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Abstract In this paper, we present a solution method for a bi-objective vehicle rout-
ing problem, called the vehicle routing problem with route balancing (VRPRB), in
which the total length and balance of the route lengths are the objectives under con-
sideration. The method, called Target Aiming Pareto Search, is defined to hybridize
a multi-objective genetic algorithm for the VRPRB using local searches. The method
is based on repeated local searches with their own appropriate goals. We also propose
an implementation of the Target Aiming Pareto Search using tabu searches, which are
efficient meta-heuristics for the vehicle routing problem. Assessments with standard
metrics on classical benchmarks demonstrate the importance of hybridization as well
as the efficiency of the Target Aiming Pareto Search.

Keywords Routing · Multi-objective optimization · Tabu search · Hybrid algorithm

1 Introduction

This paper investigates the solution of a multi-objective combinatorial optimization
(MOCO) problem by means of local search heuristics (LS). LS may be used as stand
alone solvers (Serafini 1992; Ulungu 1993; Hansen 1997; Knowles 2002) or for hy-
bridization, a methodology that uses an initial heuristic to generate an approximation,
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Table 1 Objective values for
the best found solutions of
Taburoute and Prins’ GA

Instance Taburoute Prins’ genetic algorithm

Distance Balance Distance Balance

E51-05e 524.61 20.07 524.61 20.07

E76-10e 835.32 78.10 835.26 91.08

E101-08e 826.14 97.88 826.14 97.88

E151-12c 1031.17 98.24 1031.63 100.34

E200-17c 1311.35 106.70 1300.23 82.31

E121-07c 1042.12 146.67 1042.12 146.67

E101-10c 819.56 93.43 819.56 93.43

which is then improved through the application of a second algorithm (Ben Abdelaziz
et al. 1999; Deb and Goel 2001; Jaszkiewicz 2002; Ishibuchi et al. 2002). (More de-
tails and references can be found in (Ehrgott and Gandibleux 2000).) We introduce
a method that uses LS designed to hybridize a genetic algorithm for a bi-objective
vehicle routing problem (VRP).

The elementary version of the vehicle routing problem is the capacitated vehicle
routing problem (CVRP). The CVRP can be modeled on a complete graph whose
respective vertices are associated with n customers and to the depot. Each customer
must be served a quantity qi of goods (i = 1, . . . , n) from a unique depot. Vehicles
are available to deliver those goods, and each vehicle has a maximal amount Q of
goods that it can transport. A solution for the CVRP involves a collection of routes in
which each customer is visited only once, and the total demand for each route is, at
most, Q. The CVRP aims to determine a minimal total length solution. This problem
has been proved NP-hard Lenstra and Rinnooy Kan (1981), and solution methods
range from exact methods to specific heuristic and meta-heuristic approaches Toth
and Vigo (2001).

In this paper, we address a bi-objective extension of the CVRP: the vehicle rout-
ing problem with route balancing (VRPRB). This problem was first introduced in
(Jozefowiez et al. 2002). The objectives are the minimization of:

1. The distance traveled by the vehicles.
2. The difference between the longest route length and the shortest route length.

Table 1 presents the values found for these objectives using Taburoute (Gendreau et
al. 1994) and Prins’ genetic algorithm (Prins 2006) for the seven CVRP benchmarks
proposed by Christofides et al. (1979). The best-known solutions currently available
for the CVRP are of poor quality when the route balancing objective is considered.

The application of multi-objective optimization to the VRP addresses two primary
goals. First, such optimization can be used to adapt the problem to a specific applica-
tion (Current and Marsh 1993; Corberan et al. 2002; El-Sherbeny 2001) or to improve
the practical aspects of the model (Ribeiro and Loureno 2001; Lee and Ueng 1999).
Second, it can be used to tackle the difficulties introduced by the constraints of the
vehicle routing problem with time windows (Sessomboon et al. 1998; Hong 1999;
Geiger 2001; Rahoual et al. 2001). Generally, the above authors allow the violation
of the time windows by incorporating objectives that minimize the number of viola-
tions and the earliness and lateness of the vehicle relative to the time window bounds.
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In most researches dealing with the VRP, the total length of the solution is minimized.
However Corberan et al. (2002) disregard the solution length in favor of minimizing
the number of vehicles, allowing the particularity of the context to be taken into ac-
count, i.e. the organization of a school bus network in a rural area of Spain. Although
minimizing the number of vehicles is also an objective in (Sessomboon et al. 1998;
Geiger 2001; Rahoual et al. 2001), the authors still minimize the total length of the
solution.

