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Abstract
Determining the optimal surgical case start times is a challenging stochastic optimization problem that shares a key feature with 
many other healthcare operations problems. Namely, successful problem solutions require using a vast array of available histori-
cal data to create distributions that accurately capture a case duration’s uncertainty for integration into an optimization model. 
Distribution fitting is the conventional approach to generate these distributions, but it can only employ a limited, aggregate por-
tion of the detailed patient features available in Electronic Medical Records systems today. If all the available information can 
be taken advantage of, then distributions individualized to every case can be constructed whose precision would support higher 
quality solutions in the presence of uncertainty. Our individualized stochastic optimization framework shows how the quantile 
regression forest (QRF) method predicts individualized distributions that are integrable into sample-average approximation, robust 
optimization, and distributionally robust optimization models for problems like surgery scheduling. In this paper, we present some 
related theoretical performance guarantees for each formulation. Numerically, we also study our approach’s benefits relative to 
three other traditional models using data from Memorial Sloan Kettering Cancer Center in New York, NY, USA.

Keywords  Operations research · Individualized learning · Surgery scheduling · Stochastic optimization · Robust 
optimization · Distributionally robust optimization

1  Introduction

The growth of personalized data from Electronic Health 
Records (EHR) and biomarkers has motivated us to investigate 
how to harness this individualization for problems in healthcare 
where the modeling of uncertainty is also critically required. 
We present a framework using quantile regression forests 
(QRF) to generate individualized distributions integrable into 
three optimizations paradigms. We demonstrate the effective-
ness of our individualized optimization approach in terms of 
basic theory and practice. Specifically, we focus on operating 
room scheduling because it is exactly the type of problem that 
we expect can benefit greatly from our framework.

The operating room (OR) is well known to be both 
the most significant source of revenue and cost for hos-
pitals [46]. As a significant driver of hospital operations 
and their efficiency, ORs are often affected by significant 
schedule volatility as they vary from low utilization to 
high levels of overtime [15, 37, 40]. It remains a chal-
lenge to schedule surgeries because surgical durations 
suffer from a high degree of variability due to the patient, 
procedure, and surgeon-related factors [27]. Studies on 
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surgery scheduling, accordingly, often entail stochas-
tic durations characterized by specified distributions as 
probabilistic estimators. These studies commonly defer to 
distributions on a population level where each patient is 
treated equally as coming from a single “generating” pool 
or a limited number of categories/types [14, 15, 35, 41]. 
The reason is it can be difficult to model the distribution 
of case times for every procedure type because there are a 
large number of distinct procedures, and many are known 
to have few observed instances [17, 36, 47]. Other studies 
have proposed Bayesian methods to obtain estimators even 
when data is limited [16, 18, 34]. These approaches still 
do not include, among others, patient-specific factors (e.g., 
comorbidities, body mass index). As a result, to our best 
knowledge, highly personalized case time distribution esti-
mates have not been used for optimization in this domain.

Recently, decision-making problems like portfolio optimi-
zation [1, 21], assortment planning [26], and medical dosing 
[4] have introduced the use of individualized information by 
leveraging machine learning (ML) methods. Following this 
idea, we introduce individualized estimates via ML for use 
in optimization under uncertainty. Unlike the works above, 
we require the ML model to give distributional predictions 
to quantify the uncertainty individual to each case. Our pro-
posed use of QRF accomplishes this as this method naturally 
outputs the prediction of an entire distribution. The benefit 
of ML methods, like QRF, is that they allow us to include 
patient, procedure, surgeon, and hospital factors for prediction 
even for unobserved feature values, and in a nonlinear manner 
beyond classical statistical tools [3]. Along this vein, we men-
tion that, in the robust optimization paradigm, the closest work 
to ours is [50] who suggested several ML approaches to create 
uncertainty sets. However, in contrast to [50], our chosen ML 
approach of QRF accommodates not only robust optimization 
but also other optimization modeling methodologies.

We show that the common paradigms of optimization under 
uncertainty, specifically sample average approximation (SAA), 
robust optimization (RO), and distributionally robust optimi-
zation (DRO), are all amenable to incorporating QRF. These 
optimization approaches depend on a decision-maker’s risk 
tolerance, and QRF can be integrated into the respective for-
mulations to enhance efficacy. Among these paradigms, SAA 
represents a risk-neutral decision process as a stochastic opti-
mization method that approximates an expectation objective 
by sampling [28, 45]. RO, which requires only a support set for 
the random variables, is risk-averse as it focuses on the worst-
case outcomes [5, 7]. DRO lies somewhere between SAA and 
RO in that it considers the worst-case performances among 
partially informed probability distributions [6, 13, 53].

