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Abstract In this paper we propose a general integration scheme for a Multi-Criteria Decision

Making model of the Multi-Attribute Utility Theory in Constraint Programming. We intro-

duce the Choquet integral as a general aggregation function for multi-criteria optimization

problems and define the Choquet global constraint that propagates this function during the

Branch-and-Bound search. Finally the benefits of the propagation of the Choquet constraint

are evaluated on the examination timetabling problem.

Keywords Multi-criteria optimization . Constraint programming . Multi-criteria decision

making

1. Introduction

The practice and developments of Constraint Programming (CP) and Operations Research

have shown that, in many cases, two complex issues have to be taken into account when

addressing real-life optimization problems. First, industrial problems are often highly com-

binatorial and it is often difficult to solve them fast. Secondly, the preference relation between

solutions to a problem is generally complex and depends on several conflicting criteria.

As a result, several formalisms and frameworks have been introduced in CP to handle

complex preference relations in optimization problems. For example the Soft Constraints,

Preference Based Search, CP-nets frameworks propose various approaches to model a pref-

erence relation over several criteria. A common issue when defining a very precise and
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Université Paris I Pantheon-Sorbonne

M. Grabisch
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elaborate preference relation, is elicitating the preferences of an expert in order to enable the

framework’s model to reproduce his choice in a combinatorial search space.

Multi-Criteria Decision Making (MCDM) proposes several methodologies and tools that

provide accurate models for the preference of an expert over several criteria. Research in this

area focuses mainly on constructing appropriate models for preferences and on processes

that produce a correct elicitation of subjective preferences. MCDM models either evaluate

or rank a given set of solutions (also called alternatives).

Surprisingly, few approaches integrate an MCDM model in their framework in order to

benefit both of the capacities of the model for preference modeling and of the elicitation

methodology that has been designed for this model. As a consequence, when a complex

preference relation is needed, CP solvers offer few possibilities to handle the problem from

the multi-criteria point of view.

1.1. Related work

Many solutions were proposed for integrating multi-criteria preferences in CP. A first category

of approaches concentrates on finding a set of Pareto-optimal solutions for different objective

functions (Gavanelli, 2002; Barichard and Hao, 2003; Ben Jaâfar et al., 2004). Alternatively,

configuration problems and web applications have given rise to several approaches where a

formalism allows the user to express partial preferences on criteria in a simple way (Junker,

2004; Pu and Faltings, 2004).

In this section, we focus on methods that allow a sufficiently precise description of the

preference relation to be given in order to search for an (approximately) optimal solution.

For this concern, most approaches rely on one of the two following frameworks.

The first well known framework is soft-constraints and in particular, Weighted CSPs

(Bistarelli et al., 1999). It has been designed to solve over-constrained problems, but modeling

multi-criteria problems using soft constraints is often suggested. Expressing preferences as

constraints in order to describe a complete preference relation may be however problematic

when the number of attributes to be taken into account is large. The method therefore needs

a well founded and careful preference elicitation process. Indeed, even for limited partial

preference relations, the simple example given in (Pu and Faltings, 2004) shows that one

cannot manually modify weights in constraints and expect to keep a clear view of the relative

importance of criteria in this relation.

The second framework, called CP-nets (Boutilier et al., 2004), proposes asking the user

preference rules such as “if the main meal is fish, then I prefer white wine to red wine”. A

partial or complete preference relation can then be expressed using this kind of rules over

the attributes of a solution. This framework is very expressive and can, in particular, handle

context-dependent preferences. However, when the number of attributes and the number of

values per attributes gets high, the description of a quasi-complete preference relation implies

that a great number of rules are expressed. Recent studies propose integrating CP-nets in CP

for optimization (Boutilier et al., 2004; Prestwich et al., 2005). (Prestwich et al., 2005) propose

modeling CP-nets with hard constraints thanks to a new semantics. The use of implication

constraints in this model suggests that the propagation of a CP-net in a combinatorial problem

has few chances to be very efficient during the search for solutions. When the criteria of the

problem are clearly different of the decision variables, it is likely that most solutions have to

be constructed to ensure that the returned solution is not dominated.

Finally, (Kaymak and Sousa, 2003) proposes a framework for combining a multi-criteria

model and a Fuzzy CSP. The constraints proposed in the following of this paper can be used

to model the multi-criteria part in this framework.
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1.2. Contributions of the paper

In this paper we study the integration of a model of the Multi-Attribute Utility Theory

(MAUT) in CP. This model is introduced in Section 2. In Section 3, we propose a general

scheme that offers a good flexibility for integrating elaborate multi-criteria models. We then

introduce the principles of the propagation of the Aggregation constraint, which models the

class of multi-criteria aggregation functions. The case of the Choquet integral is then studied

in detail (Section 4). As this aggregation functions is particularly adapted to preference

modeling, we apply the principles of Aggregation to define the Choquet constraint. Specific

propagation algorithms are then designed and applied in Section 5 to a multi-criteria version

of the examination timetabling problem.

2. Modeling multi-criteria preferences

In this paper, we focus on the Multi-Attribute Utility Theory framework (Keeney and Raiffa,

1976). This framework models the value of a solution through an overall evaluation, computed

by an aggregation function according to its levels of satisfaction on a set of criteria. We

introduce the properties of a multi-criteria aggregation function that are the most desirable

in order to give a good representation of multi-criteria preferences. For this purpose the

Choquet integral is a very general aggregation function which can model a wide range of

decisional behaviors according to well founded elicitation processes (Grabisch and Roubens,

2000; Labreuche and Grabisch, 2003).

2.1. Preference modeling in Multi-Criteria Decision Making

Multi-Criteria Decision Making (MCDM) models subjective preferences in order to automate

the determination of a preferred solution out of a set of alternatives. Hence, solving a typical

multi-criteria decision problem consists in modeling the way an expert ranks a set of potential

solutions, described by a set of attributes or points of view. To achieve this objective, the

Multi-Attribute Utility Theory is mainly concerned with the construction of additive utility

functions.

