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Abstract

In this paper we consider a complex production-distribution system, where a facility produces (or orders from an
external supplier) several items which are distributed to a set of retailers by a fleet of vehicles. We consider Vendor-
Managed Inventory (VMI) policies, in which the facility knows the inventory levels of the retailers and takes care
of their replenishment policies. The production (or ordering) policy, the retailers replenishment policies and the
transportation policy have to be determined so as to minimize the total system cost. The cost includes the fixed and
variable production costs at the facility, the inventory costs at the facility and at the retailers and the transportation
costs, that is the fixed costs of the vehicles and the traveling costs. We study two different types of VMI policies:
The order-up-to level policy, in which the order-up-to level quantity is shipped to each retailer whenever served
(i.e. the quantity delivered to each retailer is such that the maximum level of the inventory at the retailer is reached)
and the fill-fill-dump policy, in which the order-up-to level quantity is shipped to all but the last retailer on each
delivery route, while the quantity delivered to the last retailer is the minimum between the order-up-to level
quantity and the residual transportation capacity of the vehicle. We propose two different decompositions of the
problem and optimal or heuristic procedures for the solution of the subproblems. We show that, for reasonable
initial values of the variables, the order in which the subproblems are solved does not influence the final solution.
We will first solve the distribution subproblem and then the production subproblem. The computational results
show that the fill-fill-dump policy reduces the average cost with respect to the order-up-to level policy and that
one of the decompositions is more effective. Moreover, we compare the VMI policies with the more traditional
Retailer-Managed Inventory (RMI) policy and show that the VMI policies significantly reduce the average cost
with respect to the RMI policy.
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Introduction

The integration of production, distribution and inventory management is one of the chal-
lenges of today’s competitive environment. In the last decade the importance of the relations



394 BERTAZZI, PALETTA AND SPERANZA

between internal management and external environment has been widely recognized, and
the expression “supply chain management”, which emphasizes the view of the company as
part of the supply chain, has become of common use. Sometimes the expression “coordi-
nated supply chain management” is used to emphasize the coordination among the different
components of the supply chain. The availability of data and information tools which derive
from the advances in technology and communication systems has created the conditions for
the coordination inside the supply chain. Different models for the integration of decisions of
the production, inventory and distribution functions have been proposed. We refer to Cohen
and Lee (1988) for a strategic stochastic model for a complete supply chain, in which four
different functions are considered (material control, production control, finished good stock-
pile and distribution network control). A hierarchical decomposition approach is proposed
to solve the problem. Thomas and Griffin (1996) review the coordination issue of the three
functional areas at an operational level when deterministic models are used. Blumenfeld
et al. (1985) analyze the trade-offs between transportation, inventory and production set-up
costs over an infinite time horizon. Different shipping policies (direct shipping, shipping
through a consolidation terminal and a combination of them) are studied on the basis of
several simplifying assumptions. Sarmiento and Nagi (1999) and Erengüç, Simpson, and
Vakharia (1999) review the integration between production and transportation. Chandra and
Fisher (1994) propose a computational study to evaluate the value of coordination between
production and distribution planning over a finite time horizon. Hall and Potts (2003) study
the problem of minimizing the scheduling and delivering costs in the supply chain.

The availability of new information technologies has also led in the last years to the
development of new forms of relationships in the supply chain. One of these is the so called
Vendor-Managed Inventory (VMI), in which the supplier monitors the inventory of each
retailer and decides the replenishment policy of each retailer. The supplier is responsible of
the inventory level of each retailer and acts as a central decision-maker; therefore, she/he
has to solve an integrated inventory-routing or production-inventory-routing problem. The
advantage of the application of a VMI policy with respect to the traditional retailer-managed
inventory policies relies in a more efficient utilization of the resources: The supplier can
reduce its level of inventories maintaining the same level of service or can increase the
level of service and can reduce the transportation cost by a more uniform utilization of
the transportation capacity. On the other hand, the retailers can devote fewer resources to
monitor their inventories and to place orders, having thus the guarantee that no stock-out
will occur. An introduction to both deterministic and stochastic inventory routing problems
can be found in Campbell et al. (1998). A decomposition approach has been applied to the
solution of a complex inventory routing problem by Campbell and Savelsbergh (2004). A
delivery schedule is created first, followed by the construction of a set of delivery routes.
A strategic stochastic model has been presented by Webb and Larson (1995) with the
objective of determining the optimal fleet size. We refer to Axsäter (2001), Çetinkaya and
Lee (2000), Cheung and Lee (2002), Fry, Kapuscinski, and Olsen (2001), Kleywegt, Nori,
and Savelsbergh (2002, 2004) and Rabah and Mahmassani (2002) for applications of the
VMI policy to systems with stochastic demand.

We study an integrated model in which several items are produced at a production fa-
cility and shipped to several retailers over a finite time horizon by applying a VMI policy.
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Shipments from the production facility to the retailers are performed by a fleet of vehicles.
Each vehicle has a given transportation capacity. The total transportation cost is given by
the sum of a fixed cost and the routing cost. The fixed transportation cost is charged for each
vehicle used at least once during the time horizon. When the fixed transportation cost is set
to 0, this model can also handle the case of outsourced transportation and all the situations
where the fixed cost of vehicles is not relevant. Each item is absorbed by the retailers in a
deterministic and time-varying way. Each retailer determines a maximum and a minimum
level of the inventory of the items and can be visited several times during the time horizon.
Every time a retailer is visited, the quantity delivered is such that the maximum level of
inventory is reached, i.e. the order-up-to level quantity is shipped to the retailer. This inven-
tory policy is inspired, in a deterministic setting, by the classical order-up-to level policy,
widely studied in inventory theory. We refer to Axsäter and Rosling (1994) for an overview
of inventory policies in multi-level systems and to Bertazzi, Paletta, and Speranza (2002) for
an application of the deterministic order-up-to level policy to an inventory-routing problem.
The production facility monitors the inventory of each retailer and is responsible to maintain
the right level of the inventory at each retailer, i.e. a VMI policy is applied. The problem
is to determine the production policy and the shipping policy that minimize the total cost,
given by the sum of fixed and variable production cost, fixed transportation cost, routing
cost and inventory cost both at the production facility and at the retailers. The production
policy consists of determining for each discrete time instant the quantity of each item to
produce, while the shipping policy consists of determining for each delivery time instant the
set of retailers to visit, the quantity of each item to ship to each visited retailer and the route
that each vehicle has to travel. The approach we present in this paper is general enough to
be easily extended to variants of this problem, for instance to the case where there is a limit
on production per time period. Since data are usually uncertain in practice, their average
values can be used. To account for the variability of data, in a real life context the model
can be used with a rolling time horizon.

The scope of the paper is four-fold. First, we aim at solving the above problem. Since the
problem is very complex and the exact solution would be impractical, we propose heuristic
algorithms to solve it. In particular, we decompose the problem into two subproblems,
one concerning the production and one concerning the distribution, on the basis of two
different criteria. We show that, for reasonable initial values of the variables, the order in
which the subproblems are solved does not influence the final solution. We will first solve
the distribution subproblem and then the production subproblem. This gives rise to two
different solution methods, one for each of the decomposition criteria considered. In each
of these methods, the subproblem concerning the production is optimally solved, while
the subproblem concerning the distribution is solved by applying a constructive heuristic
algorithm in which at each iteration a retailer is inserted in the solution. For each retailer,
the heuristic builds a network in order to represent the incremental cost due to the insertion
of the retailer in the solution. A shortest path in the network identifies a “min cost” way for
adding the retailer to the solution. The solution obtained by hierarchically solving the two
subproblems is improved by applying two procedures which try to coordinate production
and distribution. This improvement phase is a new feature of our decomposition approach,
with respect to other decomposition approaches, and we will show it improves the final
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solution. Secondly, we aim at analyzing the impact of the different decompositions and of
the different rankings on the solution. Thirdly, we partially relax the order-up-to level policy
in order to obtain a different replenishment policy, referred to as fill-fill-dump, frequently
applied in practice (see Berman and Larson, 2001, for an application of this policy to an
inventory-routing problem with stochastic demand). In this policy, the order-up-to level
quantity is shipped to all but the last retailer served on each delivery route, while the
quantity delivered to the last retailer is the minimum between the order-up-to level quantity
and the residual transportation capacity of the vehicle. Finally, we aim at comparing the
application of the VMI policies with respect to a conventional Retailer-Managed Inventory
(RMI) policy.