As a demonstration of our approach, we consider the 
problem of setting surgery start times. We formulate an 
SAA, RO, and DRO scheduling model using a QRF to navi-
gate the difficult trade-off that arises from the stochasticity of 

patient case durations. Namely, surgeries occur in sequence, 
and so if a job’s start time is set too late, then the job before 
it may finish with too much time left over. Such an event cre-
ates idling and can lead the last surgical case in the block to 
operate in overtime. On the other hand, a job scheduled too 
early likely cannot start on time because it needs to wait for 
the previous job to finish first. This delay can cause patient 
dissatisfaction and adverse health outcomes.

Theoretically, we illustrate how the statistical consistencies 
of our formulations (with respect to their target guarantees) 
follow the known properties of QRF. In the RO and DRO set-
tings, we also study uncertainty sets naturally deduced from 
QRF and their tractabilities for the surgery problem. To com-
plement these results, we conduct empirical experiments in 
collaboration with Memorial Sloan Kettering Cancer Center 
(MSKCC) in New York, NY, USA. We test our formulated 
models using real-patient data and numerically highlight the 
strengths of our QRF-optimization integrated framework.

The remainder of this paper is organized as follows: 
Section 2 introduces our setting and notation for surgery 
scheduling. Section 3 reviews QRF and Section 4 dem-
onstrates how we integrate QRF into the three optimiza-
tion approaches as well as their corresponding consistency 
results. Section 5 provides a numerical example to test our 
proposed methodology. We conclude with Section 6.

2 � The surgery scheduling model

We consider a single operating room scheduling problem 
where the number of planned operations and their sequence 
for a given day is fixed. A common practice in surgery 
departments like those in cancer centers is that appoint-
ments for elective surgeries are made a few days before 
the surgery. Accordingly, we assume knowledge of the 
biometric characteristics of the incoming patients (namely 
the “features” in the predictive model). Our optimization 
model uses predicted distributions of the surgery dura-
tions, built from available patient features, to determine 
the best starting time for each surgery to account for the 
uncertainty of surgical durations. The model’s objective 
captures the previously mentioned trade-off between the 
minimization of patient wait times and the occurrence of 
overtime. We chose to employ a more basic model because 
its analysis will show that QRF is suitable for use with the 
three optimization methodologies considered in this paper. 
This is aligned with other works in the scheduling literature 
(e.g., [20, 30, 35] ) for clearer presentation of a proposed 
methodology. Moreover, we share a similar justification 
with the previous literature. Our objective can include idle 
times without significant deviation of notation if their cost 
rates are identical to those of the waiting times. Overall, 
the model setting is general enough to apply to problems in 
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other areas where the adjustment of time allowances for a 
sequence of jobs is used for improved operational behavior 
or cost containment [42, 52].

We follow similar notations as in [14]. The model’s deci-
sion is to select the start time of each surgery for a set of n 
elective surgeries in a given sequence on a given day for a 
given operating room. Let T be the scheduled closing time of 
the day and zi define the random duration (respectively, the 
outcome) of the ith surgery. The decision maker has to set 
the surgery time allowance of the ith case, xi , such that the 
first starts at time zero, the second at x1 , the third at x1 + x2 , 
and so on. Assuming that the start time for the first surgery is 
zero, the start time of any subsequent surgery is scheduled at 
the sum of the time allowances of all previous surgeries. We 
also denote by Z = (zi)i=1,…,n and X = (xi)i=1,…,n the vectors 
of surgery durations and surgery time allowances. Based on 
these assumptions, the waiting time, wi , which is defined as 
the difference between the scheduled surgery starting time 
and the actual starting time whenever the previous procedure 
ends, and the overtime l, can be represented as:

We assume that the first surgery always starts on-time and, 
hence, w1 = 0. Through rescaling, without loss of general-
ity, we assume each unit of waiting time costs one unit for 
any of the subsequent surgeries. Therefore, how long each 
patient personally has to wait from their appointed time 
until the start of their surgery is precisely the correspond-
ing waiting time cost. Lastly, an overtime cost of � per unit 
time is incurred if we run later than time T. Given the cost 
function f (X, Z) =

