
Journal of Heuristics, 11: 233–257, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Grasp Embedded Scatter Search
for the Multicommodity Capacitated
Network Design Problem

ADA M. ALVAREZ
Facultad de Ingenierı́a Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Monterrey, NL, México
email: adita@yalma.fime.uanl.mx

JOSÉ LUIS GONZÁLEZ-VELARDE
Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, NL, México
email: gonzalez.velarde@itesm.mx

KARIM DE-ALBA
Facultad de Ingenierı́a Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Monterrey, NL, México
email: karim@yalma.fime.uanl.mx

Submitted in March 2004 and accepted by Steve Chiu in April 2005 after 1 revision

Abstract

A GRASP embedded Scatter Search is developed for the multicommodity capacitated network design problem.
Difficulty for this problem arises from the fact that selection of the optimal network design is an NP-complete
combinatorial problem. There exist no polynomial exact algorithms which can solve this problem in a reasonable
period of time for realistically sized instances. In such cases, heuristic procedures are commonly used. Two
strategies were designed for GRASP: a traditional approach and a memory based technique. As for Scatter Search,
5 different strategies were used to update the reference set. Computational results on a large set of randomly
generated instances show the convenience of the proposed procedures.

Key Words: network design, Scater Search, GRASP

1. Introduction

The network design problem addresses the following basic question: what configuration of
the network minimizes the sum of the fixed costs of edges chosen to be in the network and
the costs of routing goods through the network defined by these edges?

These problems arise in applications as diverse as capital investment decision making
for transportation planning, vehicle routing and vehicle fleet planning, material handling
system design, design of telecommunication networks, facility location and design of freight
distribution system. For a comprehensive survey of network design problems and their
applications, see Magnanti and Wong (1984).

234 ALVAREZ, GONZÁLEZ-VELARDE AND DE-ALBA

Because of its usefulness in these applications, much research has been carried out in
the area of network design. This problem is NP complete (Johnson, Lenstra, and Rinooy,
1978; Hochbaum and Segev, 1989) and most of the solution methods are based on the above
observation. In particular, the uncapacitated version of this type of problem has been quite
well studied in several research reports (Magnanti, Mireault, and Wong, 1986; Balakrishnan
and Magnanti, 1989; Holmberg and Hellstrand, 1998). However, compared to the uncapac-
itated case, few references can be found in the literature for capacitated network design.
While in some cases the network is, or can be assumed to be, uncapacitated, a capacitated
model is more general and often much more suitable because capacity constraints often do
arise in real-life applications.

In this paper, the fixed charge, capacitated, multicommodity network design problem is
addressed. Here, several commodities (goods, data packets, people, etc.) have to be moved
over the links of the networks which have limited capacities from their respective origins
to their respective destinations. Furthermore, in addition to the transportation costs related
to the volume of each commodity flowing through a given link, a fixed (construction or
utilization) cost is paid only once as soon as a link is used.

The tradeoff between the variable and fixed costs inherent in the selection of any solution,
as well as the interplay between the limited capacity (and the resulting competition among
the various commodities) and the fixed costs of using the links of the network, cause serious
obstacles when solving realistically sized instances.

Several techniques have been proposed to solve the capacitated network design prob-
lems including Lagrangian relaxation (Gendron and Crainic, 1994b; Holmberg and Yuan,
2000), bounding procedures (Gendron and Crainic, 1994a, 1996; Crainic, Frangioni, and
Gendron, 2001), Tabu Search (Crainic, Gendreau, and Farvolden, 2000), and enumera-
tive algorithms (Sridhar and Park, 2000). Nevertheless, these results can not be applied to
the problem addressed here due to the fact that these works consider directed networks,
associating a capacity to each edge direction. In the present case, the edge capacity is
shared between every commodity flowing through that edge without regarding of the di-
rection (as it is the case in telecommunication networks), so it is impossible to transform
our network into a directed one to use the methods designed especially for this kind of
networks.

The only work found by the authors which tackle the problem presented in this paper
is the one by Herrmann et al. (1996) who considered the fixed charge capacitated network
design problem on undirected graphs and presented a dual ascent approach for finding
lower bounds and near-optimal solutions. Even when this work was applied to small grid
networks, its results were not satisfying enough.

A comparison between Dual Ascent method and the method designed here was carried
out and the results are presented in Table 5 (see Section 5.2.3).

Taking into account what it was said, the contribution of this paper is to present an efficient
procedure to find good feasible solutions to realistically sized capacitated multicommodity
fixed cost network design problems. The procedure may be classified as a hybrid meta-
heuristic and is based on the Scatter Search and GRASP metaheuristics which have been
successfully used in several applications (Pacheco and Casado, 2004; Delgado, Laguna,
and Pacheco, 2004).

GRASP EMBEDDED SCATTER SEARCH 235

2. Problem formulation

Given the following parameters
N Set of nodes
A Set of undirected arcs available for designing the network
E Set of available edges
(i , j) Directed arc from node “i” to node “ j”
{i , j} Edge (undirected arc) between nodes “i” and “ j”
K Set of commodities
O(k) Origin of commodity k
D(k) Destination of commodity k
Fij Fixed cost for using edge {i , j} in the network design
ck

ij Variable cost for transporting one unit of flow of commodity k through arc (i , j).
dk Demand for commodity k
uij Edge {i , j} capacity

and the following variables

yi j Decision variable indicating if edge {i , j} is included in the final network design
xk

i j Flow on arc (i , j) for commodity k

The multicommodity capacitated network design problem (MCND) can be formulated as
follows:

min

[(∑
k∈K

∑
(i, j)∈A

ck
ijx

k
ij

)
+

∑
{i, j}∈E

Fij yij

]
(1)

∑
{ j :(i, j)∈A}

xk
ij −

∑
{ j :(j,i)∈A}

xk
ji =

dk if i = O(k)

−dk if i = D(k) ∀ k ∈ K

0 otherwise

, ∀ i ∈ N (2)

∑
k∈K

(
xk

ij + xk
ji

) ≤ uij yij ∀ {i, j} ∈ E (3)

xk
ij ≥ 0 ∀ k ∈ K ; ∀(i, j) ∈ A (4)

yij ∈ {0, 1} ∀ {i,j} ∈ E

This objective (1) captures the basic tradeoff between routing cost savings and fixed costs
for using network edges. A larger network may cost more to build, but may reduce operating
costs by including more attractive origin-destination paths. Conversely, a smaller network
may increase the operating costs. The standard flow conservation equations (one for each
commodity k and each node i) are represented in (2). In (3), flow for all the commodities
that circulate in any direction of the edge {i, j} can not exceed the capacity of this edge.
This set of constraints prohibits flow through inactive edges, i.e. edges {i , j} not included in
the design (yij = 0) And finally, constraints (4) ensure the non-negativity of the continuous
variables xk

ij and force the discrete variables yij to assume binary values.

236 ALVAREZ, GONZÁLEZ-VELARDE AND DE-ALBA

Note that, although the network is undirected, the flow is directed, so once the decision
of connecting two nodes i, j has been taken, flow in any direction will be allowed, that is,
both arcs (i, j) and (j, i) will be considered in the design.

The objective is to minimize the overall cost incurred by designing and operating the
network.

3. Getting initial solutions

The design and implementation of heuristics requires an efficient computational repre-
sentation of solutions. This requirement is accomplished here by splitting a solution into
independent elements, one element by commodity, called blocks of paths. A block of paths
for a given commodity k will be referred as Bk . Then, for each commodity k whose demand
will be transported on the network, a block Bk , formed by one or more paths selected from
a list of shortest paths, is generated.

Even though commodities may share the capacity of the edges, the blocks of paths are
considered independent from each other.