The paper is organized as follows. In Section 1 the problem is formally described. For
the sake of simplicity, we focus on a single item; the extension to the multi-item case is
straightforward. In Section 2, the two problem decompositions and the corresponding four
order-up-to level algorithms are described. Then, theoretical results show the impact of
the two different rankings on the solution and the exact and heuristic algorithms used to
solve the subproblems are described. In Section 3 the fill-fill-dump policy is introduced and
the corresponding solution algorithms described. Finally, in Section 4, the computational
results obtained on randomly generated problem instances are shown and discussed.

1. Problem description

We consider a production-distribution system in which one item is produced at a pro-
duction facility 0 and shipped to a set M = {1, 2, . . . , i, . . . , n} of retailers over a set
T = {1, 2, . . . , t, . . . , H} of discrete time instants. A quantity rit of the item is absorbed
by each retailer i ∈ M in each time t ∈ T . A starting level of the inventory is given at
the production facility B0 and at each retailer i (Ii0). Since the level of the inventory at the
retailers at the end of the time horizon can be different from the starting one, the problem
is not periodic. Each retailer i defines a maximum level Ui and a minimum level Li of the
inventory of the item. We assume, without loss of generality, that Li = 0. If retailer i is
visited at time t , then the quantity xit shipped to retailer i at time t is such that the level of
the inventory in i reaches its maximum level Ui (order-up-to level policy). A quantity yt

(possibly 0) is produced at the production facility 0 in each time instant t ∈ T . The total
production cost is given by the sum of a fixed set-up cost K , which is charged for each time
instant t ∈ T with yt > 0, and of a variable production cost p, which is charged for each
unit produced during the time horizon (see for instance the classical paper by Wagner and
Whitin, 1958). The total production cost can be formulated as follows:

∑

t∈T

(K δ(yt ) + pyt ) , (1)

where δ(yt ) = 1 if yt > 0, and 0 otherwise.
Shipments from the production facility to the retailers are performed by a fleet of vehicles.

Each vehicle v has a given capacity C and routing is allowed. We assume that any subset of
retailers can be visited in any time instant, each retailer cannot be visited by more than once
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in the each time instant and that C ≥ maxi Ui to guarantee feasibility. The transportation
cost ci j from i to j , with i, j ∈ M ′ = M ∪ {0}, is known. The total transportation cost is
given by the sum of a fixed transportation cost f , which is charged if vehicle v is used at
least once during the time horizon, and the routing cost. In particular, if Rtv is the route
traveled by vehicle v at time t , zi j tv = 1 if node j ∈ M ′ is the successor of node i ∈ M ′ in
the route Rtv and 0 otherwise, and δ(v) = 1 if ∪t∈T Rtv �= ∅ and 0 otherwise. Then the total
transportation cost is:

∑

v∈V

f δ(v) +
∑

t∈T

∑

v∈V

∑

i∈M ′

∑

j∈M ′
ci j zi j tv, (2)

where V = {1, 2, . . . , v, . . . , n} is the set of vehicles. The cardinality of V is equal to the
number of retailers n, as the maximum number of vehicles used in any feasible solution
cannot be greater than n, i.e. the worst-case happens when all the retailers have to be
simultaneously served by a full load direct shipping at least once in the time horizon. The
inventory cost is charged both at the production facility and at each retailer. If we denote
by hi the unit inventory cost at node i ∈ M ′, then the total inventory cost over the time
horizon can be computed as follows. At the production facility the level of the inventory at
time t is given by the level at time t − 1, plus the quantity produced at time t , minus the
total quantity shipped to the retailers at time t , that is

Bt = Bt−1 + yt −
∑

i∈M

xit ,

which can be also written as Bt = B0 +∑t
j=1 yt −∑

i∈M

∑t
j=1 xit . Therefore, we assume,

as in Wagner and Whitin (1958), that the quantity produced at time t can be shipped to the
retailers at time t . Moreover, we assume, without loss of generality, that the starting level
of the inventory B0 is 0. Therefore, the total inventory cost at the production facility is:

∑

t∈T

h0 Bt =
∑

t∈T

t∑

j=1

h0 y j −
∑

i∈M

∑

t∈T

t∑

j=1

h0xi j . (3)

At each retailer i ∈ M , the level of the inventory at time t is given by the level at time
t − 1, plus the quantity of item shipped from the production facility to the retailer i at time
t , minus the quantity absorbed at time t , that is

Iit = Iit−1 + xit − rit ,

which can be also written as Iit = Ii0 − ∑t
j=1 ri j + ∑t

j=1 xi j . The starting level of the
inventory Ii0 is given. Therefore, the total inventory cost at the retailers is:

∑

i∈M

∑

t∈T

hi Iit =
∑

i∈M

∑

t∈T

hi

(
Ii0 −

t∑

j=1

ri j

)
+

∑

i∈M

∑

t∈T

t∑

j=1

hi xi j . (4)
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The problem is to determine, for each retailer i ∈ M , a set Di ⊆ T of delivery time instants
(and therefore the quantity xit to ship to the retailer i at each delivery time instant t ∈ Di )
and, for each time instant t ∈ T , the quantity yt to produce at the production facility and
the set of routes Rtv , v ∈ V , that allow us to visit all the retailers served at time t . These
decision variables have to satisfy the following constraints:

1. Order-up-to level constraints: These constraints guarantee that the quantity xit shipped
to each retailer i in each time instant t is such that the level of inventory in i reaches
its maximum level Ui at time t after having received the quantity xit and absorbed the
quantity rit , i.e. xit is either equal to Ui − Iit−1 + rit if a shipment to i is performed at
time t or equal to 0 otherwise. They can be formulated as follows:

xit = (Ui − Iit−1 + rit )wi t i ∈ M t ∈ T (5)

where wi t is equal to 1 if the retailer i is served at time t and 0 otherwise.
2. Stock-out constraints at the production facility: They guarantee that the level of the

inventory Bt is non-negative in each time instant t ∈ T :

Bt ≥ 0 t ∈ T . (6)

3. Stock-out constraints at the retailers: They guarantee that for each retailer i ∈ M the
level of the inventory Iit in each time instant t ∈ T is non-negative:

Iit ≥ 0 i ∈ M t ∈ T . (7)

4. Routing constraints: They guarantee that, for each time instant t ∈ T , a feasible set of
routes is determined to visit all the retailers served at time t , that is the total quantity
loaded on each vehicle is not greater than the transportation capacity:

∑

i∈Rtv

xit ≤ C v ∈ V t ∈ T (8)

and the routes followed by the vehicles are feasible (see Toth and Vigo, 2002).

The objective function is to minimize the total cost, given by the sum of the total produc-
tion cost (1), the total transportation cost (2) and the total inventory cost at the production
facility (3) and at the retailers (4).

2. Solution algorithms

The problem described in the previous section, referred to as Problem P , is NP-hard,
since it reduces to the VRP in the class of instances in which the time horizon is made
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by one time instant only, the fixed and variable production costs, the inventory costs and
the fixed transportation cost are zero and all the retailers need to be served. A natural
way to heuristically solve the problem is to decompose it into subproblems and then to
hierarchically solve them. We propose two different decompositions of the problem.

2.1. Problem decompositions

A first decomposition can be obtained by separating production from distribution. Two
subproblems are obtained. The first determines, for each time instant t ∈ T , the quantity
yt to produce at the production facility, given the values x̂i t of the variables xit . We denote
by x̂ the vector of the given values of the xit ’s. The aim is to minimize the sum of the total
production cost and of the inventory cost at the production facility. This subproblem can be
formulated as follows.

Subproblem P(x̂)

min
∑

t∈T

(K δ(yt ) + pyt + h0 Bt ) (9)

Bt = Bt−1 + yt −
∑

i∈M

x̂it t ∈ T (10)

B0 = 0 (11)

Bt ≥ 0 t ∈ T (12)

yt ≥ 0 t ∈ T . (13)

Note that the objective function (9) can be also written as − ∑
i∈M

∑
t∈T

∑t
j=1 h0 x̂i j +

min
∑

t∈T (K δ(yt )+pyt +
∑t

j=1 h0 y j ) and that this subproblem is the classical uncapacitated
dynamic lot size problem proposed by Wagner and Whitin (1958).

