
Journal of Heuristics, 11: 35–57, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Comparing Metaheuristic Algorithms for Sonet
Network Design Problems

ROBERTO ARINGHIERI
DTI, University of Milan, Via Bramante 65, 26013 Crema, Italy

MAURO DELL’AMICO∗
DISMI, University of Modena and Reggio Emilia, Viale A. Allegri 13, 42100 Reggio Emilia, Italy
email: dellamico@unimore.it

Submitted in June 2003 and accepted by Steve Chiu in November 2004 after 2 revisions

Abstract

This paper considers two problems that arise in the design of optical telecommunication networks when a ring-
based topology is adopted, namely the SONET Ring Assignment Problem and the Intraring Synchronous Optical
Network Design Problem. We show that these two network topology problems correspond to graph partitioning
problems with capacity constraints: the first is a vertex partitioning problem, while the latter is an edge partitioning
problem. We consider solution methods for both problems, based on metaheuristic algorithms. We first describe
variable objective functions that depend on the transition from one solution to a neighboring one, then we apply
several diversification and intensification techniques including Path Relinking, eXploring Tabu Search and Scatter
Search. Finally we propose a diversification method based on the use of multiple neighborhoods. A set of extensive
computational results is used to compare the behaviour of the proposed methods and objective functions.

Key Words: metaheuristics, SONET ring, optical networks, graph partitioning

1. Introduction

In the last ten years the widespread adoption of internet technology and its integration
into the international communications infrastructure has drastically changed the commu-
nications landscape. In these years the number of users of internet-based applications has
exponentially increased and new sophisticated applications have been introduced. As a
consequence the request for transmission capacity, or bandwidth, has greatly increased.

Fiber optics are the current technological solution allowing for the fast transmission of
large quantities of data through telecommunication networks. Several communications can
be transmitted at the same time on the same fiber through multiplexing techniques (namely
the Wavelength Division Multiplexing). The current standard for optical networks is denoted
as SONET (Synchronous Optical NETwork) and it is concerned with a ring-based topology.
More specifically, each customer is connected to one or more rings and the entire network

∗Author to whom all correspondence should be addressed.



36 ARINGHIERI AND DELL’AMICO

is made up of a collection of such rings. The choice of assigning a customer to a single
ring or to multiple rings, and the way the rings are connected, determine different designing
issues.

Each customer uses an add-drop-multiplexer (ADM) to send/receive transmissions to/
from a ring. The ADMs are associated with the nodes of the rings. Each node has exactly
two links connecting it to its two neighboring nodes on the ring. The links have duplicated
fibers to allow a bidirectional transmission. When a failure occurs on a link (i, j) the ring
topology is used to recover this failure by transmitting the traffic originally sent on the link
on the surviving part of the ring. Hence, the capacity of any link of a bidirectional ring, say
B, has to accommodate the bandwidth request for the transmission toward all other nodes.

In this paper we consider two basic designing techniques determining different network
topologies, and we propose optimization algorithms for each of them.

In the first topology the customers set is partitioned into subsets, each of which is asso-
ciated with a local ring. The local rings are connected to a wider ring called federal ring
used to transit the inter-ring traffic. Each node of the federal ring is assigned a digital cross
connector (DXC), i.e., a special device allowing two different rings to exchange transmis-
sions. Since a DXC is the most costly network component, a topology with the smallest
number of rings is preferred. An example of such a topology is depicted in figure 1. The
optimization problem associated with this topology consists of minimizing the number of
rings (i.e., the total number of DXCs) in such a way that: (i) each customer is connected to
exactly one ring; and (ii) the maximum capacity of each ring is bound by the common value
B. This problem is usually called SONET Ring Assignment Problem (SRAP) with capacity
constraint.

When the network has to connect customers located in a restricted area, a second topology
is possible. Each ring is designed in such a way that it transports only the traffic among
its own customers. To satisfy this requirement it may be necessary that a single customer
is connected to more than one ring. In figure 2 we suppose that customers 8 and 9 have to
communicate with customers 1, 2, and 10; hence, they have to be connected both to ring 1
and ring 3. Customer 3 has to be connected to ring 1 and ring 2, whereas customer 7 has to
be connected to all three rings. This topology generally uses more ADMs than the first one,

Figure 1. A SONET network with DXC.



METAHEURISTIC ALGORITHMS FOR SONET NETWORK DESIGN PROBLEMS 37

Figure 2. A SONET network without DXC.

but no DXC at all is required. Hence, the total cost of the second network could be lower
than that of the first one.

The optimization problem associated with the second topology consists of minimizing the
total number of ADMs in such a way that: (i) each pair of customers needing to communicate
with each other has to be connected to the same ring; (ii) the maximum capacity of each ring
is bounded by the common value B. This problem is called Intraring Synchronous Optical
Network Design Problem (IDP).

The above problems are known to be NP-hard (see Goldschmidt, Laugier, and Olinick,
2003; Goldschmidt et al., 2003 for details and proofs). The aim of this paper is to provide and
compare several algorithms for solving SRAP and IDP. These algorithms are based on Tabu
Search and Scatter Search methodologies (see e.g. Glover, 1997; Glover and Laguna, 1997;
Laguna, 2001) for a general introduction to these topics) and exploit different intensification
and diversification techniques. Moreover, we will introduce a variable objective function
driving the search from unfeasible to feasible solutions, and a diversification technique
based on the strategic use of multiple neighborhoods. This work extends the seminal ideas
introduced by Aringhieri, Dell’Amico and Grasselli (2001) for the solution of SRAP, and
applies them to IDP.

The paper is organized as follows: In Section 2 we introduce graph theory models for
the two problems, while previous works on SRAP and IDP are briefly resumed in Section 3.
The basic ingredients for developing Local Search algorithms are introduced in Section 4,
different intensification and diversification strategies are then described in Section 5, and
Section 6 reports extensive computational results comparing the various approaches on
benchmark instances, both from the literature and new ones proposed in this study. Section 7
concludes the work.

2. Models

In this section a model based on graph theory is proposed for each problem.
Consider a set of n customers and a symmetric traffic matrix [duv] (u, v = 1, . . . , n, u �=

v) where each entry gives the amount of traffic between customer u and v. We consider an



38 ARINGHIERI AND DELL’AMICO

undirected graph G = (V, E) where the node set V contains one node for each customer
and the edge set E has an edge [u, v] for each pair of customers u, v such that duv > 0
(remind that duv = dvu , due to the symmetry of the traffic matrix). Given a subset of edges
Ẽ ⊂ E , let V (Ẽ) ⊆ V be the set of terminal nodes of the edges in Ẽ .

Problems SRAP and IDP correspond to two different partitioning of the above graph,
subject to capacity constraints. In particular, SRAP involves a node partitioning, whereas
IDP, an edge partitioning (the state of the art algorithms for such partitioning problems are
those presented in Goldschmidt et al., 2003; Goldschmidt, Laugier, and Olinick, 2003).