3.1. Generation of shortest paths

The method for finding a solution begins with the generation of paths. Therefore, q shortest
paths between each origin-destination pair in the network are found, where q is a parameter
given during implementation. In order to get q shortest paths, it is necessary to define what
is meant by length of an arc (i, j). Three different types of arc lengths were considered,
and in order to assign the same importance to each type of length, q/3 different paths were
obtained for each one of those different lengths:

lengthk
ij = (

ck
ij + Fij

)(
1 +

∣∣∣∣ (uij − dk)

dk

∣∣∣∣
)

(5)

lengthk
ij = (

ck
ij + Fij

)(
1 +

∣∣∣∣uij − ∑
h∈�ij

dh∑
h∈�ij

dh

∣∣∣∣
)

(6)

lengthk
ij = (

ck
ij + Fij

)(
1 + fij

f ′

)
(7)

In (5) a penalty is attached to the deviation of the demand of commodity k that may be
potentially transported through the arc, from the capacity of the edge corresponding to that
arc.

In (6) �ij is the subset of commodities which share edge {i , j} (that is arc (i, j) or (j, i))
in those paths found with type 1 length. In this case, a penalty is attached to the deviation
of the sum of demands of those commodities that may be potentially transported through
the arc, from the capacity of the edge corresponding to that arc.

Finally, in (7) a penalization factor is considered to introduce some diversification in the
set of paths being generated. fij stands for the frequency of edge {i, j} in the previously

GRASP EMBEDDED SCATTER SEARCH 237

found paths, i.e., how many times edge {i, j} has appeared in some other paths, even if
they belong to some other commodity. f ′ stands for the maximum frequency of appearance
of an edge in the previously constructed paths.

It is worth noticing that the length of an arc may vary from commodity to commodity.
Paths obtained with type 1 and 2 lengths are expected to be good, while paths obtained with
the third type are more diversified when compared to the others.

Note that for each commodity being transported over the network, q shortest paths must
be generated. This set of shortest paths will be denoted LPk .

An implementation of Lawler’s algorithm described in Lawler (1972) was used to gen-
erate the q shortest paths.

3.2. GRASP generalities

In order to obtain initial solutions for the problem, a heuristic based on GRASP was designed.
GRASP was developed by Feo and Resende (1989) to study a high complexity covering
problem. GRASP is a multi-start method, and each GRASP iteration randomly constructs
a greedy solution followed by a local search using that solution as an initial starting point.
Thus, GRASP consists of two phases: a solution construction phase and a local search to
improve the solution.

As it is the case in most GRASP implementations (Argüello, Bard, and Gang, 1997;
Fernández and Martı́, 1999), the constructive phase has two main features: adaptive greedy
measures, and random selection. Later, adaptive memory features have been included, as
proposed by Fleurent and Glover (1999), to retain and analyze the characteristics of selected
solutions and so providing a base for improving later executions of the constructive process.

A trial solution is formed in the constructive phase and then it is improved by means of a
post processing mechanism until a local optimum is reached. The constructive mechanism
produces a solution incorporating one element (i.e. a path) at a time, so in each step of
the process, there is at hand a partial solution. An element that can be selected as part of
a partially constructed solution is called a candidate element. To determine which element
will be selected to be included in a partial solution a greedy function is used. A greedy
function measures the local contribution of each candidate element to the partial solution.
A greedy election consists in choosing the candidate element with the best value of its greedy
function. In order to introduce some randomness to this procedure a restricted candidate list
(RCL) is used for each commodity. This list, from which an element is randomly selected,
is formed by high quality elements, that is, candidate elements with the best values of their
greedy function. The length of this list can be fixed or dynamic.

Once an element has been added to the partially constructed solution, the values of
the greedy function must be reevaluated. This makes the procedure acquire the adaptivity
feature that characterizes it.

A local search algorithm explores repeatedly the neighborhood of a newly constructed
solution in order to find a better solution. If a better solution is not found it is said that a
local optimum has been reached. The local search plays an important role in GRASP as it
tries to look for locally optimum solutions in promising regions of the solution space.

238 ALVAREZ, GONZÁLEZ-VELARDE AND DE-ALBA

3.2.1. Greedy objective. In order to measure the benefit of incorporating a path p to s∗, the
solution being created, a function value(s∗,p) is defined. This function is defined in such a
way that greater values correspond to better choices.

To define the function value other measures must first be established. Let C(Bk, p) be
the function that represents the cost of assigning path p to Bk :

C(Bk, p) =
∑

(i, j)∈p

(
ck

ijd
′k + F ′

ij

)(
1 +

∣∣∣∣u′
ij − d

′k

d ′k

∣∣∣∣
)

(8)

where p is any path from LPk ; F′
i j equals Fij if edge {i , j} has not yet been used, or 0

if it already has. u′
ij is the residual capacity of edge {i , j}; d ′k is the residual demand for

commodity k (that is, the portion of the demand for commodity k waiting to be transported);
and ck

ij, is the variable cost per unit of flow of commodity k using arc (i , j).
It is worth noticing that F′

i j represents the cost of using the edge {i , j} for the first time
this edge appears in the network design, or, it is set to zero when the edge has been already
included, that is, edge {i,j} has appeared in some path already included.

The cost of this partially constructed solution s∗ if path p is assigned to Bk can be obtained
as follows:

T (s∗, p) =
k−1∑
m=1

∑
l∈Gm

C(Bm, l) +
∑
p∈Gk

C(Bk, p) (9)

where Gm is the set of paths contained in each Bm . This function separates the paths
belonging to previously constructed blocks from the block of the commodity being analyzed,
that is, commodity k. This is done because function T will be used to evaluate the set of
candidate paths for the commodity k.

Define now best cost(LPk) = min {T (s∗,l) : l ∈ LPk} as the minimal cost in that list.
The cost of each path is normalized considering best cost(LPk) in such a way that the value
of the function defined for each p belonging to that list is calculated as:

value(s∗, p) = best cost(LPk)/T (s∗, p) (10)

It can be noticed that function value(s*, p) will take values in the range [0,1].

3.2.2. Construction of RCLk and selection of paths from LPk. To form the restricted
candidate list for commodity k, RCLk , the set of paths for commodity k is rearranged
in descending order according to the function value(s∗, p). The length of RCLk will vary
dynamically as feasible solutions are being created or as the GRASP advances in iterations.
To achieve this, an initial length is assigned to the RCLk as a proportion µ (see Section
5.2.1) of the total number of paths for the commodity being analyzed. The RCLk will grow
gradually until its cardinality equals the total number of paths for a given commodity in the
following way:

car RCL =
{
µq If µ ≥ a(grasp iter, sol)

a(grasp iter, sol)q If µ < a(grasp iter, sol)
(11)

GRASP EMBEDDED SCATTER SEARCH 239

In this function a(grasp iter, sol) represents the progress of the algorithm and it can be
defined as follows:

a(grasp iter, sol) = Max

{
grasp iter

GRASP ITER
,

sol

MAX SOL

}
(12)

where graspiter is the number of elapsed GRASP iterations, sol is the number of generated
solutions at a given iteration; GRASP ITER is the maximum number of GRASP iterations;
and MAX SOL is maximum number of solutions in a population.

car RCL is used to obtain the length of RCLk . If the procedure has iterated several times
without constructing solutions, then it is assumed that a demand for a given commodity k
could not be sent with the paths in RCLk , therefore, the length of RCLk must be increased.
On the other hand, if GRASP has generated a solution in each iteration, then we need to
diversify including new paths in the list and therefore the length of RCLk must be increased.
Paths are randomly selected from this list.

Once a path is selected, the capacity of this path is then checked considering the arc with
least residual capacity in the path. As much flow as possible will be sent using this path if
and only if the path capacity is smaller than the residual demand for this commodity, and
other path should be selected. Otherwise, only the necessary flow to complete the demand
will be sent and another commodity will be analyzed.