The second subproblem concerns the distribution only. It allows us to determine for each
retailer i the set Di of delivery time instants (and therefore the quantity xit to deliver to each
retailer i in each delivery time instant t ∈ Di ) and for each time instant t the set of routes
that visit all the retailers served at time t . The aim is to minimize the sum of the inventory
cost at the retailers and of the total transportation cost. This subproblem is solved for given
values ŷt of the variables yt . We denote by ŷ the vector of the given values of the yt ’s. This
subproblem can be formulated as follows.

Subproblem D(ŷ)

min
∑

i∈M

∑

t∈T

hi Iit +
∑

v∈V

f δ(v) +
∑

t∈T

∑

v∈V

∑

i∈M ′

∑

j∈M ′
ci j zi j tv (14)

subject to: the order-up-to level constraints (15)

the stock-out constraints at the retailers (16)

the routing constraints (17)
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Bt = Bt−1 + ŷt −
∑

i∈M

xit t ∈ T (18)

B0 = 0 (19)

Bt ≥ 0 t ∈ T . (20)

Note that the objective function (14) can be also written as
∑

i∈M

∑
t∈T hi (Ii0 −∑t

j=1 ri j ) +
min

∑
i∈M

∑
t∈T

∑t
j=1 hi xi j + ∑

v∈V f δ(v) + ∑
t∈T

∑
v∈V

∑
i∈M ′

∑
j∈M ′ ci j zi j tv .

A second decomposition of the Problem P into subproblems is obtained by moving the
variable production cost and the part of the inventory cost at the production facility which
depends on the variables x’s only from the objective function of the subproblem P(x̂) to the
objective function of the subproblem D(ŷ). The rationale is that these two cost components
are constant in the former problem, while they affect the optimization in the latter. In fact,
the variable production cost

∑
t pyt can be expressed as

∑
i

∑
t pxit , as it is optimal to

produce during the time horizon exactly the quantity shipped to the retailers during the
time horizon. The part of the inventory cost of the production facility which depends on
the x’s only is − ∑

i

∑
t

∑t
j=1 h0xi j (see (3)). We define P ′(x̂) and D′(ŷ), respectively, the

subproblems obtained by moving the two cost components from the objective function of
the subproblem P(x̂) to the objective function of the subproblem D(ŷ). The subproblem
P ′(x̂) can be described as follows:

Subproblem P ′(x̂)

min
∑

t∈T

(
K δ(yt ) +

t∑

j=1

h0 y j

)
(21)

subject to (10)–(13),

while the subproblem D′(ŷ) is:

Subproblem D′(ŷ)

min
∑

i∈M

∑

t∈T

hi Iit +
∑

v∈V

f δ(v) +
∑

t∈T

∑

v∈V

∑

i∈M ′

∑

j∈M ′
ci j zi j tv +

∑

i∈M

∑

t∈T

pxit

−
∑

i∈M

∑

t∈T

t∑

j=1

h0xi j (22)

subject to (15)–(20).

Note that the objective function (22) can be also written as

∑
i∈M

∑
t∈T hi (Ii0 − ∑t

j=1 ri j ) + min
∑

i∈M

∑
t∈T

∑t
j=1(hi − h0)xi j + ∑

v∈V f δ(v)
+ ∑

t∈T

∑
v∈V

∑
i∈M ′

∑
j∈M ′ ci j zi j tv + ∑

i∈M

∑
t∈T pxit .
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2.2. Hierarchical algorithms

In this section we present two hierarchical algorithms to solve Problem P for each of the
two above presented decompositions. The first, referred to as VMI-PDP, is similar to the one
proposed by Chandra and Fisher (1994). In the VMI-PDP, first the production subproblem
is solved assuming that all retailers are served every day, i.e. x̂i t is equal to the quantity that
would be shipped to retailer i at time t if i will be served every time instant. Then, given
the production quantities, the distribution subproblem is solved. Given the quantity to ship
to each retailer in each time instant, the production subproblem is solved again.

Heuristic VMI-PDP

1. Solve the subproblem P(x̂), with x̂i1 = Ui − Ii0 + ri1 and x̂i t = rit , t > 1. Let ŷ be the
vector of the obtained values of yt , t ∈ T .

2. Solve the subproblem D(ŷ). Let x̂ be the vector of the obtained value of the xit , i ∈ M ,
t ∈ T .

3. Solve the subproblem P(x̂).

The second algorithm, referred to as heuristic VMI-DP, is based on first solving the
distribution subproblem, fixing as initial production quantity ŷt at time t ∈ T the quantity
sufficient to serve the retailers i ∈ M in each time instant t ∈ T , and then solving the
production subproblem, given the quantity shipped to the retailers in each time instant. This
algorithm can be described as follows.

Heuristic VMI-DP

1. Solve the subproblem D(ŷ), with ŷ1 = ∑
i (Ui − Ii0 + ri1) and yt = ∑

i ri t , t > 1. Let
x̂ be the vector of the obtained values of xit , i ∈ M , t ∈ T .

2. Solve the subproblem P(x̂).

The scheme of the two above algorithms can be applied to the second decomposition.
The two new algorithms, referred to as heuristic VMI-PDP’ and heuristic VMI-DP’, are
identical to the heuristic VMI-PDP and the heuristic VMI-DP, respectively, with the only
exception that the subproblem P ′(x̂) is solved instead of P(x̂) and D′(ŷ) is solved instead
of D(ŷ).

We now show that, if subproblems P(x̂) and D(ŷ) are optimally solved, then the cost
obtained by the algorithm VMI-PDP is equal to the cost obtained by the algorithm VMI-DP.
The same holds for the algorithm VMI-PDP’ compared to the algorithm VMI-DP’.

Let x D(ŷ) and zD(ŷ) be the optimal solution and cost, respectively, of the subproblem D(ŷ),
x̃i t = Ui − Iit−1+rit and ỹt = ∑

i (Ui − Iit−1+rit ) be the value of ŷt and x̂i t used in the step 1
of the algorithm VMI-PDP and of the algorithm VMI-DP, respectively, and ȳt be a different
given value of ŷt , t ∈ T . Note that

∑t
k=1 ỹk = ∑t

k=1

∑
i x̃ik = ∑

i (Ui − Ii0 + ∑t
k=1 rik).

Then, the following lemmas hold.
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Lemma 1. zD(ỹ) ≤ zD(ŷ), ∀ŷ.

Proof: If ŷ = ỹ, then the constraints (18)–(20) are satisfied. This follows from the fact
that, for each t ∈ T

Bt =
t∑

k=1

ỹk −
t∑

k=1

∑

i∈M

xik =
∑

i∈M

(
Ui − Ii0 +

t∑

k=1

rik

)
−

t∑

k=1

∑

i∈M

xik ≥ 0

as the order-up-to level policy implies that
∑t

k=1

∑
i xik ≤ ∑

i (Ui − Ii0 + ∑t
k=1 rik).

Therefore, zD(ỹ) ≤ zD(ŷ) ∀ŷ.

Lemma 2. If
∑t

k=1 ȳk ≥ ∑t
k=1 ỹk , t ∈ T , then x D(ȳ) = x D(ỹ).

Let zVMI-PDP be the cost obtained by applying the algorithm VMI-PDP and zVMI-DP be
the cost obtained by applying the algorithm VMI-DP.

Theorem 1. zVMI-PDP = zVMI-DP.

Proof: Two cases can happen by optimally solving P(x̃): the optimal solution y P(x̃) is
equal to ỹ or is such that

∑t
k=1 y P(x̃)

k ≥ ∑t
k=1

∑
i x̃ik , t ∈ T , thanks to the stock-out

constraints at the production facility. In the former case, the optimal solution of D(y P(x̃))
is obviously x D(ỹ). In the latter case, since

∑t
k=1

∑
i x̃ik = ∑t

k=1 ỹk , then
∑t

k=1 y P(x̃)
k ≥∑t

k=1 ỹk , t ∈ T . Therefore, x D(ỹ) is the optimal solution of D(y P(x̃)), thanks to Lemma 2.