∑n

i=2
wi + �l and the definitions above, 

a surgery scheduling model, assuming hypothetically that Z 
are known, is constructed as:

where X = {xi ≥ 0 ∀i,
∑n

i=1
xi ≤ T} and (x1, ..., xn) are the 

surgery time allowance decision variables. By a monotonic-
ity argument on the objective function in terms of wi ’s and 
l, it is standard to see that Eq. 3 can also be reformulated as

(1)wi =max{0,wi−1 + zi−1 − xi−1}, i = 2, ..., n

(2)l =max{0,wn + zn − xn}

(3)

min
x∈X

f (X, Z) =

n∑
i=2

wi + �l

s.t. wi+1 = max{0,wi + zi − xi} i = 1, ..., n − 1

l = max{0,wn + zn − xn}

where (w2, ...,wn, l) are introduced as auxiliary decision 
variables. Note that the closing time T is used in the fea-
sible region X  . For completeness, we show in Appendix 
1 that idle times can be considered in this model by add-
ing 

∑n−1

i=1
(xi − zi) + wn to the objective function when their 

cost rates are identical to those of the waiting times. When 
the Z are stochastic, we can replace the objective of Eq. 3 
as either E[f(X,  Z)] or min{q ∶ P(f (X, Z) ≤ q) ≥ 1 − �} , 
where E[⋅] and P(⋅) are the expectation and probability taken 
with respect to Z. The former is an expected value formu-
lation, and the latter is a percentile formulation. Common 
approaches like SAA and RO provide approximate solutions 
to these formulations, as we describe in Section 4.

3 � Conditional distributions and quantile 
regression forests

Under stochasticity, we need the distribution of each zi to be 
tailored to the characteristics of each patient to ensure model 
Eq. 4 is solving a problem that considers the subtle differ-
ences across patient cases. Letting Ξ denote the patient’s 
feature (e.g., gender, age etc.) vector in the feature space B , 
we approximate F(z|�) = F(z|Ξ = �) , the distribution func-
tion of the surgery duration given Ξ = �.

Studies on machine learning (ML) methods for patient-
specific surgical duration estimates have mainly focused 
on point estimators (i.e., the mean response) (e.g., [3, 44, 
48]) and are typically not directly capable of predicting the 
probability distributions needed for optimization models 
involving uncertainty. Although bootstrap-type sampling can 
generate such predictions in basic linear models (see Sec-
tion 3.5 of [23]), we consider elaborate quantile ML methods 
to be a more direct way of accomplishing this in complicated 
modeling environments. The simplest quantile method to 
estimate F(z|�) is linear quantile regression (LQR) (see [29] 
for details), but it relies on linear assumptions. Thus, we are 
motivated to study QRF based on its ability to handle more 
complex high-dimensional data settings [38].

QRF extends from the widely known ensemble method of 
random forests (RF) (see [9] for details) and shares a similar 
procedural design. RF models are built to output mean predic-
tions by bootstrap aggregating (or bagging) decision trees, which 
is known to achieve stable prediction [19] and possess variance 
reduction properties [10]. Leveraging this, rather than taking the 

(4)

min
x∈X
w,l

f (X, Z)

s.t. w2 ≥ z1 − x1

wi+1 ≥ wi + zi − xi i = 2, ..., n − 1

l ≥ wn + zn − xn

wi, l ≥ 0 i = 2, ..., n
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mean of responses within the same leaf as the output of a tree, 
QRF takes the empirical distribution of the responses instead 
[33]. We refer to [38] for a more complete overview on QRF.

We close this section by stating that QRF recovers the true 
conditional distribution as the number of observations in the 
training data increases under appropriate regularity conditions. 
That is, the conditional distribution of z constructed from QRF 
is F̂(z|𝜉) , and it is known to converge in probability to F(z|�) 
(see Theorem 1 of [38] for specific details). The next section will 
show how this consistency property can be leveraged to provide 
asymptotic guarantees for various optimization under uncertainty 
formulations that take into account individualized information.

4 � Individualized optimization 
under uncertainty

This section presents our integration of QRF into three optimi-
zation formulations that capture the stochasticity of the surgery 
duration in an individualized fashion. We first consider an expected 
value formulation and SAA in Section 4.1. Then we move to a 
percentile formulation and RO in Section 4.2, and finally revisit 
the expected value formulation and DRO in Section 4.3.