Let us denote by N = {1, . . . , n} the set of criteria. We assume a set of solutions or

alternativesS among which the decision maker must choose. Each solution is associated with

a vector a ∈ � whose components ai ∈ �i , i ∈ {1, . . . , n} represent the value of the solution

for each point of view to be taken into account in the decision making process. A component

ai is called the attribute of a solution. Typically, in a multi-objective optimization context,

each attribute would correspond to an objective function. According to these attributes, the

modeling of the decision maker’s preferences � is realized through an overall utility function
u : � → IR such that:

∀a, b ∈ �, a � b ⇔ u(a) ≥ u(b), (1)

where � is a complete pre-order.

Classically, this overall evaluation function is split into two parts (Keeney and Raiffa,

1976):

– The utility functions, denoted u1(a1), . . . , un(an), map each attribute to a single satisfac-

tion scale E ∈ IR. They model the performance of a solution on the criteria and ensure
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commensurateness between criteria, which is essential when several values have to be

aggregated.

– The aggregation function aggregates the values returned by u1, . . . , un and establishes the

overall evaluation: ∀a ∈ �, u(a) = H(u1(a1), . . . , un(an)).

where ui : �i → E and H : En → E . ui (ai ) is called the utility or score of the alternative a
on the criterion i .

A common value for the satisfaction scale E is the [0, 1] interval. Establishing commen-

surateness between criteria allows us to work with comparable values. For example, this

implies that we are able to express that a makespan of 20 days corresponds to the same level

of satisfaction as a maximum tardiness of 3 days. Furthermore, when using compensatory

aggregators (such as the weighted sum), it is important to work on an interval scale. This

means that the difference between two values on the same criterion has to make sense. For

example, it consists in deciding whether the difference of satisfaction of going from 5 days

to 10 days is the same as going from 15 days to 20 days. To construct utility functions in

the MAUT framework, we use the MACBETH methodology (Bana e Costa and Vansnick,

1994) (and its associated software), which is based on measurement theory. MACBETH asks

the user to give some reference levels for a criterion and some general indications on the

difference of satisfaction between values of this attribute.

2.2. Properties of a multi-criteria aggregation function

In decision aid, an aggregation function aggregates commensurate values which model criteria

satisfaction levels. Some essential requirements have to be met by the aggregation function

H. Among these important properties, which are detailed in (Marichal, 1998), we denote:

– Monotonicity (M): H should be an increasing function. That is to say:

xi > x ′
i ⇒ H(x1, . . . , xi , . . . , xn) ≥ H(x1, . . . , x ′

i , . . . , xn).

Indeed, if one solution is better than another on at least one criterion and has equal per-

formances on the other criteria, it cannot be of lesser quality than the other solution. This

property is called Strict Monotonicity when the right side of the implication is a strict

inequality.

– Continuity (C): H should be continuous with respect to its argument as the preferences of

the expert generally evolve progressively.

In addition, H should satisfy (1) when � is defined. Consequently, if we want to use

the same parametric model in several applications, the aggregation function has to be very

flexible. Additive aggregation functions, usually used in MAUT, suppose preferential inde-
pendence between criteria (Keeney and Raiffa, 1976), which is seldom the case in decision

making. The aggregation function has to be able to model the importance of a criterion, but

also interaction and compensation effects between criteria. As a result, we propose using an

enhanced version of this theory, with a more general aggregation function.

2.3. The Choquet integral

In multi-criteria decision problems, some general aggregation functions such as the Choquet
integral (Choquet, 1953; Grabisch, 1996) are often necessary in order to take into account not

only the importance of each criterion, but also interaction phenomena between the criteria. In
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order to generalize the weighted sum, (Sugeno, 1974) proposes assigning weights not only

to each criterion separately, but also to any coalition of criteria. This weighting corresponds

to a set function called “fuzzy measure”.

Definition 1 (Fuzzy measure (Sugeno, 1974)). Let P(N ) be the power set of N . A fuzzy

measure μ on N is a function μ : P(N ) → [0, 1], satisfying the following axioms.

(i) μ(∅) = 0, μ(N ) = 1.

(ii) A ⊂ B ⊂ N implies μ(A) ≤ μ(B).

Here, μ(A) represents the degree of importance of the subset of criteria A ⊂ N . In the MCDM

methodology, the fuzzy measure is used to model the decision maker preferences (Grabisch

and Roubens, 2000). Then, the mono-dimensional utilities u1, . . . , un are aggregated with

the Choquet integral to produce the overall evaluation of an alternative.

Definition 2 (The Choquet integral (Choquet, 1953)). Let μ be a fuzzy measure on N , and

u = (u1, . . . , un) ∈ [0, 1]n . The Choquet integral of u with respect to μ is defined by:

Cμ(u1, . . . , un) =
n∑

i=1

uσ (i)[μ(Aσ (i)) − μ(Aσ (i+1))], (2)

where σ (i) indicates a permutation on N such that uσ (1) ≤ · · · ≤ uσ (n), Aσ (i) =
{σ (i), . . . , σ (n)} and Aσ (n+1) = ∅.

Thus, for three criteria, Cμ(u1, u2, u3) = μ({σ (3)}) × uσ (3) + [μ({σ (2), σ (3)}) −
μ({σ (3)})] × uσ (2) + [1 − μ({σ (2), σ (3)})] × uσ (1). The best score gets its individual

weight whereas the others are corrected with respect to better criteria.

The Choquet integral is continuous, increasing, idempotent, stable for positive linear

transformation and linear for a given order of its components. An axiomatization of its use

for preference modeling has been introduced in Marichal (1998). Efficient indicators are also

available for the semantic interpretation of the fuzzy measure (Grabisch, 2000). Ensuring

that the Choquet integral is strictly increasing can be easily done setting ∀A, B ⊂ N , A ⊂
B ⇒ μ(A) < μ(B).

