, BL best found lower bound, %�LP percentage distance from optimality of the
LP-relaxation value, %�HB percentage distance from optimality of BendHeuristic
result, %�BL percentage distance from optimality of the lower bound, tBend CPU
time in seconds to find the best BendHeuristic result, ttot CPU time in seconds used

Fig. 4 BendHeuristic, upper and lower bound evolution on instance p50

306 M. Boschetti, V. Maniezzo

Table 4 Computational results, whole testset

Probl. %�LP %�HB %�LB tBend ttot %�dfs tdfs

1–24 avg 20.14 0.67 4.74 408.92 1802.44 0.00 0.54

1–24 max 31.01 3.73 11.68 2224.76 5048.00 0.00 1.85

25–40 avg 7.41 0.62 0.48 112.50 202.00 0.13 12.67

25–40 max 12.82 3.21 5.18 715.44 1418.68 0.79 34.08

41–55 avg 24.19 1.54 14.20 189.73 518.23 0.03 1.62

41–55 max 51.81 5.41 70.60 1532.17 2538.99 0.18 5.47

56–71 avg 27.08 9.74 58.37 229.62 331.73 0.02 15.97

56–71 max 38.81 25.71 80.52 1805.79 1985.05 0.14 46.60

Table 5 Computational results, set 4

Probl. opt LP HB BL tBend ttot %�LP %�HB %�BL dfs %�dfs tdfs

p56 21103 16477 22052 9455 31.02 267.89 21.92 4.50 55.20 21120 0.08 15.77

p57 26039 21034 27287 14430 19.57 117.69 19.22 4.79 44.58 26075 0.14 26.32

p58 37239 31667 38037 25209 5.41 42.46 14.96 2.14 32.30 37240 0.00 46.60

p59 27282 23356 29981 19678 15.60 77.45 14.39 9.89 27.87 27282 0.00 29.97

p60 20534 13946 23322 5500 6.17 14.16 32.08 13.58 73.22 20534 0.00 3.27

p61 24454 16984 27935 8800 5.87 14.40 30.55 14.23 64.01 24454 0.00 6.27

p62 32643 24072 34649 16500 6.43 16.64 26.26 6.15 49.45 32648 0.02 28.68

p63 25105 18634 26110 10313 1.33 115.50 25.78 4.00 58.92 25108 0.01 15.22

p64 20530 12680 25809 4000 10.50 13.34 38.24 25.71 80.52 20530 0.00 0.18

p65 24445 14958 29132 6400 5.46 13.73 38.81 19.17 73.82 24445 0.00 0.18

p66 31415 20275 34331 12000 10.39 12.84 35.46 9.28 61.80 31429 0.04 8.14

p67 24848 18826 25522 10513 1.30 125.45 24.24 2.71 57.69 24849 0.01 10.34

p68 20538 14181 23507 5376 1305.88 1438.16 30.95 14.46 73.82 20538 0.00 3.32

p69 24532 17304 26413 8000 1805.79 1985.05 29.46 7.67 67.39 24532 0.00 6.15

p70 32321 24465 33373 15000 198.78 734.43 24.31 3.25 53.59 32323 0.01 27.04

p71 25540 18719 29198 10265 244.39 318.49 26.71 14.32 59.81 25540 0.00 28.10

by BendHeuristic before terminating. Furthermore, the columns show the results ob-
tained by the dfs variant of the VLSN heuristic Ahuja et al. (2003): %�dfs percentage
distance from optimality of dfs, tdfs CPU time in seconds taken by dfs.

BendHeuristic found difficulties in solving set 3 and set 4, especially this last one,
which have a cost structure that makes the master hard to solve when cuts begin to be
added. Notice that in our “basic” implementation of BendHeuristic we let the master
be solved to optimality, while in these cases—as suggested in Step 5—it would be
worthwhile to solve the master only heuristically. However, we feel that this is a
suggestion for a research line, rather than a contribution to estimate the effectiveness
of the basic schema.

Table 5 shows detailed results on set 4, the one that was solved worse by Bend-
Heuristic. Clearly this basic schema is not competitive on these instances, more so-

Benders decomposition, Lagrangean relaxation and metaheuristic 307

phisticated considerations are required. However, we believe that, since research on
Benders based heuristics counts much less contributions than for instance Lagrange
based ones, there is a wide space available for gaining insight on how to improve this
basic functioning.