SRAP partitioning problem

Given a partition of V into k subsets V1, V2, . . . Vk , the corresponding SRAP network is
obtained by defining k local rings and a federal ring, as follows. All the customers of subset
Vi are associated to the i-th local ring by means of |vi | ADMs, while the federal ring uses
a DXC to connect each local ring. So the resulting network uses n ADMs and k DXCs.

Solving SRAP corresponds to finding the partition V1, . . . Vk minimizing k, and such that

∑

u∈Vi

∑

v∈V
v �=u

duv ≤ B, i = 1, . . . , k (1)

k−1∑

i=1

k∑

j=i+1

∑

u∈Vi

∑

v∈Vj

duv ≤ B (2)

Constraints (1) impose that the total traffic on each ring i , that is, the sum of the traffic internal
to i plus the traffic from i to the other rings, does not exceed the bound B. Constraint (2)
impose that the total traffic on the federal ring is not larger than the bound B.

IDP partitioning problem

Given a partition of E into k subsets E1, E2, . . . Ek , the corresponding IDP network can be
obtained by defining k rings and connecting each customer of V (Ei ) to the i-th ring by
means of an ADM. The resulting network uses ϕ = ∑k

i=1 |V (Ei )| ADM and no DXC.
Solving IDP corresponds to finding the partition E1, . . . Ek minimizing ϕ and such that

∑

[u,v]∈Ei

duv ≤ B, i = 1, . . . , k (3)

Constraints (3) assure that the traffic inside each ring does not exceed the bound B.
We now introduce some notation necessary to simplify the presentation. Given a subset

of edges Ẽ ⊆ E , we denote with d(Ẽ) the sum of the weights of the edges of Ẽ (i.e.
d(Ẽ) = ∑

[u,v]∈Ẽ duv). Given two disjoint subsets of nodes V1 ⊂ V , V2 ⊂ V (V1 ∩ V2 = ∅),
let δ(V1, V2) = {[u, v] ∈ E : u ∈ V1, v ∈ V2} denote the set of edges in the cut separating
V1 from V2. If V1 = {u} and V2 = V \{u}, we use δ(u) instead of δ({u}, V \{u}). We will use



METAHEURISTIC ALGORITHMS FOR SONET NETWORK DESIGN PROBLEMS 39

the operator argmax{ f (S)} (resp. argmin{ f (S)}) to return the argument of the element of
set S determining the maximum (minimum) value of function f . We assume that argmax{∅}
returns a NULL value. Finally, we will call feasible a ring that satisfies constraints (1) or (3),
for SRAP or IDP, respectively.

3. Results from the literature

Problem SRAP has been recently investigated by Goldschmidt, Laugier, and Olinick (2003).
It has been shown that the problem is NP-hard and three greedy approaches, namely the
edge-based, the cut-based and the node-based heuristics have been proposed. The first two
algorithms start their computation by assigning each node to a different ring and iteratively
reduce the value of k by merging two rings, provided that the resulting ring is feasible. In
the edge-based approach, the two rings connected by the maximum weight edge are first
merged, while the rings corresponding to the pair Vi , Vj maximising the weight of the
cut (Vi , Vj ) are first chosen in the cut-based approach. Note that both methods may have
different behavior if different tie break rules are used.

The third algorithm receives as input a tentative value k and it randomly assigns a node to
each of the k rings. The approach disregards the capacity constraint and iteratively assigns
the remaining n−k nodes as follows. First the ring Vi with current largest unused capacity is
selected, then the unassigned node u maximising the weight of the cut δ({u}, Vi ) is assigned
to Vi . The algorithm is run ten times decreasing the value of k by one when a feasible
solution is obtained.

The authors have tested the three greedy algorithms on a set of 160 benchmark instances
with n ranging from 15 to 50 and density of the graph ranging from 5% to 72%. They
first run the edge-based and cut-based heuristics, then the smallest k value obtained is used
as input for the node-based heuristic. This procedure is repeated ten times by randomly
breaking ties for the first two algorithms. When the best solution is feasible and k is larger
than the simple lower bound

klb =
⌈

n−1∑

u=1

n∑

v=u+1

duv/B

⌉
(4)

an attempt to prove its optimality by means of CPLEX c© is made.
Aringhieri, Dell’Amico, and Grasselli (2001) attach SRAP with metaheuristic algorithms

mainly based on Tabu Search. The authors introduce an objective function that depends
on the current search status, and use a strategic oscillation obtained through the swap of
two neighborhoods. Comparisons among different diversification strategies applied to the
benchmark instances proposed in Goldschmidt, Laugier, and Olinick (2003) are presented:
all the resulting algorithms perform better than those proposed in Goldschmidt, Laugier,
and Olinick (2003) when the same computing time is given to all algorithms.

Goldschmidt et al. (2003) consider the special case of IDP in which all edges are given
the same weight. They show that this problem, hence the more general IDP, are NP-
hard. Two linear-time approximation algorithms with fixed performance guarantee are also
presented.



40 ARINGHIERI AND DELL’AMICO

Lee et al. (2000) study IDP with the additional constraint that the number of ADMs
in each ring must not exceed a given bound, say R. They formulate the problem as a
mixed-integer programming model, develop a branch-and-cut algorithm, and introduce an
effective heuristic procedure, called LSHK in the sequel. The authors present computational
experiments on 20 test instances with n ranging from 15 to 25 and density from 12% to 29%.
The running times of the exact approach are high: 1504 seconds of a Pentium processor
at 200 MHz, on average. The heuristic LSHK defines an initial solution by constructing
one ring at a time, as follows: The subset of edges corresponding to the current ring r is
initialized by choosing a node u with maximum degree, with respect to the edges not yet
considered, and then adding to r the edge [u, v] such that v has maximum degree. The
subset Er is iteratively increased by appropriately selecting a node w such that all edges
in δ(w, V (Er )) can be feasibly assigned to it. This solution is then improved through local
search by moving one edge at a time from one ring to another.

Laguna (1994) considers a problem that mixes the two designing techniques. Similar to
problem IDP, each customer may be connected to one or more rings, but it is not required that
two customers u, v with duv > 0 are connected to the same ring. The network may therefore
need to transmit some inter-ring traffic. Unlike SRAP, the technology used to connect the
rings is not specified, so an approximation of the corresponding cost, proportional to the
traffic amount, is used. The resulting objective function includes both the ADMs cost and
the estimated cost of the inter-ring traffic. Laguna introduces a mixed-integer model for the
problem and describes a simple short-term memory Tabu Search to select integer variables
configurations. The objective function corresponding to a selection is evaluated through the
simplex algorithm.

4. Basic local search elements

In this section we introduce the main ingredients necessary to implement Local Search
algorithms for SRAP and IDP. In particular we will describe: (a) simple procedures to compute
a starting solution; (b) neighborhoods; (c) data structures needed to efficiently implement
the search of the neighborhood; and, (d) a simple tabu list.