The adaptive feature in GRASP is guaranteed here by the continuous evaluation of paths.
This means that every time a path selection has been made, the remaining paths have to
be reevaluated and a new RCLk for commodity k is constructed. In this case, as q grows,
so does the time this procedure takes to analyze all paths, then it is important to consider,
first, the quality of paths (then the importance of path length calculation), and second, the
number of paths or q (which must be kept low).

3.2.3. Improvement routine. As explained, paths are selected from the RCLk to become
part of a block of paths for commodity k. The cost of this block of paths is defined as:

H (Bk) =
∑
p∈Bk

∑
(i, j)∈p

(
ck

ijx
k
ij + F ′

ij

)
(13)

Once a block of paths is completed for a new solution being created, a routine called
“improvement routine” is then executed. Basically, the improvement routine consists on
sorting the paths to obtain a better distribution with lower cost, if this were possible. The
following steps describe this procedure:

1. Get a cost for each path. For each p in Bk , let ucost(p) be the cost of transporting one
unit of demand through this path:

ucost(p) =
∑

(i, j)∈p

(
ck

ij + F ′
ij

)
(14)

2. Sorting. Sort paths in block k in non decreasing order by (14).

240 ALVAREZ, GONZÁLEZ-VELARDE AND DE-ALBA

3. Create a new block of paths. Select a path from the sorted list of paths. Send as much
flow as possible. If flow sent through this path is greater than zero, add path to new block
of paths. Proceed until all the demand has been sent.

4. Get the cost of a new block of paths. If a new block of paths was created then let H ′(Bk)
be the cost of that block.

5. Choose the best block of paths. If H ′(Bk) < H (Bk), delete the previous block of paths,
keep the new one; otherwise delete the new block of paths and keep the previous block.

3.3. Incorporating memory into GRASP

At this point, every GRASP construction is made independently of each other, in other words,
there is no learning involved in this process. In order to learn from previously generated
solutions, and to obtain useful information that will help in generating future solutions,
the concepts of strongly determined variables and consistent variables were implemented.
Strongly determined variables depend on a set of elite solutions whose values cannot change
without substantially degrading the value of the objective function. A consistent variable is
one that receives a particular value in a significant portion of good solutions. As proposed
by Fleurent and Glover (1999), a set S of r elite solutions is maintained and it is updated
(if proceeds) each time a new solution is generated. As new feasible solutions are being
generated, these may replace those in S.

3.3.1. Evaluation of paths to build solutions relative to S. In order to learn from previ-
ously generated solutions, and from previously selected paths, it is necessary to make use
of a function that evaluates the benefit of incorporating a path in a block of paths for a
given commodity. As defined before, let value(s∗, p) be the function which evaluates the
benefit of including path p in s∗, the solution being created. Additionally, define a new
function which may retain the characteristics of previously generated elite solutions. This
function is such that it measures the strongly determined and consistent features of select-
ing path p to be included in s∗. Let intensity(s∗, p) be such a function. Larger values of
this function mean that this choice has occurred more frequently in the best members of
S.

An evaluation that takes into account both value and intensity of a choice may be defined
as a monotone increasing function of its arguments as follows:

E(s∗, p) = F(value(s∗, p), intensity(s∗, p)) (15)

where value(s*, p) is defined in (10). Consider now the set S of elite solutions. Let Cost(s) be
the cost of a solution measured by the value of its objective function. Define best cost(S) =
min {Cost(s):s ∈ S}. The cost of each solution in set S is then normalized in the same way
that was done for paths. Therefore, a function Value is defined for each solution in S as
follows:

Value(s) = best cost(S)/Cost(s) (16)

GRASP EMBEDDED SCATTER SEARCH 241

This value represents a crude measure of the “strength” of paths in s. Now, define the
intensity function of assigning path p to the new solution s∗. This function will take into
account the frequency of this path in set S.

intensity(s∗, p) =
∑

{s∈S|p∈Bk }
Value(s) (17)

A simple way of defining function E(s∗, p) as an increasing function of its arguments is
shown:

E(s∗, p) = λvalue(s∗, p) + intensity(s∗, p) (18)

Different values of λ will cause more emphasis on the diversity or on the intensity term
which in turn will guide the selection of paths. Low values of λ, even zero, will cause more
emphasis on the intensity allowing the selection of paths that have appeared in high quality
solutions. High values of λ will cause the selection of paths in a greedy fashion, that is,
paths highly evaluated regardless of their contribution in the set of elite solutions.

Note that intensity(s*, p) will take values in the range [0, |S|].
The value of λ will vary dynamically as the diversity of population grows. In order to

achieve this, a measure for the diversity of population is assessed. To obtain this measure,
all 2-elements subsets from the population of solutions generated by GRASP are formed
and for each subset the distance between the two solutions is computed. This distance is
then averaged and compared to a certain threshold. If this distance exceeds this threshold,
λ is decreased, otherwise it is increased. More details in Section 5.2.1.

3.3.2. Construction of RCLk and path selection from RCLk. Paths in LPk are ordered
according to their evaluation function (18). A fixed length for the RCLk is considered now
and only those best evaluated paths are included. Best evaluated paths according to function
(18) are frequently used paths and/or low cost paths according to function (10). For this
case, experiments showed that a fixed length for RCLk is more convenient due to the fact
that this list will now contain only the best paths, and allowing the procedure to select from
larger lists will only cause selection of bad paths. Several experiments to determine this
length were carried out and best results were obtained with smaller lists, in this case a 10%
of q.

In addition to what has been said, and in order to give the best evaluated paths a greater
opportunity of being selected, E(s∗, p) will be mapped into positive values over RCLk .
Then the probability of selecting path p from RCLk , denoted �(s∗, p), is established to be
strongly biased toward choosing the members of RCLk with larger E(s∗,p) values.

For each path in RCLk , the probability of being selected is defined as follows:

∏
(s∗, p) = E(s∗, p)∑

l∈RCLk E(s∗, l)
(19)

3.3.3. Updating set S of elite solutions. The constructive process will be guided by using
the set S of elite solutions. Initially, S contains r “null” solutions with infinite cost, where

242 ALVAREZ, GONZÁLEZ-VELARDE AND DE-ALBA

“r” is a parameter given during the implementation phase. First “r” generated solutions
by GRASP take place in S. From that moment on, any solution being created will replace
some other in S if the following is achieved: it is better than the best solution in S or else,
it is better than the worst solution in S but distant enough from the rest of solutions in S.

The distance between two solutions considers how many different paths can be found in
each of the solutions. Then, a function δ that measures this distance is defined:

δ(s1, s2) =
∑

k∈K

∑
p j ∈LPk

∣∣t1
j − t2

j

∣∣
h1 + h2

(20)

where ti is the characteristic vector of solution si corresponding to the paths (taken from
LPk) included in the block of paths for each commodity k. hi is the number of paths used in
solution i . Therefore, t i

j = 1 if solution si uses path p j and t i
j = 0 otherwise. Then, vector

ti has q|K| components. This function will be zero if both solutions are identical, will be 1
if they are completely different (they don’t share any path), and it takes a value between 0
and 1 in any other case.

To determine if a newly created solution s* could gain access to elite set S, its objective
function value will be first obtained; if this value is better than the best objective value in S
then it gains membership to this elite set and the solution with the worst objective function
value will be eliminated from S; on the other hand, if the objective function value was better
(lower) than the worst in S, the distance δ of s* to every other solution in elite should be
calculated and averaged. This average has to be greater than certain threshold (η) to replace
the worst solution in S.