Another frequently considered objective is the balance of the routes. In (Lee and
Ueng 1999), the authors balance the time needed for each trip, expressing it as the
sum of the differences between each route length and the shortest route length. Route
balancing is also an objective for Ribeiro and Loureno (2001) who address a three ob-
jective multi-period vehicle routing problem. In their paper the balance is measured
by the standard deviation of the load of the routes, which consists of the number of
customers visited. Corberan et al. (2002) work on minimizing the time spent in a bus,
which can also be viewed as a type of route balancing. One of the eight objectives de-
scribed by El-Sherbeny (2001) is the same as our second objective: the minimization
of the difference between the maximal route length and the minimal route length.

Earlier studies of multi-objective VRP (Current and Marsh 1993) used ex-
act algorithms, mathematical methods like goal programming, and specific ex-
change/insertion heuristics. Several meta-heuristics have also been applied, includ-
ing scatter search (Corberan et al. 2002), iterated local search (Ribeiro and Loureno
2001), simulated annealing (El-Sherbeny 2001), and genetic algorithms (Geiger
2001; Rahoual et al. 2001). The hybridization of a genetic algorithm using a lo-
cal search has also been proposed (Sessomboon et al. 1998). Generally, the use of
meta-heuristics is motivated by the intractability of the problem, while the use of LS,
especially tabu searches (TS), is motivated by the good results obtained using such
methods on the VRP (Toth and Vigo 2001).

The present paper is organized as follows: Sect. 2 introduces our Target Aim-
ing Pareto Search (TAPaS) methodology. Section 3 provides an implementation of
TAPaS for the VRPRB, as well as an implementation of NSGA II (Deb et al. 2002)
as used for the approach assessment. In Sect. 4, we assess the efficiency of TAPaS on
a classic testbed using standard metrics. Section 5 presents our conclusions.

2 A new method for solving multi-objective problems

2.1 Solution of a multi-objective problem

A multi-objective problem can be stated as follows:

(MOP) =
{

minF(x) = (f1(x), f2(x), . . . , fn(x))

s.t. x ∈ D
(1)

with n ≥ 2 being the number of objective functions; x = (x1, x2, . . . , xr ), the decision
variable vector; D, the feasible solution space; and F(x), the objective vector. The
set O = F(D) corresponds to the feasible solutions in the objective space, and y =
(y1, y2, . . . , yn), where yi = fi(x), is a solution. A MOP solution is the set of the
non-dominated solutions called the Pareto set (PS). Dominance is defined as follows:
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Definition 2.1 A solution y = (y1, y2, . . . , yn) dominates (denoted ≺) a solution
z = (z1, z2, . . . , zn) if and only if ∀i ∈ {1 . . . n}, yi ≤ zi and ∃i ∈ {1 . . . n}, such that
yi < zi .

Definition 2.2 A solution y found by an algorithm A is said to be potentially Pareto
optimal (PPS), relative to A, if A does not find a solution z, such that z dominates y.

Evolutionary algorithms and local search methods have generally been proposed
to approximate PS (Ehrgott and Gandibleux 2000). Such heuristics must be designed
with two goals in mind: (i) the algorithm must converge toward the PS, and (ii) the
identified solutions must be well-diversified along the frontier.

2.2 Target aiming Pareto search

As pointed out by Ehrgott and Gandibleux (2000), LS have to be guided in their
approximation of the PS. In our methodology, this is done via an iterative process
based on cooperative LS and on appropriate goals.

In TAPaS, a local search heuristic li is applied to each solution si of a potentially
Pareto set P . A specific objective function oi is defined for each local search li . The
function oi must take into account the multiplicity of the LS invoked. Indeed, two
LS should not examine the same area of the objective space, and the entire area that
dominates P should be explored in order to converge toward the optimal PS. The
definition of oi is based on the partition of O according to P (Fig. 1):

• Ad = {s ∈ O|∃s′ ∈ P, s′ ≺ s}
• And = {s ∈ O|∀s′ ∈ P, (s′ 	≺ s) ∧ (s 	≺ s′)}
• As = {s ∈ O|∃!s′ ∈ P, s ≺ s′}
• Ap = {s ∈ O|∃s1, s2 ∈ P, (s ≺ s1) ∧ (s ≺ s2)}
Each solution si ∈ P is associated with a part Ai

s of As . If li is able to generate a feasi-
ble solution in Ai

s , then the approximation is improved according to the convergence,
without impoverishing the diversification.