The Choquet integral is a general aggregation function which takes as particular cases the

weighted sum, the min and the max. In addition, it allows every linear interpolations between

these functions, which makes it very expressive.

Figure 1 shows two representations of the Choquet integral on two criteria. The first curve

represents a case where the interaction between the two criteria is positive (they are said

to be complementary). It models a preference relation where a solution has to be good on

both criteria to be considered good. On the contrary, the right hand curve models substitutive
criteria (i.e., negative interaction). In this case, a solution is considered good by the expert

as soon as it is good on one criterion.

Efficient tools and methodologies have been created to establish a good multi-criteria

model. In Thales, we use the Myriad c© (Labreuche and Le Huédé, 2005) software to help the

analyst in building the criteria hierarchy. It calls MACBETH to construct utility functions

(§ 2.1), and determines the Choquet integral coefficients according to the decision maker

preferences. As these coefficients are complex, they cannot be set by hand. The expert is

asked to make pairwise comparisons on various solutions. They are used to build a linear

program and deduce the fuzzy measure (Grabisch and Roubens, 2000).

Springer



334 J Heuristics (2006) 12: 329–346

Fig. 1 Level curves of the Choquet integral for the aggregation of two criteria

Example 1 (The Choquet integral for students evaluation). Consider a director who would

like to evaluate some students according to scores in mathematics (M), statistics (S) and

languages (L). The director has some preferences such as “for students good in math-
ematics, a student good in languages is preferred to one good in statistics” and con-

versely “for students bad in mathematics, a student good in statistics is preferred to
one good in languages”. Thus, for scores in [0, 1], this can be expressed as two “learn-

ing examples”: (0.8, 0.5, 0.4) � (0.8, 0.6, 0.3) and (0.2, 0.6, 0.3) � (0.2, 0.5, 0.4). Then,

to identify trade-offs between criteria, the director is asked to answer questions such as

“which value would you give to score α in the equivalence (0.5, 0.8, 0.4) ≡ (0.5, 0.7, α)?”.

Setting α = 0.5 and specifying that (M) is the most important criterion, we obtain the

following fuzzy measure: μ({M}) = μ({S}) = 0.5, μ({L}) = 0, μ({M, S}) = μ({S, L}) =
0.5, μ({M, L}) = 1 that reflects the director requirements. The reader can note that, accord-

ing to these preferences, the relative importance of S compared to L is conditional on M
being good or bad. This type of decision strategy occurs quite often in preference modeling.

They are represented for instance in TCP-nets in a qualitative framework. One can easily

check that neither the weighted sum nor the minimum or the maximum can model these

preferences.

For a more detailed application of this model in MCDM, the reader can report to

(Labreuche and Le Huédé, 2005).

3. Integrating the MAUT model in CP

Our main objective is to capitalize on MCDM models and preferences elicitation methods

in order to offer accurate multi-criteria optimization functionalities in CP. Considering that

the MAUT model establishes an overall utility for each solution it can be quite naturally

integrated in CP as a general objective function for multi-criteria optimization problems.

A simple MAUT model is composed of the following components (Section 2.1): attributes,

which are generally objective functions in optimization, utility functions (one per attribute),

which establish the scores of a solution on the criteria, an aggregation function, that makes

the synthesis of the scores in order to calculate the overall evaluation of a solution. More

elaborate preference models generally include several hierarchical levels of aggregation.
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Fig. 2 MAUT integration
scheme

For an efficient and flexible integration of MAUT in CP we propose modeling each function

with a dedicated global constraint, considering more particularly the Choquet integral case.

This leads us to the following integration scheme.

3.1. Integration scheme of the MAUT model

Let us consider a simple model with three criteria and a multi-criteria aggregation functionH.

Figure 2 describes the proposed integration approach, where each function of the preference

model is modeled by a global constraint.

According to this scheme, modeling a multi-criteria optimization problem implies defining

several kind of variables: y ∈ [0, 1] corresponds to the overall evaluation, u1, . . . , un ∈ [0, 1]

are the scores of a solution over each criterion, a1, . . . , an are finite domain variables that

model the attributes of the problem, x1, . . . , xm are the finite domain variables of the combi-

natorial problem.

The combinatorial problem is modeled with constraints on variables x1, . . . , xm that are

connected to variables a1, . . . , an by objective functions using constraints such as sum, min

or max. The two upper levels of the scheme represent the multi-criteria model. Each attribute

ai , i ∈ {1, . . . , n} is connected to a score ui by a PiecewiseLinear constraint that models a utility

function. In order to enforce the relation y = H(u1, . . . , un), we introduce the Aggregation

constraint which connects u1, . . . , un to the variable y ∈ [0, 1] that will be maximized.

Hence, two global constraints are needed: PiecewiseLinear models piecewise linear func-

tions and Aggregation models the aggregation function H.

In this scheme, Aggregation represents the generic class of constraints that model MCDM

aggregation functions (§ 2.2). Some general properties for the propagation of this class of

constraints are introduced in Section 3.2. These properties are then applied in Section 4 to

the Choquet integral for the design of the Choquet constraint, which can then be seen as a

specialization of Aggregation.

Remark 1 (Discretizing the continuous part of the model). In this integration scheme, vari-

ables x1, . . . , xm, a1, . . . , an are finite domain variables and y, u1, . . . , un belong to the

[0, 1] ⊂ IR interval. To integrate this scheme in a finite domain solver, we discretized the

[0, 1] interval into the {0, . . . , 106} domain. As for propagation on intervals in CP (Lhomme,

1993), this approach needs “outward rounding” rules (Michel et al., 2001) to guarantee the

correctness of algorithms. In particular, using outward rounding on discretized variables does

not perturb the results presented in this paper. An interval [x, x] ⊂ [0, 1] is represented by
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the {�106 × x�, . . . , �106 × x�} domain. Discretizing [0, 1] and outward rounding are often

considered as implicit in the following of this paper.