4. Evaluation of initial solutions with scatter search

From the standpoint of metaheuristic classification, Scatter Search (SS) may be regarded
as an evolutionary (or also called population-based) algorithm that constructs solutions by
combining others. Unlike other evolutionary methods, Scatter Search has a structured and
intelligent way of combining solutions, a method for updating a reference set of high quality
solutions and diverse solutions and mechanisms for improving the newly created solutions.
All these features distinguish SS from other methodologies also based on populations and
make it attractive to tackle the problem addressed here.

As described in tutorial articles (Glover, 1998; Laguna, 2002) and other implementations
based on this framework, the methodology includes the following basic elements:

• Generation of a population P
• Extraction of a reference set R
• Combination of elements from R and update of R

The dimension and structure of the solution set in different evolutionary algorithms may
vary. Genetic algorithms, for example, work with the whole created population (typically
100 solutions), memetic algorithms work with small (and sometimes structured) population

GRASP EMBEDDED SCATTER SEARCH 243

(Moscato, 2000), while SS works with a subset of 10 to 20 solutions from the set of created
solution. This subset called reference set R is built from the population P (generated by the
diversification generation method) with only a few solutions from P. The way the reference
set is initialized, updated and rebuilt is a crucial aspect in Scatter Search performance.
If the construction of a reference set was made only based on the solution quality, the
reference set would be formed by selecting the best b solutions in P . Nevertheless, a
desired characteristic in general search procedures, and particularly in SS, is an adequate
balance between intensification and diversification.

Next step in the Scatter Search methodology is the combination of elements in the
reference set. To accomplish this, two or more elements from R are chosen in a systematic
way with the purpose of creating new solutions. This is achieved by the construction of
certain subsets of solutions from R and by applying the combination method to solutions
in each one of these subsets. This combination is intended to be intelligent so a better
solution than those in the subset may be created. At this point, it is possible that as a result
of the combination method an infeasible solution be created. In this case, the combination
method must have a procedure to restore feasibility. As new solutions are being created,
these will gain membership to the reference set not only by their quality, but by their degree
of diversity. The general procedure may iterate several times to achieve a better quality
in the created solutions. The way SS combines solutions and updates the set of reference
solutions used for combination sets this methodology apart from other population-based
approaches.

The fact that these mechanisms of SS are not restricted to a unique design allows the
exploration of strategic possibilities that may be effective in a particular implementation.
These observations and principles lead to the following template presented by Fred Glover
(1998), which consists of the following specific subroutines:

– A Diversification Generation Method.
– An Improvement Method.
– A Method for Generating a Reference Set.
– A Method for Generating a Subset.
– A Method for Combining Solutions.
– A Method for Updating Reference Set.

They will be described in the following sections.

4.1. A diversification generation method

This method is used to create a set of candidate solutions emphasizing systematic generation
over randomization. This set is typically used to initialize the reference set and to rebuild it
whenever it is required during the search phase.

In recent implementations of SS (Laguna and Armentano, 2004) the convenience of
using frequency memory to develop effective diversification generation methods has been
considered.

244 ALVAREZ, GONZÁLEZ-VELARDE AND DE-ALBA

Taking into account what has been said, the diversification generation method imple-
mented in this work to obtain an initial population P is based on the well-known technique
called GRASP (Feo and Resende, 1995) explained in Section 3.

4.2. Improvement method

The objective of this method inside the SS structure is to transform a candidate solution into a
candidate solution with better characteristics. In the original definition of the improvement
method a feasible solution it is not required as input nor as output, though, it is usually
expected that an output solution will be feasible.

Most improvement methods in the context of SS consist of a simple local search and
typically they are applied to candidate solutions that were created with the generation
diversification method or else with the method for combining solutions described later.
Fundamental aspects relative to the improvement method are the frequency of its application
and the deep of the associated search.

The implemented improvement method for MCND, as explained in Section 3.2.3, works
as follows: each time GRASP generates a block of paths for a commodity in a solution, that
block of paths is analyzed as to get, if this is possible, a new block with better cost. This
procedure consists basically in obtaining a different flow distribution using the same paths
rearranged in different order but with a lower transportation cost.

4.3. Reference set generation

Scatter Search doesn’t work with the whole created population P , but it uses a small set of
solutions called reference set (R).This set is built by selecting b solutions from P.Typically,
the size of R is such that b = 0.1|P|. The selection of solutions that will be included in the
reference set, considering their quality as well as their diversity, will have a high impact on
the quality of new solutions generated by the combination method.

Several alternative criteria may be used to add solutions to the reference set. If the
initialization of R was made exclusively considering the solution quality, the set will be
built by selecting b best solutions from P.But if, on the other hand, a balance was desired
between intensification and diversification, the set may be built by the union of two subsets
R1 and R2 of sizes b1 and b2 respectively (b = b1 + b2), where R1 would consider good
solutions (as measured by their objective value), and R2 would consider diverse solutions
(Marti, Lourenço, and Laguna, 2000).

The quality and degree of diversification of the solutions have a major impact on the
quality of the new solutions generated later by the combination method. In the present
work, two different strategies for constructing the reference set were considered, then
compared, and the results of this comparison shown in the computational results sec-
tion. The first strategy, E1(RS), was coupled to the diversification generation procedure
based on a GRASP that does not include memory features , the second one, E2(RS), was
coupled to one that includes them. These two strategies are described in the next sec-
tion. In addition, two different distance functions were tested to measure diversity. The

GRASP EMBEDDED SCATTER SEARCH 245

motivation for this is to gain insight on the impact of this function on the quality of
solutions.

4.3.1. Strategy E1(RS). The first strategy called E1(RS) consisted in considering a ref-
erence set R = R1 ∪ R2, with |R1| = b1 and |R2| = b2. In this way, R will be formed
by b = b1 + b2 elements, where some of them (b1) will be high quality solutions, and
some other (b2) will be diverse solutions respect to the first ones. This strategy has been
successfully used in some applications (Martı́, Lourenço, and Laguna, 2000).

The procedure to generate a reference set using this strategy is as follows:

1. Solutions in P are ordered according to their objective value.
2. b1 best solutions are added to R.

3. For each solution y in P\R, distance from y to every element in R is calculated.
4. Solution y* from P\R with greater minimum distance is selected and added to R.
5. Solution y* is deleted from P.If |R| = b stop, else proceed to step 3.

Consider a function � that measures the distance in edges between two any solutions y1, y2

from P . Unlike function δ defined in (20), this function measures the distance between two
solutions in edges instead of paths. Define function �:

�(y1, y2) =
∑

{i, j}∈E

∣∣t1
ij − t2

ij

∣∣ (21)

In (21) t1 y t2 are the characteristic vectors of solutions y1 y y2 respectively, relatives to the
edge set E , in such a way that if edge {i, j}∈ E is present in solution y1 the value of t1

ij is
equal to 1, and 0 otherwise; similarly for solution y2.

The minimum distance �min(y) of a solution y in P\ R is calculated as follows:

�min(y) = min
y′∈R

{�(y, y′)} (22)

4.3.2. Strategy E2(RS). The second strategy E2(RS) considered to form the reference set
was coupled to the diversification generation method based on a GRASP including memory
features.

As mentioned above, memory structures are included in order to learn from previously
generated solutions and to obtain useful information to build subsequent solutions. Specif-
ically an elite set S is created and updated (when necessary) each time a new solution is
built. This new built solution will gain membership in S if its objective function value was
better than the best solution in S, or, if it was better than the worst solution in S and distant
enough with respect to other solutions in S.

Therefore, after the diversification generation method has created a population P , a set S
of good (measured by their objective value) and at the same time relatively diverse solutions,
is at hand.This set S will be the reference set considered in this strategy.

246 ALVAREZ, GONZÁLEZ-VELARDE AND DE-ALBA

As the reference set considered in this strategy is the same elite set created by the
diversification generation method, the distance function used to measure diversity is the
function δ described in (20).