Fig. 1 Partition of O
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To guide the search, a goal gi is given to each li , with gi being the point that
dominates all points of Ai

s . In cases where certain coordinates of gi cannot be defined
(e.g. the extremities of P ), a lower bound for the missing coordinates should be used.
Algorithm 1 computes the coordinates of gi .

Then, oi is stated as follows:

min

(
M∑

j=1

|fj (s) − fj (gi)|r
) 1

r

. (2)

The general loop of a LS is described in Algorithm 2. When li reaches gi or when it
finds a solution that dominates gi , it stops and produces an archive ai which contains
all the current solutions that are not dominated.

When all li are terminated, a new set P ′ is formed by the Pareto union of all ai .
Because P ′ might be improved by another application of LS, the complete process
is iterated until P ′ does not differ from P . At each iteration, a clustering algorithm
may be applied to P in order to insure that the starting solutions are not too close
and that the gi are more relevant. Moreover, applying the clustering algorithm may
reduce the computational time required. This loop forms the core of TAPaS, as shown
in Algorithm 3.

Algorithm 1 goal_point(s: solution, P : Pareto set)

{M is the number of objectives}
for all objective m do

fm(gp) ← arg min{fm(s′)|(s′∈P)∧(fm(s′)<fm(s))}(fm(s′) − fm(s))

end for
return gp

Algorithm 2 local_search(s: solution, gp: point, L: local search)

{M is the number of objectives}
{N(s) is the neighborhood of the solution s}
L.s ← s

L.a ← {s}
L.o ← min(

∑M
j=1 |fj (s) − fj (gp)|r ) 1

r

while (L.s 	≺ gp) ∧ ¬ L.stopping_criterion do
sinter ← {s∗ ∈ N(L.s)| ∀s′ ∈ N(L.s),L.o(s∗) ≤ L.o(s′)}
L.s ← sinter

L.a ← L.a \ {sa ∈ L.a|L.s ≺ sa}
if ∀sa ∈ L.a, sa 	≺ L.s then

L.a ← L.a ∪ {L.s}
end if

end while
return L.a
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Algorithm 3 TAPaS(P : Pareto set, L: local search)

t ← 0
Pt ← P

continue ← true
while continue do

Pt+1 ← Pt

cluster(Pt )
for all s ∈ Pt do

gp ← goal_point(s, Pt )
a ← local_search(s, gp, L)
Pt+1 ← Pt+1 ∪ a

end for
if Pt 	= Pt+1 then

t ← t + 1
else

continue ← false
end if

end while
return Pt

In this context, the term local search is used in a general sense; it can also refer to
a Tabu search approach or a simulated annealing algorithm, for example.

3 Implementation

3.1 Tabu search

In our implementation of TAPaS for the VRPRB, the LS is a tabu search (TS) based
on the Unified Tabu Search (UTS) (Cordeau et al. 1997; Cordeau et al. 2001). UTS
was initially designed for VRP with time windows, but it also performs well on
CVRP. UTS has many interesting features:

1. UTS allows infeasible solutions to be explored during the search, which means
that a solution s that does not respect capacity constraints will be visited, but its
cost c(s) will deteriorate according to a specific rule. Let q(s) denote the total
violation of capacity constraints. The cost of s becomes f (s) = c(s) + αq(s),
where α is a positive parameter that is dynamically adjusted.

2. In UTS, the neighborhood of a solution s is defined using an attribute set B(s) =
{(i, k) : customer i is visited by vehicle k}. The neighborhood N(s) is defined
by removing an attribute (i, k) from B(s) and replacing it with another attribute
(i, k′). When a customer i is removed from a route k, route k is repaired by linking
the customers before and after customer i, while adding i to k′ to minimize f (s).
When a customer i is removed from route k, the attribute (i, k) is marked tabu for
the θ following iterations.
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3. UTS also proposes an aspiration criterion that allows the tabu status of an attribute
to be revoked. However, since the number of iterations performed in our imple-
mentation is limited, and since the aspiration criterion tends to slow down the
search during the initial iterations, we did not implement it.