2.3. Solving the subproblems

Due to the results presented in the previous section, we will analyze only one hierarchical
algorithm, namely the VMI-DP for the first decomposition and the VMI-DP’ for the second
decomposition. We start with the description of the algorithms for the subproblems of VMI-
DP and then describe how these can be modified for the solution of the subproblems of
VMI-DP’.

In Section 2.4 we will describe some improvement procedures which can be applied to
improve the final solution.

The subproblem P(x̂)

The subproblem P(x̂) is the classical uncapacitated dynamic lot size problem proposed by
Wagner and Whitin (1958), which can be optimally solved in polynomial time by applying
a procedure which is described, for instance, in Lee and Nahmias (1993). The proce-
dure, which we describe here for the sake of completeness, works on an acyclic network
N (T ′, A, Q, P), in which each element of the set T ′ is a node that corresponds to a discrete
time instant between 0 and H + 1, each element akt , with 0 < k < t = 2, 3, . . . , H + 1, of
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the set A is an arc that exists if k and t are two possible consecutive production time instants
and each element a0t is an arc that exists if no shipments to the retailers are performed before
time t , that is if

∑t−1
j=1

∑
i x̂i j = 0. The intermediate nodes in each path on the network

between 0 and H +1 represent a feasible set of production time instants. Each element qkt of
the set Q is a weight on the arc akt that represents the quantity to produce at time k in order
to satisfy the stock-out constraints at the production facility in the time interval between k
and t − 1, that is qkt = ∑t−1

j=k

∑
i∈M x̂i j , for 0 < k < t = 2, 3, . . . , H + 1, and q0t = 0 for

each arc a0t , as 0 is not a production time instant. Finally, each element pkt of the set P is
a weight on the arc akt that represents the increase in the total cost to produce the quantity
qkt at time k, that is pkt = K + h0(H + 1 − k)qkt + pqkt for 0 < k < t = 2, 3, . . . , H + 1,
and p0t = 0 for all t . These weights are used to determine the shortest path between 0 and
H + 1 on the network by applying an algorithm for acyclic networks (see for instance Hu,
1982). The intermediate nodes on the shortest path are the optimal production time instants.
If zS denotes the cost of the shortest path, the optimal production cost zH P

is given by the
sum of zS and of the constant part of the objective function.

The procedure can be formally described as follows.

Procedure H P

(1) Set zH P
equal to the constant part of the objective function, that is zH P

:= − ∑
i

∑
t∑t

j=1 h0 x̂i t .
(2) Build the acyclic network N (T ′, A, Q, P).
(3) Determine the shortest path between 0 and H + 1 and compute the corresponding cost

zS on the basis of the weights in P . Set zH P
:= zH P + zS .

(4) For each time instant k ∈ T , set the optimal production quantity y∗
k := qkt if the

corresponding arc akt belongs to the shortest path, and y∗
k := 0 otherwise, and compute

Bk = Bk−1 + y∗
k − ∑

i∈M x̂ik .

The subproblem D(ŷ)

Since the subproblem D(ŷ) is NP-hard, we propose a heuristic algorithm to solve it. A
feasible solution of the problem is built by an iterative procedure that inserts a retailer at
each iteration. When retailer i is considered, a set Di of delivery time instants is determined
by applying the procedure Assign. Then, for each of the selected delivery time instants
t ∈ Di , the retailer i is inserted in one of the routes determined for the vehicles traveling
at time t by applying the procedure Insert. The algorithm can be formally described as
follows.

Procedure H D

(1) Sort the set of retailers M in the non-decreasing order of αi , where αi is the maximum
integer number such that

∑αi
t=1 rit ≤ Ii0 and represents the number of time instants,
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starting from time 1, for which the retailer i will not have stock-out even if not served.
Set the value of the objective function of the subproblem D(ŷ) equal to its constant
part, that is zH D

:= ∑
i

∑
t hi (Ii0 − ∑t

j=1 ri j ) and compute Bt = Bt−1 + ŷt , t ∈ T
because no retailer is visited.

(2) For s = 1, 2, . . . , n

– Determine for the retailer s a set Ds of delivery time instants by using the procedure
Assign.

– For each time instant t ∈ Ds insert the retailer s in one of the routes Rtv , v ∈ V , by
using the procedure Insert.

Let us now describe the procedures applied during the algorithm. The procedure Assign
determines a feasible set Ds of delivery time instants for the retailer s. It works on an acyclic
network Gs(T ′

s, As, Qs, Ps) in which each element of the set T ′
s is a node that corresponds

to a discrete time instant between 0 and H + 1 and each element as
kt of the set As is an arc

that exists if no stock-out occurs in s whenever s is not visited between k and t ; therefore,
the intermediate nodes of each path on the network between 0 and H + 1 represents a set
of delivery time instants for s that satisfy the stock-out constraints (7). Each element qs

kt
of the set Qs is a weight on the arc as

kt that represents the quantity to deliver to s at time
t and each element ps

kt of the set Ps is a weight on the arc as
kt used in order to determine

the shortest path between 0 and H + 1 on the network, i.e. a “good” set of delivery time
instants for s. Let us describe in more detail the sets As , Qs and Ps . The elements of As

are the arcs that satisfy the stock-out constraints (7) at the retailer s; in particular, the arc
as

0t , 1 ≤ t ≤ H + 1, exists if
∑t

j=1 rs j ≤ Is0 and the arc as
kt , 1 ≤ k < t ≤ H + 1, exists

if
∑t

j=k+1 rs j ≤ Us . Note that if the arc as
0,H+1 exists, then a feasible policy is not to visit

the retailer during the time horizon. The set Qs is a set of weights in which each element
qs

kt , associated to the arc as
kt , represents the quantity xst to ship to s at time t determined on

the basis of (5). Given that an order-up-to level policy is adopted, then the quantity qs
kt is

such that the maximum level of the inventory Us is reached in s, that is qs
kt = ∑t

j=k+1 rs j

for each arc as
kt with 1 ≤ k < t ≤ H , qs

0t = Us − Is0 + ∑t
j=1 rs j for each arc as

0t with
1 ≤ t ≤ H and qs

k,H+1 = 0, 0 ≤ k ≤ H , given that a shipment cannot be performed in
H + 1. Finally, the set Ps is a set of weights in which each element ps

kt , associated to the
arc as

kt , represents the estimate of the variation in the total cost obtained by including in the
current solution a visit of the retailer s at time t , given that the previous visit has been at
time k. Given the partial solution, the weight ps

kt on each arc as
kt is computed as the sum of

two components. The first one c̃s
t is the estimate of the variation in the transportation cost

obtained if the retailer s is served at time t and is computed as described in the procedure
Insert. The second component of the weight ps

kt is an estimate Ĩ s
kt of the variation in the

inventory cost, which we set equal to hs
∑H

j=t qs
k j = hs(H + 1 − t)qs

kt , as the constant part
of the inventory cost at the retailer s is taken into account in step 1) of the procedure H D .
In conclusion, the weight ps

kt associated to the arc as
kt is:

ps
kt = c̃s

t + Ĩ s
kt . (23)
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Obviously, ps
k,H+1 = 0, as no shipments are performed at time H + 1, and ps

kt = ∞
if at time t the stock-out constraint at the production facility is violated. Once the weight
ps

kt is computed for each arc as
kt ∈ As , the procedure determines the shortest path between

0 and H + 1, by using an algorithm for acyclic networks (see for instance Hu, 1982), in
order to obtain a set of delivery time instants for s that minimize the incremental cost to
adding the retailer s to the solution. Finally, the procedure includes in the set Ds of the
selected delivery time instants for s the intermediate nodes that belong to the shortest path.
The procedure Assign can be formally described as follows.

Procedure Assign

(1) Build the acyclic network Gs(T ′
s, As, Qs, Ps).

(2) Determine the shortest path between 0 and H + 1 on the basis of the weights in Ps .
(3) Include in the set Ds the intermediate nodes that belong to the shortest path.

The procedure Insert allows us to insert a given retailer s in one of routes Rtv , v ∈ V ,
traveled at time t on the basis of the cheapest insertion cost. It can be formally described
as follows. Let Ĉtv be the current residual transportation capacity of vehicle v at time t ,
su(i, t, v) be the successor of node i ∈ Rtv in the route Rtv and �tv be the variation in the
transportation cost obtained by inserting s in the route Rtv .

