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Abstract This paper describes a heuristic for 0-1 mixed-integer linear programming
problems, focusing on “stand-alone” implementation. Our approach is built around
concave “merit functions” measuring solution integrality, and consists of four layers:
gradient-based pivoting, probing pivoting, convexity/intersection cutting, and diving
on blocks of variables. The concavity of the merit function plays an important role in
the first and third layers, as well as in connecting the four layers. We present both the
mathematical and software details of a test implementation, along with computational
results for several variants.

Keywords Integer programming · Simplex pivot · Convexity cut

This paper presents a heuristic method for finding feasible solutions to 0-1 mixed-
integer linear programming (MIP) problems of the form

min c�x (1)

s.t. Ax = b, (2)

l ≤ x ≤ u, (3)

xi ∈ {0,1}, ∀i ∈ I, (4)
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where A is an m × n matrix, I ⊆ {1, . . . , n} is the set of integer variables, and
li , ui ∈ {0,1} for all i ∈ I . For future reference, let P denote this problem’s linear
programming (LP) relaxation feasible region, that is, the set of all x ∈ R

n satisfy-
ing (2) and (3). Further, let Y denote the set of all points satisfying (3) and (4); the
set of feasible solutions is thus P ∩ Y .

The majority of the extensive literature for this very general and widely-applied
class of NP-hard problems concerns exact solution, with the greatest practical suc-
cess being achieved via branch-and-bound methods, augmented with cutting plane
techniques. In this paper, we instead focus on heuristic methods. Heuristic methods
may be of interest for the usual reasons—for example, it may not be possible to ob-
tain exact solutions to some instances in a realistic or justifiable amount of time. In
addition, heuristics may also be usefully combined with branch-and-bound methods
by providing good incumbent solutions early in the development of the search tree.
Such early incumbents can help limit the amount of memory needed to store the tree,
or accelerate branch-and-bound search via techniques such as reduced-cost fixing;
see Beale (1979). In parallel implementations of branch and bound—see for exam-
ple Anbil et al. (1999), Eckstein (1994), Eckstein et al. (2001), Linderoth (1998),
Ralphs and Ladányi (2000)—early, high-quality incumbent solutions can be particu-
larly important in preventing exploration of noncritical portions of the tree. Indeed, it
was parallel implementation of branch and bound that initially motivated our interest
in MIP heuristics. Conversely, branch-and-bound methods can assist heuristics by in-
tensifying the search in promising regions, and by providing guarantees of solution
quality.

One can thus categorize applications of MIP heuristics as either “stand-alone”,
where the heuristic is run by itself, or in conjunction with branch and bound. This
paper focuses on the stand-alone case. Upcoming work will discuss a streamlined
adaptation of some of the ideas presented here that is more suitable for combination
with branch-and-bound search.

By comparison to the literature of exact methods, the literature of heuristic meth-
ods for problems in the general form (1–4) is fairly limited. The earliest publications
we have discovered present rounding heuristics for MIPs (in inequality form) whose
LP relaxations’ feasible regions have nonempty interior; see Faaland and Hillier
(1979), Hillier (1969), Ibaraki et al. (1974). Starting from an LP relaxation solution,
these methods construct a piecewise-linear path leading into this interior and then
move parametrically along the path, attempting to find nearby integer-feasible solu-
tions. We initially attempted to generalize these ideas to problems lacking an interior,
but found the results disappointing.

An extensively tested heuristic for 0-1 MIP is the pivot-and-complement method
of Balas and Martin (1980), which is based on an optimal solution being attained at
a vertex where all binary variables are nonbasic. It uses individual pivots to try to
remove integer variables from the basis.

The tabu-search-based method for 0-1 mixed integer programming of Løkketan-
gen and Glover (1998) uses local search over the pivot neighborhood of the current
vertex. This work includes extensive computational results, but limited to relatively
small multi-constraint knapsack problems. This method uses a merit function to mea-
sure solution integrality, and treats the rounding of an LP solution as a bicriterion
optimization involving both this merit function and the original objective function.
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The more recent “OCTANE” heuristic of Balas et al. (2001) applies only to pure
0-1 integer programming (the case I = {1, . . . , n}). It is based on enumerative inter-
section cuts; see Balas (1971), Burdet (1972), Glover (1972). The numerical results
reported in this work are very encouraging.

A very general MIP heuristic approach is based on the notion of cut search
proposed by Glover (1972); see Glover and Laguna (1997a, 1997b) and Chap. 6
of Glover and Laguna (1997c). However, numerical results have not been reported
in this work.

In the past few years, research on MIP heuristics has intensified, in particular
heuristics which take an already integer-feasible solution, and attempt to find bet-
ter nearby solutions. Such methods include local branching by Fischetti and Lodi
(2003), as well as guided dives and relaxation induced neighborhood search (RINS);
see Danna et al. (2005). In principle, these methods could be combined with ours: our
method could find an initial feasible solution, and one of these alternative methods
could then improve upon it.

Recent work by Fischetti et al. (2005), appearing while this paper was under re-
view, proposes a feasibility pump heuristic for MIP problems. At iteration n + 1, this
method solves a linear program in which the original objective function is replaced
by the L1-distance between xI and [xn

I ], where the subscript I denotes a vector of
just the integer variables, xn denotes the result of the prior iteration, and [·] denotes
rounding to the nearest integer vector. The heuristic repeatedly solves such linear pro-
grams until xn is integer feasible. One may regard this method either as an extreme
form of diving—see Sect. 1.5—or as a nonsmooth Frank-Wolfe merit function pro-
cedure; see Remark 1.7 below. Fischetti et al. (2005) report a favorable comparison
of their method with commercial software on a number of hard 0-1 instances.

Like the method of Løkketangen and Glover (1998), our approach to MIP heuris-
tics is built around a merit function that is zero at integer-feasible points and positive
elsewhere in the unit cube. The fundamental layer of our method uses either individ-
ual pivots or Frank-Wolfe blocks of pivots to reduce the value of the merit function,
while trying to avoid excessive deterioration of the original objective. Thus, the most
closely-related prior methods are those of Løkketangen and Glover (1998) and to a
lesser extent of Balas and Martin (1980), which is also pivot-based.

Unlike Løkketangen and Glover (1998), we require that the merit function be con-
cave. This restriction allows for quick selection of pivots based on local gradient
information, leading relatively rapidly to local minima of the merit function over P .
The basic search moves of Løkketangen and Glover (1998) are more akin to the sec-
ond layer of our method, which we call “probing”, in which we explicitly test a list
of possible pivots. We invoke this probing layer only at local merit function minima
that are not integer-feasible.

Merit function concavity is also critical in the third layer of our method. Thanks
to concavity, failure of the probing layer of our method immediately gives rise to
a convexity cut, also called an intersection cut—see Balas (1971, 1972), Balas et al.
(1971), Glover (1973), Raghavachari (1969), Tuy (1964), Zwart (1973), Eckstein and
Nediak (2005)—violated by the current vertex and (barring degeneracy) all adjacent
vertices.

If probing fails, and the resulting convexity cut appears excessively shallow, we
resort to the fourth and final layer of our heuristic: a recursive, depth-first “diving”
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technique. In this method, we attempt to fix a (usually large) group of variables simul-
taneously. Typically, this operation results in a linearly infeasible problem, in which
case we backtrack and instead apply a complementary “vertex” cut. This modifica-
tion also makes our heuristic a provably exact, finitely terminating algorithm when it
is allowed to run beyond the initial feasible solution.

Section 1 below develops the main technical ideas of our approach. Section 2
then discusses a range of less mathematically involved implementation issues ranging
from starting point and merit function selection to software design. Finally, Sect. 3
presents computational results and analysis. Coupling of the method with branch
and bound and treatment of problems with general integer variables are reserved for
subsequent work.