Remark 2 (The PiecewiseLinear constraint). Continuous piecewise linear functions are not

imposed by MAUT but they correspond to the functions that are designed by the MACBETH

software (Bana e Costa and Vansnick, 1994) (§ 2.1). As no a priori shape can be assumed

for utility functions, most required shapes can be approximated with piecewise linear func-

tions, which also offer a good understanding of their behavior between two characteristic

points.

The design of the PiecewiseLinear constraint has been proposed by P. Refalo using lin-

ear relaxations (Refalo, 1999). Here, we consider only strict monotonous utility functions

which are very easy to integrate in CP. Hence, to propagate y = f (x) where f is a strictly

increasing piecewise linear function, we just have to maintain y ≥ � f (x)� and y ≤ � f (x)�
for the “discretized” variable y, and x ≥ � f −1(y)� and x ≤ � f −1(y)� for the integer variable

x .

3.2. The Aggregation constraint

As stated in § 2.2, multi-criteria aggregation functions generally verify the Strict Mono-

tonicity and Continuity properties. Some common principles can be identified for propagat-

ing the constraints that model these functions. To introduce these principles we define the

Aggregation constraint, which establishes and propagates the equality between a variable y
and the aggregation of scores u1, . . . , un by a functionH. Mathematically we want to enforce

y = H(u1, . . . , un).

Definition 3 (The Aggregation constraint). Let N be a set of n criteria, let {y} ⋃ {u1, . . . , un}
be a set of variables ranging over [0, 1] and let H be a continuous and strictly increas-

ing multi-criteria aggregation function. The Aggregation constraint enforces the relation

y = H(u1, . . . , un) and is denoted aggregation(H, y, {u1, . . . , un}).

According toH, the Aggregation constraint can be specialized to an adequate constraint that

inherits its properties. Many studies deal with the modeling of the weighted sum in CP (see

e.g. (Apt, 1998; Zhang and Yap, 2000)). Particularly, Apt (Apt, 1998) defines propagation

rules for the Linear Equality constraint on IR. These results can be generalized to the whole set

of multi-criteria aggregation functions.

3.3. Arc-B-Consistency of the Aggregation constraint

As the MAUT model relies on real variables, variables domains are limited to intervals

throughout of the paper. We denote [x, x] the domain of a variable x . Hence, the prop-

agation of Aggregation can be achieved by maintaining the arc-B-consistency for this

constraint.

Definition 4 (Arc-B-consistency). (Lhomme, 1993) Given a constraint c over q variables

x1, . . . , xq , and a domain di = [xi , xi ] for each variable xi , c is said to be “arc-B-consistent”

if and only if for any variable xi and for each bound vi = xi and vi = xi , there exist values

v1, . . . , vi−1, vi+1, . . . , vq in d1, . . . , di−1, di+1, . . . , dq such that c(v1, . . . , vq ) holds.
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Arc-B-consistency is weaker than the arc-consistency property. Indeed a constraint is arc-

consistent when, for each value in the domain of each of the constraint’s variables, there is a

set of values in the domain of the other variables that verifies the constraint.

The Strict Monotonicity and Continuity properties of function H enables us to define

four necessary and sufficient conditions that ensure Arc-B-consistency with respect to the

Aggregation constraint and avoid searching for a set of value that verify the constraint for each

variable bound.

Proposition 1. (Arc-B-consistency with respect to the Aggregation constraint) Let H be a
strictly increasing and continuous aggregation function and C =Aggregation(H, y, {u1, . . . ,

un}) be an Aggregation constraint. C is Arc-B-consistent if and only if the following four
conditions hold:

(AB1) y ≥ H(u1, . . . , un)

(AB2) y ≤ H(u1, . . . , un)

(AB3) ∀k ∈ {1, . . . , n} : H(u1, . . . , uk−1, uk, uk+1, . . . , un) ≥ y
(AB4) ∀k ∈ {1, . . . , n} : H(u1, . . . , uk−1, uk, uk+1, . . . , un) ≤ y

Notation 1. For the sake of concision, we use the following notations: H(u) =
H(u1, . . . , un), H(u) = H(u1, . . . , un), H(u−k, uk) = H(u1, . . . , uk−1, uk, uk+1, . . . , un),

H(u−k, uk) = H(u1, . . . , uk−1, uk, uk+1, . . . , un).

Proof: Let us consider the y variable and assume conditions (AB1) and (AB2) are verified.

Since since H is increasing, (AB1) and (AB2) implies y and y belong to the interval

[H(u),H(u)]. Function H being continuous, for each value v ∈ {y, y}, there exist values

v1, . . . , vn in [u1, u1], . . . , [un, un] such that v = H(v1, . . . , vn). Conversely, for any value

v /∈ [H(u),H(u)], H(u) and H(u) being the lowest and highest values that can be taken by

H respectively, there is no set of values that satisfies C in the domains of u1, . . . , un . The

domain [y, y] is arc-B-consistent w.r.t. the Aggregation constraint C if and only if conditions

(AB1) and (AB2) are verified.

Similarly, for a variable uk ∈ {u1, . . . , un}, (AB3) and (AB4) ensure that [uk, uk] is arc-

B-consistent with respect to C . �

Proposition 1 is very straightforward. It should be noted that it is not valid however when

variables are integer or when H is not continuous.

Conditions (AB1) and (AB2) propagate Aggregation on the domain of variable y and

for each variable uk , k ∈ {1, . . . , n}, conditions (AB3) and (AB4) propagate on uk and uk

respectively. A first remark is that when (AB1) or (AB2) is not verified, it is easy to compute

a new valid domain for y: [max(y,H(u)), min(y,H(u))]. This deduction may be more

difficult for a variable uk ∈ {u1, . . . , un}. It implies expressing uk with respect to the other

variables, which may be complicated if the inverse function of H is not easily calculable.