4.4. Subset generation

Solution combination methods in Scatter Search are not limited to combining only two
solutions. That is why a subset generation method is needed in order to create subsets of
different sizes, each subset containing two or more solutions to be combined. The method-
ology of Scatter Search is such that the set of all combined solutions (i.e., the set of all the
solutions that the implementation will try to generate) may be produced entirely at the same
time the subsets are created. Therefore, once a subset has been created, there is no need
to create it again. This situation is completely different from the methodology of Genetic
Algorithms where combinations are randomly determined.

The procedure of subset generation uses a strategy that expands two element subsets
into subsets of greater size, controlling at the same time, the total number of subsets to be
generated. In other words, the mechanism does not try to create all possible two element
subsets, and then all possible 3 element subsets, and so on until it has reached the size of
R. This technique would not be efficient as the number of subsets would grow drastically.
Even in small subsets, combination of all possible subsets is not effective because a larger
number of subsets would be almost identical and would produce the same local optima.

In this work, subsets type I, II, III, and IV introduced by Glover were used. This subsets
have proved to be effective in several applications (Campos, Laguna, and Martı́, 1999; Martı́,
Lourenço, and Laguna,2000). The technique selects representative subsets of different size,
generating 4 different types of subsets:

Type I Subsets: All 2 element subsets.
Type II Subsets: All 2 element subsets including best solution not considered in this

subset.
Type III Subsets: All type II subsets including in each on best solution not considered

in this subset.
Type IV Subsets: All subsets with best ielements for i = 5, 6, . . . , b.

Considering a reference set of 10 solutions, there are at most 141 different subsets to
combine.

This subset generation method is context-independent and there exist efficient imple-
mentations which avoid the duplication of subsets previously generated (Laguna and Marti,
2003).

4.5. Solution combination method

This method uses the generated subsets described in section 4.4 to combine the elements in
each subset with the purpose of creating new solutions. The solution combination method is
a problem related mechanism as it is deeply linked to the solution representation. Depending

GRASP EMBEDDED SCATTER SEARCH 247

on the specific way of combination, one or more solutions may be generated. In the present,
the combination method generates a new solution (if possible) from a given subset.

Combination methods may be systematic or probabilistic. A systematic method is applied
to each subset using invariable rules. Therefore a generated solution does not depend on
probability, implying that this method will obtain always the same solution from the same
subset. On the other hand, probabilistic methods assign probabilities which define an election
to elements in a subset.

In this problem, each solution is formed, for each commodity k,by a block of paths which
is capable to transport the whole demand for that commodity and that has an associated
cost. It is important to note that this cost is dependent on and related to a given solution.

To build a new solution snew from a given subset, the method will choose for each
commodity k the block with the lower cost between all the solutions in that subset. At this
point it is very likely to loose feasibility when trying to put together blocks from different
solutions. That is why a routine specially designed to recover feasibility was developed.

The combination method may be outlined as follows:

• For each subset generated by the Subset Generation Method
• For each commodity k

• Select block of paths with lower cost from solutions in subset
• Add this block to snew

• Apply recovery of feasibility mechanism if necessary

The cost of the block for this commodity k, relative to a solution s, is calculated using
(13). It is worth noticing that this cost depends on the solution where this block is found,
that is, a block with the same paths and flows in one solution will most probably have a
completely different cost in any other solution.

The block with lowest H (Bk) value, for every solution s belonging to subset under
consideration will be added to the new solution snew. Paths are added one at the time,
verifying residual capacities for each one of their arcs. Residual capacities of arcs depend
on flows in previously added blocks of paths to the new solution snew. When possible, the
original flow in each path is maintained. If the residual capacity of a path is lower than the
capacity of the original block where the path comes from, as much flow as possible will be
sent, and this block in snew will not be able to transport the whole demand for commodity
k.In this case, the recovery of feasibility procedure, explained ahead, will be applied.

4.6. Updating of the reference set

The reference set R is a collection of high quality solutions as well as diverse solutions
used to generate new solutions by means of a combination method. The updating method
for the reference set is used to maintain R.

New solutions created by the combination method will be evaluated to test their possibility
to gain membership in the reference set. The performance of Scatter Search depends greatly
on the strategies used to update the reference set (Laguna and Armentano, 2004). There
are basically two strategies of updating the reference set: static and dynamic (Laguna and
Martı́, 2003).

248 ALVAREZ, GONZÁLEZ-VELARDE AND DE-ALBA

The static updating works as follows: solutions which are built by the combination method
are placed in a pool of solutions called L . After applying the combination method, the pool
is full and the reference set is updated. The new reference set consists of best b solutions in
R ∪ L .

Alternatively, the reference set may be updated dynamically. The dynamic updating
consists on evaluating the new combined solutions to gain membership in R as they are
being created. In other words, instead of waiting until all possible combinations are made
to update R (as it is the case in the static updating), if a new solution gains membership in
the reference set, this last is immediately updated before next combination is carried out.

Even when dynamic updating is more aggressive in terms of the fast incorporation of
high quality solutions to R, static updating was tested too because it guarantees that every
solution in R is used at least once by the combination method.

Updating of R when it was created by strategy E1(RS) proceeds in the following manner:
Let snew be a new feasible solution to MCND, candidate to replace another solution in R, let
sworst the worst solution in R1,that is the solution with highest value of its objective function
and let sdist the solution in R2 with smaller distance to R. The new solution snew will replace
sworst if z(snew) < z(sworst), or else, will replace sdist if the distance of snew to the reference
set R is larger than the distance of sdist to the same set.

On the other hand, when R was created by strategy E2(RS), the same mechanism used
to update the elite set will be used. That is, a newly created solution snew may replace sworst,
the solution with the highest value of its objective function in R if z(snew) < z(sworst) and
snew is sufficiently different from the elements in R. The distance or proximity of snew to
other solution in R is measured by averaging the distance between snew and every other
solution in R. If this average is less than a certain threshold, solution is discarded, unless an
aspiration criterion is satisfied, in this case, the objective function value of snew is smaller
than any other objective function value of a solution in R.

Considering what has been said, several experiments were carried out. First, two Scatter
Search strategies using distance functions � and δ with dynamic update and E1(RS) were
tested. Function � performed better than function δ SS(rde)) so this procedure was used
for future comparisons. Later, different strategies (dynamic and static) for updating the
reference set as well as different distance functions (δ and �) were tested. In this case
results are shown on different tables in Section 5 under SS(edp), SS(ede), SS(esp) and SS(ese)

columns as shown below:

SS(rde) SS(edp) SS(ede) SS(esp) SS(ese)

Generation of R E1(RS) E2(RS) E2(RS) E2(RS) E2(RS)

Updating of R dynamic dynamic dynamic static static

Distance function �(edges) δ (paths) �(edges) δ (paths) �(edges)

4.7. Feasibility recovery method

The application of the combination method to solutions in the reference set carries the pos-
sibility of generating an infeasible solution. Infeasibility is detected during the combination

GRASP EMBEDDED SCATTER SEARCH 249

procedure and before a new solution is completely generated. In order to recover feasibility
for a partially generated solution a procedure of recovery of feasibility is applied. This
method will try to recover feasibility but in case of failing to do so, the new solution will
be discarded.

The feasibility recovery procedure proceeds in the following way: For each path in the
infeasible block of paths an exchange of paths is considered. The candidate paths are taken
from LPk , the list of q shortest paths for commodity k. This exchange of paths takes one
path out of the infeasible block of paths and introduces another path into it. The chosen path
must be able to transport the demand of the leaving path plus the demand not transported in
the original infeasible block of paths. As exchanges are considered, costs of entering paths
are compared in order to select the best possible path whose inclusion in the block does
not increase the cost of the original selected block of paths. As mentioned before, if the
feasibility recovery procedure is not successful, then the new solution snew is discarded.