1 Mathematical structure of the heuristic

The starting point of our approach is measuring integer infeasibility by a merit func-
tion constructed as follows: consider a collection of continuously differentiable con-
cave functions φi : R → R, i ∈ I , such that φi(0) = φi(1) = 0 and φi(x) > 0 for all
x ∈ (0,1), and define

ψ(x) =
∑

i∈I

φi(xi). (5)

Example 1.1 Given a parameter x̃ ∈ (0,1), the following function satisfies the re-
quirements on φi(·):

φx̃(x) = 1 −

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
x − x̃

x̃

)2

, x ≤ x̃,
(

x − x̃

1 − x̃

)2

, x ≥ x̃.

(6)

Note that this function attains a maximum value of 1 at x = x̃, and that for x̃ = 1/2,
one obtains φ1/2(x) = 4x(1 − x). We can select possibly different values x̃i ∈ (0,1)

for each i ∈ I and obtain

ψ(x) =
∑

i∈I

φx̃i
(xi), (7)

the class of functions used in the numerical experiments of Sect. 3.

1.1 Rounding via concave pivots and probing

The goal of the rounding portion of our heuristic is, given a fractional solution
to (1–3), modify it in such a way that it becomes integer-feasible, while keeping
the original objective function value as low as possible.

Rounding proceeds via primal simplex pivots starting with the basis corresponding
to some optimal solution x0 of the relaxation (1–3). Consider a basic feasible solu-
tion x̄ to (1–3), denote the basic and non-basic matrices by B and N, and denote the
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basic and non-basic index sets by JB and JN, respectively. The edges of P extending
from x̄ will be denoted by x(i)(t) = x̄ + tξ (i), where

ξ (i) = si

(−B−1Ne(i)

e(i)

)

are the edge directions and

si =
{+1, xi = li ,

−1, xi = ui

for all i ∈ JN . Let K denote the affine cone spanned by {ξ (i) : i ∈ JN } with its vertex
at x̄. Let the reduced costs for any cost vector v be denoted by z(v) = (diag s)(vN −
(B−1N)�vB). Given v ∈ R

n, define the following index sets:

I+(v) = {i ∈ I : zi(v) > 0},
I−(v) = {i ∈ I : zi(v) < 0},
I0(v) = {i ∈ I : zi(v) = 0}.

Similarly to the tabu-search method variants in Løkketangen and Glover (1998),
we consider two kinds of rounding procedure we call the “ratio” and “sum” methods;
see Sects. 1.2 and 1.3, respectively.

Both the “sum” and “ratio” methods rely heavily on the concavity of the merit
function. Notice that for any concave differentiable function ψ(·) on R

n and edge
direction ξ (i),

zi(∇ψ(x̄)) = (∇ψ(x̄))�ξ (i). (8)

From the concavity of ψ(·) and its differentiability at x̄, one immediately obtains:

Lemma 1.2 For any concave continuously differentiable function ψ(·) on R
n, one

has

ψ(x(i)(t)) ≤ ψ(x̄) + tzi(∇ψ(x̄)).

Note that for linear ψ , the above relation holds with equality. Thus, one immedi-
ately obtains

Corollary 1.3 For a concave continuously differentiable function ψ(·) on R
n and a

fixed vector c ∈ R
n with c�ξ (i) �= 0, one has

ψ(x(i)(t)) − ψ(x̄)

c�x(i)(t) − c�x̄
≤ zi(∇ψ(x̄))

zi(c)
.

1.2 The “ratio” method

In the “ratio” method, we select pivots as follows: first, we look for pivots that de-
crease the merit function but do not increase the objective (Rule 1 below). If no such
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pivot is possible, we try to pivot on a variable xj that locally improves the merit func-
tion, that is, has zj (∇ψ(x̄)) < 0, at the least possible cost in terms of the objective
function (Rule 2 below). Lemma 1.2 implies that the value of ψ(·) after pivoting will
not be higher than predicted by the corresponding reduced cost zj (∇ψ(x̄)). Corol-
lary 1.3 also asserts that the ratio of reduced costs zj (∇ψ(x̄))/zj (c) provides a lower
bound on the relative change in the merit function to the change in the objective.

If no pivot locally improving ψ(·) exists, we are at a stationary point of ψ(·) on P .
We then perform a “probing” operation in which we explicitly test possible pivots
until a satisfactory improving pivot is found or the list of possible entering variables
is exhausted (Rule 3 below). Although it is possible that probing will examine all
the neighboring vertices of the current iterate x̄, we try to avoid this possibility by
inspecting them in an order that gives priority to candidate entering variables xi that
have low values of zi(∇ψ(x̄)) and zi(c); see (11) below. In inspecting a possible
entering variable xi , we compute the new iterate x that would result. If ψ(x) ≥ ψ(x̄),
that is, x is farther from integrality than x̄, we abandon the pivot and move to the next
pivot on the list; note that, due to the concavity of ψ(·), ψ(x) < ψ(x̄) is possible even
though zi(∇ψ(x̄)) ≥ 0. If the pivot passes this test, we then consider its “objective
sacrifice rate”

r(x̄,x) = c�x − c�x̄
ψ(x̄) − ψ(x)

, (9)

that is, the amount of objective value given up per unit improvement in the merit
function. If this sacrifice rate is “acceptable” in relation to the prior history of the
run—see (12) below—then x is accepted as the next iterate and no further pivots
are probed. Otherwise, probing continues. If it is necessary to examine every possi-
ble pivot, we select, from among all the pivots with ψ(x) < ψ(x̄), a pivot minimiz-
ing r(x̄,x). If there was no pivot with ψ(x) < ψ(x̄), we declare the rounding process
to have failed.

Formally, the rounding algorithm proceeds by applying the following pivoting
rules until an integer-feasible point is found or the probing step fails:

Rule 1 If J = (I−(∇ψ(x̄))) ∩ (I−(c) ∪ I0(c)) �= ∅, then pivot on a variable

i ∈ Argmin{zj (∇ψ(x̄)) : j ∈ J }. (10)

Rule 2 Otherwise, if I−(∇ψ(x̄)) �= ∅, pivot on a variable

i ∈ Argmin

{
zj (∇ψ(x̄))

zj (c)
: j ∈ I−(∇ψ(x̄))

}
;

Rule 3 (Probing) Otherwise, I−(∇ψ(x̄)) = ∅, and the current iterate x̄ is a stationary
point of ψ(·) with respect to P. We therefore start a probing operation. First, we order
the indices i of the possible entering variables by increasing

(zi(∇ψ(x̄)) + θ)(zi(c) − min
j

zj (c) + θ) (11)

for some constant θ > 0. In this order, we then evaluate each i as follows:



Pivot, Cut, and Dive: a heuristic for 0-1 mixed integer programming 477

1. Compute the new iterate x that would result from pivoting xi into the basis.
2. If ψ(x) ≥ ψ(x̄), move to the next pivot on the list.
3. Otherwise, compute r(x̄,x) as in (9). If

r(x̄,x) ≤ μ
c�x̄ − c�x0

ψ(x0) − ψ(x̄)
, (12)

that is, it is no worse than μ times the rate of objective sacrifice sustained so far,
then accept the new iterate x and terminate the probing step. If the denominator of
the right-hand side of (12) is zero, we take the ratio to be zero.

If the entire set of possible entering variables has been examined without one
passing the test (12), we accept the one with the lowest r(x̄,x); if no pivot with
ψ(x) < ψ(x̄) was encountered, we declare the probing step to have failed.

Remark 1.4 One can use other pivot selection rules instead of Danzig’s rule in (10)
(for example, steepest-edge selection).

Remark 1.5 Note that probing may result in a large number of pivots being attempted
and successively rejected. To avoid this phenomenon, we may instead modify the
function ψ(·) in such a way that x is no longer a local minimum. In this case, however,
special care must be taken to avoid cycling.