4. To diversify the UTS search, any solution s′ ∈ N(s), such that f (s′) ≥ f (s),
is penalized. Let ρik be the number of times the attribute (i, k) has been
added to the solution during the search process. Then a penalty p(s′) =
λc(s′)

√
nm

∑
(i,k)∈B(s′) ρik , where λ is a positive constant, is added to f (s′).

5. UTS only needs one parameter: the maximum number of iterations was fixed to
5000. This value was fixed by experimentation.

To consider the presence of two objectives, our implementation differs from the
standard UTS by incorporating two diversity penalties, which can be defined gener-
ally as: p(s) = λr(s)

√
nm

∑
(i,k)∈B(s′) ρik . The first penalty, denoted pl , is length-

oriented, and requires, for a solution s, r(s) to be equal to the length of the solution.
The second one, denoted pb , is balance-oriented, and requires r(s) to be equal to the
value of the second objective. The choice of penalty for a given TS depends on the
position of the starting solution in the current potentially Pareto set. In our implemen-
tation, pl was attributed to the TS starting at solution s with the following probability:

1

2
×

(
1 − f1(s) − f min

1

f max
1 − f min

1

)
+ 1

2
× f2(s) − f min

2

f max
2 − f min

2

, (3)

where f min
1 (resp. f min

2 ) is the current best found value for the first objective (resp.
the second objective), and f max

1 (resp. f max
2 ) the worst value of the current poten-

tially Pareto set. The penalty was introduced to help UTS escape from local optima
for the solutions that were near the best found solution for the balance objective and
for which a diversity penalty based on the length was not always relevant.

During the clustering phase, the average linking method (Morse 1980) was applied
to the current approximation, allowing up to 10 solutions to be chosen. This value has
been chosen experimentally and by considering the spread of the efficient set as well
as the computational time needed for an iteration of the Tabu search. It is clear that
this value strongly depends on the problem to be solved and the used techniques.

3.2 NSGA II

To assess the efficiency of our methodology and to provide starting sets for the hy-
bridization process, we also implemented NSGA II (Deb et al. 2002) for the VRPRB.
Algorithm 4 outlines the main loop of NSGA II. This section outlines our adaptations
of NSGA II. NSGA II sorts the population into different non-domination levels. In
this ranking phase, the non-dominated individuals in the population obtain rank 1 and
form the subset E1. Rank k is given to the solutions only dominated by the individ-
uals belonging to the subset E1 ∪ E2 ∪ · · · ∪ Ek−1. Then, a fitness equal to its rank
(1 is the best level) is assigned to each solution.

NSGA II also uses a crowding distance metric to provide diversity during the
search. This metric gives an estimate of the density of the solutions surrounding a
solution i in the population. This estimate is expressed by approximating the perime-
ter of the cuboid formed by the nearest neighbors of i. Then, a binary tournament is
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used to select parents from the current population to generate offsprings. During the
tournament, two solutions are compared by means of a crowded tournament selection
operator. According to this operator, a solution i wins a tournament against another
solution j if any of the following conditions is true:

1. ri < rj .
2. ri = rj and di > dj , where di is the crowding distance of solution i.

The first condition makes sure that the chosen solution lies in a better non-dominated
set. The second condition breaks ties between two solutions belonging to the same
non-dominated front by considering their crowding distance, in other words, by se-
lecting the less crowded individual.

We added an archive a whose purpose is to store the non-dominated solutions as
they are found. Doing so insures that no non-dominated solutions will be lost due to
the stochasticity of the algorithm. Algorithm 4 was run until it was not able to improve
the archive for 5000 generations, and the size of each population, denoted N , was
fixed to 128. These values were shown to be effective by preliminary experimentation.

Algorithm 5 outlines the recombination phase. The following VRP operators were
used: the crossover RBX (Potvin and Bengio 1996), the crossover SPLIT inspired by
Prins’ GA (Prins 2006), and the mutation operator Or-opt (Or 1976). A 2-opt local
search (Lin 1965) on the routes was also applied.

Algorithm 4 NSGA II

t ← 0
Pt ← initial_population()

Qt ← initial_population()

Rt ← Pt ∪ Qt

a ← {s ∈ Rt |∀s′ ∈ Rt , s
′ 	≺ s}

while ¬stopping_criterion do
non_dominated_sort(Pt )

Pt+1 ← ∅
i ← 1
while |Pt+1| + |Fi | < N do

Pt+1 ← Pt+1 ∪Fi

i ← i + 1
end while
crowding_sort(Fi )

Include the N − |Pt+1| most widely spread solutions of Fi to Pt+1

recombinationphase(Pt+1,Qt+1)

a ← a \ {s ∈ a|∃s′ ∈ Qt+1, s
′ ≺ s} ∪ {s ∈ Qt+1|∀s′ ∈ a, s′ 	≺ s}

t ← t + 1
end while
return a
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We chose the route based crossover (RBX) (Potvin and Bengio 1996) in order
to emphasize the balancing criterion. This operator retains several randomly chosen
first-parent routes, and completes the offspring using routes from the second parent.
Customers that have already been used must be removed from the routes provided by
the second parent.