Procedure Insert

(1) For each vehicle v ∈ V :
If Rtv = ∅, then �tv = 2c0s if v is already used in a different time instant,
�tv = f + 2c0s otherwise.
Else, if qs

kt ≤ Ĉtv , then

�tv = min
i∈Rtv

{
ci,s + cs,su(i,t,v) − ci,su(i,t,v)

}
,

otherwise �tv = ∞.

(2) Select the vehicle v∗ such that v∗ = arg minv∈V {�tv}.
(3) If Rtv∗ = ∅, then Rtv∗ := {0, s, 0}.

Else
– Determine i∗ = arg mini∈Rtv∗ {ci,s + cs,su(i,t,v∗) − ci,su(i,t,v∗)}.
– Remove from Rtv∗ the arc (i∗, su(i∗, t, v∗)).
– Add to Rtv∗ the arcs (i∗, s) and (s, su(i∗, t, v∗)).

The insertion of the retailer s in the route Rtv∗ implies an increase in the total quantity
loaded on the vehicle v∗ equal to qs

kt (i.e. Ĉtv∗ := Ĉtv∗ − qs
kt ), a variation in the inventory

cost at the retailers equal to hs(H +1− t)qs
kt and a variation in the transportation cost equal

to �tv∗ . Therefore, zH D
:= zH D + hs(H + 1 − t)qs

kt + �tv∗ . Finally, the insertion implies a
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variation in the level of the inventory at the production facility equal to −qs
kt for each time

instant j = t, t + 1, . . . , H , that is B j := B j − qs
k j for j = t, t + 1, . . . , H .

The subproblems P ′(x̂) and D′(ŷ)

The subproblem P ′(x̂) is identical to the subproblem P(x̂), with the only exception of the
objective function which does not contain the variable production cost and the part of the
inventory cost at the production facility which depends on the variables x’s only. Therefore,
the optimal solution of the subproblem can be obtained by applying the procedure H P , with
zH P

:= 0 in the step 1) of the procedure, and pkt = K + h0(H + 1 − k)qkt in the acyclic
network N (T ′, A, Q, P).

The subproblem D′(ŷ) is identical to the subproblem D(ŷ), with the only exception
of the objective function which contains the variable production cost and the part of the
inventory cost at the production facility which depends on the variables x’s only. Therefore,
the subproblem can be solved by applying the procedure H D with

ps
kt = c̃s

t + ṽs
kt + Ĩ s

kt (24)

instead of (23) in the acyclic network Gs(T ′
s, As, Qs, Ps). The estimate c̃s

t of the variation in
the transportation cost is computed as in (23); the estimate ṽs

kt of the variation in the variable
production cost is equal to pqs

kt and the estimate Ĩ s
kt of the variation in the inventory cost is

equal to the sum of the variation in the inventory cost at the retailer hs(H + 1 − t)qs
kt and

the variation in the part of the inventory cost at the production facility which depends on
the shipping quantities, that is −h0(H + 1 − t)qs

kt .

2.4. Improving the obtained solution

The solution obtained by hierarchically solving the subproblems can be improved by ap-
plying the following two procedures, referred to as Improve and Global Improve. In the
procedure Improve, the current solution is improved iteratively. At each iteration, two re-
tailers are temporarily removed from the current solution by applying the procedure Remove
described in the following. Then, the retailers are inserted in the current solution by apply-
ing the procedure Assign. Finally, the subproblem P(x̂) is solved to determine the optimal
quantity to produce in each time instant, given the quantity x̂i t to deliver to each retailer i
in each time instant t . If this reduces the total cost, then the solution is modified accord-
ingly. This iteration is repeated as long as an improvement in the total cost is reached. The
procedure can be formally described as follows. Let T C be the total cost of the current
solution.

Procedure Improve

(a) For s = 1, 2, . . . , n
For i = n, n − 1, . . . , 1 and i �= s
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(a1) Remove the retailer s from the routes Rtv , v ∈ V , by using the procedure Remove
applied to all t ∈ Ds . Do the same for the retailer i .

(a2) Determine for i a new set D̃i of delivery time instants by using the procedure Assign
and insert the retailer in one of the routes Rtv , v ∈ V , by using the procedure Insert
applied to all t ∈ D̃i . Do the same for the retailer s. Let x̂ be the vector of the
obtained values xit , i ∈ M , t ∈ T .

(a3) Determine for each time instant t ∈ T the new quantity yt to produce by solving
the subproblem P(x̂). Let ŷ be the vector of the obtained values yt , t ∈ T .

(a4) Let ¯T C be the cost of the obtained solution. If ¯T C < T C , then adopt the new
solution.

(b) If a new solution has been adopted for at least one retailer, then go to (a). Otherwise,
stop.

The procedure Global Improve tries to furtherly reduce the total cost by coordinating
production and distribution. First, at time 0, the level of inventory at the production facility
is set to the total quantity produced over the time horizon reduced by a fixed quantity
r∗ = mini∈M,t∈T rit , i.e. B0 = ∑

t∈T ŷt − r∗, and for each time instant t ∈ T the level
of inventory at the production facility is set equal to the level at time t − 1, minus the
total quantity shipped to the retailers at time t , that is Bt = Bt−1 − ∑

i∈M x̂it . Finally, the
procedure Improve is applied, with the step a4) modified as follows:

(a4) Let ¯T C be the cost of the obtained solution. If ¯T C < T C , then adopt the new solution.
Compute B0 = ∑

t∈T ŷt − r∗ and Bt = Bt−1 − ∑
i∈M x̂it , for t ∈ T .

Let us now describe the procedure Remove used in the procedures Improve and Global
Improve to remove the retailer s from a given route Rtv , t ∈ Ds . Two different situations
can happen, depending on the fact that s is the only retailer visited in the route or not
before removing it. Let pr (s, t, v) and su(s, t, v) be the predecessor and the successor of
the retailer s in the route Rtv .

Procedure Remove

If Rtv = {0, s, 0}, then remove the arcs (0, s) and (s, 0).
Else

– Remove from Rtv the arcs (pr (s, t, v), s) and (s, su(s, t, v)).
– Add to Rtv the arc (pr (s, t, v), su(s, t, v)).

The decrease in the total quantity of the item loaded on the vehicle is qs
kt . The variation in

the inventory cost at the retailers is −hs(H +1− t)qs
kt . If only the retailer s was in the route

before removing it, the variation in the transportation cost is �tv = −2c0s if the vehicle is
also used in a different time instant, while it is �tv = − f − 2c0s otherwise. If Rtv �= ∅
after removing s, then the variation in the transportation cost is �tv = cpr (s,t,v),su(s,t,v) −
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cpr (s,t,v),s − cs,su(s,t,v). Therefore, zH D
:= zH D − hs(H + 1 − t)qs

kt + �tv . Removing the
retailer s implies a variation in the level of the inventory at the production facility equal to
qs

kt for each time instant j = t, t +1, . . . , H , that is B j := B j +qs
kt for j = t, t +1, . . . , H .

3. Relaxing the order-up-to level constraints: The fill-fill-dump policy

The problem formulated in Section 1 and solved in the previous section is based on the
strict application of the order-up-to level policy. In other words, whenever a retailer is
served, the order-up-to level quantity is always shipped to the retailer. This can imply
both higher inventory cost at the retailers and lower saturation of the transportation ca-
pacity, and therefore higher transportation cost, with respect to different replenishment
policies in which the order-up-to level constraints are at least partially relaxed. An exam-
ple is given by the so called fill-fill-dump policy, in which the order-up-to level quantity
is shipped to all but the last retailer on each delivery route, while the minimum between
the order-up-to level quantity and the residual transportation capacity is shipped to the last
retailer.