1.3 The “sum” method

An alternative approach is to use a single function that combines integrality and ob-
jective improvement at some fixed ratio. For a (sufficiently small) positive constant w,
consider a modified merit function

ψ̂(x) = ψ(x) + wc�x. (13)

Then one can replace Rules 1 and 2 of the ratio method with the following:

Rule 1′ Select a pivot

i ∈ Argmin{zj (∇ψ̂(x̄)) : j ∈ I−(∇ψ̂(x̄))}
whenever I−(∇ψ̂(x̄)) �= ∅.

Otherwise the sum method applies a probing step, analogous to the Rule 3:

Rule 2′ The natural ordering of probing pivots, in this case, is of increasing
zj (∇ψ̂(x̄)). Again, if the point x resulting from a pivot has ψ̂(x) ≥ ψ̂(x̄), we abandon
the pivot and move to the next pivot on the list. If a pivot is improving, we test if the
improvement is satisfactory, as compared to a multiple of a historical improvement
in ψ(·), i.e. if

ψ̂(x) − ψ̂(x̄) ≤ μ
ψ̂(x̄) − ψ̂(x0)

N
,
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where N is a number of simplex steps from the initial vertex x0 to x̄ and μ > 0 is
a constant. If a satisfactory pivot is found, we accept it and terminate probing. On
the other hand, if the entire pivot list was examined, we pick a pivot with the most
negative ψ̂(x)− ψ̂(x̄). If no improving pivot was encountered we declare the probing
step to have failed.

The entire rounding procedure terminates either when it encounters an integer-
feasible solution, or the probing step fails.

Remark 1.6 An important feature of the Rule 1′ is that it does not require a recompu-
tation of the gradient after each pivot. Recall that the starting point of the procedure is
denoted by x0. One possibility is to keep the gradient fixed until reaching x1, optimal
with respect to the linear objective ∇ψ̂(x0). We then replace the gradient informa-
tion with ∇ψ̂(x1), and repeat application of Rule 1′ until reaching x2, optimal with
respect to the linear objective ∇ψ̂(x1), and so forth. We proceed in this fashion until
we arrive at a point that is stationary with respect to the recomputed gradient. This
modification of Rule 1′ results in a version of the classical Frank-Wolfe method for
nonlinear programming; see for example Sect. 2.2.2 of Bertsekas (1999). Another
possibility is to limit the number of pivots between gradient recomputations. An im-
portant practical advantage of the Frank-Wolfe variant is that it saves time in highly
degenerate problems where the gradient actually remains constant for most pivots.
Other advantages are that one can avoid the significant interface overhead that is
often incurred when manipulating a simplex solver package to perform individual
pivots, and one can rely on an existing simplex solver’s built-in degeneracy handling
techniques.

Remark 1.7 One may view the feasibility pump heuristic of Fischetti et al. (2005)
as a form of Frank-Wolfe procedure in which w = 0 and φi(xi) = min{xi,1 − xi}
for all i ∈ I . This φi function is concave, but nonsmooth at xi = 1/2. The feasibility
pump uses an objective coefficient of 1 when xk

i < 1/2 and −1 when xk
i > 1/2,

corresponding exactly to the gradient of min{xi,1 − xi}. Thus, it is possible to view
our Frank-Wolfe rounding procedure as a variant of the feasibility pump using a
smoothed merit function.

1.4 Rounding within a cutting plane method

Consider once again the ratio method: if probing fails, the rounding procedure has
arrived at a fractional vertex x̄ of P whose entire pivot neighborhood is at least as
fractional, as measured by ψ(·). In this case, the computations performed by the
failed probing step lead naturally to a convexity cut satisfied by all integer-feasible
solutions to (2–4) but violated by x̄. Here, we will give an abbreviated, somewhat
informal explanation of these cuts; see Eckstein and Nediak (2005) for an extended,
rigorous treatment—concepts found in that paper are marked with a “[∗]”.

We begin by expressing

x̄ =
(

B−1(b − Ng)

g

)
,
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where gi = li or gi = ui for nonbasic variable at their lower or upper bounds, respec-
tively. Next, consider the set

C = {x̄ ∈ R
n | ψ(x̄) ≥ 0},

whose interior is intC = {x̄ ∈ R
n | ψ(x̄) > 0}. By the construction of ψ , C is a closed

convex set, and intC contains x̄ but cannot contain any integer feasible points. C is
thus an admissible set [∗] for x̄ and the integer-feasible points Y .

Consider once more the cone K ⊇ P emanating from x̄, as defined in Sect. 1.1.
All elements of K (and thus of P ) may be expressed as

x = x̄ +
∑

i∈JN

tiξ
(i) (14)

for some scalars ti ≥ 0, i ∈ JB . Let J denote the indices i ∈ JN for which the ray
consisting of all x(i)(t) = x̄ + tξ (i), t ≥ 0, intersects bdC, and let t̂i > 0, i ∈ J , be
such that ψ(x(i)(t̂i )) = 0 and thus x(i)(t̂i ) ∈ bdC. A point x of the form (14) for
which

∑
i∈J ti/t̂i < 1 can be expressed as a strict convex combination of x̄ ∈ intC

and x(i)(t̂i ) ∈ C, i ∈ J . Thus, any such x must be in intC and cannot be integer-
feasible. Therefore, any integer-feasible x must satisfy the condition

∑
i∈J ti/t̂i ≥ 1.

In order to append this inequality to the LP, it should be reformulated as an inequality
α�x ≥ β written in terms of the original variables x1, . . . , xn, instead of the edge
displacements ti , i ∈ JN . One straightforward way of doing so is to define α ∈ R

n via

αi = si

t̂i
, i ∈ J, αi = 0, i ∈ JN\J, αi = 0, i ∈ JB, (15)

and

β = α�x̄ + 1 = αN x̄N + 1 =
∑

i∈J

sigi

t̂i
+ 1, (16)

resulting in the valid inequality

∑

i∈J

si

t̂i
xi ≥

∑

i∈J

sigi

t̂i
+ 1. (17)

which must be satisfied by all x ∈ K ∩ Y ⊆ P ∩ Y , but is clearly violated by x̄.
Employing the theory of convexity cut strength [∗], we generate a cut in this man-

ner, but substitute for ψ the function ψ defined as a sum over i ∈ I of

φi(xi) = min{xiφ
′
i (0), (xi − 1)φ′

i (1)}.
When ψ is chosen as in Example 1.1, we then obtain

ψ(x) =
∑

i∈I

min{xiφ
′
x̃i

(0), (xi − 1)φ′
x̃i

(1)} = 2
∑

i∈I

min

{
xi

x̃i

,
1 − xi

1 − x̃i

}
. (18)

In any case, ψ is concave and piecewise-linear, and it can be seen that ψ(x) ≥ ψ(x)

for all x ∈ Rn, and ψ(x) = ψ(x) = 0 for all x ∈ Y . The corresponding level set C =
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{x̄ ∈ R
n | ψ(x̄) ≥ 0} has similar properties to C and strictly contains it. Therefore it

will generate a cut stronger [∗] than the one generated from C, that is, guaranteed
to eliminate at least as many points of K , and in most cases a strictly larger set of
points. To generate this cut, we compute the positive solutions t̂i to the equations

ψ(x(i)(t)) = 0, i ∈ JN, (19)

letting J ⊆ JN denote the set of indices i for which such solutions exist. We then
employ the construction (15–16) to produce a cut α�x ≥ β , which we append to the
LP formulation.

Note that the preceding failed probing step computes all the ξ (i) in the process of
considering possible pivots on all i ∈ JN . Thus, if the probing step fails, the complete
set of {ξ (i) : i ∈ JN } is available without any further computation. Once the set J

and the intersection displacements t̂i are in hand, each cut coefficient can be found
in constant time. Thus, the main computational cost of generating the cut results
from processing (19). The following proposition shows that this operation can be
performed quite efficiently:

Proposition 1.8 When the ψ(·) is of the form (18), each equation (19) can be solved
(or determined to have no positive solution) in O(|I | + |I ∩ JB | log |I ∩ JB |) time.