5. Computational results

In order to gain insight into the performance of the proposed method, the best solution found
by the heuristic was compared to the best integer solution found by CPLEX optimizer (ILOG
CPLEX 6.6, 1999). All experiments were conducted on a SUNTM Ultra 10 computer. The
code was compiled using Sun-C compiler. In each case, CPLEX was allowed to run for 6
hours. In most cases, it could not find the optimal solution.

5.1. Network instance generator

A random instance generator was designed to generate instances classified according to the
following:

Class I High Fixed Costs, Loosely Capacitated Networks
Class II High Fixed Costs, Tightly Capacitated Networks
Class III High Variable Costs, Loosely Capacitated Networks
Class IV High Variable Costs, Tightly Capacitated Networks

Different sizes of network instances were considered in this classification: 30 nodes
and 350 edges (700 arcs), 50 nodes and 700 edges (1400 arcs). For each size classifi-
cation, 10, 50, and 100 commodities were tested. Generated instances are available at
http://yalma.fime.uanl.mx/∼karim

Table 1 shows a total of 120 generated instances. For each group of 10 generated instances,
5 instances were generated with 30 nodes and 350 edges and the other 5, with 50 nodes and
700 edges.

Loosely and tightly capacitated networks were obtained applying the following capacity
ratio:

ρ =
∑

k dkMFk(∑
k dk

)2 (23)

250 ALVAREZ, GONZÁLEZ-VELARDE AND DE-ALBA

Table 1. Generated instances.

Commodities

Classification 30 50 100 Total

Class I 10 10 10 30

Class II 10 10 10 30

Class III 10 10 10 30

Class IV 10 10 10 30

Total 40 40 40 120

where MFk is the maximum flow between O(k) and D(k). When ρ takes values less than 1,
instance is considered tight, and when ρ increases beyond 1 the network becomes looser.
The rationale behind this ratio is the fact that a feasible network must satisfy the following
relation:

MFk ≥ dk∀k ∈ K (24)

Then, for a feasible network, it follows that (�k∈K MFk) / (�k∈K dk) ≥ 1. Nevertheless, as
interested in measuring the tightness of a feasible network, this ratio should be scaled close
to 1 for tight networks. Consequently, for a given commodity k, MFk was multiplied by the
relative importance of the demand of commodity k over the whole demand in the network,
that is, dk /(�k∈K dk). As this ratio grows farther than one, the network is considered less
tight.

Instances were adjusted to ensure feasible solutions. This was done by letting CPLEX
obtain a feasible solution, when CPLEX detected infeasibility then the capacities were
scaled to gain feasibility. Fixed costs, for instances where these costs were considered
relevant, were obtained as follows:

Fij =
∑

k∈K Ck
ij

|K | (25)

This value was scaled down to 20% in order to get instances with relevant variable costs.
In order to get instances classified the following parameters were used:

Demand for commodity k: Uniformly distributed between 1 and 100.
Variable costs: Uniformly distributed between 1 and 100. A different variable cost was

generated for each commodity and each edge.
Edge capacity: Uniformly distributed between 0.8 and 1.2 of total demand (sum of com-

modity demands) on the network. This value was then scaled in order to get tighter
capacities.

Fixed costs: Fixed cost values were obtained multiplying the average variable cost by the
edge capacity. This value was then scaled in order to give predominance of fixed costs
over variable costs.

GRASP EMBEDDED SCATTER SEARCH 251

5.2. Experimentation and analysis

5.2.1. Parameters. It is well known that most heuristic procedures depend highly on
their parameter values. GRASP and Scatter Search are no exception to this rule. Several
parameters have been analyzed and tested to check for their relevance and the following
results were obtained.

grasp iter 1000 This number represents the iterations that GRASP was allowed to run in
order to build a population of 100 solutions.

λo 10 Initial value of λ. Used in GRASP with memory to give emphasis to value
function. This number indicates that, initially, it is desired to get good
solutions, as measured by their objective value. Then, it will be
decreased as to get intensified solutions.

�1(λ) 5 Decrement of λ. Different experiments were carried out to determine the
value of this parameter. When population is diverse, a fast intensification
is desired.

�2(λ) 3 Increment of λ. Experiments showed that the increment of λ should be
slower than its decrement.

ε 0.35 Diversity threshold for populations in GRASP with memory. Several
values of ε varying from 0.1 to 0.75 were tested. As this value is
essential for increasing and decreasing λ, if it is set too high, λ will
rarely be changed, that is why it was set to a lower value.

η 0.30 Substitution threshold for elite set used in GRASP with memory. Each time
a solution is generated by this procedure, it is tested for membership in
the Elite set of good and diverse solutions. Experiments varying η from
0.1 to 0.45 were carried out. Best results were obtained with η = 0.30

q (1) 30 Number of shortest paths for memoryless GRASP. Several values of q (1)

were tested, but in general good results were obtained using q (1) = 30.
As this number increases solution quality does not necessarily increases,
but execution time does. A compromise between quality of solutions and
execution time was the goal when changing this parameter.

q(2) 50 Number of shortest paths for memory GRASP. As q (2) grows, so does the
quality of solutions in GRASP as well as execution time. Several values
of q were tested, but in general good results were obtained using
q (2) = 50. As this number increases, so does the time the heuristic takes
in constructing solutions, therefore we tried to keep it as low as possible.

µ 0.1 Proportion of q. Used when assessing the length of the restricted candidate
list for the memoryless GRASP. Several values of this parameter were
tested, varying from 0.05 to 0.35. Best results were obtained using
µ = 0.10.

scat iter 14 Number or populations Scatter Search will analyze. For each one of these
iterations, a population of 100 solutions must be generated, then
increasing this number will degrade the overall execution time of the
procedure, but on the other hand, will normally increase solution quality.

η’ 0.35 Substitution threshold for reference set in SS. This parameter is used in the
last four SS strategies (those using a GRASP with memory) for gaining
membership to the reference set. Values varying from 0.15 to 0.45 were
tested. Better results were obtained with 0.35.

252 ALVAREZ, GONZÁLEZ-VELARDE AND DE-ALBA

Table 2. Comparison between SS procedures grouped by proposed classifica-
tion.

Classification SS(rde) SS(edp) SS(ede) SS(esp) SS(ese)

(%) (%) (%) (%) (%)

Class I 4.25 0.97 0.86 0.89 0.85

Class II 17.18 8.05 8.29 8.31 8.44

Class III 6.82 0.13 −0.77 −0.23 −0.46

Class IV 5.51 2.15 1.93 2.02 2.06

General 8.86 2.97 2.72 2.90 2.87

5.2.2. Comparison between different scatter search strategies. The five different Scatter
Search strategies were compared and the results were compared against CPLEX and reported
in tables shown below. The different strategies are: SS(rde), SS(edp) , SS(ede), SS(esp) and SS(ese).
For each one of them, the diversification generation method was called 14 times, that is, 14
different populations of 100 solutions each one were generated.

In Table 2 instances are presented by the proposed classification (cost and capacity).
First column shows this classification. Class I: High Fixed Cost and Loosely Capacitated
Networks; Class II: High Fixed Cost and Tightly Capacitated Networks, and so on. Columns
2, 3, 4, 5 and 6 show the average relative gap between SS procedures when compared to
CPLEX best integer solution. It is easy seen from results in Table 2 that a Scatter Search
procedures with embedded memory features over perform the traditional Scatter Search, that
is, the one without memory features. As for the Scatter Search procedures using different
ways of updating the reference set and using different distance functions, it can be seen that
results are quite similar, nevertheless the best results were obtained with SS(ede) procedure.

It is worth noticing that results in Table 2 show that a bad network design is highly
penalized when fixed costs are relevant, therefore the gap between CPLEX and SS is
greater. Loosely capacitated networks with high variable costs are easier to solve and, in
general, Scatter Search results for these kinds of networks are better than those of CPLEX
(showed by negative values in Table 2).