We have implemented two solution algorithms for the case the fill-fill-dump policy is
applied, referred to as VMI-DP-F and VMI-DP’-F. They are identical to the order-up-to
level algorithms VMI-DP and VMI-DP’, respectively, with the exception of the procedure
Assign, which is replaced by the procedure AssignF described in the following, and of the
procedures Improve and Global Improve, which are not applied at all, as the solution ob-
tained by these procedures can be different from a fill-fill-dump solution. The procedure
Assign cannot be applied here as the quantity delivered to the retailer s at each time t is
not independent of the previous delivery time instants, but it depends on the residual trans-
portation capacity of the vehicles used to serve the retailer s. Therefore, the level of the
inventory at the production facility and at the retailer s at each time instant t depends on
the previous delivery time instants and on the vehicles used to serve the retailer s up to
time t .

The procedure AssignF heuristically determines a set Ds of delivery time instants for
the retailer s, the vehicles that perform the visits and the delivery quantities. A heuristic
approach is needed as an exact algorithm is impractical for instances with long time horizon.
The procedure works on an acyclic network G F

s in which each intermediate node (t, vt )
corresponds to the visit to retailer s at time t by using the vehicle vt . This vehicle can be one
of the vehicles currently used at time t (vt = 1, . . . , v̂t ) or a new vehicle (vt = v̂t + 1). The
nodes (0, 0) and (H + 1, 0) are the first and the last node of the network, respectively, and
do not correspond to any delivery time instant. When a fill-fill-dump policy is applied, the
quantity shipped to the retailer s at time t by using the vehicle vt is the minimum between
the order-up-to level quantity and the residual transportation capacity Ctvt of vehicle vt . If
we denote by k and t two consecutive delivery time instants and by Iskvk the level of the
inventory at the retailer s at time k when s is served at time k by the vehicle vk , then the
quantity delivered at time t by the vehicle vt is qs

kvk ,tvt
= min{Us − Iskvk +

∑t
j=k+1 rs j , Ctvt },

where Is00 = Is0. The corresponding estimate ps
kvk ,tvt

of the variation in the total cost is
computed as indicated in Section 2.3, by simply replacing qs

kt with qs
kvk ,tvt

in the procedure
Assign and by setting the estimate of the variation in the transportation cost in the procedure
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Insert equal to �tv instead of �tv∗ . Obviously, ps
kvk ,tvt

= +∞ if at least one of the following
three conditions is verified. First, the residual transportation capacity Ctvt of the vehicle vt

used at time t is lower than the quantity absorbed by the retailer s at time t (i.e. Ctvt < rst ).
Second, the stock-out constraint at the production facility is not satisfied (i.e. the level Bstvt

of the inventory at the production facility when the retailer s is served at time t by the
vehicle vt is negative). Third, the stock-out constraint at the retailer s is not satisfied (i.e.
Istvt < 0).

The procedure can be described as follows. Let utvt be the cost of the best known path
between (0, 0) and (t, vt ). At the beginning, utvt = ps

00,tvt
for each intermediate node (t, vt )

and for the node (H + 1, 0). The procedure iteratively determines the “best” path between
the node (0, 0) and each node (t, vt ) and updates ulvl , for l > t , to the minimum between
its current value and the sum of utvt and the cost ps

tvt ,lvl
on the arc between the nodes (t, vt )

and (l, vl). Finally, whenever ulvl is modified, it updates qs
lvl

, Islvl and Bslvl .

Procedure AssignF

(1) Build the set of nodes of the network G F
s , that is the nodes (0, 0), (t, vt ) for t = 1, . . . , H

and vt = 1, . . . , v̂t + 1, and (H + 1, 0).
(2) Compute the total cost of never visiting the retailer s during the time horizon, i.e. the

cost of the path which includes the nodes (0, 0) and (H + 1, 0) only. Update u H+1,0.
For each intermediate node (t, vt ), with t = 1, . . . , H and vt = 1, . . . , v̂t + 1, compute
the total cost of the path which includes the nodes (0, 0) and (t, vt ) only. Update utvt ,
qs

tvt
, Istvt and Bstvt .

(3) For each node (t, vt ), with t = 1, . . . , H and vt = 1, . . . , v̂t + 1: for each node (l, vl),
with l > t , compute ps

tvt ,lvl
; if ulvl > utvt + ps

tvt ,lvl
, then, update ulvl , qs

lvl
, Islvl and Bslvl ,

considering (t, vt ) as predecessor of (l, vl).
(4) For each node (t, vt ), with t = 1, . . . , H and vt = 1, . . . , v̂t + 1, compute ps

tvt ,(H+1)0;
if uH+1,0 > utvt + ps

tvt ,(H+1)0, then update uH+1,0.
(5) Include in the set Ds the intermediate nodes of the path between (0, 0) and (H + 1, 0)

having cost uH+1,0.

4. Computational results

The algorithms described in Sections 2.2 and 3, for the order-up-to level policy and for
the fill-fill-dump policy, respectively, have been implemented in Fortran and compared on
the basis of randomly generated problem instances. The computational results allow us to
evaluate the impact of the different decompositions and of the different heuristics and to
compare the application of both order-up-to level and fill-fill-dump policies with respect to
a conventional Retailer-Managed Inventory policy, referred to as RMI. In the RMI policy,
all the retailers that will have stock-out at time t + 1 are visited at time t . The routes
are computed by applying for each time t the procedure Insert. The optimal production
quantities are determined by solving the subproblem P(x̂). Finally, the transportation cost
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is reduced, if possible, by applying a variant of the procedure Improve, in which the delivery
time instants are not modified during the algorithm.

Four classes of instances have been generated, corresponding to different practical situ-
ations. The first class is composed of 24 instances (1–24), generated as follows:

Quantity rit absorbed by retailer i at time t : Constant over time, i.e. rit = ri , t ∈ T , and
randomly generated as an integer number in the interval [5, 25];

Maximum level Ui of the inventory at retailer i : ri gi , where gi is randomly selected from
the set S (as defined below) and represents the number of time units needed in order to
consume the quantity Ui ;

Starting level Ii0 of the inventory at the retailer i : Ui − ri ;
Inventory cost at retailer i ∈ M , hi : Randomly generated in the intervals [1, 5] and [6, 10];
Inventory cost at the production facility h0: 3 and 8;
Variable production cost p: 10h0;
Fixed set-up cost K : 100p;
Transportation cost ci j : �√(Xi − X j )2 + (Yi − Y j )2, where the points (Xi , Yi ) and

(X j , Y j ), with i ∈ M ′ and j ∈ M ′, are obtained by randomly generating each coor-
dinate as an integer number in the interval [0, 500] and in the interval [0, 1000];

Transportation capacity C : Ū , 3/2Ū and 2Ū , where Ū = maxi∈M Ui ;
Fixed transportation cost f = (n + 1) maxi, j∈M ′ ci j .

The remaining three classes of instances have been generated as in the first class, with the
exception of one type of cost only. In particular, the second class (instances 25–48) has been
generated by setting the fixed transportation cost f to zero. This class allows us to evaluate
the behaviour of the algorithms when the transportation is outsourced or the production
facility has a given fleet of vehicles for distribution. In the third class (instances 49–72)
the variable production cost p is set to h0. This class allows us to evaluate the impact of
different production costs. Finally, the fourth class (instances 73–96) is obtained by setting
the inventory cost at the retailers hi to zero, i ∈ M and allows us to evaluate if the cases in
which the production facility does not have to pay the inventory costs at the retailers have
substantially different solutions.

In all cases, random selections have been performed in accordance to a uniform distri-
bution. The computations have been carried out on an Intel Pentium III with 933 Mhz and
256 MB RAM. The generated instances and the computational results are available at the
following URL: www-c.eco.unibs.it/∼bertazzi/pd.zip.

A detailed computational analysis of the policies discussed in this paper will be pre-
sented for a number of retailers n = 50 and a time horizon H = 30. For these in-
stances we choose S = {2, 3, 5, 6}. Then, more synthetic results will be presented for
n = 50, 75, 100, 125, 150 and H = 6, with S = {2, 3, 6}.

We first compare the order-up-to level policy with the RMI policy. Average results on
all the instances are shown in Tables 1–4. Table 1 is organized as follows. The first column
gives the description of the type of result (average percent error, maximum percent error,
number of best solutions and computational time) shown on the corresponding row. Three
rows are dedicated to each type of result. The first row gives the results obtained by applying
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Table 1. Percent errors and statistics.