In the following sections we show that these four conditions ensure that the Aggregation

constraint is arc-consistent (§ 3.4) and that a propagation algorithm needs to enforce each

condition only once to ensure the consistency of the whole constraint. The propagation

algorithm is said to be idempotent (§ 3.5).

Springer



338 J Heuristics (2006) 12: 329–346

3.4. Arc-consistency of the Aggregation constraint

For some constraints, when the domain of the variables are restricted to intervals enforcing

arc-B-consistency allows to ensure that it is also arc-consistent (Lhomme, 1993). As for the

Linear Equality constraint (Apt, 1998), this property is verified for Aggregation.

Theorem 1 (Arc-consistency with respect to the Aggregation constraint). Let {y} ⋃
{u1, . . . , un} be a set of variables defined on the [0, 1] interval, let H be a strictly
increasing continuous aggregation function and C =Aggregation(H, y, {u1, . . . , un}) be an
Aggregation constraint. C is arc-consistent if and only if c is arc-B-consistent.

Proof: Function H being continuous, considering conditions (AB1) and (AB2) and ac-

cording to the intermediate values theorem, for all value v ∈ [y, y], there exists a set of

values v1, . . . , vn in [u1, u1], . . . , [un, un] such that v = H(v1, . . . , vn). Similarly, consider-

ing (AB3) and (AB4), for all set of values vk ∈ [uk, uk], we have H(u−k, vk) ≥ y. There is

therefore a set of values v, v1, . . . , vk−1, vk+1, . . . , vn in [y, y], [u1, u1], . . . , [uk−1, uk−1],

[uk+1, uk+1], . . . , [un, un] such that v = H(v1, . . . , vn). �

Again,this theorem may seem trivial since variable domains are limited to intervals. How-

ever, it may be violated for non-monotonic functions such as the absolute value of a real

number.

3.5. Idempotency of the Aggregation constraint

Maintaining the consistency of the Aggregation constraint implies continuously checking the

conditions of Proposition 1 and reducing the variables domains to keep them verified during

the search. Hence, virtually any event that reduces the variables domains may trigger the

filtering algorithm.

An interesting property is that a single calculation of all bound reductions generated by the

consistency conditions of Aggregation is enough to maintain its arc-consistency. Without any

event that is external to the constraint, calculating all bounds a second time would not reduce

any domain. The constraint is said to be idempotent (Apt, 1999). To express this property, the

propagation mechanism is often defined as a domain reduction function (Apt, 1999) which,

from a set of domains {d1, . . . , dm} returns a set of domains
{
d ′

1, . . . , d ′
m

}
deduced by the

propagation.

Theorem 2. (Idempotency of the Aggregation constraint) Let y, u1, . . . , un be a set of vari-
ables defined on domains dy, du1

, . . . , dun . Let FAgg a domain reduction function that
propagates the arc-B-consistency conditions of an Aggregation constraint on variables
y, u1, . . . , un. FunctionFAgg is idempotent. That is to say:FAgg(FAgg(dy, du1

, . . . , dun )) =
FAgg(dy, du1

, . . . , dun ). By extension, the Aggregation constraint is said to be idempotent.

Proof: Aggregation is idempotent iff propagating one arc-B-consistency condition cannot

provoke the violation of another. A bound reduction can modify the validity of a condition

if it appears in this condition. Let us consider the propagations that can be deduced from

Proposition 1:

Increasing of y due to the propagation of (AB1): y appears in (AB3). The propagation

being y = H(u), ∀k ∈ {1, . . . , n}, H(u−k, uk) ≥ H(u) = y. Condition (AB3) is true for all
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k ∈ {1, . . . , n}. Similarly, the propagation of (AB2) does not perturb the validity of other

conditions.

Increasing of ui due to the propagation of (AB3): ui appears in (AB1) and (AB4) for all

score uk, k �= i . Propagating (AB3) for k = i ensure y = H(u−i , ui ) ≥ H(u), which validates

(AB1). In addition, ∀k ∈ {1, . . . , n} , k �= i , y ≥ y = H(u−i , ui ) ≥ H(u−k, uk). Condition

(AB4) is therefore also true. Similarly, the propagation of (AB4) does not perturb the validity

of other conditions.

As a results, checking each of the 2n + 2 conditions once in any order ensures that all

conditions are true. �

Hence, a basic propagation algorithm for an Aggregation constraint checks and propagates

each of the 2n + 2 conditions of Proposition 1 every time an external event modifies a bound

of its variables during the search. CP solvers such as Eclair c© (Museux et al., 2003) generally

trigger a suitable propagation algorithm according to the nature of the event and to the variable

on which it happens. The propagation is then said to be incremental. Such algorithms have

been extensively described in Le Huédé (2003) (in French) for the Aggregation constraint.

4. Application to the propagation of the Choquet integral

In this section we apply the propagation principles identified for a general multicriteria

aggregation functionH to the Choquet integral. According to the integration scheme proposed

in Section 3, we propose specializing Aggregation to the Choquet constraint.

4.1. The Choquet constraint

Considering n variables u1, . . . , un ∈ [0, 1] and a variable y ∈ [0, 1], our aim is to establish

and propagate the relation y = Cμ(u1, . . . , un) for a given fuzzy measure μ. Hence, we

want to enforce y = ∑n
i=1 uσ (i)[μ(Aσ (i)) − μ(Aσ (i+1))], where σ (i) indicate a permutation

on N such that uσ (1) ≤ · · · ≤ uσ (n), Aσ (i) = {σ (i), . . . , σ (n)} and Aσ (n+1) = ∅. To maintain

this relation, we propose defining the Choquet constraint:

Definition 5 (The Choquet constraint). Let N be a set of n criteria, let {y} ⋃ {u1, . . . , un} be

a set of variables ranging over [0, 1] and let M = {μ(∅), μ({1}), μ({2}), . . . , μ({1, . . . , n})}
be the values of a fuzzy measure μ for each element ofP(N ). The Choquet constraint enforces

the relation y = Cμ(u1, . . . , un) and is denoted choquet(y, {u1, . . . , un} ,M).