We aim to provide theoretical justification for the validity 
of our approach by showing asymptotic guarantees for each 
method, as is the standard for algorithms of this nature. Through 
our analysis, we also hope to convey our reasoning on how ML 
methods can be incorporated into existing optimization mod-
eling paradigms to enhance the quality of decisions, in particu-
lar, with respect to individualization. Moreover, our theoretical 
results suggest that the proposed approach can be widely applied 
to problems beyond just the one we consider in this paper. On 
the other hand, an admitted limitation of our analysis is that it 
characterizes only asymptotic behaviors. Therefore, our numeri-
cal results in the following section aim to offer empirical support 
for the practical use of our approach in the OR scheduling set-
ting, where limited sample sizes commonly exist.

4.1 � Expected value optimization and sample 
average approximation

Our first considered formulation is Eq. 3 but with an expected 
value objective function

which minimizes the average overall scheduling cost condi-
tional on the feature �i of each patient, who uses a surgery 
duration zi . In this objective, we assume the distributions of 
all patients are conditionally independent, and we approxi-
mate the distribution F(z|�i) by QRF, namely F̂(z|𝜉i).

(5)E[f (X, Z)|�1,… , �n] = ∫ f (X, Z)

n∏
i=1

F(dzi|�i),

For convenience, we denote Ê[⋅|𝜉1,… , 𝜉n] as the con-
ditional expectation under independent F̂(z|𝜉i)’s. Exact 
computation of the Ê[f (X, Z)|𝜉1,… , 𝜉n] in this setting can 
be demanding. Thus, we use sample average approxima-
tion (SAA) to approximate the problem. In particular, we 
generate a set of scenarios under 

∏n

i=1
F̂(zi�𝜉i) , denoted 

S = {s1, ..., sk} . Every scenario s ∈ S is associated with a 
realization of Z(s) = (zi(s)) and with w1(s) = 0,

From Eq. 4 we can approximate the expected value problem 
via SAA as

where K is the number of scenarios independently generated 
in the SAA. Formulation Eq. 6 naturally combines the distri-
butional prediction of QRF into the expected value minimi-
zation. As noted previously, although modeling case dura-
tions by distribution fitting is standard, utilizing the variety 
of data to capture the particularities across different case 
durations is more challenging. In this regard, unlike other 
approaches that may also consider nonidentical distributions 
in surgery scheduling, the QRF generates a distribution for 
every case unique to each patient as it is conditional on all 
their available health information. Our numerical study in 
Section 5.2 shows this is highly beneficial to solution qual-
ity. Under standard conditions, the SAA problem Eq. 6 has 
a solution and optimal value that converge to those of Eq. 5, 
as we formally state next.

Theorem 1  Let H(X) be the objective function Eq. 5 (sup-
pressing �1,… , �n for convenience), and H∗ be the optimal 
value when solving Eq. 3 with Eq. 5 as the objective function. 
Let X̃∗ be an optimal solution to Eq. 6 where the scenarios 
are drawn from the distribution 

∏n

i=1
F̂(zi�𝜉i) . Assume that 

z and � satisfy the conditions in Appendix 1, and moreover 
that z is bounded a.s. within A ⊂ ℝ+ . We have H(X̃∗)

p
→ H∗ 

as K,N → ∞ , where N is the observation size in building 
the QRF and K is the scenario size in SAA.

wi(s) =max{0,wi−1(s) + zi−1(s) − xi−1}, i = 2, ..., n

l(s) =max{0,wn(s) + zn(s) − xn}.

(6)min
x∈X
w,l

K∑
k=1

1

K

( n∑
i=2

wi(sk) + �l(sk)
)

(7)
s.t. wi+1(sk) ≥ wi(sk) + zi(sk) − xi i = 1, ..., n − 1,

k = 1, ...,K

(8)l(sk) ≥ wn(sk) + zn(sk) − xn k = 1, ...,K

(9)
wi(sk), l(sk) ≥ 0 i = 2, ..., n,

k = 1, ...,K
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For proof of Theorem 1 see Appendix 1.

4.2 � Robust optimization

Robust optimization (RO) provides an alternative paradigm to 
account for the uncertainty in the surgery duration. In the RO 
paradigm, we replace the stochasticity with a so-called uncer-
tainty set or ambiguity set, which is a deterministic set that, intui-
tively, captures the likely realization of the surgery duration (other 
interpretations are possible, e.g., [5], page 33 discussion point B).