4.1. Starting solution

A solution of SRAP can be computed with the three greedy methods introduced in
Goldschmidt, Laugier, and Olinick (2003) (see Section 3). Another possibility is to start the
Local Search from the very simple solution obtained by assigning each node to a different
ring. Note that this solution is certainly unfeasible, since all the traffic is routed through the
federal ring. However, the Local Search can easily reconduct the solution to a feasible one,
as shown in our computational experiments (see Section 6).

Consider now problem IDP. An immediate method from the literature for finding a feasible
solution is Algorithm LSHK given in Lee et al. (2000) applied with R = n. The approxi-
mation procedures presented in Goldschmidt et al. (2003), instead, have been designed for
the unweighted case and cannot be adapted to our problem.



METAHEURISTIC ALGORITHMS FOR SONET NETWORK DESIGN PROBLEMS 41

We now introduce four new heuristic procedures for solving IDP, that, in some cases,
have better performances than the methods we described in the previous section. The new
algorithms are particularly useful when used together with the other methods from the
literature to find a good starting solution for a local search method. The first two methods
are derived from the Best-Fit Decreasing (BFD) and Next-Fit (NF) procedures for the Bin
Packing Problem (see e.g. Martello and Toth, 1990). Our implementation of BFD considers
one edge at a time, ordered by non-increasing weights, and assigns it to the ring having the
smallest residual capacity so that the feasibility of the ring is preserved. If no assignment
is possible a new ring is initialized containing the current edge only. Our NF procedure
considers the edges sorted by non-decreasing weight and assigns the current edge to the
current ring if possible, otherwise the ring is no longer considered and a new ring is initialized
with the current edge.

The third method is based on the idea that good solutions should have very dense rings
to save ADMs. A ring might even be a clique of graph G. Our procedure Clique-BF (see
Algorithm 1) uses a constructive greedy heuristic to iteratively select a clique of unassigned
edges with total traffic not larger than B. All the demands of the clique are assigned to a
single ring that minimizes the residual capacity while preserving the feasiblity, if possible,
otherwise to a new ring. Note that in any non trivial instance max{duv} < B, hence at
any iteration it is always possible to identify a clique that can be feasibly assigned to the
same ring. This clique might even contain a single edge. Our last heuristic procedure, called
Cycle-BF, is similar to Clique-BF, but it relaxes the requirement of finding a complete
clique. More specifically, at each iteration instead of looking for a complete subgraph we
look for a (small) cycle with as many cords as possible. To do this we use a modified
Dijkstra’s shortest path algorithm. When a new node u enters the shortest path tree, the
algorithm looks for a possible edges [u, v] with v being an already labeled node. If such
an edge exists we consider the cycle made by [u, v] and by the two paths from the root to
u and to v, respectively. If the traffic on the cycle is smaller than or equal to B we add the
cycle to the appropriate ring and we also add to the ring all the possible cords, in a greedy
fashion. If the traffic on the cycle is larger than B we continue the search with the remaining
edges of δ(u) and finally we continue to grow the tree. Note that unlike Clique-BF, there is
not guarantee that Cycle-BF will find a cycle that can be entirely assigned to a ring. Hence

Algorithm 1 Clique-BF

U := E ; r := 0;
while (U �= ∅) do

heuristically find a clique C ⊂ U such that d(C) ≤ B;
let j := argmin{B − d(Ei ) − d(C) : i = 1, . . . , r, B − d(Ei ) − d(C) ≥ 0};
if ( j = NULL) then r := r + 1; j := r end if;
E j := E j ∪ C ; U := U \ C

end while



42 ARINGHIERI AND DELL’AMICO

this method could terminate with a partial solution that we will complete in a greedy way
by adding one edge at a time as in BFD.

4.2. Neighborhoods

Given a solution of a generic partitioning problem, two basic neighborhoods can be obtained
by implementing either of the following rules: (a) move an object from a subset to another,
or (b) swap two objects assigned to two different subsets.

Following the above rule (a), Aringhieri, Dell’Amico, and Grasselli (2001) proposed,
for problem SRAP, a neighborhood consisting of moving a node from one ring to another
(including a new one), under the requirement that the receiving ring is assigned a total traffic
not greater than B. In this paper we propose an extension of this neighborhood obtained
by allowing to construct unfeasible solutions. The same kind of neighborhood can be used
for IDP: a neighboring solution is obtained by moving an edge from a ring to another,
disregarding the feasibility or unfeasibility of the resulting solution. We will refer to this
neighborhood, both for SRAP and IDP, as neighborhood N1. If we denote with r̄ (< |V |) an
upper bound on the maximum number of rings in an optimal solution, then the complete
exploration of N1 requires O(r̄ |V |) time.

The general neighborhood, say Nb, determined by a complete application of rule (b)
requires considering all the possible pairs of objects to be swapped, hence O(|V |2) time
is necessary to explore it. Here we propose a second neighborhood, called N2, that is the
union of N1 with a restricted version of the above general neighborhood. As for N1 we start
by moving an object (node or edge, depending on the problem) from a subset, S1, to another
subset, S2. If the resulting solution is feasible we are done; otherwise, we try to move an
object previously assigned to S2 back to subset S1. The resulting solution is considered a
possible candidate even if it turns out to be unfeasible. The worst case time complexity of N2

is the same of Nb, but, on average, exploring N2 is computationally convenient. Therefore
we adopted N2 for our experiments.

4.3. Data structures

To speed up the search of the best solution in the two neighborhoods we need to use some
appropriate data structures.

The edge set E is stored as a forward star and an array WeightStar is used to store the
total weight of the edges emanating from each node u (i.e., WeightStar(u) = d(δ(u)) for all
u ∈ V ).

Let again r̄ be an upper bound on the maximum number of rings in an optimal solution. For
both problems we use an array RingLoad(r ), for r = 1, . . . , r̄ to store the total traffic on the
ring. For SRAP, RingLoad(r ) = ∑

u∈Vr

∑
v �=u duv , whereas for IDP, RingLoad(r ) = d(Er ).

For each pair u, r , with u ∈ V and r = {1, . . . , r̄} we store the total weight of the edges
in Er ∩ δ(u), and the cardinality of set Er ∩ δ(u) in matrices WeightRing and CardRing.
Table 1 summarizes the above definitions.

All these data structures expect CardRing are used to check efficiently the feasibility (or
unfeasibility) of a solution during the exploration of the neighborhood. Matrix CardRing is



METAHEURISTIC ALGORITHMS FOR SONET NETWORK DESIGN PROBLEMS 43

Table 1. Data structures for SRAP and IDP .

Name SRAP IDP

WeightStar(u) d(δ(u)) –

RingLoad(r )
∑

u∈Vr

∑
v �=u duv d(Er ).