RMI VMI-DP VMI-DP’

Average error without Improve and Global Improve 54.98 4.70 5.99

Average error without Global Improve 51.31 2.03 3.55

Average error 51.31 0.02 1.80

Maximum error without Improve and Global Improve 180.34 10.90 24.47

Maximum error without Global Improve 180.34 10.90 22.63

Maximum error 180.34 0.38 21.46

Number of best solutions without Improve and Global Improve 0 61 35

Number of best solutions without Global Improve 0 78 18

Number of best solutions 0 86 10

Time without Improve and Global Improve 0.2 0.1 0.2

Time without Global Improve 117.9 228.1 288.8

Time 117.9 228.1 288.8

the algorithms RMI, VMI-DP and VMI-DP’, respectively, without the procedures Improve
and Global Improve, the second the results obtained by applying the algorithms without the
procedure Global Improve and, finally, the third row the results obtained by applying the
entire algorithms. Columns 2 gives the results obtained by the algorithm RMI (note that, for
each type of result, the second and the third rows are identical, as in the RMI algorithm the
procedure Global Improve is not applied). Finally, columns 3–4 give the results obtained by
the VMI-DP and VMI-DP’ algorithms, respectively. The errors are always computed with
respect to the best obtained solution.

The results show that the best solutions are obtained when the first decomposition is
applied, i.e. VMI-DP is better than VMI-DP’. The algorithm VMI-DP gives the best average
and maximum percent relative error, finds the best solution in the 89.58% of the instances and
has the lowest computational time. Moreover, the RMI policy is significantly outperformed
by the algorithms VMI-DP and VMI-DP’ in terms of quality of the solution. Finally, the
procedures Improve and Global Improve significantly reduce the average and maximum
error generated by the algorithms. Note that the major part of the computational time is
spent by the procedure Improve.

Table 2 compares the composition of the total cost in the solutions generated by the
algorithms RMI, VMI-DP and VMI-DP’.

The results show that, as expected, the poor performance of the algorithm RMI with
respect to the algoritms VMI-DP and VMI-DP’ is mainly due to the lack of coordination
in the RMI policy, which generates a large transportation cost. Note that in the VMI-DP
and VMP-DP’ algorithms each cost component is reduced when the procedure Improve
is applied, while in the procedure Global Improve all the cost components are reduced,
with the only exception of the inventory cost at the production facility, which slightly
increases.
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Table 2. Composition of the total cost.

RMI VMI-DP VMI-DP’

Inv. cost prod. facility without Improve and Global Improve 18364.50 35618.34 34480.48

Inv. cost prod. facility without Global Improve 18364.50 31137.92 29387.47

Inv. cost prod. facility 18364.50 31513.80 29592.91

Production cost without Improve and Global Improve 1029779.00 954302.30 943118.30

Production cost without Global Improve 1029779.00 941868.30 935855.10

Production cost 1029779.00 936045.20 934160.70

Inv. cost retailers without Improve and Global Improve 227042.00 231946.50 244248.70

Inv. cost retailers without Global Improve 227042.00 229756.80 241882.70

Inv. cost retailers 227042.00 227844.60 239767.60

Transportation cost without Improve and Global Improve 883722.10 322382.30 335502.40

Transportation cost without Global Improve 826432.20 298537.20 311280.40

Transportation cost 826432.20 286292.60 299511.30

Table 3. Production vs distribution.

RMI VMI-DP VMI-DP’

Total production cost 1048143.50 967559.00 963753.61

Total distribution cost 1053474.20 514137.20 539278.90

Table 3 compares the total production cost (inventory at the production facility plus fixed
and variable production costs) with the total distribution cost (inventory at the retailers plus
fixed transportation and routing costs) in the solutions generated by the algorithms RMI,
VMI-DP and VMI-DP’.

The results show that in the solution generated by the RMI algorithm the total production
cost is about 50% of the total cost, while in the VMI-DP and VMI-DP’ policies it is about
65% of the total cost. Moreover, the worse performance of the VMI-DP’ with respect to the
VMI-DP is due to an increase in the total distribution cost not sufficiently compensated by
the reduction of the total production cost.

Table 4 compares the solution generated by the algorithms RMI, VMI-DP and VMI-DP’
on the basis of the average production and shipping quantity (denoted by Quantity), the av-
erage number of visits (Visits), the average number of production time instants (Production
times) and, finally, the average number of vehicles (Vehicles).

Let us first compare VMI-DP with respect to VMI-DP’. The results show that the num-
ber of visits tends to be significantly greater when VMI-DP’ is applied. This is due to the
inclusion in the objective function of the subproblem D′(ŷ) of the part of the inventory cost
of the production facility which depends on the variables x’s only. This part tends to make
more appealing solutions in which the item is shipped as soon as possible. Therefore, small
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Table 4. Average quantities.

RMI VMI-DP VMI-DP’

Quantity without Improve and Global Improve 22830.00 20917.02 20728.83

Quantity without Global Improve 22830.00 20702.33 20615.73

Quantity 22830.00 20536.83 20510.07

Visits without Improve and Global Improve 426.00 474.94 557.80

Visits without Global Improve 426.00 477.68 599.57

Visits 426.00 479.65 617.33

Production times without Improve and Global Improve 15.25 18.13 18.20

Production times without Global Improve 15.25 18.02 17.89

Production times 15.25 17.63 17.71

Vehicles without Improve and Global Improve 19.33 6.27 5.64

Vehicles without Global Improve 18.63 6.19 5.94

Vehicles 18.63 6.16 5.93

quantities tend to be more frequently shipped to the retailers, as this reduces the total inven-
tory cost of the subproblem D′(ŷ). The number of vehicles reduces, as the transportation
capacity is better managed when small quantities are shipped. However, since the number
of visits increases, the inventory cost at the retailers and the routing cost increase (see Table
2). Note that the increase in the routing cost is not compensated by the reduction of the
fixed transportation cost. Therefore, the total distribution cost increases in the VMI-DP’
with respect to the VMI-DP (as shown in Table 3). Moreover, since the number of visits
increases and the number of production time instants does not significantly change, the in-
ventory cost at the production facility reduces (see Table 2). Finally, the introduction in the
objective function of the subproblem D′(ŷ) of the variable production cost tends to reduce
the production and distribution quantity. Therefore, the total production cost reduces in the
VMI-DP’ with respect to the VMI-DP (as shown in Table 3). Let us now compare the RMI
policy with respect to the VMI policies. The most relevant difference between the RMI and
the VMI-DP and VMI-DP’ is in the number of vehicles which is much greater in the for-
mer, due to the lack of coordination of the retailer requests. The number of visits is instead
lower in the RMI, as well as the inventory cost (see Table 2). However, the reduction of the
inventory costs is far from compensating the increase in the transportation costs. Moreover,
in the VMI-DP and VMI-DP’ solutions the production and shipping quantity as well as
the number of production time instants reduce when the procedure Improve and Global
Improve are applied, while the number of visits increases.

With Tables 5–8 we compare the behaviour of the solutions in the four classes of instances.
In particular, Table 5 shows, for each class of instances, the average percent error, Table 6
the composition of the total cost, Table 7 compares the total production cost with the total
distribution cost and Table 8 shows the production and shipping quantity, the number of
visits, the number of production time instants and the number of vehicles obtained.
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Table 5. Classes of instances: Average percent error.

Instances RMI VMI-DP VMI-DP’

1–24 42.69 0.06 0.85

25–48 ( f = 0) 9.02 0.01 1.27

49–72 (p = h0) 100.48 0.02 4.08

73–96 (hi = 0) 53.04 0.00 1.01

Table 6. Classes of instances: Composition of the total cost.

Instances Cost RMI VMI-DP VMI-DP’

1–24 Inventory cost production facility 24486.00 51759.58 50290.21

Production cost 1327150.00 1208960.00 1204601.00

Inventory cost retailers 302722.50 308724.70 322449.50

Transportation cost 1024906.00 341743.70 351922.50

25–48 ( f = 0) Inventory cost production facility 24486.00 22378.88 21956.33

Production cost 1327150.00 1200741.00 1201385.00

Inventory cost retailers 302722.50 294895.30 312876.30

Transportation cost 138511.50 124484.10 129519.10

49–72 (p = h0) Inventory cost production facility 0.00 0.00 0.00

Production cost 137665.00 128956.00 129638.80

Inventory cost retailers 302722.50 307758.60 323744.60

Transportation cost 1117404.00 339151.80 349097.50

73–96 (hi = 0) Inventory cost production facility 24486.00 51916.75 46125.08

Production cost 1327150.00 1205523.00 1201018.00

Inventory cost retailers 0.00 0.00 0.00

Transportation cost 1024906.00 339790.70 367506.00

Table 7. Classes of instances: Production vs distribution.