Proof To solve (19), we first identify an interval [t ′i , t ′′i ] that must contain t̂i and on
which ψ(x(i)(t)) is purely linear. Consider the set

S = {0} ∪
{

x̄j − x̃j

siξ
(i)
j

: j ∈ I ∩ (JB ∪ i),
x̄j − x̃j

siξ
(i)
j

> 0

}
∪ {+∞},

which includes all positive breakpoints of ψ(x(i)(·)) as well a 0 and +∞. The largest
value of S for which ψ(x(i)(·)) is nonnegative will give us t ′i , and its next element
is t ′′i . Constructing and sorting S requires O(|I ∩ JB | log |I ∩ JB |) time. Once S is
known and sorted, t ′i may be identified in O(log |I ∩ JB |) evaluations of ψ(x(i)(·))
via a binary search procedure.

To evaluate the complexity of each calculation of ψ(x(i)(·)), note that

ψ(x(i)(t)) =
∑

j∈I

φj (x̄j + tξ
(i)
j )

=
∑

j∈I∩JB

φj (x̄j + tξ
(i)
j ) +

∑

j∈I∩JNj �=i

φj (x̄j )

+
{

φi(x̄i + tsi), i ∈ I ,
0, i /∈ I ,

(20)

since ξ
(i)
j = 0 for j /∈ JB ∪ {i}. Caching the constant value of second term in (20),

which requires O(|I |) time to compute, each calculation of ψ(x(i)(t)), requires eval-
uation of at most |I ∩JB |+ 1 of the φj ’s in O(1) time each, for a total of O(|I ∩JB |)
time.



Pivot, Cut, and Dive: a heuristic for 0-1 mixed integer programming 481

The values of ψ(x(i)(·)) and its derivative on t ∈ [t ′i , t ′′i ] give the parameters of a
linear equation whose root in [t ′i , t ′′i ) is the solution of (19) for a given i. As above, the
evaluation of ψ(x(i)(·)), and also its derivative, can be accomplished in O(|I ∩ JB |)
time. Thus, the total complexity, including caching the value of the second term
in (20), is O(|I | + |I ∩ JB | log |I ∩ JB |). �

Remark 1.9 One can lower the complexity of finding the t̂i ’s by using a sparse rep-
resentation of the ξ (i). Let J i

B be the set of nonzero components of ξ (i). Then the
complexity of finding t̂i is O(|I | + |I ∩ J i

B | log |I ∩ J i
B |), which ordinarily does not

exceed the complexity of finding ξ (i) itself. Thus, it is not prohibitive to automat-
ically find t̂i for each ξ (i) examined while probing. In this case, we immediately
obtain a convexity cut (17) at the end of every failed probing step.

While the convexity cut (17) is not depth-optimized [∗] and may not always be
very deep, the failure of the probing step guarantees that it will cut off the current
point x̄ and its immediate pivot neighborhood.

Thus, we may repeat the following steps until an integer feasible solution is found
or the problem becomes infeasible:

1. Perform rounding as described in Sect. 1.1. If an integer feasible solution results,
stop; otherwise go to step 2.

2. Add a convexity cut using information from the last failed probing step. Re-
gain primal feasibility (by backtracking pivots or reoptimizing the problem). If
the problem is infeasible, terminate: no feasible solution exists. Otherwise, go to
step 1.

Remark 1.10 When using the sum method instead of the ratio method, one may still
generate convexity cuts at local minima x̄ of ψ̂ . Such points are not necessarily lo-
cal minima of ψ , but if they are fractional, one may still use ψ or ψ to generate
a convexity cut violated by x̄; however, it may not be violated by x̄’s entire pivot
neighborhood, as in the ratio case.

Remark 1.11 Instead of adding a cutting plane in step 2 of the above procedure, one
can change the merit function so that the current point is no longer a local minimum.
Such modifications can be applied, for example, every fixed number of failed probing
steps. The number of merit function changes should be limited, however, to avoid
cycling among fractional vertices.

1.5 Combining cutting planes with diving

Convexity cuts were originally introduced by Tuy (1964), in the context of concave
minimization over linear constraints. However, Zwart (1973) showed Tuy’s algorithm
to be nonconvergent, necessitating modifications such as in Bali and Jacobsen (1978),
Tuy (1991) and Zwart (1974). Thus, we suspect it is not possible to prove that the
algorithm presented in Sect. 1.4 must terminate finitely.

This section adds a conceptually simple feature that guarantees that the algorithm
is finitely convergent. This same feature may in some cases facilitate finding feasible
solutions more quickly.
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Consider two disjoint subsets Q0 and Q1 of I. Solving the problem (1–4) can be
reduced to solving two subproblems:

min c�x

s.t. x ∈ P,

xi = 0, ∀i ∈ Q0,

xi = 1, ∀i ∈ Q1,

xi ∈ {0,1}, ∀i ∈ I \ (Q0 ∪ Q1)

(21)

and

min c�x

s.t. x ∈ P,
∑

i∈Q0
xi + ∑

i∈Q1
(1 − xi) ≥ 1,

xi ∈ {0,1}, ∀i ∈ I.

(22)

Note that the first subproblem may be substantially easier than both the original prob-
lem and the second subproblem when the cardinality of Q0 ∪Q1 is close to that of I .
We will generate and examine these subproblems systematically in a depth-first re-
cursive search algorithm, with the child (21) always being examined first, and the
child (22) being examined only when backtracking out of (21) without having found
a feasible solution.

Classical branch-and-bound methods for integer programming (see for exam-
ple Beale 1979) have long used an initial depth-first search phase in an attempt to
identify integer feasible solutions, and the technique is often referred to as diving.
However, the branching rule historically tends to involve simple rounding up or down
of a single integer variable, as opposed to a large block of variables as attempted here.

Let x̄ be a current vertex of P and α�x ≥ β be a cut. We define the depth [∗] of
the cut with respect to x̄ to be the distance between x̄ and the hyperplane L(α, β) =
{x : α�x = β}. Measuring distance with the 2-norm, we obtain

d(x̄,L(α, β)) = β − α�x̄
‖α‖ . (23)

We will use a cut’s depth as a measure of its quality, and refer to the cuts of the form
∑

i∈Q0

xi +
∑

i∈Q1

(1 − xi) ≥ 1 (24)

used in (22) as vertex cuts. An advantage of vertex cuts over convexity cuts is that
one can control their depth

d(x̄,Q0,Q1) = 1 − ∑
i∈Q0

x̄i − ∑
i∈Q1

(1 − x̄i )

(|Q0| + |Q1|)1/2

via the choice of Q0 and Q1. Our goal is to include as many indices in Q0 and Q1 as
possible, while still making sure that the cut (24) is “sufficiently” deep. Starting with
Q0 = Q1 = ∅, we process the elements x̄i of x̄ in increasing order of min{x̄i ,1 − x̄i},
as follows:
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• If x̄i < 1 − x̄i , let Q′
0 = Q0 ∪ {i} and Q′

1 = Q1, otherwise let Q′
0 = Q0 and Q′

1 =
Q1 ∪ {i}.

• If d(x̄,Q′
0,Q

′
1) ≥ d∗ (for some fixed d∗ > 0) set Q0 ← Q′

0, Q1 ← Q′
1 and pro-

ceed to the next index, otherwise stop.