4.2. Propagating the Choquet constraint

The Choquet integral being continuous and strictly increasing (providing adequate conditions

on μ (§ 2.3)), the Choquet constraint belongs to the Aggregation constraint class. As a result,

maintaining the arc-B-consistency w.r.t. Choquet can be done by checking the consistency

conditions of Proposition 1 with H = Cμ.

As previously observed in Section 3.3, enforcing conditions (AB1) and (AB2) is equivalent

to assigning the domain [max(y, Cμ(u)), min(y, Cμ(u))] to variable y. Expressing a score

uk with respect to the other variables in order to compute its new domain is however more

complicated. This implies deducing a functionF from equation y = Cμ(u1, . . . , un) such that

uk = F(y, u1, . . . , uk−1, uk+1, . . . , un) without knowing the respective order of the scores.
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Fig. 3 Graphical representation
of Ck

μ(x)

4.3. Calculating the lower bound of a score variable

Assuming condition (AB3) is violated for a given score uk, k ∈ {1, . . . , n}. We have

Cμ(u1, . . . , uk−1, uk, uk+1, . . . , un) < y. To restore the validity of this condition, a new value

denoted ǔk must be found for the lower bound uk such that Cμ(u−k, ǔk) = y. In this equation,

the upper bounds u1, . . . , uk−1, uk+1, . . . , un are actually known, so is their relative order.

The only unknown is therefore the relative order of ǔk with respect to these bounds.

In the following paragraph we propose defining algorithm LB (i) that first determines the

relative order of ǔk with respect to the other bounds and finally returns its value.

Description of function Ck
μ(x) = Cμ(u−k, x)

Notation 2. Let us denote Ck
μ : [0, 1] → [0, 1] the function such that Ck

μ(x) = Cμ(u−k, x).

Let τk be a permutation on indices 1, . . . , k − 1, k + 1, . . . , n such that uτk (1) ≤ · · · ≤
uτk (n−1) and let us denote uτk (0) = 0 and uτk (n) = 1. In addition we define the set A−k

τk (i) =
{τk(i), . . . , τk(n − 1)} and we denote A−k

τk (n) = ∅.

Figure 3 shows a possible representation of Ck
μ. It is an increasing piecewise linear function

whose vertices correspond to the points where x is equal to 0, uτk (1), . . . , uτk (n−1), 1.

Consider a real value α ∈ [0, 1]. We denote i ∈ {0, . . . , n − 1} the index that characterizes

the segment on which the point (α, Ck
μ(α)) is located, that is to say, α ∈ [uτk (i), uτk (i+1)].

According to the definition of the Choquet integral, function Ck
μ(α) can be written as follows:

∀α ∈ [0, 1], ∃i ∈ {0, . . . , n − 1} such that α ∈ [uτk (i), uτk (i+1)]:

Ck
μ(α) =

i∑
j=1

uτk ( j) × [
μ

(
A−k

τk ( j) ∪ {k}) − μ
(

A−k
τk ( j+1) ∪ {k})]

+ α × [
μ(A−k

τk (i+1) ∪ {k}) − μ
(

A−k
τk (i+1)

)]
+

n∑
j=i+2

uτk ( j−1) × [
μ

(
A−k

τk ( j−1)

) − μ
(

A−k
τk ( j)

)] (3)
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Hence, to calculate ǔk such that Ck
μ(ǔk) = y, we first have to determine on which linear

part of the curve the point (ǔk, y) is located. This is equivalent to finding the index i� such

that Ck
μ(uτk (i�)) < y ≤ Ck

μ(uτk (i�+1)). Calculating ǔk can then be done with respect to point

(uτk (i�), Ck
μ(uτk (i�))) and to the slope of this linear part.

Locating lower bound ǔk

As stated before, we search for i� ∈ {0, . . . , n − 1}, such that: Ck
μ(uτk (i�)) < y ≤

Ck
μ(uτk (i�+1)).

A first remark is that ǔk ≥ uk and ǔk ≤ uk (Ck
μ(uk) ≥ y). In addition, ∀k ∈ {1, . . . , n},

Cμ(u) = Ck
μ(uk). Considering that the lower bounds of all scores will be calculated

successively, we propose to explore function Ck
μ from edge to edge, starting from the

already calculated point (uk, Cμ(u)) (which belongs to Ck
μ for all k ∈ {1, . . . , n}), until i� is

found.

In order to avoid multiple calculations of the Choquet integral during this exploration, we

use the following transition formula that allows going from a point with index i to a point

with index i − 1:

Proposition 2. (Transition formula for function Ck
μ) Consider an index i ∈ {1, . . . , n}. The

value of Ck
μ at uτk (i−1) can be calculated with respect to uτk (i) and Ck

μ(uτk (i)) according to
the following transition formula:

Ck
μ(uτk (i−1)) = Ck

μ(uτk (i)) − (uτk (i) − uτk (i−1))
(
μ

(
A−k

τk (i)∪{k} ) − μ
(

A−k
τk (i)

))
(4)

Proof: If we express Ck
μ(uτk (i)) and Ck

μ(uτk (i−1)) according to Equation (3) and remove com-

mon terms, we have:

Ck
μ(uτk (i)) − Ck

μ(uτk (i−1)) = uτk (i)
[
μ

(
A−k

τk (i) ∪ {k} ) − μ
(

A−k
τk (i + 1) ∪ {k} )

+ uτk (i)

[
μ

(
A−k

τk (i+1) ∪ {k} ) − μ
(

A−k
τk (i+1)