Instances Cost RMI VMI-DP VMI-DP’

1–24 Total production cost 1351636.00 1260719.58 1254891.21

Total distribution cost 1327628.50 650468.40 674372.00

25–48 ( f = 0) Total production cost 1351636.00 1223119.88 1223341.33

Total distribution cost 441234.00 419379.40 442395.40

49–72 (p = h0) Total production cost 137665.00 128956.00 129638.80

Total distribution cost 1420126.50 646910.40 672842.10

73–96 (hi = 0) Total production cost 1351636.00 1257439.75 1247143.08

Total distribution cost 1024906.00 339790.70 367506.00
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Table 8. Classes of instances: Average quantities.

Instances RMI VMI-DP VMI-DP’

Quantity 1–24 22830.00 20571.67 20501.29

25–48 ( f = 0) 22830.00 20396.58 20396.17

49–72 (p = h0) 22830.00 20648.58 20738.08

73–96 (hi = 0) 22830.00 20530.50 20404.75

Visits 1–24 426.00 473.25 562.58

25–48 ( f = 0) 426.00 442.75 539.21

49–72 (p = h0) 426.00 468.50 573.29

73–96 (hi = 0) 426.00 534.08 794.25

Production times 1–24 13.00 14.13 14.13

25–48 ( f = 0) 13.00 14.38 14.46

49–72 (p = h0) 22.00 28.00 28.00

73–96 (hi = 0) 13.00 14.00 14.25

Vehicles 1–24 18.33 4.33 4.42

25–48 ( f = 0) 18.50 11.63 10.29

49–72 (p = h0) 19.33 4.33 4.42

73–96 (hi = 0) 18.33 4.33 4.58

In the second class (instances 25–48) the fixed transportation cost f is set to zero.
The results show, as expected, that in the VMI-DP and VMI-DP’ solutions the number of
used vehicles significantly increases. The results clearly show that the major part of the
transportation cost is due to the fixed cost. Therefore, the RMI policy has in this class its
best performance in terms of average error. In the third class (instances 49–72) the variable
production cost p is set to h0 instead of 10h0. Therefore, the fixed production cost K = 100p
is also significantly reduced. The results show that the number of production time instants
is doubled and the inventory cost at the production facility is reduced to zero. Finally, in
the fourth class (instances 73–96) the inventory cost at the retailers hi is set to zero, ∀i . The
results show that, as expected, the number of visits significantly increases, in particular in
the VMI-DP’ solution.

Let us now compare the results obtained by the order-up-to level policies with the re-
sults obtained by the fill-fill-dump policies. Table 9 shows the average percent error on
all instances between the solution generated by each algorithm and the best solution.
The algorithms VMI-DP and VMI-DP’ are applied without the procedures Improve and
Global Improve, while the best solution is computed among the solutions given by the
entire VMI-PD and VMI-PD’ algorithms and the VMI-PD-F and VMI-DP’-F algorithms.
Table 10 shows the composition of the total cost, Table 11 compares the total produc-
tion cost with the total distribution cost and Table 12 shows the production and shipping
quantity, the number of visits, the number of production time instants and the number of
vehicles.
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Table 9. Order-up-to level vs fill-fill-dump: Percent errors and statistics.

VMI-DP VMI-DP’ VMI-DP-F VMI-DP’-F

Average error 4.71 6.01 3.78 4.70

Maximum error 10.90 24.47 8.21 17.32

Number of best solutions 14 12 43 27

Time 0.1 0.2 0.6 0.0

Table 10. Order-up-to level vs fill-fill-dump: Composition of the total cost.

VMI-DP VMI-DP’ VMI-DP-F VMI-DP’-F

Inventory cost production facility 35618.34 34480.48 35894.03 34796.77

Production cost 954302.30 943118.30 956709.30 947401.80

Inventory cost retailers 231946.50 244248.70 215789.30 226966.10

Transportation cost 322382.30 335502.40 325854.20 331699.50

Table 11. Order-up-to level vs fill-fill-dump: Production vs distribution.

VMI-DP VMI-DP’ VMI-DP-F VMI-DP’-F

Total production cost 989920.64 977598.78 992603.33 982198.57

Total distribution cost 554328.80 579751.10 541643.50 558665.60

Table 12. Order-up-to level vs fill-fill-dump: Average quantities.

VMI-DP VMI-DP’ VMI-DP-F VMI-DP’-F

Quantity 20917.02 20728.83 20962.13 20818.80

Visits 474.94 557.80 492.17 548.18

Production times 18.13 18.20 18.42 18.34

Vehicles 6.27 5.64 6.02 5.97

The results show that, as expected, the fill-fill-dump policy obtains better solutions with
respect to the order-up-to level policies. It generates the best solution in about 73% of
the instances with a reduction of the average error of about 1%, obtained by significantly
reducing the total distribution cost (see Table 11). As expected, the reduction of the total
distribution cost is mainly due to the reduction of the inventory cost at the retailers (see
Table 10).

Finally, in Table 13 we present the results obtained for n = 50, 75, 100, 125, 150 and
H = 6, with S = {2, 3, 6}. For each value of n, 96 instances have been generated according
to the scheme described at the beginning of this section. The algorithms RMI and VMI-DP
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Table 13. Average and maximum percent error with H = 6.

n RMI VMI-DP VMI-DP-F

50 140.05 (248.79) 18.49 (43.94) 3.81 (12.54)

75 127.31 (221.37) 13.21 (36.17) 2.79 (8.60)

100 137.05 (233.64) 14.08 (29.47) 1.73 (8.54)

125 149.05 (245.70) 14.88 (31.31) 1.38 (8.05)

150 160.58 (256.94) 12.93 (31.42) 0.98 (9.11)

are applied without the improvement procedures and the errors are calculated with respect
to the best solution found, where the best solution is computed among the solutions obtained
by the entire RMI, the entire VMI-PD and the VMI-PD-F algorithms. The table shows the
average percent errors and, in parentheses, the maximum errors.

The VMI-DP-F has always found the best solution and the computational time required
by each of the algorithms has always been lower than one second. The reduction of the time
horizon from 30 to 6 has caused an increase of the impact of the transportation cost on the
total cost. This explains the larger errors shown in Table 13 when compared with the errors
shown for the instances with H = 30.

Conclusions

In this paper we have considered a complex inventory routing problem, in which items are
produced at (or distributed from) a facility to a set of retailers. The costs considered are fixed
and variable production (or ordering) costs, transportation costs and inventory costs at the
facility and at the retailers. The decisions to be taken are: When and how much to produce (or
to order from an external supplier) at the facility and when, how much and to which retailers
to ship. Different types of VMI policies can be implemented. We considered two of them:
The first one, called order-up-to level policy, is such that the order-up-to level quantity is
shipped to each retailer whenever it is served. The second one, called fill-fill-dump policy, is
obtained by partially relaxing the order-up-to level constraints. The optimal RMI and VMI
solutions are hard to obtain, since the problems to be solved include the vehicle routing
problem which is well known as a very hard problem to optimally solve. It turns out that
the VMI policies, although not optimally but heuristically found, can dramatically reduce
the costs. The computational results show that the VMI policies significantly reduce the
average error with respect to the RMI policy. While the inventory costs at the retailers are
slightly lower in the RMI policy, the transportation costs are much greater and involve
a much larger number of vehicles than in the VMI policies. Moreover, it turns out that
the fill-fill-dump policies reduce the total cost, by reducing the total distribution cost. Our
conclusion is that the coordination costs necessary to implement VMI policies are likely to
be more than compensated by the cost reduction obtained by the opportunity to optimally
manage an integrated system. Future research will be devoted to improve the fill-fill-dump
policies and to implement more sophisticated VMI policies in which the order-up-to level
constraints are furtherly relaxed.
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