The SPLIT crossover, based on the genetic algorithm proposed by Prins (2006),
treats parents as two different traveling salesman problem (TSP) solutions. The arcs
entering or leaving the depot are removed and the routes are merged. The OX
crossover is applied, and a VRP solution is built from the offspring. This is done
by building a directed acyclic graph (DAG) D = (V ,A) with V = {0,1, . . . ,m} and
by identifying the shortest path within it. Let the permutation σ represent the TSP
solution, where σ(0) still equals 0. Different feasible routes (i.e. the split) are rep-
resented by the arc of D, and for all i, j ∈ V (i < j), the arc (i, j) belongs to
A if and only if the total load on the route 0σ(i + 1) . . . σ (j)0 is less or equal to
the vehicle capacity. The valuation of the arc (i, j) is calculated with the formula:
d(0, σ (i + 1)) + ∑j−1

l=0 d(σ (i + l), σ (i + l + 1)) + d(σ (j),0), where d(c1, c2) is the
distance between customers c1 and c2. Finding the optimal partition of the TSP tour
is equivalent to solving a shortest path problem on the DAG. An example provided
by Prins (2006) is presented in Fig. 2.

Algorithm 5 recombination_phase(P,Q: POPULATION)

Q ← ∅
for i ← 1, . . . ,N do

pa1 ← choose_solution(P )

s ← choose_solution(P )

if s >c pa1 then
pa1 ← s

end if
pa2 ← choose_solution(P )

s ← choose_solution(P )

if s >c pa2 then
pa2 ← s

end if
if rand() < 0.5 then

s ← RBX(pa1,pa2)

else
s ← SPLIT(pa1,pa2)

end if
if rand() < 0.4 then

s ← or_opt(s)
end if
ls_2opt(s)
Q ← Q ∪ {s}

end for
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Fig. 2 From a TSP solution to a VRP solution

Fig. 3 (a) is better-balanced
than (b), but (b) does not
artificially improve the balance

The Or-opt mutation operator (Or 1976) moves 1 to K consecutive customers from
one route to another. In our implementation, K was set at 3. This operator has two
advantages: (i) it is particularly well-adapted to the VRP solution, which is a set of
routes, and (ii) it allows new routes to be created.

Finally, a 2-opt local search (Lin 1965) is applied to each route of each offspring.
Using this kind of TSP improvement procedure achieves three purposes: (i) it makes
the solution less chaotic; (ii) it improves the total length; and (iii) it prevents the
balancing objective from being distorted, as shown in Fig. 3.

4 Computational results

TAPaS and NSGA II for the VRPRB were both coded in C. The evaluation was con-
ducted on seven standard Christofides benchmarks (Christofides et al. 1979), which
correspond to CVRP instances, as well as on eight Taillard instances (Rochat and
Taillard 1995). The number of customers varies from 50 to 199. Ten runs were made
for each instance. As suggested in (Knowles and Corne 2002), the S metric (Zitzler
1999) was used. S(A) represents the size of the area dominated by the approxima-
tion generated by an algorithm A. It is based on computing the volume (area in the
bi-objective case) dominated by a given Pareto-front approximation. The S metric
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Table 2 Average computational
times for the hybrid
meta-heuristic (in seconds)