)]
− uτk (i−1)

[
μ

(
A−k

τk (i) ∪ {k} ) − μ
(

A−k
τk (i)

)]
− uτk (i)

[
μ

(
A−k

τk (i)

) − μ
(

A−k
τk (i+1)

)]
= uτk (i)

[
μ

(
A−k

τk (i) ∪ {k} ) − μ
(

A−k
τk (i)

)]
− uτk (i−1)

[
μ

(
A−k

τk (i) ∪ {k} ) − μ
(

A−k
τk (i)

)]
= (uτk (i) − uτk (i−1)) × [

μ
(

A−k
τk (i) ∪ {k} ) − μ

(
A−k

τk (i)

)]
�

Remark 3. Let τ be a permutation of indices 1, . . . , n such that uτ (1) ≤ · · · ≤ uτ (n). Let

rk = τ−1(k) be the rank of uk in the sorted set of scores upper bounds. Then we have

uk ∈ [
uτk (rk−1), uτk (rk )

]
. If the algorithm starts the exploration of Ck

μ(x) from (uk, Cμ(u)),

according to (4), the first edge below (uk, Cμ(u)) on the curve of function Ck
μ(x) takes the
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following value on the y-axis:

Ck
μ(uτk (rk−1)) = Cμ(u) − (uk − uτk (rk−1)) × [

μ(A−k
τk (rk ) ∪ {k}) − μ(A−k

τk (rk ))
]

In addition, for all j ∈ {1, . . . , rk − 1}, τk( j) = τ ( j). Knowing ǔk ≤ uk , in a more general

propagation algorithm, permutation τ can be used for all lower bound calculations instead

of the n permutations τ1, . . . , τn .

Calculating lower bound ǔk

Finally, determining i� allows us to deduce ǔk :

ǔk = uτk (i�) + y − Ck
μ(uτk (i�))

μ
(

A−k
τk (i� + 1) ∪ {k} ) − μ

(
A−k

τk (i� + 1)

) (5)

Proof: Since values ǔk and uτk (i�) both belong to [uτk (i�), uτk (i�+1)], according to (4):

Ck
μ(ǔk) − Ck

μ(uτk (i�)) = (ǔk − uτk (i�)) × [
μ

(
A−k

τk (i� + 1) ∪ {k} ) − μ
(

A−k
τk (i� + 1)

)]
Replacing Ck

μ(ǔk) by y in this equation results in equation (5). As the fuzzy measure is

assumed to be strictly monotonic, no division by zero can be obtained. �

Algorithm

In the previous paragraph we detailed the steps of the determination of the lower bound

of a score uk, k ∈ {1, . . . , n} in order to maintain the arc-B-consistency condition (AB3)

of Proposition 1. Figure 4 describes the LB(k) algorithm, which implements the proposed

approach (a similar algorithm UB(k) is used to compute the upper bound of uk).

The main loop of this algorithm locates the lower bound ǔk . It applies the transition

formula (4) by decreasing variable i� until the reached point is either lower or equal to y on

the y-axis or lower to uk on the x-axis.

Finally, when ǔk ∈ [uτ (i�), uτ (i� + 1)] with uτ (i� + 1) < uk , the algorithm returns 0 and does

not trigger any propagation. Otherwise, the value ǔk is calculated according to (5).

The main loop in this algorithm represents at most a set of n constant time operations. The

complexity of this propagation algorithm is therefore O(n). As a result, propagating every

conditions of the constraint has a complexity of O(n2).

4.4. An example of propagations generated by the Choquet constraint

Let y, u1, u2, u3 be four variables and let M = {μ0, μ1, . . . , μ123} be a fuzzy mea-

sure such that: y ∈ [0.4, 1], u1 ∈ [0, 0.2], u2 ∈ [0, 0.8], u3 ∈ [0, 0.2] and μ0 = 0, μ1 =
0.1, μ2 = 0.4, μ3 = 0.1, μ12 = 0.5, μ13 = 0.2, μ23 = 0.6, μ123 = 1. If we set the con-

straint choquet(y, {u1, u2, u3} ,M), we obtain the following propagations:

On the y variable, Cμ(0, 0, 0) = 0 and Cμ(0.2, 0.8, 0.2) = 0.2 × (1 − 0.6) + 0.2 ×
(0.6 − 0.4) + 0.8 × 0.4 = 0.44. Therefore from (AB2) (Proposition 1) we can conclude that

y ∈ [0.4, 0.44].
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Fig. 4 Calculation algorithm for
the lower bound of a score uk

On score u1: Let ǔ1 be the lower bound of u1 that can be deduced from (AB3), i.e., such that

Cμ(ǔ1, 0.8, 0.2) = 0.4. We have already calculated Cμ(0.2, 0.8, 0.2) = 0.44. Therefore we

can conclude that ǔ1 ∈ [0, 0.2) and from Equation (5): ǔ1 = 0.4−Cμ(0,0.8,0.2)

μ123−μ23
= 0.4−0.36

0.4
= 0.1.

Considering the calculation of an upper bound for u1, we can notice that we have reduced y
such that y = Cμ(u1, u2, u3). It follows that y ≥ Cμ(u1, u2, u3). Therefore condition (AB4)

is verified and we can conclude that u1 will not be reduced.

If we follow the same reasoning for u2 and u3, we finally obtain: u1 ∈ [0.1, 0.2], u2 ∈
[0.7, 0.8] and u3 ∈ [0.12, 0.2].

5. Experimentation

The propagation of the Choquet constraint has been evaluated on small instances of the multi-

criteria examination timetabling problem.