5.2 Multi-mode project scheduling

Step 1: identify a master MP and an “easy” subproblem SP. Problem RP2 is decom-
posed into master problem MP and subproblem SP. At iteration t , a feasible solution
of MP corresponds to an assignment of modes to the activities; therefore, it defines a
RCPSP instance whose solution cost provides an upper bound to the MRCPSP.

More in detail, the master is:

zMP = min z (76)

s.t. z ≥
∑

i∈X′

∑

m∈Mi

ut
imdimyim, ut ∈ U (77)

∑

m∈Mi

yim = 1, i ∈ X′ (78)

∑

i∈X

∑

m∈Mi

wimsyim ≤ Ws, s ∈ NR (79)

yim ∈ {0,1}, m ∈ Mi, i ∈ X (80)

where U is the set of the extreme points of the dual of the following subproblem:

zSP(y) = min
∑

�∈M

h� (81)

s.t.
∑

�∈Mim

h� ≥ dimyim, m ∈ Mi, i ∈ X′ (82)

h� ≥ 0, � ∈ M (83)

Step 3: solve master problem MP. Finding an optimal solution of MP may be too
time-consuming, due to the number of Benders’ cuts. We use therefore the following
heuristic method. Let zt−1 be the solution found for problem MP at iteration t − 1.
At iteration t we start by setting yt = yt−1, where yt is a feasible solution of MP.
The solution yt is iteratively improved by assigning to an activity i a feasible mode
that minimizes the cost function when every other activity j ∈ X\{i} is assigned to
the mode μt

j = ∑
m∈Mj

myt
im. This iterative procedure is repeated until no further

improvement is achieved.
Step 5: solve subproblem SP. As the subproblem defined by a mode assignment is

NP-hard, we solved it using a heuristic method, specifically we used the same heuris-
tic proposed in Mingozzi et al. (1998). Moreover, in order to improve the quality of
the final MRCPSP upper bound, we stored the K best RCPSP instances and solved
them to optimality, at the end of HBEND, using the branch and bound method de-
scribed by Mingozzi et al. (1998) for the RCPSP.

308 M. Boschetti, V. Maniezzo

Step 6: Solve problem DP to add cuts to MP. A feasible solution of problem SP,
at iteration t , provides a valid lower bound to the RCPSP defined by the solution of
MP. Therefore, it can be obtained by any of the bounding procedures described in
Mingozzi et al. (1998). In our computational results we used bound LB3.

The dual of SP is:

zDP(y) = max
∑

i∈X′

∑

m∈Mi

uimdimyim (84)

s.t.
∑

(i,m)∈F�

uim ≤ 1, � ∈ M (85)

uim ≥ 0, m ∈ Mi, i ∈ X′ (86)

where the cut to add to MP ant the t th iteration is in Eq. 84.
The full pseudocode of the heuristic we used, named HBEND, is as follows.

HBEND()
1 identify a master MP(z,y) and an “easy” subproblem SP(x),
2 initialize u0, set t = 0, W(0) = ∅ and zUB = ∞
3 repeat
4 Solve (heuristically) master problem MP. Solution (zt ,yt)

5 assign to each job i the mode μi = ∑
m∈Mi

myt
im,

6 solve heuristically the resulting RCPSP instance, solution (zH,xt)

7 Set zUB = min(zUB, zH).
8 Solve in a heuristic way the subproblem SP, solution (zd,ut)

9 Set ut+1
iμi

= 0, m ∈ Mi\μi, i ∈ X′
10 if zt ≥ zd

11 then STOP else set t = t + 1
12 until (t = NITER)

5.2.1 MPSP, computational results

Algorithm HBEND has been implemented in C, results reported here have been ob-
tained by running it on the same 1.7 GHz laptop used in the previous computational
results subsections. We actually re-run the same code described in Maniezzo and
Mingozzi (1999), except for allowing more iterations. As benchmark problems we
used the instances generated by the project generator ProGen developed by Kolisch
et al. (1995). We used the benchmarks with 10 and 20 activities, as these are still
the only sets for which a significant number of results have been published in the
literature. In these projects, each nondummy activity can make use of two renew-
able resources (|RR| = 2), two nonrenewable resources (|NR| = 2) and three possi-
ble modes (|Mi | = 3, ∀i ∈ X). Figure 5 shows a trace of a run of BendHeuristic on
a 20 activities instance, sampled every 25 iterations, where upper and lower bound
effectively converge.