The predominance in most situations of SS(ede) over the other SS strategies led us to
observe the execution time for the different SS strategies. It took (on average) 79 seconds
for SS(esp) to process an instance, while SS(ede) took 151 seconds on average. Results show
that additional computational time taken to verify distance between solutions using edges
instead of paths is not worthy enough.

Inclusion of memory features does not degrade the performance of the proposed heuristic.
Focusing on results for SS(esp) it can be noticed that even when computation time increased
27%, solution quality increased 67% with respect to the Scatter Search procedure without
memory features (SS(rde)). Results on execution time are shown in Table 3.

Even when the results for the proposed classification show the cost-capacity interaction, it
is interesting to see how other parameters affect the performance of the heuristic. So, analysis
for different groupings of the same SS results allowed drawing the following conclusions:

GRASP EMBEDDED SCATTER SEARCH 253

Table 3. Execution time in seconds for the 5 different SS procedures.

Classification SS(rde) SS(edp) SS(ede) SS(esp) SS(ese)

Class I 67 87 143 80 181

Class II 54 71 143 74 114

Class III 71 94 163 86 211

Class IV 56 73 156 76 126

General 62 81 151 79 158

Table 4. Performance of SS(edp), SS(ede), SS(esp), SS(ese) over SS(rde).

Nodes-Comm. SS(edp) sec SS(ede) sec SS(esp) sec SS(ese) sec
(%) (%) (%) (%) (%) (%) (%) (%)

50–50 −0.13 88 −2.76 206 −2.81 85 −2.67 227

50–100 −3.86 149 −5.58 355 −5.40 154 −5.68 272

General −1.99 118 −4.17 281 −4.10 120 −4.18 249

• As number of commodities grows, so does the difference between SS and CPLEX,
leading to the conclusion that the number of commodities affects the heuristic procedure
performance.

• Networks with fewer commodities are easier to solve, and this is reflected in the quality
of solutions obtained by the heuristic procedure.

• Solutions loose quality (even for CPLEX best integer solutions) when fixed costs are high.
This leads to the conclusion that errors when designing the network (that is, choosing
wrong edges) will result in highly cost-penalized solutions (bad solutions).

For instances where a comparison between CPLEX feasible solution and SS solutions
was not possible, strategies SS(edp), SS(ede) , SS(esp), SS(ese) were compared to SS(rde). The
result of this comparison is shown in Table 4. Column 1 shows the networks for which
CPLEX could not find a feasible solution. Columns 2, 4, 6 and 8 show the average relative
gap between SS procedures when compared to SS(rde). The other columns show average time
in seconds for SS. Negative numbers in this table show the percentage that these strategies
outperformed SS(rde). As it is easly seen in this table, in general, SS(ede) is better than the
rest of the SS strategies, but again, processing time is much higher.

5.2.3. Comparison between scatter search and dual ascent procedure. In general, the
Scatter Search procedure has proved to be effective when solving network instances. Exper-
iments carried out and reported in (Alvarez, De Alba, and González-Velarde, 2001) showed
this when comparing results from strategy SS(rde) to Herrmanns’s Dual Ascent method
(Herrmann et al., 1996). In order to perform this comparison, network grid instances were
generated reproducing Herrmann’s experiment. Scatter Search procedure outperformed
Dual Ascent method in all cases, as shown in Table 5.

254 ALVAREZ, GONZÁLEZ-VELARDE AND DE-ALBA

Table 5. Comparison between Herrmann’s dual ascent and scatter search.

Number of edges Instances Mean (%) Std. Dev. (%) Dual-Ascent (%)

22 56 0.402 0.488 3.7

31 56 0.627 0.526 4.5

40 56 0.600 0.549 –

52 56 0.753 0.605 –

60 56 0.915 0.654 –

Column 1 shows the number of edges (undirected arcs) contained in the grid. Column 2
shows the number of instances that were generated. Columns 3 and 4 show the arithmetic
mean and the standard deviation when the SS results were compared to CPLEX results.
Column 5 shows the difference between the results obtained in Herrmann et al. (1996) using
the Dual Ascent approach and the optimum value (hyphens represent no optimum value
obtained from the optimizer). Note that results in Table 5 show the relative gap between
optimal solution and SS solution in a range varying from 0.4% to 1%, much lower than
those obtained with the dual ascent procedure. Additional results on this experiment can be
found in Alvarez, De Alba, and González-Velarde (2001).

6. Conclusion

In the present paper, a GRASP was embedded into a Scatter Search framework in order
to find good (in terms of quality) solutions to a fixed charge, multicommodity, capacitated
network design problem. GRASP is used to generate a population of solutions as a starting
point to the Scatter Search procedure. In order to get a better perspective of the population
generation mechanism, two different GRASP strategies were tested: a traditional GRASP
(that is, GRASP as reported in most implementations) and a memory based GRASP. Tests
showed that even when memory based GRASP is slower, it outperforms the traditional
implementation of GRASP.

As for the Scatter Search procedure, five different strategies have been developed and
tested. These procedures were denoted SS(rde), SS(edp), SS(ede) , SS(esp) and SS(ese) and were
explained in detail in this paper. In general, procedures SS(edp), SS(ede) , SS(esp) and SS(ese)

over performed procedure SS(rde). The comparison was carried out against CPLEX best
integer solutions. Instances used to test the heuristic were classified in an effort to gain a
better perspective of performance. Results show that fixed costs are highly relevant when
solving instances with this characteristic. When fixed costs are not very high, impact in
results is not very relevant. The number of commodities tends to degrade the performance
of heuristic in time as well as in solution quality, nevertheless fixed costs showed to be much
more influential than any other characteristic of tested instances. In fact, high percentage
deviations are expected as a slight variation from optimal design is highly penalized by
fixed costs.

Results when solving instances showed that procedure SS(ede) is in general better than
the rest of the SS procedures, nevertheless, extra effort spent in calculating distance of

GRASP EMBEDDED SCATTER SEARCH 255

solutions by edges is not worthy enough. Computing time is, on average, 43% higher for
SS(ede) procedure than for SS(esp) procedure.

An important fact was drawn from tests of different q values(the number of paths between
origin-destination nodes): much more important than the value of q, is the way the length
of arcs is calculated. As the heuristic procedure relies heavily on q-shortest paths, if path
lengths are not very accurately calculated, then the output of heuristic will reflect this
miscalculation in lower quality solutions. This fact led us to work deeper on the way arc
lengths should be calculated. Penalization procedures were used to avoid unattractive paths
to be taken. Unattractive paths should be avoided especially for instances with high fixed
costs. Although several values of q were tested, good results are in general obtained with
q = 50 for the memoryless GRASP and q = 30 for the memory GRASP. For memoryless
GRASP this value may be increased and, as expected, solutions are normally better, but
extra computing time in evaluating paths increases considerably.

It is worth noticing that even when flow variables xk
ij are defined continuous, the heuristic

procedure gives integer flow values. This could be especially useful in case the original
mathematical model would include the integrality condition on the flow variables.

There exist different applications based on this general model, as it is the case in Crainic
(2000) and Gendron and Crainic (1996) which include another sets of restrictions as for
example partial capacities on each commodity. In general, these restrictions may be included
in the model presented here with small changes in the proposed algorithm.

Future works on this problem may include the application of exact methods for large
scale problems, or the search for tight lower bounds as it is essential, specially for large
instances, to have at hand a means for assessing the efficiency of an heuristic procedure.

Acknowledgments

This work has been partially supported by Conacyt under grant 36669-A and is part of
a Research Chair in Industrial Engineering of ITESM titled “Extended Enterprises for
Mass Customization”. The authors wish to acknowledge the support of these grants in the
preparation of this manuscript.