Formulation Eq. 4 has resemblance with single-server queues, 
for which [2] has introduced an RO approach to estimate relevant 
quantities. Following their framework, we introduce Γk and Γk 
and assert that the surgery times belong to the uncertainty set

The reason why we consider a set on 
∑i−1

j=k
zj , instead of other 

possible candidates (e.g., merely zk themselves), is that the 
objective function, upon rewriting, depends explicitly on 
these quantities which gives rise to easy bounds. However, 
this convenient choice can be plausibly replaced by others, 
which result in convex optimization problems that can still 
be handled by standard solvers.

RO considers

where wi and l satisfy Eqs. 1 and 2. Note that the waiting 
time of the ith patient can be expressed as

and it is also trivial to see that l = wn+1 . Putting these into 
Eq. 11 gives

Switching the order of maximizations, Eq. 13 is upper 
bounded by

(10)

Ũ =

{
(z1, z2, ..., zn)

|||| Γk,i ≤
i−1∑
j=k

zj ≤ Γk,i , ∀k < i ≤ n

}

(11)min
x∈X

max
z∈Ũ

(
n∑
i=2

wi + 𝜙l

)

(12)

wi = max{wi−1 + zi−1 − xi−1, 0} = max
1≤k<i

(
i−1∑
j=k

(zj − xj), 0

)

(13)

min
x∈X

max
z∈U

(
n∑
i=2

max
1≤k<i

(
i−1∑
j=k

(zj − xj), 0

)

+𝜙 max
1≤k<n+1

(
n∑
j=k

(zj − xj), 0

))
.

The innermost maximization can be easily seen to be 
attained at the upper bounds imposed in U , so that Eq. 14 
is equivalent to

Now, denoting Qi = max1≤k<i
�
Γk,i−1 −

∑i−1

j=k
xj, 0

�
 , then 

Eq.  15 can be reformulated into the following linear 
program

The question remains how to calibrate Γk,i’s. Using the idea 
of data-driven RO (e.g., [8]), one can set Γk,i ’s so that

where P̂(⋅|𝜉1,… , 𝜉n) refers to the probability under ∏n

i=1
F̂(zi�𝜉i) . Notice that in fact only Γk,i ’s are used; the 

Γ
k,i

 ’s can be dropped by adopting our subsequent analysis 
to a one-sided bound instead of two-sided in a straightfor-
ward manner. The guarantee of Eq. 17 can be translated to 
the optimal value of Eq. 11 and hence Eq. 16 provides an 
upper bound to

Namely, the optimal 1 − � quantile of f(X,  Z) under ∏n

i=1
F̂(zi�𝜉i) . Theorem 2 below details a more elaborate 

version of this claim, taking into account the Monte Carlo 
noises that we discuss next.

To find Γ
k,i

 and Γk,i , we find Γ̂ such that

(14)

min
x∈X

(
n∑
i=2

max
1≤k<imax

z∈U

(
i−1∑
j=k

(zj − xj), 0

)

+𝜙 max
1≤k<n+1max

z∈U

(
n∑
j=k

(zj − xj), 0

))
.

(15)

min
x∈X

(
n∑
i=2

max
1≤k<i

(
Γk,i−1 −

i−1∑
j=k

xj, 0

)

+𝜙 max
1≤k<n+1

(
Γk,n −

n∑
j=k

xj, 0

))
.

(16)

min
x∈X

n∑
i=2

Qi + 𝜙Qn+1

s.t. Qi ≥ Γk,i−1 −

i−1∑
j=k

xj i = 2, ..., n + 1

1 ≤ k < i

Qi ≥ 0 i = 2, ..., n + 1.

(17)

P̂

(
Γ
k,i

≤
i−1∑
j=k

zj ≤ Γk,i ,∀k < i ≤ n
|||||
𝜉1,… , 𝜉n

)
≥ 1 − 𝛿,

min
x∈X

min{q ∶ P̂
(
f (X, Z) ≤ q|𝜉1,… , 𝜉n

) ≥ 1 − 𝛿}
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where 𝜇̂j and 𝜎̂2
j
 are the mean and variance from F̂(⋅|𝜉j) . The 

left hand side of the expression inside the probability in 
Eq. 18 is a centered and normalized version of 

∑i−1

j=1
zj that 

appears often in the central limit theorem. The choice of Γ̂ 
in Eq. 18 then implies that one can choose

and

Now, to find the Γ̂ that satisfies Eq. 18, we can use quantile 
estimation (e.g., [22]). Simulate, say K, i.i.d. copies of Z, and 
for each Z one can calculate

Find the ⌊K(1 − �)⌋-th order statistic of the K copies of 
Eq. 20, call it Γ̃ . When K is large, Γ̃ will roughly satisfy 
Eq. 18. Note that, desirably, this calibration approach based 
on quantile estimation does not require a large n in Eq. 18, 
which could actually be relatively small in applications.