WeightRing(u, r ) d(Er ∩ δ(u)) –

CardRing(u, r ) – |Er ∩ δ(u)|

used to evaluate the objective function. More specifically, if CardRing(u, r ) = 0, then no
edge emanating from u has been assigned to ring r , hence no ADM for customer u has to
be installed on ring r . On the contrary, if CardRing(u, r ) > 0, then customer u requires a
single ADM on ring r , independently of the total number of edges in Êur . Hence the total
number of ADMs on a ring r is |{CardRing(u, r ) > 0 : u ∈ Vr }|.

The updating of the above structure is done as follows:

SRAP

When a node u is moved from ring r to ring s, we have to subtract from RingLoad(r ) the
total traffic going from u to all rings different from r , so we have to compute RingLoad(r ) =
RingLoad(r ) − (WeightStar(u) − WeightRing(u, r )). Similarly, we have to update the traf-
fic on each ring s �= r computing RingLoad(s) = RingLoad(s) + (WeightStar(u) −
WeightRing(u, s)) (for more details see Aringhieri, Dell’Amico, and Grasselli (2001)). Fi-
nally, WeightRing(i, r ) and WeightRing(i, s) for i ∈ V \{u} have to be updated by scanning
the forward star of node u.

IDP

Moving an edge [u, v] from ring r to ring s imposes the following calculations:
RingLoad(r ) = RingLoad(r ) − d[u, v], RingLoad(s) = RingLoad(s) + d[u, v], CardRing
(�, r ) = CardRing(�, r ) − 1 for � = u, v and CardRing(�, s) = CardRing(�, s) + 1 for
� = u, v. Array WeightRing is updated as in SRAP.

4.4. Tabu lists

Short-term memory has been implemented by using two kinds of taboos. The first one
prevents a recently moved “object” (node or edge) to be moved again. The second one is
less restrictive: it prevents the return of an object into the ring from which it was removed,
but it allows the object to be inserted into another ring. The moves blocked by the second
taboo are a subset of the moves blocked by the first one, hence the contemporary existence
of the two taboos makes sense only if the length of the list implementing the first one is
strictly shorter than the length of the list used for the second one.

The length of the two lists is dynamically adapted to the evolution of the search by using
the method proposed in Dell’Amico and Trubian (1998). When the trajectory in the solution



44 ARINGHIERI AND DELL’AMICO

Table 2. Parameters used for the adapting tabu list strategy.

SRAP IDP

param. List 1 List 2 List 1 List 2

starti 5 10 20 30

�i p 5 5 5 5

�wp 3 3 3 3

space enters a promising region the list lengths �i , i = 1, 2, are decreased to intensify the
search. On the contrary, when we encounter an unpromising region, we increase the list
lengths to speed up the leaving of this region. More precisely, we define a starting tabu-tenure
value starti (i = 1, 2), then when we detect an improving phase (see below), we set:

�i = max

(
�i − 1,

1

2
starti

)
, i = 1, 2,

whilst when we detect a worsening phase, we set

�i = min

(
�i + 1,

3

2
starti

)
, i = 1, 2.

We define as improving phase a sequence (s1, s2, . . . , s�i p) of �i p consecutive iterations
lowering the objective function value (i.e., z(s1) > z(s2) > · · · > z(s�i p)), whereas we call
worsening phase a sequence of �wp consecutive iterations in which the objective function
value is not improved (i.e., z(s1) ≤ z(s2) ≤ · · · ≤ z(s�i p)). Table 2 summarizes the values
of the above parameters which we used in our experiments.

4.5. Objective functions

It is known that a good evaluation function of a metaheuristic algorithm should capture,
besides the value of the solution at hand, its “propensity” to lead to high quality solutions.
In particular for SRAP and IDP, the simple value of the objective function gives very poor
information. Consider e.g. SRAP: there are hundreds of solutions, feasible or not, that have
the same number of rings but very different loads of these rings.

Let z0 be a basic objective function counting the number of rings of a solution for SRAP,
and the total number of ADMs for IDP. Moreover, let BN denote the highest (bottleneck)
load of a ring. We first defined and then tested the following objective functions:

z1 = z0 + max{0, B N − B},

z2 = z1 +
{
α · Ringload(r ) if the last move has created a new ring r,

0 otherwise

z3 = z0 · B + BN

with α ≥ 1.



METAHEURISTIC ALGORITHMS FOR SONET NETWORK DESIGN PROBLEMS 45

Before discussing the rational of the above functions it is worth recalling that the number
of rings in a solution of SRAP, or the number of ADMs in a solution of IDP, is much smaller
than the load of a ring, hence z0 � min(B, B N ).

Function z1 minimizes the basic function z0 while penalizing the unfeasible solutions
(having B N > B). The idea embedded into z2 is to add a specific penalty for moves that
increase the number of rings. This penalty has been chosen as α times the weight of the
new ring created by moving a single node or edge for SRAP or IDP, respectively. Function z3

has been designed so that solutions with small z0 are encouraged, while among solutions
with the same value of z0 the ones minimizing the bottleneck are preferred and the search
is driven from unfeasible solutions toward feasible ones. For SRAP, we set α to the average
number of nodes per ring , i.e., α = |V |B/d(E), whilst for IDP, we set α = 1.

The last objective function z4 we are going to introduce is an adapting technique that
modifies the evaluation according to the status of the search. More specifically, z4 is a
variable objective function having different expressions for different transitions from the
current status to the next status.

z4 =






z4a = z0 B + B N (= z3) (a) : from feasible to feasible

z4b = (z0 + 1)B N (b) : from feasible to unfeasible

z4c = z0 B (c) : from unfeasible to feasible

z4d = βz0 B N (d) : from unfeasible to unfeasible

with β ≥ 2. This function has been designed to encourage transitions from unfeasible to
feasible solutions and, within the set of feasible solutions, to choose those with smallest
load.

In particular, note that an unfeasible solution has B N > B, hence z4b = (z0 + 1)B N >

(z0 + 1)B ≥ z4a . Moreover, z4a > z4c and βz0 ≥ z0 + 1, so the following ordering holds:

z4d ≥ z4b > z4a > z4c. (5)

Parameter β has been set to |V |B/d(E) for SRAP and to 2 for IDP.

5. Intensification and diversification strategies

The elements introduced in the previous section have been used to implement a Basic Tabu
Search, which we call BTS. In the next sections we consider general frameworks aimed
at improving the performance of a local search algorithm. In particular, we address the
following intensification/diversification methods: Path Relinking, eXploring Tabu Search
and Scatter Search. Then we propose a new multi-neighborhood diversification technique.

5.1. Path relinking

The first enhancing technique we tested is an implementation of the Path Relinking (PR)
method (Glover, 1997; Glover, Laguna, and Martı́, 2000).



46 ARINGHIERI AND DELL’AMICO

The basic idea in PR can be summarized as follows: select a set of moves, determine the
paths in the solution space joining pairs of them, and finally, consider the solutions on these
paths to continue the search.

In our tests we have considered two implementations of PR, embedding the basic tabu
search BTS. For both implementations the relinking is performed when BTS has evaluated
γ non improving solutions.