References

Alvarez, A., J.L. González-Velarde, and K. De Alba. (2001). “Scatter Search for the Multicommodity Capacited
Network Design Problem.” In Proceeding of 6th Annual International Conference on Industrial Engineering–
Theory, Aplications and Practice, San Francisco, CA, USA.

Argüello, M.F., J.F. Bard, and G. Yu. (1997). “A Grasp for Aircraft Routing in Response to Groundings and
Delays.” Journal of Combinatorial Optimization 1(3), 211–228.

Arráiz, E., A. Martı́nez, O. Meza, and M. Ortega. (2001). “GRASP and Tabu Search Algorithms for Computing
the Forwarding Index in a Graph.” In Proceedings of MIC 2001, Porto, Portugal, July, pp. 367–370.

Balakrishnan, A. and T.L. Magnanti. (1989). “A Dual Ascent Procedure for Large-Scale Uncapacitated Network
Design.” Operations Research 37(5), 716–740.

Binato, S., W.J. Hery, D. Loewenstern, and M.G.C. Resende. (2002). “A Greedy Randomized Adaptive Search
Procedure for Job Shop Scheduling.” In Ribeiro, C. and Hansen, P. (eds.), Essays and Surveys on Metaheuristics,
Kluwer, Boston, USA, pp. 58–79.

256 ALVAREZ, GONZÁLEZ-VELARDE AND DE-ALBA

Campos, V., M. Laguna, and R. Martı́. (1999). “Scatter Search for the Linear Ordering Problem.” In D. Corne, M.
Dorigo, and F. Glover (eds.), New Ideas in Optimization, McGraw-Hill: New York, USA, pp. 331–339.

Chardaire, P., G.P. McKeown, and J.A. Maki. (2001). “Application of GRASP to the Multiconstraint Knapsack
Problem.” In E.J.W. Boers, J. Gottlieb, P.L. Lanzi, R.E. Smith, S. Cagnoni, E. Hart, G.R. Raidl, and H. Tijink,
(eds.), Applications of Evolutionary Computing, Lecture Notes in Computer Science, Vol. 2037, Springer,
Heidelberg: Germany, pp. 30–39.

CPLEX Optimization, Inc. (1999). ILOG CPLEX 7.1 Reference Manual. Incline Village, NV: USA.
Crainic, T.G., A. Frangioni, and B. Gendron. (2001). “Bundle-Based Relaxation Methods for Multicommodity

Capacitated Fixed Charge Network Design.” Discrete Applied Mathematics 112(1–3), 73–79.
Crainic, T.G., M. Gendreau, and J. Farvolden. (2000). “A Simplex-Based Tabu Search Method for Capacitated

Network Design.” INFORMS Journal on Computing 12(3), 223–236.
Delgado, C., M. Laguna, and J. Pacheco. (2004). “Minimizing Labor Requirements in a Periodic Vehicle Loading

Problem.” To appear in Computational Optimization and Applications.
Feo, T.A. and M.G.C. Resende. (1989). “A Probabilistic Heuristic for a Computationally Difficult Set Covering

Problem.” Operations Research Letters 8(2), 67–71.
Feo, T.A. and M.G.C. Resende. (1995). “Greedy Randomized Aaptive Search Procedures.” Journal of Global

Optimization 6(2), 109–133.
Fernández, E. and R. Martı́. (1999). “GRASP for Seam Drawing in Mosaicking of Aerial Photographic Maps.”

Journal of Heuristics 5(1), 81–197.
Fleurent, C. and F. Glover. (1999) “Improved Constructive Multistart Strategies for the Quadratic Assignment

Problem using Adaptive Memory.” INFORMS Journal on Computing 11(2), 198–204.
Gendron, B. and T.G. Crainic. (1996). “Bounding Procedures for Multicommodity Capacitated Fixed Charge Net-

work Design Problems.” Publication CRT-96-06. Centre de Recherche sur le Transport, Université de Montréal,
Montreal, Canada, January.

Gendron, B. and T.G. Crainic. (1994a). “Parallel Implementations of Bounding Procedures for Multicommod-
ity Capacitated Network Design Problems.” Publication CRT-94-45. Centre de Recherche sur le Transport,
Université de Montréal, Montreal, Canada, September.

Gendron, B. and T.G. Crainic. (1994b). “Relaxations for Multicommodity Capacitated Network Design Prob-
lems.” Publication CRT-965. Centre de Recherche sur le Transport, Université de Montréal, Montreal, Canada,
February.

Glover, F. (1998). “A Template for Scatter search and path relinking.” In J.K. Hao, E. Lutton, E. Ronald, M.
Schoenauer, and D. Snyers, (eds.), Artificial Evolution: Third European Conference, Lecture Notes in Computer
Science, Vol. 1363, Springer, Heidelberg, Germany, pp. 13–54.

Herrmann, J.W., G. Ioannou, I. Minis, J.M. y Proth. (1996). “A Dual Ascent Approach to the Fixed-Charge
Capacitated Network Design Problem.” European Journal of Operational Research 95(4), 476–490.

Hochbaum, D.S. and y Segev A. (1989). “Analysis of a Flow Problem with Fixed Charges.” Networks, 19(3),
291–312.

Holmberg, K. and J. Hellstrand. (1998). “Solving the Uncapacitated Network Design Problem by a Lagrangean
Heuristic and Branch-and-Bound.” Operations Research 46(2), 247–258.

Holmberg, K. and D. Yuan. (2000). “A Lagrangian Heuristic Based Branch-and-Bound Approach for the Capaci-
tated Network Design Problem.” Operations Research 48(3), 461–481.

Johnson, D.S, J.K. Lenstra, H.G. y Rinnooy. (1978). “The Complexity of the Network Design Problem.” Networks
8(4), 279–285.

Laguna M. (2002). “Scatter Search.” In P.M. Pardalos, and M.G.C. Resende, (eds.), Handbook of Applied Opti-
mization. pp. 183–193.

Laguna, M. and V.A. Armentano. (2004). “Lessons from Applying and Experimenting with Scatter Search.” In
C. Rego and A. Bahram, (eds.), Adaptive Memory and Evolution: Tabu Search and Scatter Search. Kluwer, (in
press).

Laguna, M. and R. Martı́. (2003). Scatter Search Methodology and Implementations in C. Kluwer, Boston, USA.
Lawler, E.L. (1972). “A Procedure for Computing the K Best Solutions to Discrete Optimization Problems and

its Application to the Shortest Path Problem.” Management Science 18, 401–405.
Magnanti, T., P. Mireault, and R. Wong. (1986). “Tailoring Benders Decomposition for Uncapacitated Network

Design.” Mathematical Programming Study, 26 112–154.

GRASP EMBEDDED SCATTER SEARCH 257

Magnanti, T. and R. Wong. (1984). “Network Design and Transportation Planning: Models and Algorithms.”
Transportation Science 18(1) 1–55.

Martı́, R., H. Lourenço, and M. Laguna. (2000). “Assigning Proctors to Exams with Scatter Search.” In M. Laguna
and J.L. González-Velarde, (eds.), Computing Tools for Modeling Optimization and Simulation: Interphases in
Computer Science and Operations Research. Kluwer: Boston, USA. pp. 215-227.

Moscato, P. (2000). Memetic Algorithms. In P.M. Pardalos and M.G.C. Resende, (eds.), Handbook of Applied
Optimization. Oxford University Press, USA.

Pacheco, J.A. and S. Casado. (2004). “Solving Two Location Models with Few Facilities by Using a Hybrid
Heuristic.” A real health resource case. (In Press) Computers and Operation Research No 113.

Sridhar, V. and J.S. Park. (2000). “Benders-and-Cut Algorithm for Fixed-Charge Capacitated Network Design
Problem.” European Journal of Operational Research 125(3), 622–632.