Results are compared against those produced, on the same set of problems, by the
best performing metaheuristics so far published, namely the particle swarm optimiza-
tion by Zhang et al. (2006, PSO), the genetic algorithm by Hartmann (2001, GA-H),

Benders decomposition, Lagrangean relaxation and metaheuristic 309

Fig. 5 Upper and lower bound evolution for a J20 problem instance

Table 6 Comparative results, 10 activities problem instances

10 activities %�avg %�max CPUavg CPUmax

HE 100 cuts 6.07 58.10 0.03 0.05

HE 500 cuts 1.34 27.27 0.15 0.29

HE 1000 cuts 1.34 27.27 0.48 0.90

HE 2000 cuts 0.84 27.27 0.82 4.38

HB-zt 3.68 19.04

HSD 0.00 0.00 0.14a 2.31a

SA-J 0.20 22.20 7.00b 14.50b

PSO 0.11 5.10 n.a. n.a.

SA-BL 0.21 7.80 n.a. n.a.

GA-H 0.06 6.30 n.a. n.a.

the simulated annealing by Jozefowska et al. (2001, SA-J) and the simulated anneal-
ing by Bouleimen and Lecocq (1998, SA-BL). Moreover we report the results of the
branch and bound by Sprecher and Drexl (1998, HSD).

All algorithms operated on different machines and used different terminating con-
ditions: HBEND was executed for a predefined number of Benders cuts, HSD was
run for a given CPU time interval, SA-J for a given number of iterations, a disjunc-
tion of different factors for the others. We report CPU times, in seconds, when we
have the data. caution should be taken, because our results were obtained on the cited
machine, HSD was run on a PC 486 dx 66 MHz (a in Tables 6 and 7) and SA-J on a
PC with 133 MHz Pentium processor and 32 MB RAM (b in Tables 6 and 7).

Both Tables 6 and 7 show that HBEND requires a number of cuts before achieving
good results. However, a threshold on their number exists, after which adding more
cuts does not produce any improvement. Permitting to add even more cuts would
not improve the results on the tables. On the 10 activities projects, HSD performs

310 M. Boschetti, V. Maniezzo

Table 7 Comparative results, 20 activities problem instances

20 activities %�avg %�max CPUavg CPU max

HE 100 cuts 8.08 80.11 0.25 0.33

HE 500 cuts 4.24 50.20 1.25 1.67

HE 1000 cuts 2.13 16.66 3.12 5.49

HE 2000 cuts 1.89 13.22 4.99 32.30

HB-zt 4.52 26.66

HSD 2.38 51.61 60.00a 60.00a

SA-J 0.15 6.90 30.60b 75.00b

PSO 1.79 13.70 n.a. n.a.

SA-BL 2.10 13.20 n.a. n.a.

GA-H 1.21 14.20 n.a. n.a.

better than HBEND, when the number of activities per project increases, and HBEND
outperforms what becomes a truncated version of HSD. The absolute performance of
HBEND is dominated by more recent metaheuristics, but not by much. Notice how
HBEND results have been obtained in relatively short CPU times, contrary to those
reported in Sect. 5.1, thanks to the heuristic master solution, and how, on the average,
both upper and lower bounds converged to interesting values.

6 Conclusions

This papers advocates the possibility of deriving metaheuristic frameworks from
mathematical programming (MP) techniques, originally designed for optimal solv-
ing. So far, metaheuristics derived their inspiration from natural phenomena or from
boosting of local search; very little if anything comes from MP, and dual based in-
formation has very rarely been included. However, there are techniques which have
been successfully used for decades even for heuristic solving, and which have been
largely neglected by the metaheuristic community. We concentrated on two of them,
Lagrangean and Benders decomposition, and showed how their basic working can
be proposed as a metaheuristic schema, enjoying the usual properties of simplicity,
robustness and effectiveness, but with the added bonus of a runtime quality check.
Computational results were aimed at showing that often even a basic implementation
of the MP-based metaheuristic schemata can lead to state-of-the-art performances,
and that there are cases were more elaborate considerations can lead to top perform-
ing codes.