In the first approach, say PR1, we generate only the minimum length path linking the
current solution to the best one (called starting and guiding solution, respectively, using the
Path Relinking terminology). More specifically we determine the minimum set of moves,
say MV , necessary to transform the current solution into the best solution. We construct the
new starting solution for BTS by applying |MV|/2 moves: each one is selected as the move
that locally minimize the objective function.

The second implementation, say PR2, we maintain a set E S of elite solution and generate
the minimum length paths that transform the current solution into the elite ones (see Laguna,
Martı́, and Campos, 1999). Using the same technique as in PR1 (i.e., applying one half of
the moves of each path) we generate |E S| new possible starting points and we select the
best one. Set E S consists of the best �E S solutions encountered in the search, where �E S

is the second parameter of this method, besides γ .

5.2. eXploring tabu search

The basic idea of the eXploring Tabu Search method (XTS) introduced in Dell’Amico and
Trubian (1998) is to use systematic jumps in the solution space based on long term memory
information.

More specifically, XTS maintains a list (called Second list), that stores some of the
second best solution of the explored neighborhoods. We say that a solution is second best
for a neighborhood if it has the second smallest value and it is not selected to continue the
search. Within each of these solutions it also stores all the parameters and other elements
(e.g., tabu lists) that determine the status of the search at the moment in which the solution
was evaluated. The Second list is ordered by non-decreasing solution values and when the
search seems to be not profitable the current solution is abandoned and the first solution
in the list, say s2, is adopted within its associated parameters and elements. In this way
the search jumps backward to the point in which s2 was evaluated (but not chosen) and
continues with s2 instead of the best solution of that neighborhood. The use of the second
best solution of a neighborhood is well suited for problems with an objective function with
many flat regions, as SRAP and IDP have. In these cases the value of the objective function
provides no information on the direction in which the search should continue to reach the
global optimum. A first attempt to solve this problem was to introduce more sophisticated
objective functions, as done in Section 4.5. The use of jumps to equivalent or near-equivalent
solutions (the second-best solutions), proposed in the XTS framework, is another method
to overcome this difficulty.

A second idea from XTS is to adopt a strategic use of a complete restart of the search. In this
case one should provide a procedure that generates starting solutions uniformly distributed
in the solution space. Unfortunately, this task is often as difficult as the original problem,



METAHEURISTIC ALGORITHMS FOR SONET NETWORK DESIGN PROBLEMS 47

hence a simple random restarting is adopted. (For more details on the implementation of
XTS the interested reader is addressed to Dell’Amico and Trubian (1998), Dell’Amico,
Lodi, and Maffioli (1999)).

In Dell’Amico, Lodi, and Maffioli (1999) three methods are suggested to detect if XTS
must jump to a solution from the second list:

1. the tabu status prevents all the solutions in the current neighborhood from being
used;

2. the current objective function value has not been improved in the last imp iterations;
3. the global best solution has not been improved from a given number of iterations.

Three other methods are proposed to decide if recourse to a restart is necessary:

4. one of conditions 1–3 above indicates that it is necessary to jump to a solution from the
Second list, but the list is empty;

5. after a prefixed number of iterations, counted from the last global restart, the value of
the best solution found in these iterations is not close “enough” to the value of the global
best solution;

6. a jump to a Second best solution occurred for #Second times after the last, without
improving the best solution.

In order to simplify the parameters’ tuning in this work we reduced the criteria used to
control the strategy by adopting only conditions 1, 2, 4, and 6 above, all of which need only
the two parameters imp and #Second .

5.3. Scatter search

In the Scatter Search (SS) methodology (see, e.g., Glover (1997, 1999), and Glover, Laguna,
and Martı́ (2000) for a detailed treatment) a small population of solutions, called Reference
Set, evolves through combination of its solutions. The combination must pursue two opposite
objectives: intensify the search in proximity of good solutions, and diversify the search to
explore a wide area. To do this the reference set is partitioned into two sets: the subset of
the high quality solutions (HQ) and the subset of the diverse solutions (DV). We compute
the diversity of two solutions as the number of nodes (resp. edges) for SRAP (resp. IDP) that
are assigned to different rings in the two solutions. Hence, the diversity function has integer
values in [0, |V |] for SRAP, and in [0, |E |] for IDP.

Our implementation traces the general scheme proposed in Laguna (2001); here, we
report only the specific adaptation necessary for SRAP and IDP.

5.3.1. Diversification generation method. The solutions included in the first Reference
Set should be drawn from all the regions of the solution space, so that they represent
a significative sampling of this space. We have decided to build a random set in which
the relevant differentiating element is the number of rings. We adopted the following
strategies:



48 ARINGHIERI AND DELL’AMICO

SRAP

Recall that we denote with klb the continuous lower bound value given by (4). We gener-
ate a first set of q random solutions, where q was fixed to 4klb − 1 through preliminary
computational experiments. Each solution sh (h = 1, . . . , q) has exactly h + 1 rings and
is obtained by randomly assigning each node to one of the rings. A second set of addi-
tional q solutions is then generated by perturbating each of the first q solutions through a
movement of each node to a ring chosen with a uniformly random distribution. In prac-
tice each node has probability 1/h to be moved to the h-th ring, including its current
ring. Each of the starting solutions is then optimized through a run of BTS with a limit of
L Siter iterations. The best RS solutions generated are selected to initialize the Reference
Set.

IDP

A set of 8klb − 1 starting solutions are generated as in SRAP, but assigning the edges instead
of the nodes (again the number of solutions to be generated was experimentally determined).

5.3.2. Solution combination method. The solutions in the Reference Set are combined
through an adaptation of the classical scoring function for SS (see e.g. Glover, Laguna, and
Martı́ (2000), Laguna (2001) for details). Roughly speaking, the idea is to consider a set S
of solutions and the value of a variable, and to give this value a score proportional to the
times it appears in these solutions, weighted with the objective function value. In detail,
let z(s) denote the objective function value of solution s and let xs

ir be a boolean variable
associated with solution s assuming value 1 iff node i (resp. edge i) for SRAP (resp. IDP) is
assigned to ring r . The score for pair (i, r ) is then

score(i, r ) =
∑

s∈S z(s)xs
ir∑

s∈S z(s)
(6)

We construct a new solution assigning each node i (resp. edge i) to the ring r∗ such that
score(i, r∗) = maxr {score(i, r )}. To generate more solutions we adopt a scheme similar
to that described in Laguna (2001). At each phase of the algorithm we select subsets S of
the Reference Set with |S| = 2, . . . , 5. First we consider all the 2-element subsets, then
we iteratively add to each of these subsets the best not included solution until we have
5-element subsets. Each subset is used to generate a new solution.

5.3.3. Improvement method. The quality of any solution was improved by applying pro-
cedure BTS with a limit of LSiter iterations. This limit was defined through some preliminary
computational experiment.