Instance NSGA II TAPaS Hybrid meta-heuristic

E51-05e 314 78 392

E76-10e 1576 348 1925

E101-08e 2594 895 3489

E151-12c 4438 2282 6520

E200-17c 5708 4428 10136

E121-07c 4648 1488 6136

E101-10c 2767 682 3449

Tai100a 2266 1051 3317

Tai100b 2589 1152 3741

Tai100c 3180 1339 4519

Tai100d 3010 1186 4519

Tai150a 4312 2157 6469

Tai150b 4600 2920 7520

Tai150c 4652 2186 6838

Tai150d 4459 2112 6571

requires a reference point Zref consisting of a reference value for each of the two
objectives. For both objectives and for each instance, we used the worst value found
by all methods. We have normalized the S metric. We also used the C metric (Zitzler
1999), where C(A,B) gives the ratio of the approximation generated by B , which
is dominated by the approximation generated by A. First, we have assessed the ef-
ficiency of TAPaS. To do that, we solved the problems by the means of NSGA II
such as it has been explained in Sect. 3.2. Then, TAPaS is applied on the approxima-
tion generated by NSGA II. The combination of NSGA II and TAPaS forms a hybrid
meta-heuristic (HM). In Table 2, we report the average times for each part of HM
and the total average time. Then, the instances were solved using NSGA II assuring
that NSGA II runs at least the average computational time required by the HM, i.e.
the sum of the average times of NSGA II and TAPaS. These runs of NSGA II are
denoted as NSGAu II in the remaining of the paper. Table 3 provides the maximum,
mean, and minimum S metric values for HM and NSGAu II.

These results show that the worst run of the HM is better on nine over 15 instances
than the average value for NSGAu II. Moreover it is always better than the worst
values of NSGAu II. The average value for the HM is always better than the average
value for NSGAu II and it is better on four instances than the best run of NSGAu II.
Finally, the HM is able on average to find a better approximation than NSGAu II on
14 out of 15 instances. All in all, it appears that the HM is significantly better than
NSGAu II on the set of instances notably on the largest ones.

We have also assessed the contribution of TAPaS over NSGA II by computing the
ratio of solutions improved by the application of TAPaS on the approximations of
NSGA II. Table 4 reports the maximum, mean, and minimum values as well as the
standard deviation for the metric C(HM, NSGA II). On the Christofides’ instance,
except for benchmarks E51-05e and E101-10c, which correspond to the easiest in-
stances of the testbed and for which NSGA II was already able to provide good qual-
ity sets, TAPaS is able to improve, on average, more than 50 percent of the approxi-
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Table 3 Comparison between the hybrid meta-heuristic and NSGAu II (using the S metric)

HM NSGAu II

max. mean min. max. mean min.

E51-05e 0.184722 0.181876 0.178224 0.183291 0.179356 0.173523

E76-10e 0.508462 0.504729 0.501610 0.509578 0.501229 0.495054

E101-08e 0.505894 0.504372 0.502449 0.503396 0.502078 0.500110

E151-12c 0.582746 0.576487 0.573160 0.577029 0.571535 0.559313

E200-17c 0.574079 0.567778 0.559463 0.560310 0.547665 0.539729

E121-07c 0.475286 0.474632 0.473764 0.474161 0.471848 0.468537

E101-10c 0.574618 0.558285 0.542310 0.571528 0.558178 0.543720

Tai100a 0.515336 0.507331 0.500008 0.503306 0.500602 0.496800

Tai100b 0.556439 0.549141 0.543534 0.551838 0.548910 0.544449

Tai100c 0.567101 0.564852 0.562087 0.566791 0.562932 0.559125

Tai100d 0.557676 0.554981 0.550859 0.554323 0.549609 0.544318

Tai150a 0.582285 0.573663 0.566718 0.571384 0.561065 0.549111

Tai150b 0.618611 0.612231 0.604337 0.614213 0.608815 0.597530

Tai150c 0.632052 0.627812 0.623626 0.629449 0.617879 0.599805

Tai150d 0.612510 0.599726 0.593876 0.594941 0.590824 0.586338

Table 4 Ratio of improved
solutions when TAPaS is applied
(using C(HM, NSGA II))

Instance max. mean min. std. dev.

E51-05e 0.90 0.47 0.11 0.30

E76-10e 0.79 0.51 0.19 0.26

E101-08c 1.00 0.89 0.83 0.06

E151-12c 0.97 0.85 0.75 0.08

E200-17c 1.00 0.93 0.74 0.10

E121-07c 0.91 0.70 0.53 0.13

E101-10c 0.54 0.43 0.19 0.13

Tai100a 0.99 0.93 0.87 0.06

Tai100b 1.00 0.82 0.40 0.21

Tai100c 0.79 0.62 0.50 0.11

Tai100d 0.96 0.86 0.56 0.15

Tai150a 0.99 0.79 0.64 0.11

Tai150b 0.97 0.88 0.71 0.10

Tai150c 0.92 0.81 0.69 0.07

Tai150d 0.95 0.85 0.77 0.06

mations. Furthermore, the improvement is clearly significant for the largest instances.
The ratio of improved solutions is also very important on the complete Taillard set of
instances.