A natural value of d∗ that guarantees at least one i in Q0 ∪ Q1 with x̄i /∈ {0,1} is
1/(2

√|I |). To see this, observe that d(x̄,Q0,Q1) decreases monotonically as we
add elements to Q0 and Q1. Moreover, observe that

d(x̄,Q0,Q1) = 1 − ∑
i∈Q0∪Q1

min{x̄i ,1 − x̄i}
(|Q0| + |Q1|)1/2

,

by our construction procedure. Note that min{x̄i ,1 − x̄i} ≤ 0.5 for all i ∈ I. Thus,
at the stage of the procedure when it has just added the first index i′ with min{x̄i′,1 −
x̄i′ } > 0, we have

d(x̄,Q0,Q1) = 1 − min{x̄i′,1 − x̄i′ }
(|Q0| + |Q1|)1/2

≥ 1

2
√|I |

since |Q0| + |Q1| < |I |. Thus, we have proved the following proposition:

Proposition 1.12 If d∗ = 1/(2
√|I |), then, on termination of the above procedure,

Q0 ∪ Q1 will contain at least one index i such that x̄i /∈ {0,1}.

We combine rounding, convexity cuts, and diving in the recursive procedure be-
low. We start by invoking the procedure on arguments consisting of (1–4) and an
optimal extreme point solution of its LP relaxation.

1. Perform rounding as in Sect. 1.1. If an integer feasible solution is found, stop and
return it, otherwise continue with step 2.

2. Compute the depth dconv of the convexity cut constructed in the last failed probing
step. Also, construct sets Q0 and Q1 by the procedure outlined above, with a fixed
d∗ ≤ 1/(2

√|I |).
3. If dconv ≥ d(x̄,Q0,Q1), add the convexity cut and go to step 6, otherwise go to

step 4.
4. Construct a subproblem of the form (21) and determine whether its LP relaxation

is feasible. If not, skip to step 5. Otherwise, recursively apply this entire procedure
to the subproblem. If the procedure returns a feasible solution, return this solution.
Otherwise, continue with step 5.

5. Add a vertex cut of the form (24). Continue with step 6.
6. Regain primal feasibility by backtracking pivots or reoptimizing the problem. If

the problem becomes infeasible, return an error code indicating no feasible solu-
tion to the (sub)problem exists. Otherwise go to step 1.

It is now straightforward to prove convergence to some feasible solution, using
techniques similar to standard cutting plane method convergence proofs for concave
minimization; see for example Horst et al. (1995). It is necessary, however, to impose
the assumption, standard in such proofs, that P is bounded.
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Proposition 1.13 Suppose P is bounded. Then the algorithm above terminates in a
finite number of iterations either with an integer-feasible solution, or on detection of
integer infeasibility.

Proof The proof is by induction on the number of integral variables |I |. When I = ∅,

any vertex of P is vacuously integer-feasible.
Now suppose that we have proved finiteness for the numbers of integral variables

less than |I |, but the algorithm does not terminate for some problem with |I | inte-
ger variables. Whenever we generate a subproblem of the form (21), its number of
integer variables is less than |I |, so the algorithm must terminate on the subproblem
by the induction hypothesis. Thus, the only possibility is that the sequence of cuts
added to the subproblem (22) is infinite. Consider the sequence of polytopes {P k}∞k=0
generated by the algorithm, where P 0 = P . Let x̄k be a vertex of P k being cut off by
each respective cut. Since the depth of all the cuts is at least d∗, the distance from x̄k

to any point of P k+1 is at least d∗. Thus, ‖x̄k − x̄l‖ ≥ d∗ for all l > k. Note, however,
that the sequence {x̄k}∞k=0 belongs to the bounded, finite dimensional and, thus, com-
pact polytope P. It follows, that we can extract a convergent subsequence {x̄ki }∞i=0,

for which we would have ‖x̄ki − x̄ki+1‖ → 0 as i → ∞, a contradiction. �

Remark 1.14 Without sacrificing convergence, one can modify the decision rule be-
tween convexity and vertex cuts to γ dconv ≥ d(x̄,Q0,Q1), where a positive constant
γ specifies the level of preference given to convexity cuts.

Remark 1.15 In practice, vertex cuts may also be used to improve the stability of the
method when one encounters numerical difficulties constructing convexity cuts.

Remark 1.16 One can also continue the algorithm after finding an initial integer-
feasible solution, in the hope of obtaining better solutions in subsequent iterations.
When the only termination criterion is infeasibility of the branch (22), and P is
bounded, the algorithm then becomes an exact cutting-plane algorithm for mixed
0-1 integer programming.

2 Implementation issues

2.1 Starting point

To start, the algorithm needs only a feasible vertex of the relaxation, which does not
have to be optimal. In fact, if we use a two-phase simplex method to solve the LP re-
laxation, one could start the heuristic run immediately after the first phase which finds
a feasible vertex. However, for simplicity of the implementation of the experiments
in the following section, we only run the heuristic from the LP relaxation solution.

2.2 Merit function parameter selection

One of the main practical issues in the implementation of Pivot, Cut, and Dive is a
selection of parameters x̃ of the merit function (7). In this paper’s experiments, we
explore the following possibilities (types of the merit function), all special cases of
Remark 1.1:
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1. Pure quadratic merit function: x̃i = 1/2, for all i ∈ I .
2. Merit function with a shifted maximum: let x0 be a starting point of the algorithm

and set

x̃i =
{

x0
i − σci, if x0

i − σci ∈ (0,1),
1/2, otherwise,

where σ is a sufficiently small positive number, for all i ∈ I . The idea is to prevent
the starting point x0 from being a local minimum for the merit function.

3. Random merit function: x̃i drawn form a uniform distribution on (0,1) for all
i ∈ I.

Although the above list is by no means exhaustive, we will see in our experiments
that it does appear to present a sufficiently diverse collection of merit functions.
Other possibilities are selecting all parameters x̃i , i ∈ I to be equal, but not nec-
essarily at 1/2, or drawing them from a non-uniform distribution. We can also ex-
tend a family of the merit functions by scaling its individual components, that is,
ψ(x) = ∑

i∈I γiφx̃i
(xi) for some positive scalars γi , i ∈ I .

As already pointed out in Remark 1.11, it is possible to reset the merit function
instead of adding a cut after failed probing step. Such a change can be easily accom-
plished when using merit function types 2 and 3. In the case of type 2, we reset the
parameter vector x̃ using a current vertex x̄ instead of the LP optimum x0. In the case
of type 3, we can reset the parameters by random sampling. Again, there is a range
of unexplored possibilities based on scaling components of the merit function.

2.3 Feasibility recovery techniques after cut addition

Since adding a cut makes the current vertex infeasible, the algorithm cannot proceed
until feasibility is recovered. A typical approach in cutting plane algorithms for linear
programming is to use a dual simplex method starting from the current basis to find
a new optimum with respect to the original objective. Note, however, that using the
original linear objective c�x is inadvisable in our case, since the algorithm may have
made a significant progress toward integer feasibility. Reoptimization with respect
to c�x does not take integrality into account, and may return us to the previous or even
worse level of the merit function. On the other hand, there is no known equivalent of
the dual simplex method for concave minimization. Thus, we do not have an efficient
way to reoptimize from an infeasible point with respect to the merit function.

In this situation, we consider the following two approaches. First, we can keep
a log of all pivots executed by the algorithm. After adding a cut, these pivots are
backtracked until a feasible vertex is encountered or the log is exhausted. In the latter
case, we can reoptimize with respect to the original linear objective. The second
approach is to use a surrogate linear objective for reoptimization. This linear objective
should take both integrality and the original objective into account. One possibility is
to use the current gradient of the merit function. Unfortunately, this straightforward
option seemed to perform poorly in preliminary testing. Another possibility is to
minimize with respect to the an objective vector d such that

di = w′ci +
{0, i /∈ I ,

−1, xi < ε, i ∈ I ,
1, xi > 1 − ε, i ∈ I ,
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where x is a current vertex and ε,w′ > 0 are sufficiently small constants. The ratio-
nale here is to regain feasibility while discouraging changes in integer or near-integer
variables. The term w′c�x is intended to control possible deterioration in the original
linear objective.