Not all the objective functions described in Section 4.5 can be used with the Scatter
Search approach. In particular we cannot use the functions based on the concept of ‘move’.
So we will use function z1 and the following version of z4 which includes z3 as a special



METAHEURISTIC ALGORITHMS FOR SONET NETWORK DESIGN PROBLEMS 49

case:

z4(s) =
{

z4a(s) = z0 B + B N if the solution is feasible

z4d (s) = βz0 B N otherwise

Each new solution s̃ is inserted in the high quality set HQ if its objective function value is
better than that of the worst solution in HQ. On the other hand, the new solution is inserted in
Diverse (DV) set if its distance from the ‘closest’ solution in HQ is larger than the minimum
distance between a solution in DV and one in HQ. Formally, s̃ enter DV when

min
s∈H Q

D(s̃, s) > min
s ′∈DV,s∈H Q

D(s ′, s) (7)

5.4. Diversification by multiple neighborhoods

We propose a Diversification by Multiple Neighborhhods (DMN), using more than one
neighborhood to obtain a diversification in the search. More specifically, we mainly use
neighborhood N2, but sometimes we adopt a second neighborhood N3 (to be described
later) for a few moves. The idea has some similarity with the variable neighborhood search
(VNS) method (see Hansen and Mladenović, 2001), but in fact it is very different from it
in two fundamental aspects. First of all, VNS adopts a new neighborhood when the current
solution is a local optimum for the current neighborhood, whereas DMN switches to the
second neighborhood when some indicator says that the search needs to be diversified.
Moreover, each of the neighborhoods used in VNS could be used alone in a local search
method. Instead, the fundamental characteristic of neighborhood N3 of DMN must be to
construct solutions very different from the current one, even infeasible ones. Thus, N3 used
alone in a local search method does not provide good, or even feasible solutions.

N3 empties a ring by moving its elements (nodes or edges, for SRAP or IDP, respectively)
to the other rings while disregarding the capacity constraint and locally minimizing the
objective function.

The indicator we used to devise the necessity of a switch from N2 to N3 is a series of at
least �DM N consecutive not improving iterations. Moreover, the neighborhoods switch is
performed only if the solution at hand is feasible.

Neighborhood N2 is immediately re-adopted after one transition with N3. During the
switch from N2 to N3 and again back to N2 we continue to keep and update the tabu lists
without performing any reset or re-initialization of these lists.

We conclude by noting that DMN could be seen as a very specific implementation of
a strategic oscillation (see, e.g., Glover and Laguna, 1997) in which the critical level
depends on the evolution of the search and not on the quality of the solution, and the paths
in the region below and over the critical level are obtained with neighborhoods N2 and N3,
respectively.



50 ARINGHIERI AND DELL’AMICO

6. Computational results

The solution methods described in Section 5 have been coded into ANSI C and tested on a
Pentium III/ 1 Ghz with 256 Megabytes of core memory running under the Linux operating
system. We have considered instances from the literature and newly generated ones. For
each instance we have solved both the corresponding SRAP and IDP problem.

6.1. Benchmark instances

To test the algorithms we have used three sets of instances that we call GLO, AD and LSHK.
Set GLO has been introduced in Goldschmidt, Laugier, and Olinick (2003) and consists of
160 instances divided into two subsets of 80 instances:

• geometric instances representing natural cluster, that is, the fact that customers mainly
communicate more with their neighbors;

• random instances in which no preferred communication exists.

The traffic demand between two customers is drawn from a uniform random variable and
gives the number of T1 lines required to serve the estimated traffic (a T1 line has a capacity
of 1.544 Mbs). Both the geometric and the random subsets have 40 low demand instances
with traffic univormly random in interval [3, 7] and 40 high demand instances with traffic
in interval [11, 17]. The instances with low demand are assigned a ring capacity B = 155
Mbs, whereas the high demand instances have B = 622 Mbs. The graphs considered have
|V | ∈ {15, 25, 30, 50}. For each triplet (type, demand level, size) ten instances have been
proposed therefore giving a grand total of 160 instances.

We first tried to solve the SRAP problem on these instances by means of CPLEX 8.0.
Imposing a time limit of 3 · 105 seconds we were able to prove that 42 instances are
unfeasible as well as to find a proven optimal solution for the remaining 118 (note that
Goldschmidt, Laugier and Olinick (2003), using CPLEX 6.5 on a 300 MHz workstation
left open the feasibility status of some instances). For problem IDP any instance is feasible
(we could always assign each demand to a different ring).

We obtained the second set AD by randomly modifying the 42 instances of GLO that
are unfeasible for problem SRAP. For each instance we first ran the SRAP version of BTS
for 1000 seconds, thus obtaining an unfeasible solution s, then we randomly eliminated
one traffic demand at a time until the total traffic was reduced by a quantity greater or
equal to the traffic exceeding value B in the ring of s with maximum load. The resulting
instance was inserted in set AD only if it passed the following “hardness” test. We applied
a simple Multistart Local Search algorithm (MLS) consisting of randomly generating 105

starting solutions and optimizing each of them through a Local Search method based on
neighborhood N2. We consider an instance “hard” if the best solution found by MLS was
worse than that found by CPLEX within a time limit of 1000 seconds.

The above procedure was repeated until 230 new hard and feasible instances had been
generated.



METAHEURISTIC ALGORITHMS FOR SONET NETWORK DESIGN PROBLEMS 51

Finally, the last set of benchmark instances LSHK we considered was the one proposed
in Lee et al. (2000), made up of 40 instances with |V | ∈ {15, 20, 25}, |E | ∈ {30, 35}, ring
capacity B = 48 T1 lines and demands in [1, 30]. (For more details on the structure of these
instances see Lee et al., 2000).

Note that both set AD and LSHK are very difficult to solve to the optimum with CPLEX: a
24 hour run for each instance was sufficient to solve only 12 out of 230 of the SRAP instances.
The IDP instances were all solved for set LSHK. So in our experiments we compare the results
of the heuristic algorithms either with the optimal solution, if available, or with the best
solution provided by all methods (our heuristics and CPLEX).

6.2. Comparing the strategies

We now describe the results obtained for SRAP and IDP on the above three benchmark sets, by
algorithms Basic Tabu Search (BTS, see Section 5), Path Relinking (two implementations:
PR1 and PR2, Section 5.1), eXploring Tabu Search (XTS, Section 5.2), Scatter Search (SS,
Section 5.3), and Diversification by Multiple Neighborhoods (DMN, Section 5.4). For each
algorithm we consider the four objective functions of Section 4.5, but for SS we use the
two functions of Section 5.3.

A set of preliminary experiments were done to tune the parameters of the algorithms, giv-
ing the values of Table 3. These values were then used for the complete set of computational
tests.

We gave a time limit of 5 seconds to each run of an algorithm, but we obviously terminate
if the current best solution found by an algorithm is equal to the simple lower bound (4).
Furthermore BTS is halted when all the moves in the current neighborhood are tabu. Just
observe that the 105 iterations of the Multistart Local Search method used to prove the
hardness of an instance of set AD require one minute to solve an instance with 15 nodes
and one hour to solve an instance with 50 nodes.