The same intuition that lays behind our two examples can be applied to other MP
techniques, such as Dantzig-Wolfe or surrogate relaxation. We hope that this paper
will help in the debate of the usability of MP components in metaheuristics.

References

Agar, M., Salhi, S.: Lagrangean heuristics applied to a variety of large capacitated plant location problems.
J. Oper. Res. Soc. 49, 1072–1084 (1998)

Benders decomposition, Lagrangean relaxation and metaheuristic 311

Ahuja, R.K., Orlin, J.B., Pallottino, S., Scaparra, M.P., Scutellà, M.G.: A multi-exchange heuristic for the
single source capacitated facility location problem. Manag. Sci. 50 (2003)

Barahona, F., Anbil, R.: The volume algorithm: producing primal solutions with a subgradient method.
Math. Program. 87, 385–399 (2000)

Barcelo, J., Casanova, J.: A heuristic Lagrangean algorithm for the capacitated plant location problem.
Eur. J. Oper. Res. 15, 212–226 (1984)

Beasley, J.E.: Lagrangean relaxation. In: Reeves, C.R. (ed.) Modern Heuristic Techniques for Combinato-
rial Problems, pp. 243–303. Blackwell Scientific, Oxford (1993)

Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numer. Math.
4, 280–322 (1962)

Boschetti, M.A., Jelasity, M., Maniezzo, V.: A local approach to membership overlay design. Working
paper, Department of Computer Science, University of Bologna (2006)

Bouleimen, K., Lecocq, H.: A new efficient simulated annealing algorithm for the resource-constrained
project scheduling problem. In: Barbarosoglu, G., Karabati, S., Ozdamar, L., Ulusoy, G. (eds.) Pro-
ceedings of the Sixth International Workshop on Project Management and Scheduling, pp. 1922.
Bogazici University (1998)

Chudak, F.A., Shmoys, D.B.: Improved approximation algorithms for a capacitated facility location prob-
lem. In: Proc. 10th Annu. ACM-SIAM Sympos. Discrete Algorithms, pp. S875–S876 (1999)

Delmaire, H., Diaz, J.A., Fernandez, E., Ortega, M.: Reactive grasp and tabu search based heuristics for
the single source capacitated plant location problem. INFOR 37, 194–225 (1999)

Drexl, A., Grunewald, J.: Nonpreemptive multi-mode resource-constrained project scheduling. IIE Trans.
25(5), 74–81 (1993)

Elmaghraby, S.E.: Activity Networks: Project Planning and Control by network Models. Wiley, New York
(1977)

Ganesh, A.J., Kermarrec, A.-M., Massoulié, L.: Peer-to-peer membership management for gossip-based
protocols. IEEE Trans. Comput. 52(2) (February 2003)

Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res.
13, 533–549 (1986)

Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Boston (1997)
Hartmann, S.: Project scheduling with multiple modes: a genetic algorithm. Ann. Oper. Res. 102, 111–135

(2001)
Holmberg, K., Ronnqvist, M., Yuan, D.: An exact algorithm for the capacitated facility location problems

with single sourcing. Eur. J. Oper. Res. 113, 544–559 (1999)
Holt, J., Ronnqvist, M., Tragantalerngsak, S.: A repeated matching heuristic for the single source capaci-

tated facility location problem. Eur. J. Oper. Res. 116, 51–68 (1999)
Jozefowska, J., Mika, M., Royzycki, R., Waligora, G., Weglarz, J.: Simulated annealing for multi-mode

resource-constrained project scheduling. Ann. Oper. Res. 102, 137–155 (2001)
Klincewicz, J., Luss, H.: A Lagrangean relaxation heuristic for capacitated facility location with single-

source constraints. J. Oper. Res. Soc. 37, 495–500 (1986)
Kolisch, R., Drexl, A.: Local search for nonpreemptive multi-mode resource constrained project schedul-

ing. Technical Report 360, Institut fr Betriebswirtschaftslehre, Christian-Albrechts-Universitt zu
Kiel, Kiel (1994)

Kolisch, R., Sprecher, A., Drexl, A.: Characterization and generation of a general class of resource con-
strained project scheduling problems. Manag. Sci. 41, 1693–1703 (1995)