2.4 Cut management

Note that the convexity cuts generated by the algorithm can be quite dense. Moreover,
in some instances, the number of cuts may be quite large before the first feasible so-
lution is found. Adding large numbers of dense cuts will undoubtedly make each
iteration of our algorithm much more time-consuming. On the other hand, computa-
tional experience shows that most added cuts stay active only briefly. Thus, one can
hope that just a small fraction of all the cuts generated will be needed in the formula-
tion at any one time. Thus, the sort of cut management techniques employed by exact
branch-and-cut algorithms could be helpful. The general idea of our cut management
scheme is standard: to maintain a pool of cuts which may be included as needed in
the formulation that the LP solver operates on. As a run of the algorithm proceeds,
cuts can be moved in and out of the current formulation.

We first discuss when cuts have to be added to the formulation. There are three
possible scenarios:

1. A cut has just been generated and is violated by the current vertex.
2. A cut has to be added to the formulation during feasibility recovery by pivot back-

tracking.
3. A periodic test of the cut pool discovers a violated cut.

Scenario 1 is straightforward. The cut is added both to the pool and to the formu-
lation. The algorithm proceeds by pivot backtracking.

Scenario 2 can occur as a consequence of scenarios 1 and 3. Two cases have to be
considered:

2a. A pivot that is being backtracked makes the cut’s slack a basic variable. In this
case, we have no choice but to add this cut to the formulation if it is currently in
the pool. Otherwise backtracking cannot proceed.

2b. After all the cuts which are currently in the formulation are satisfied, we still have
to check the remaining cuts in the pool. If any cut in the pool is violated, it should
be added to the formulation and the algorithm continues pivot backtracking.

We use periodic tests of the cuts in the pool to make sure the current vertex satisfies
them. If any cut is violated, it has to be added to the formulation (scenario 3) with a
subsequent feasibility recovery by pivot backtracking. Backtracking may well result
in additional cuts being added to the formulation by scenario 2b. The periodicity of
the test should be determined experimentally, since the trade-off between computa-
tionally more expensive iterations and cut management overhead will depend on the
simplex solver being used and the problem at hand.

We now discuss how cuts can be removed from the formulation. The only reason-
able place for removal of a cut is in the periodic test of scenario 3. Here, we remove a
cut if it has stayed inactive for some number of iterations. This number should prob-
ably be at least the periodicity of the test. There is also a question of whether cuts
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should be removed before or after the cut violation test. The first option will speed up
backtracking, while the second will guarantee that a cut just deleted does not have to
be put back immediately. Note, however, that this situation is not very likely to hap-
pen, unless we had to backtrack a number of pivots which is more than the periodicity
of the test.

Implementation of the cut management requires the following data structures:

• A cut pool as a sparse matrix. Cuts may not have nonzero coefficients for the slacks
of other cuts. Note that a convexity cut given by the formula (17) may not satisfy
this condition. In this case, we substitute out explicit expressions for the slacks and
use a modified cut instead.

• An array to establish correspondence between the cuts in the formulation and the
row numbers in the pool matrix.

• An array of 0/1 flags for each cut, indicating whether the cut is in the formulation.
• An array of counters of “inactive” iterations for all cuts currently in the formula-

tion. The counters will have to be updated after backtracking as well as in regular
iterations.

• A pivot log (already required for the feasibility recovery) should be in a format that
allows the algorithm to identify the slack variable of a cut with a row of the pool
matrix. This indexing is necessary to properly handle pivots involving slacks of
cuts that were deleted from the formulation, or if cut positions shift in the matrix.
The current implementation simply reserves a fixed column for each slack variable.

Note also that if certain cuts are frequently moved in and out of the formulation, their
maximum “inactive tenure” should probably be extended. The current implementa-
tion uses a “cut rank” which is initialized to 1 for each new cut. Whenever a cut is
moved back into the formulation, its rank is incremented by 1. The maximum inac-
tive tenure of a cut is given by a product of its rank with a fixed maximum tenure
parameter.

2.5 Termination criteria

We now consider the imposition of an iteration-based termination criterion to keep
our heuristic from running too long. It is especially important to have such criteria
in local-search methods, like ours, that can be restarted and directed along different
search paths.

First, observe that a simple criterion based only on the number of iterations of the
main loop would not work well in our case. Different iterations of the loop may in-
volve (almost) regular simplex pivots, probing, adding cutting planes or even diving,
which require quite different amounts of CPU time. Thus, a good criterion should
use more information than just the master iteration counter. We have noticed through
profiling of the algorithm that the majority of the execution time is spent inside the
subroutines of the LP solver. Thus, a reasonable termination criterion should involve
the counts of calls to such subroutines. Experimentally, we found that a reasonable
termination criterion can be constructed from a linear form in terms of the number
of iterations of the main loop N, number of backtracked pivots NBT, number of in-
ternal solver pivots NS (number of internal pivot subroutine invocation by the LP
solver) and the number of probing pivots NP. The coefficients of this linear form
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should indicate relative computational complexity associated with these operations,
to be estimated statistically.

Of course, this criterion is not perfect, in the sense that each of the operations may
contribute differently to the execution time depending on the number of cuts added to
the formulation. Thus, this criterion can only be used to roughly compare complexity
of running the heuristic to that of solving the LP. However, a relative contribution of
different types of pivots should not be very dependent on the current number of cuts.

Additional termination criteria include thresholds on the number of cuts that can
be generated, and the running time. Finally, we simply terminate a run if numerical
difficulties are encountered by LP solver, since it is easier to restart the run than enter
recovery procedures.

2.6 Running beyond the first feasible solution

Remark 1.16 has already noted that the algorithm may be run beyond the first feasible
solution. However, this modification may result in trying to apply convexity cuts at
integer-feasible points. Since such points are on the boundary of the admissible set C

used to generate the cut, it is impossible to guarantee that the current point is cut off.
This problem will typically exhibit itself as an absence of a sufficiently positive nu-
merical solution of (19). One possibility is to use a vertex cut whenever the convexity
cut computation encounters this situation. Another possible technique is adding an
objective cut restricting the objective to be some increment better the value of the
best known integer-feasible solution.

2.7 Specifics of the sum method

There are several additional features that can be implemented in conjunction with
the sum method. First, according to Remark 1.6, we can employ a Frank-Wolfe type
technique for rounding, which saves us computation of the merit function and its gra-
dient at many steps of the algorithm. More importantly, in practice it also saves on
interface overhead and allows us to use the simplex solver’s own, typically advanced,
degeneracy handling technique. These advantages are so important in some cases that
Frank-Wolfe modification of the sum method is the only strategy capable of finding
a feasible solution in the allotted time (see the numerical experiment discussion be-
low). Of course, when we use this modification, feasibility recovery after cut addition
cannot be accomplished through pivot backtracking, the main reason being that LP
solvers typically do not provide a pivot sequence to the calling program. Thus, we
used a reoptimization with the surrogate objective d of Subsect. 2.3 instead.

Second, one may wish to consider various manipulations of the weight parame-
ter w. For example, if a problem proves to be difficult for the heuristic, it can dynam-
ically lower w. Similarly, when the heuristic is left to run beyond the first feasible
solution, it can increase the w, to put more emphasis on the objective function. In
parallel environments, it is also possible to start sum method runs with different val-
ues of w on different processors. Strategies for updating w can then take into account
which of these runs were successful in finding feasible solutions and what was these
solutions’ quality.
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2.8 Software implementation methodology

For optimal performance, pivot-oriented heuristics such as ours should ideally be
implemented at a low level, as an essentially internal part of a high-quality simplex LP
solver. In practice, such implementations can be very difficult unless one is intimately
familiar with the internal workings of the solver. Further, if the simplex solver is
a proprietary commercial product, such an implementation would be possible only for
the firm owning the solver. Such a low-level implementation is also “locked” into a
particular solver, severely restricting portability and reusability. Thus, it makes sense,
at least until the heuristic’s utility is firmly established, to use a standard interface
which provides identical interaction with a range of simplex solvers.