Before discussing in detail the results of our experiments, we want to remark the main
average differences observed when solving SRAP and IDP through local search methods. In
figure 3 we plot the value of the current best solution obtained by algorithm DMN with
function z4 during a typical run. In particular we used a graph with 25 nodes, taken from
set GLO, that have been solved at the optimum by CPLEX giving optimal value 2 for SRAP

and optimal value 27 for IDP . In the figures we report the number of iterations performed,
on the x axis, and the number of rings in the best solution, on the y axis. The behaviour

Table 3. Parameters used in the experiments.

Prob. PR1 PR2 XTS SS DMN

SRAP γ = 75 γ = 100 #Second = 10 RS = 20 �DMN = 100

�E S = 15 imp = 20 L Siter = 20

IDP γ = 75 γ = 50 #Second = 5 RS = 20 �DMN = 100

�E S = 10 imp = 20 L Siter = 20



52 ARINGHIERI AND DELL’AMICO

Figure 3. Typical behaviour when solving SRAP and IDP instances.

of these two figures similarly applies to the other instances. We note that with SRAP the
algorithm iterates about 10 times more than with IDP. But most important is the fact that
with SRAP the objective function value rapidly decreases down to few units, then many
iterations are necessary to reduce the value of one or two units, so reaching the minimum
(which is also the optimum value, in this case). With IDP instead we have a continuous
(almost “linear”) decreasing of the number of rings until the minimum (optimum in this
case) is reached. Furthermore looking at the size of the solutions we see that IDP has
one order of magnitude more rings than SRAP. These differences in the evolution of the
algorithm will lead to different behaviour of the objective functions we used to drive the
search.



METAHEURISTIC ALGORITHMS FOR SONET NETWORK DESIGN PROBLEMS 53

Figure 4. Grand total for SRAP.

In figures 4 and 5 we report the grand total of optimal/best solutions found by the
algorithms using the four objective functions (remind that the SRAP sets contain a grand
total of 388 feasible instances, while the IDP sets have 430 instances. Further recall that
objective functions z2 and z3 cannot be applied with SS, see “Improvement Method” in
Section 5.3).

We first try to derive some conclusions on the effect of the objective function when
solving SRAP (see figure 4). We have already observed (see Section 4.5) that z0, the natural
objective function of the mathematical models (counting the number of rings), is very flat
for these problems. Indeed, many different solutions, even feasible or unfeasible, may have
the same number of rings. Our experiments performed at the very beginning of this study
immediately showed that adopting z0 we have no information that can be used to guide
the search. Thus functions z1, . . . , z4 have been proposed to add information basing on the
solution at hand (z1 and z3) or on the last move performed (z2 and z4).

It immediately appears (see figure 4) that, for problem SRAP, z3 provides bad results with
all methods, and, in particular, very bad results when used with DMN. For problem IDP,
instead, z3 gives good performances (see figure 5). A possible justification of this behaviour
is that, due to numerical aspects, z3 may prefer an unfeasible solution to a feasible one
having one more ring. (For a numerical example, consider an unfeasible solution su with r
rings and B N = B + δu , and a feasible solution s f with r + 1 rings and B N = B − δ f .
Using z3 we have z3(su) = r B + B + δu < (r + 1)B + B − δ f = z3(s f ) provided
δu < B − δ f . Using z1 we have instead z1(s f ) = r + 1 < r + δu = z1(su) and z1 prefers



54 ARINGHIERI AND DELL’AMICO

Figure 5. Grand total for IDP.

the feasible solution to the unfeasible one. Also function z4 prefers to move to s f if the
leaving solution is unfeasible. If instead the current solution is feasible z4(s f ) < z4(su)
only in certain cases.) We have seen (see figure 3) that for SRAP it is relatively easy to find
a good solution with few rings, but it is then hard to find an optimal one. Hence starting
from a good solution it is not advantageous to move immediately to an unfeasible solution
with one less ring since it will be very difficult to re-conduct this solution to a feasible
one with the same number of rings. For SRAP, it is more convenient to carefully look for
feasible solutions and move to a solution with less rings only if it is feasible. For problem
IDP the picture changes. Indeed, we have an almost continuous decrease of the number of
rings during the evolution of the algorithm (see figure 3). So, when the aggressive function
z3 selects an unfeasible solution with one less ring, we have a number of chances to be
able to convert this solution into a feasible one with the same number of rings or even less
rings.

We can conclude that function z3 is appropriate when we expect that finding a good
solution is almost difficult as finding an optimal one (i.e. the decrease of the objec-
tive function is “linear” with the number of iterations). If instead it is easy to find a
good solution, but it is then hard to determine the optimal one z3 is not appropriate at
all.

The three functions z1, z2 and z4 provide good results, for SRAP, but functions z1 and z4

compete for the best performances. On IDP, instead, the two best functions are z2 and z4.
Looking at the algorithms we see that for SRAP the Basic Tabu Search is certainly dom-

inated by all the other methods, so proving that diversification techniques enhance the



METAHEURISTIC ALGORITHMS FOR SONET NETWORK DESIGN PROBLEMS 55

performances of a metaheuristic method. The performances of the two Path Relinking im-
plementations are quite similar and close to that of the eXploring Tabu Search. The Scatter
Search slightly improves upon the results of the previous algorithms, but the Diversification
by Multiple Neighborhhods is the most appropriate algorithm for the problem. We can
conclude that diversification is a fundamental tool for designing algorithms able to find
very good solutions for SRAP. There is no strong difference among the various methods, but
DMN, that can be seen as the most drastic diversification technique we presented, gives the
better experimental results.

A slightly different behaviour of the algorithms can be observed for IDP (see figure 5).
First note that BTS has better performances here than when applied to SRAP. However it is
confirmed that diversification is an important tool for metaheuristic algorithms, but for IDP

it does not provide performance improvements so large as for SRAP. The worst algorithm
is SS. This is mainly due to the slow convergence of the method that needs to generate
much more solution than for SRAP before the number of rings significantly decreases (see
again figure 3). With the given 5 second time limit the algorithm often terminates before it
has been able to construct a set of good quality solutions. We performed some experiments
by giving a large time limit to SS and observed a great improve in the performances with
results better than those of the Path Relinking an XTS methods. The best overall results (396
out of 430) are still obtained by procedure DMN with function z4.

Tables 4 and 5 report some detail of our experiments. For each benchmark set, each
algorithm and each objective function we give:

Table 4. Comparing the algorithms for SRAP.

BTS PR1 PR2 XTS SS DMN

Obj. func. sec. bst. sec. bst. sec. bst. sec. bst. sec. bst. sec. bst.