5.1. The examination timetabling problem

Given a set of examinations, a set of students each enrolled for a given list of examinations,

a set of rooms of fixed capacities and a set of periods, the examination timetabling problem

consists in assigning a period and a room to each examination such that (i) two examinations

that are given to a same student cannot be planned on the same period and (ii) the capacity of

a room cannot be exceeded. We assume that as long as (i) and (ii) hold, several examinations

can take place in the same room at the same time but that the number of students attending

an examination cannot be distributed over several rooms.
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A simple multi-criteria model has been constructed based on three attributes: the date of

the last examination planned (criterion duration of the examination), the number of rooms

used (criterion rooms employment) and the number of times a student has two consecutive

examinations (criterion spreading of the exams). These criteria are aggregated using the

Choquet integral (the whole multi-criteria model is more precisely described in Le Huédé

(2003)).

5.2. Instances

Small scenarios have been constructed in order to evaluate the performance of the propagation

in complete search. The main characteristics of these scenarios are described in the following

table:

Number of Number of Number of Number of
periods exams rooms students

Sc. 12 9 12 2 49
Sc. 15 9 15 3 56
Sc. 20 11 20 2 104
Sc. 30 13 30 2 161

The algorithms are launched for various fuzzy measures that correspond to typical cases

of aggregation functions. The μmin measure models an intolerant expert (i.e., complemen-

tary criteria), μmax models a tolerant expert and μmean models the case where criteria are

independents. Although μmin , μmax and μmean are respectively close to the min, max and the

mean functions, they are not exactly equal to these functions.

5.3. Results

To evaluate the effect of propagation we use a simple propagation from the scores u1, u2, u3

to the overall evaluation y (basically, only (AB1) and (AB2) are propagated). This strategy is

denoted B&B. It is compared to a solving where arc-B-consistency is enforced at each node

of the search tree (denoted A-B-C). In order to allow objective comparisons, we use a static

chronological labeling strategy. The variables that model the date of the exams are ordered

according to the number of disjunctions between exams and the number of enrolments for

each exam. The algorithms are compared according to the number of backtracks and the

completion time needed to optimally solve each problem.

μmin μmean μmax
B&B A-B-C B&B A-B-C B&B A-B-C

Btk s Btk s Btk s Btk s Btk s Btk s

Sc. 12 1083 0.08 308 0.04 732 0.06 215 0.02 392 0.04 85 0.02

Sc. 15 22271 1.88 3401 0.47 237783 21.87 93289 9.13 67710 5.53 12228 1.45

Sc. 20 738013 72.65 49832 9.45 1357203 135.57 182540 33.45 349852 35.54 35011 4.77

Sc. 30 35 . 106 1:02:13 7.7 . 106 0:22:55 190 . 106 6:08:07 53 . 106 1:45:25 - - - -

Time results are indicated either in seconds or in the h:mn:s format. The “-” symbol means

that the problem couldn’t be solved within 48 hours.

These results clearly show that, for any kind of fuzzy measure, propagating the Choquet

constraint considerably reduces the size of the tree that is constructed by the search. Although

the time effort is O(n2) for the Choquet constraint with respect to O(n) for the straightforward

calculation, the solving time is also considerably reduced for all measures and instances.

In addition, when the min, mean and max functions are modeled with the Choquet integral,

the time used for the propagation of Choquet can be compared to the time taken by the min,

sum and max constraints. Times obtained with the solver constraints (S-C) are compared with

the others in the following table:
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min mean max
B&B A-B-C S-C B&B A-B-C S-C B&B A-B-C S-C

Sc. 12 0.03 0.01 0.01 0.06 0.03 0.04 0 0 0
Sc. 15 1.4 0.234 0.219 2.37 1.03 0.89 0 0 0
Sc. 20 63.5 5.48 5.17 85.7 21.44 19.45 0 0 0
Sc. 30 0:37:53 0:09:31 0:09:16 1:36:24 0:46:31 0:44:52 - 26:28:42 25:24:41

As previously observed, A-B-C is clearly better than B&B. Comparing A-B-C and S-C,

we can see that the difference between the “generic” Choquet algorithms and the dedicated

algorithms of each constraint remains quite small. Hence, the expressivity gained with Choquet

does not generate a great loss in efficiency.

In addition, in this table we can see that in the max case, an optimal solution is immediately

found by the solver, except for scenario 30 which takes very long (B&B failed to solve the

problem within 2 days). In this case, the heuristics directly finds a solution that is equal to 1

on criterion “duration” (and thus is optimum for max). As no such solution exists in Sc. 30,

a very large part of the search tree is explored before a solution that completely satisfies the

“spreading” criterion is found. This illustrates well another difficult problem, which is the

definition of search heuristics when the objective depends on several criteria.

6. Conclusion

In this paper we introduced a new approach for the solving of multi-criteria optimization

problems in CP. As the elicitation of multi-criteria preferences is a very hard problem on its

own, we proposed to integrate a very general model from MCDM and to benefit from the well

proven methodology that has already been developed for the elicitation of its parameters.

To achieve this integration we proposed a general scheme based on the definition of a multi-

criteria aggregation constraint that establishes the performance of a solution. According to

general properties of multi-criteria aggregation functions, we defined some arc-B-consistency

conditions with respect to constraints that model these functions. We showed that if the

constraint is arc-B-consistent, then it is necessarily arc-consistent and that an algorithm that

propagates once each of the consistency conditions is idempotent. These principles were

applied to the case of the Choquet integral, which is a very flexible aggregation function that

offers good properties for modeling preferences. We defined the Choquet global constraint and

proposed propagation algorithms for modeling this function in a CP solver. This constraint

has been evaluated on the multi-criteria timetabling problem. The results obtained on the

optimal resolution of small instances for different kind of preference models clearly show

the interest of propagation.

A first observation is that the aggregation of criteria finally enables reducing the problem

to a mono-criterion optimization problem. However, the problem keeps an underlying multi-

criteria structure that, in particular, considerably increases the complexity of defining good

search heuristics. Some work has been led on this issue and deserves further investigations

(Le Huédé et al., 2003).
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