One such interface is an Open Solver Interface (OSI) of the Common Interface
for Operations Research (COIN) initiative. OSI is a C++ class library that provides
a standard way to interact with many industrial and academic linear and integer pro-
gramming packages. Among other things, it includes classes for representation of
sparse vectors and matrices (OsiPackedVector, and OsiPackedMatrix), and
a generic solver interface class OsiSolverInterface. Through these classes,
OSI provides many capabilities required from a solver by the heuristic:

• Convenient sparse vector and matrix representation;
• Calling a simplex solver for linear programming;
• Querying solution information: variable values and reduced costs;
• Querying and setting basis status;
• Problem modification.

On the other hand, OSI did not originally provide the following functionality:

• Computing reduced costs for an arbitrary cost vector (without explicitly resetting
the cost vector in the solver object);

• Computing the results of a primal simplex pivot, given an entering variable (a leav-
ing variable, a step size and an edge direction);

• Applying a precomputed pivot to a given basis;
• Access to simplex tableau information, which may be used in convexity cut gener-

ation procedures.

Thus, we decided to create an abstract class OsiSimplexInterface speci-
fying appropriate simplex-method-based extensions to OsiSolverInterface.
We then use the mechanism of multiple inheritance to create extended versions of
already-implemented solver interfaces of OSI. In particular, we created such an ex-
tension for ILOG’s CPLEX (however, its overhead for individual pivot operations
was excessive due to safeguards in CPLEX’s proprietary API). The same multiple
inheritance mechanism can be used to create totally new extended interfaces. We im-
plemented such an extended interface for the open-source textbook solver SIMPO;
see Vanderbei (2001). The solver’s code was first converted to object-oriented form
to allow better access to its components and ensure complete reproducibility of re-
sults. We have also augmented it to explicitly handle general bounds on the variables
(the original version used problem reformulation) and to use a standard EXPAND
degeneracy handling technique of Gill et al. (1989). Note that since our original com-
putational work was performed, OsiSimplexInterface functionality has been
incorporated into the standard COIN library.
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The rest of heuristic was implemented in C++ using object-oriented design tech-
niques. Note that since the heuristic communicates with simplex solvers through ab-
stract classes such as OsiSolverInterface and OsiSimplexInterface, it
is theoretically portable and solver-independent.

3 Numerical experiments

We now present the results of several numerical experiments with a stand-alone ver-
sion of the Pivot, Cut, and Dive heuristic. In particular, we compare performance
of the ratio method with the standard and Frank-Wolfe variations of the sum method.
Performance is evaluated in terms of the quality of solutions and the running time, us-
ing SIMPO as the LP solver. We use the SIMPO solver because of its relatively small
overhead of individual pivot manipulations, allowing a closer comparison between
the Frank-Wolf and individual pivot variants. Similar low overhead could probably
be obtained from interfaces to other solvers, but only after extensive software engi-
neering work by developers familiar with the solvers’ internal architecture.

3.1 Test set

The test problems were selected from the standard MIPLIB 3.0 collection of Bixby
et al. (1998). To improve numerical stability, all the problems were scaled. We
excluded instances containing general integer variables, leaving 49 MIPLIB prob-
lems. Of these, 9 problems were ruled out due to the limitations of the SIMPO
solver: air04, air05, danoint, dano3mip, fast0507, gamsmod, nw04,
rentacar and seymour; on each of these, SIMPO would either encounter nu-
merical difficulties or fail to terminate after 20,000 iterations. In future, we may be
able to tackle such problems by using an industrial-strength LP solver. We present
our results for the remaining 40 problems below.

3.2 Comparison of the default methods

We now consider a detailed comparison of the default implementation of three main
methods: ratio, sum, and sum using Frank-Wolfe. Following our original motiva-
tion from parallel computing, we set up for each heuristic variant a run on 16 sim-
ulated, “embarrassingly” parallel processors, with each processor using a different
merit function. In reality, we ran the algorithm in a serial fashion starting from the
optimal solution to LP relaxation, without using information obtained in the previous
runs. Merit functions were selected as follows:

1. One “processor” with a pure quadratic merit function.
2. One “processor” with a “shifted maximum” merit function.
3. Fourteen “processors” with randomly selected merit functions.

In cases 2 and 3, the algorithm changed the merit function, instead of adding a cut,
at every sixth failed probing step; see Remark 1.11. A limit on the number of merit
function changes therefore follows from a limit we imposed on the number of cuts.



Pivot, Cut, and Dive: a heuristic for 0-1 mixed integer programming 491

To estimate the coefficients of the operation counters in our termination criterion,
we conducted the following experiment. With cuts and diving switched off, we com-
puted the ratio of the running time to the time per simplex iteration while solving
the LP relaxation. The hypothesis is that in this way we can make timing results
comparable between different problems by discarding the effect of problem size. Let
the running time of the heuristic be denoted by T , and the time to solve the LP and
the number of simplex iterations as TLP and NLP, respectively. The running time,
expressed in “simplex iterations”, and denoted by

Z = T

TLP/NLP
,

was used as a dependent variable in a regression model. Without cuts and diving,
only the basic rounding operations could contribute to execution time. The following
independent variables were used: main iteration counter (earlier denoted as N ), prob-
ing step counter (NPS), and probing pivot counter (NP). The regular pivot counter is
dependent on these three variables, as any iteration of the main loop includes a single
complete pivot when cuts and diving are not used. The model

Z = βNN + βPNP + βPSNPS + ε,

where ε is an error term, was able to explain about 80% of the variability in the exe-
cution time. Of the three variables, the probing step counter NPS proved to be statis-
tically insignificant. The remaining two variables were significant at a very high level
and had coefficients of βN = 3.0 for the main iteration counter and βP = 0.35 for
the probing pivot counter. Of course, in general, we also have other types of pivots:
an internal solver pivot and a backtracking pivot; recall that we use the term “inter-
nal solver pivot” to refer to an internal invocation of the pivot subroutine by the LP
solver. Both of them involve a refactorization of the basis and zero or very insignifi-
cant interface overhead. Thus, their coefficients can be assumed to be approximately
1.0. Of course, in this experiment, we did not estimate a complexity of adding a cut
or performing diving step. We note, however, that the main computational effort in
both cases will involve feasibility recovery, which is accounted for by the counts of
backtracking and internal solver pivots NBT and NS, respectively.

Based on this analysis, runs of the heuristic were terminated whenever any of the
following conditions was met:

• A limit of 20,000 on the linear form 3N + 0.35NP + NBT + NS was reached.
• A probing step failed after a maximum of 500 cuts had already been added.
• A time limit of 60 seconds was exceeded.
• A feasible solution was found.
• Numerical difficulties were encountered due to pivot selection or feasibility toler-

ance selection problems; see Gill et al. (1989).

The heuristic was run on a 500 MHz Pentium III system under RedHat GNU/Linux
7.2. The program was compiled using the Linux distribution’s default g++ 2.96 com-
piler with optimization switched on.
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3.3 Performance evaluation: gap and run time

In this subsection, we compare the performance of the three methods using the gap,
defined as a relative objective function difference between the feasible solution and
the optimum (published in MIPLIB), and the run time. For each method, the experi-
ment recorded the following:

• Gaps for both the first and the best feasible solution out of the 16 runs.
• Time to the first and best feasible solutions out of the 16 runs.
• Average execution time of the 16 runs.

Gaps of the first and the best feasible solution in the ratio, sum and Frank-Wolfe
sum methods are presented in Figs. 1, 2, and 3, respectively. Only successfully solved
problems are included, and their ordering is based on the best gap. Note that the gap
of the first solution seems to be strongly correlated with the gap of the best solution,
especially for the ratio method. This correlation implies that even the first solution
may be useful when this heuristic is run in parallel environments.