GLO (118 instances)

z1 0.10 98 0.17 102 0.24 105 0.29 106 1.79 111 0.09 117

z2 0.11 98 0.16 102 0.23 105 0.06 83 – – 0.09 118

z3 0.40 88 0.50 87 0.70 86 0.63 89 – – 0.01 6

z4 0.29 90 0.21 90 0.44 90 0.36 91 1.73 107 0.08 117

AD (230 instances)

z1 0.06 35 0.31 225 0.36 224 0.33 227 4.63 220 0.29 226

z2 0.04 27 0.37 213 0.38 211 0.31 223 – – 0.28 222

z3 0.05 5 0.40 165 0.54 166 0.60 174 – – 0.62 35

z4 0.07 37 0.34 225 0.42 224 0.34 224 4.12 226 0.33 226

LSHK (40 instances)

z1 0.11 26 0.25 36 0.23 36 0.26 36 3.88 37 0.30 39

z2 0.11 11 0.26 30 0.25 30 0.29 29 – – 0.29 32

z3 0.09 8 0.48 25 0.51 20 0.48 18 – – 0.60 8

z4 0.12 27 0.40 40 0.37 40 0.39 40 3.54 40 0.30 40



56 ARINGHIERI AND DELL’AMICO

Table 5. Comparing the algorithms for IDP.

BTS PR1 PR2 XTS SS DMN

Obj. func. sec. bst. sec. bst. sec. bst. sec. bst. sec. bst. sec. bst.

GLO (160 instances)
z1 0.51 65 0.42 81 0.36 93 0.75 101 4.96 84 0.35 66

z2 0.78 86 0.63 99 0.71 122 1.01 110 – - 0.58 131

z3 0.55 45 0.68 100 0.80 115 1.10 102 – - 0.53 78

z4 0.63 98 0.78 120 1.23 114 1.13 110 4.98 100 0.89 137

AD (230 instances)
z1 0.65 123 0.31 183 0.44 161 0.78 161 4.99 96 0.37 172

z2 0.88 149 0.66 202 0.73 195 1.01 190 – – 0.63 215

z3 0.59 76 0.65 181 0.70 171 1.12 168 – – 0.54 175

z4 0.71 181 0.77 199 0.81 185 1.05 184 5.00 110 0.93 220

LSHK (40 instances)

z1 0.05 2 0.05 4 0.05 4 0.06 1 5.00 28 0.06 2

z2 0.42 9 0.13 40 0.13 40 0.14 12 – – 0.08 40

z3 0.22 12 0.11 38 0.11 38 0.14 15 – – 0.07 19

z4 0.29 17 0.22 40 0.22 40 0.62 29 4.89 25 0.18 39

(i) in columns labeled ‘sec.’ the average running time in seconds over all the instances of
a set;

(ii) in columns labeled ‘opt.’ or ‘bst.’ the number of solutions with value equal to the optimal
one (provided by CPLEX), or to the best available solution value (when CPLEX fails
to prove the optimality).

Regarding the computing times one can see that almost all the algorithms are very fast, with
the only exception of SS that reaches the 5 seconds limit in some SRAP instances and in all
IDP instances.

7. Conclusions

We have first described two techniques used in the design of telecommunication networks
when a ring-based topology is adopted. Both techniques can be modeled through a graph
and correspond, respectively, to a vertex partitioning problem and to an edge partitioning
problem, both with capacity constraints.

We have summarized the relevant literature and introduced basic elements for building
Local Search algorithms: neighborhoods, data structures to efficiently explore the neigh-
borhoods, tabu lists and objective functions. In particular, we have described a new variable
objective function that depends on the transition from one solution to a neighboring one.



METAHEURISTIC ALGORITHMS FOR SONET NETWORK DESIGN PROBLEMS 57

We have then discussed how to apply several diversification and intensification tech-
niques, including Path Relinking, eXploring Tabu Search and Scatter Search. We have also
proposed a novel diversification method that we call Diversification by Multiple Neighbor-
hoods.

Extensive computational results on existing and newly generated benchmark instances
show that the variable objective function in conjunction with the new diversification method
produce the best results for both problems.

Acknowledgments

This research was supported by Ministero dell’Istruzione, dell’Università e della Ricerca
(MIUR), Italy and by Consiglio Nazionale delle Ricerche (CNR), Italy.

References

Aringhieri, R., M. Dell’Amico, and L. Grasselli. (2001). “Solution of the Sonet Ring Assignment Problem with
Capacity Constraints.” Technical Report 12, DISMI, University of Modena and Reggio Emilia.

Dell’Amico, M., A. Lodi, and F. Maffioli. (1999). “Solution of the Cumulative Assignment Problem with a
Well-Structured Tabu Search Method.” Journal of Heuristics 5(2), 123–143.

Dell’Amico, M. and M. Trubian. (1998). “Solution of Large Weighted Equicut Problems.” European J. Oper. Res.
106(2/3), 500–521.

Glover, F. (1997). “A Template for Scatter Search and Path Relinking.” In J.K. Hao, E. Lutton, E. Ronald,
M. Schoenauer, and D. Snyers (eds.), Lecture Notes in Computer Science, vol. 1363, pp. 13–54.

Glover, F. (1999). “Scatter Search and Path Relinking.” In D. Corne, M. Dorigo, and F. Glover (eds.), New Ideas
in Optimization, McGraw Hill, pp. 297–316.

Glover, F. and M. Laguna. (1997). Tabu Search. Boston. Kluwer Academic Publishers.
Glover, F., M. Laguna, and R. Martı́. (2000). “Fundamentals of Scatter Search and Path Relinking.” Control and

Cybernetics 39(3), 653–684.
Goldschmidt, O., D.S. Hochbaum, A. Levin, and E.V. Olinick. (2003). The sonet edge-partition problem. Networks

(41), 3–23.
Goldschmidt, O., A. Laugier, and E.V. Olinick. (2003). “SONET/SDH Ring Assignment with Capacity Contraints.

Discrete Applied Mathematics, (129), 99–128.
Hansen, P. and N. Mladenović. (2001). “Variable Neighborhood Search.” In P.M. Pardalos and M.G.C. Resende

(eds.), Handbook of Applied Optimization. Oxford Academic Press.
Laguna, M. (1994). “Clustering for the Design of Sonet Rings in Interoffice Telecommunications.” Management

Science, 40(11), 1533–1541.
Laguna, M. (2001). “Scatter Search.” In P.M. Pardalos and M.G.C. Resende (eds.), Handbook of Applied Opti-

mization. Oxford Academic Press.
Laguna, M., R. Martı́, and V. Campos. (1999). “Intensification and Diversification with Elite Tabu Search Solutions

for the Linear Ordering Problem.” Computers Oper. Res. 26, 1217–1230.
Lee, Y., H.D. Sherali, J. Han, and S. Kim. (2000). “A branch-and-Cut Algorithm For Solving an Intraring

Synchronous Optical Network Design Problem.” Networks 35(3), 223–232.
Martello, S. and P. Toth. (1990). Knapsack Problems: Algorithms and Computer Implementations. Wiley,

Chichester.