Maniezzo, V., Mingozzi, A.: A heuristic procedure for the multi-mode project scheduling problem based
on benders decomposition. In: Weglarz, J. (ed.) Project Scheduling: Recent Models, Algorithms and
Applications, pp. 179–196. Kluwer Academic, Dordrecht (1999)

Maniezzo, V., Boschetti, M.A., Jelasity, M.: An ant approach to membership overlay design. In: Ant
Colony, Optimization and Swarm Intelligence: Proc. ANTS 2004. Lecture Notes in Computer Sci-
ence, vol. 3172, p. 3748. Springer, Berlin (2004)

Maniezzo, V., Boschetti, M.A., Jelasity, M.: A fully distributed Lagrangean metaheuristic for a P2P overlay
network design problem. In: Proceedings of the 6th Metaheuristics International Conference (MIC
2005), Vienna, Austria (2005)

Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, New York
(1990)

Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L.: An exact algorithm for the resource constrained
project scheduling problem based on a new mathematical formulation. Manag. Sci. 44, 715–729
(1998)

312 M. Boschetti, V. Maniezzo

Neebe, A., Rao, M.: An algorithm for the fixed-charge assigning users to sources problem. J. Oper. Res.
Soc. 34, 1107–1113 (1983)

Peersim: A peer-to-peer simulator, http://peersim.sourceforge.net/ (2006)
Pirkul, H.: Efficient algorithm for the capacitated concentrator location problem. Comput. Oper. Res. 14,

197–208 (1987)
Planetlab: An open platform for developing, deploying, and accessing planetary-scale services, http://

www.planet-lab.org/ (2006)
Polyak, B.T.: Minimization of unsmooth functionals. USSR Comput. Math. Phys. 9, 14–29 (1969)
Saroiu, S., Krishna Gummadi, P., Gribble, S.D.: A measurement study of peer-to-peer file sharing systems.

In: Proceedings of Multimedia Computing and Networking 2002 (MMCN’02), San Jose, CA (2002)
Sherali, H.D., Choi, G.: Recovery of primal solutions when using subgradient optimization methods to

solve Lagrangian duals of liner programs. Oper. Res. Lett. 19, 105–113 (1996)
Solomon, M.: Algorithms for the vehicle routing and scheduling problem with time window constraints.

Oper. Res. 35, 254–365 (1987)
Sprecher, A., Drexl, A.: Solving multi-mode resource-constrained project scheduling by a simple, general

and powerful sequencing algorithm. Eur. J. Oper. Res. 107, 431–450 (1998)
Sridharan, R.: A Lagrangian heuristic for the capacitated plant location problem with single source con-

straints. Eur. J. Oper. Res. 66, 305–312 (1991)
Talbot, B.: Resource-constrained project scheduling with time-resource tradeoffs: the nonpreemptive case.

Manag. Sci. 28, 1197–1210 (1982)
Ulusoy, G., Ozdamar, L.: A constraint-based perspective in resource constrained project scheduling. Int.

J. Prod. Res. 32, 693–705 (1994)
van Roy, T.J.: A cross decomposition algorithm for capacitated facility location. Oper. Res. 34(1), 145–163

(1986)
Voss, S.: Meta-heuristics: The state of the art. In: Nareyek, A. (ed.) Local Search for Planning and Schedul-

ing. LNAI, vol. 2148, pp. 1–23. Springer, Berlin (2001)
Zhang, H., Tam, C.M., Li, H.: Multimode project scheduling based on particle swarm optimization. Com-

put. Aided Civ. Infrastruct. Eng. 21, 93–103 (2006)

http://peersim.sourceforge.net/
http://www.planet-lab.org/
http://www.planet-lab.org/

	Benders decomposition, Lagrangean relaxation and metaheuristic design
	Abstract
	Introduction
	Methodologies
	Benders' and Lagrangean decompositions
	A Lagrangean metaheuristic
	A Benders' metaheuristic

	Problems
	Single source capacitated facility location
	Membership overlay
	Multi-mode project scheduling
	Reformulations and lower bounds

	Solving problems with Lagrangean metaheuristics
	Single capacitated facility location
	SCFLP, computational results

	Membership overlay
	MOP, computational results

	Solving problems with Benders metaheuristics
	Single capacitated facility location
	SCFLP, computational results

	Multi-mode project scheduling
	MPSP, computational results

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