To compare the three methods in terms of the first and the best solutions, we con-
sider empirical distribution functions of the gap; see Figs. 4 and 5, respectively. Their
plots show what fraction of the test problems (vertical axis) have a gap not exceed-
ing a given value (horizontal axis). The higher the plot, the better the performance
of the method. We note that the regular sum method is inferior both to the ratio and
the Frank-Wolfe sum method. The ratio method is superior on easier problems, but
the Frank-Wolfe sum method becomes competitive on harder ones. This is especially
apparent for the gap of the best solution (Fig. 5).

We summarize the gap information in Table 1. Note that the Frank-Wolfe sum
method was most successful in finding at least some feasible solution (34 problems

Fig. 1 Gap for the ratio method
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Fig. 2 Gap for the sum method

Fig. 3 Gap for the Frank-Wolfe sum method

out of 40, as opposed to 32 and 31 for the ratio and the regular sum methods, respec-
tively). The Frank-Wolfe sum method was also most successful in finding a feasible
solution with a gap of at most 100% (29 problems versus 28 and 27 respectively for
ratio and regular sum). The ratio method, on the other hand, was most successful in
finding a solution with a gap of at most 10% (18 problems versus 16 and 17 for reg-
ular and Frank-Wolfe sum). Thus, we conclude that, while ratio typically provides
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Fig. 4 Distribution of the gap of the first solution

Fig. 5 Distribution of the gap of the best solution

better solutions, the Frank-Wolfe sum method is more robust. This conclusion is also
supported by all 16 runs of the Frank-Wolfe sum method being successful in finding
something feasible on 27 problems; this number is, respectively, 23 and 22 for ratio
and regular sum.
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Table 1 Number of problems by a gap category for the three methods

Category Ratio Sum FW Sum

First Best First Best First Best

optimal 1 3 0 3 1 2

0% < gap ≤ 10% 13 15 11 13 10 15

10% < gap ≤ 100% 12 10 12 11 15 12

gap > 100% 6 4 8 4 8 5

Failure 8 9 6

Fig. 6 Heuristic run time relative to LP for the ratio method

In terms of the run time, we start by looking at the comparison between the time
to first and the time to best, relative to the time to solve the respective linear program.
Figures 6, 7, and 8 present such relative times for the ratio, sum and Frank-Wolfe
sum methods, respectively. We again only present successfully solved problems and
order them by the time to best. Note that the time to first and even the time to best
are mostly comparable to the solution time of the LP relaxation. This relation is es-
pecially pronounced for the Frank-Wolfe sum method. Also, the time to first is often
just a small fraction of the time to best.

The empirical distributions functions of the time to first, the time to best, and the
average run time (all relative to LP run time) in Figs. 9, 10 and 11 show the regular
sum method to be a clear loser, and the Frank-Wolfe sum method to be a clear winner,
another indication of robustness of the Frank-Wolfe sum method.

Time performance information both in absolute and relative terms is summarized
in Table 2, where Tfirst, Tbest, and TLP denote time to first, time to best, and LP run
time, respectively. The Frank-Wolfe sum method dominates with respect to all char-
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Fig. 7 Heuristic run time relative to LP for the sum method

Fig. 8 Heuristic run time relative to LP for the Frank-Wolfe sum method

acteristics, and the time to first, and even the time to best, is quite frequently less
than time to solve the LP. Moreover, the time to first was shorter than 20TLP on all
successfully solved problems for the ratio and Frank-Wolfe sum methods. Even the
time to best was less the 20TLP on all but one successfully solved problem for these
two methods. Moreover, even the stand-alone version of the heuristic is likely to ben-
efit from the full parallel implementation involving communication between the runs.
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Fig. 9 Distribution of the relative time to first

Fig. 10 Distribution of the relative time to best

Indeed, the results show that the time to best was shorter than the average run time
on 24, 26, and 19 problems for the ratio, sum, and Frank-Wolfe sum method, re-
spectively. In each case, these counts are well above a half of all successfully solved
problems (31, 29 and 34, respectively).
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Fig. 11 Distribution of the average relative run time

Table 2 Number of problems
by a run time category for the
three methods

Category Ratio Sum FW sum

Tfirst < 1 sec 23 21 25

Tbest < 1 sec 19 16 23

Tfirst < TLP 16 12 22

Tbest < TLP 8 6 12

Tfirst < 20TLP 31 29 34

Tbest < 20TLP 30 27 33

3.4 Algorithm profile

We now consider how frequently the various features of the heuristic are used; for
brevity, we restrict out attention to the ratio variant.

First, Fig. 12 shows the average number of probing steps for each problem. The
problems are ordered by increasing gap of the best solution over 16 runs, with the ver-
tical scale truncated at 150 probing steps. The number of probing steps seems to in-
crease with the gap, which can be roughly associated with the difficulty of a problem
for this heuristic. There are a few exceptions to this rule, such as problems p0033,
p0201 and 10teams. We note that p0033 and p0201 are solved successfully, but
their structure requires many probing steps. On the other hand, 10teams is highly
degenerate, and degeneracy seems to be one of the main reasons for failure to find
any integer-feasible solutions within a specified iteration limit.

Figure 13 displays the average number of cuts for each problem. Note that a sig-
nificant number of cuts are sometimes required for a solution, even for the prob-
lems with relatively small gaps, such as l152lav and cap6000. Again, problems



Pivot, Cut, and Dive: a heuristic for 0-1 mixed integer programming 499

Fig. 12 Average number of probing steps in the ratio method

Fig. 13 Average number of cuts in the ratio method

p0033 and p0201 require quite large numbers of cuts compared to other problems
of similar difficulty. For readability, the graph was truncated at 50 cuts, but p0033
in fact requires around 100 cuts on average.

Examining the evolution of the objective and merit functions, we observed strik-
ingly varied behavior, even for the problems adjacent in Fig. 13. Consider, for exam-
ple, the ratios of the objective and the merit function to their respective initial values
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Fig. 14 Evolution of a typical run for modglob

Fig. 15 Evolution of a typical run for p0033

for problems modglob and p0033; see Figs. 14 and 15. The run for modglob
seems to make a steady progress toward integer feasibility. The flat areas of the graph
correspond to sequences of degenerate pivots. On the other hand, for p0033, the be-
havior of both the merit and objective functions is highly erratic. Spikes in the merit
function value correspond to cut additions with subsequent pivot backtracking.
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Fig. 16 Average number of diving steps in the ratio method

Fig. 17 Average maximum diving depth in the ratio method

We now consider the average number of diving steps and the average maximum
diving depth, as displayed in Figs. 16 and 17. The “depth” refers to the number
of steps in this bound-fixing process until a subproblem is infeasible or an integer-
feasible solution is found. We see that application of diving steps is required across
the entire range of problem difficulty. As for the maximum diving depth, it is quite of-
ten nonzero (meaning the first diving subproblem was feasible) but rarely exceeds 1.
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Fig. 18 Distribution of the average number of probing steps

The above profiling results show that all features of Pivot, Cut, and Dive may be
useful, depending on the problem instance.

Finally, we present empirical data verifying our hypothesis that the Frank-Wolfe
variation of the sum method requires lower number of probing steps. Figure 18
presents empirical distribution functions of the number of probing steps for the three
methods. Clearly, the Frank-Wolfe sum method has the fewest such steps as its dis-
tribution function is highest in the graph. It appears that the Frank-Wolfe approach is
“pivoting through” vertices identified as local minima by the other methods.

The variants presented here are not mutually exclusive; for example, one could
switch between the Franke-Wolfe sum method and the ratio methods in mid-run de-
pending on the amount of degeneracy detected and the apparent progress towards
integrality.
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