Finally, Table 5 provides the maximum, mean, and minimum S metric values when
TAPaS is applied on the non-dominated solutions obtained from a randomly gener-
ated population instead of an approximation generated by NSGA II. These values
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Table 5 TAPaS applied on
randomly generated populations
(using the S)

Instance HM max. mean min.

E51-05e 0.181876 0.183214 0.179635 0.176965

E76-10e 0.504729 0.491070 0.483772 0.479411

E101-08c 0.504372 0.503816 0.500826 0.497350

E151-12c 0.576487 0.583605 0.560629 0.548722

E200-17c 0.567778 0.565825 0.525802 0.502104

E121-07c 0.474632 0.469152 0.465739 0.462468

E101-10c 0.558285 0.505070 0.482232 0.464768

Tai100a 0.507331 0.492090 0.463427 0.446285

Tai100b 0.549141 0.542015 0.498966 0.471237

Tai100c 0.564852 0.556762 0.506838 0.392842

Tai100d 0.554981 0.550294 0.506519 0.449803

Tai150a 0.573663 0.516621 0.501110 0.474819

Tai150b 0.612231 0.552367 0.530957 0.516620

Tai150c 0.627812 0.442535 0.415148 0.375577

Tai150d 0.599726 0.572996 0.546108 0.526384

Table 6 Diversification
performance of the methods
(using the k-distance)

Instance NSGA II HM NSGAu II

E51-05e 0.632493 0.654776 0.584683

E76-10e 0.406861 0.408982 0.411314

E101-08c 0.385763 0.439261 0.398105

E151-12c 0.288893 0.258150 0.261146

E200-17c 0.300588 0.245579 0.339684

E121-07c 0.262204 0.277943 0.283978

E101-10c 0.238037 0.257504 0.257595

Tai100a 0.241133 0.326460 0.253800

Tai100b 0.256708 0.266706 0.272262

Tai100c 0.251910 0.257392 0.255567

Tai100d 0.235605 0.228658 0.234998

Tai150a 0.239144 0.268288 0.223998

Tai150b 0.225721 0.247684 0.223912

Tai150c 0.233970 0.276934 0.213281

Tai150d 0.245319 0.276214 0.239551

show that, on average, the approximations produced through hybridization are better,
especially on the largest instances. This clearly illustrates that hybridizations such as
HM are better than invoking each component separately.

Finally, we investigated the effect of the TAPaS on the diversification of the gen-
erated sets. For that we used the k-distance. It is a density estimation technique pro-
posed by Zitzler et al. (2001) based on kth nearest neighbor method of Silverman
(1986). It computes the distance (in this cases the Euclidean distance) to the kth near-
est non-dominated solution, and should be interpreted such as the smaller the better.
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Here we use k = 5 and compute the mean. In Table 6, we report the averages of the
mean values for each instance. From these results, it appears that the HM provides
better approximation on 7 out of 15 instances that NSGA II. The same remark is true
when we compare HM and NSGAu II. Therefore, it seems that the application of
TAPaS has neither a positive nor a negative impact on the diversity of the generated
approximations.

5 Conclusion

In this paper, we have proposed the Target Aiming Pareto Search methodology as a
component of a hybrid method for generating approximations of Pareto sets. TAPaS
is based on repeated cooperative local searches with individual appropriate goals.
The design of TAPaS was motivated by the need to improve the results obtained
by a multi-objective genetic algorithm. The idea was the following one: the genetic
algorithm generates well-diversified approximations of the optimal Pareto set and
TAPaS improves the convergence toward the optimal Pareto set. The purpose of the
methodology was to solve a bi-objective extension of the capacitated vehicle routing
problem, called the vehicle routing problem with route balancing, in which the ob-
jectives are both the minimization of the total length and the balancing of the routes
(the minimization of the difference between the longest route length and the shortest
route length). We have proposed an implementation of TAPaS for this bi-objective
VRP problem using a tabu algorithm, which is an efficient meta-heuristic approach
to the vehicle routing problems. Assessment with standard metrics was conducted
on a classic testbed. Computational experiments led to two important conclusions:
(i) TAPaS is efficient when it is used for hybridization, and (ii) the hybridization of
TAPaS with another algorithm generates better approximations than their individual
counterparts.
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