Using the above formulations and procedure gives the 
following:

Theorem 2  Assume that z and � satisfy the conditions in 
Appendix 1. Let H̃∗ be the optimal value of formulation 
Eq. 16, with Γk,i calibrated from Eq. 19 and Γ̂ approximated 
by Γ̃ , the ⌊K(1 − �)⌋-th order statistic of Eq. 20 among the 
K samples of Z generated under 

∏n

i=1
F̂(zi�𝜉i) . Assume that 

the true conditional distribution F(z|�) is continuous and 
strictly increasing in z. Let H∗ be the optimal value for 
minx∈X min{q ∶ P

(
f (X, Z) ≤ q|�1,… , �n

) ≥ 1 − �} . Then

The proof of Theorem 2 is in Appendix 1.
Note minx∈X min{q ∶ P

(
f (X, Z) ≤ q|�1,… , �n

) ≥ 1 − �} 
means minimizing the (1 − �)-quantile of f(X,  Z). Theo-
rem 2 stipulates that the RO formulation can be viewed as a 

(18)

P̂

⎛
⎜⎜⎜⎝

��������

∑i−1

j=k
zj −

∑i−1

j=k
𝜇̂j�∑i−1

j=k
𝜎̂2
j

��������
≤ Γ̂,∀k < i ≤ n

�����
𝜉1, .., 𝜉n

⎞
⎟⎟⎟⎠

≥ 1 − 𝛿

Γ
k,i

=

i−1∑
j=k

𝜇̂j − Γ̂

√√√√ i−1∑
j=k

𝜎̂2
j

(19)Γk,i =

i−1∑
j=k

𝜇̂j + Γ̂

√√√√ i−1∑
j=k

𝜎̂2
j

(20)max
k<i≤n

��������

∑i−1

j=k
zj −

∑i−1

j=k
𝜇̂j�∑i−1

j=k
𝜎̂2
j

��������

lim inf
N→∞,K→∞

H̃∗ ≥ H∗

conservative approximation of this optimization. Also, note 
that when the continuity assumption of F(z|�) is removed, 
we can modify the above procedure slightly by inflating our 
obtained Γ̃ by an arbitrarily small constant, i.e., we use Γ̃ + 𝜖 
for some small � , and our argument (detailed in the proof) will 
carry through to get the same guarantee in Theorem 2.

4.3 � Distributionally robust optimization

We next consider distributionally robust optimization (DRO). This 
approach targets expected value objective function, like in the case 
of SAA, but under only partial information of the distributions. 
More specifically, it optimizes the worst-case expected value among 
all distributions that are in an uncertainty set or an ambiguity set 
which represents the partial information. In our scheme, we assume 
the quantiles of each patient’s surgery duration distribution at a list 
of given probability levels are known. These information pieces can 
be drawn from the QRF, achieving individualization.

The motivation for using DRO is that its solution can be 
more robust to some hidden uncertainty. In our circumstance, 
for instance, imposing enough quantile information means we 
know the distribution of each patient’s surgery duration distri-
bution, but we do not assume any dependency structure among 
the patients. The DRO solution is thus robust against this hid-
den stochasticity that is not revealed by the individualization, 
which focuses only on the prediction for each patient.

More concretely, for each patient i, we choose a sequence 
qi1 < qi2 < ⋯ < qim , and set rij = F̂(qij|𝜉i) which can be 
inspected from the QRF. Roughly speaking, qij is the rij-th 
quantile of the duration distribution given �i . For conveni-
ence, we assume that rim = 1 , so that the qim is the upper 
limit of the support of the data. We consider the uncertainty 
set

where P is the set of all probability distributions supported 
on ℝn

+
 . Here, the constraints indicate that the marginal rij-th 

quantiles for patient i are known to be qij under the QRF. 
They also include the information that the largest possible 
value of F̂(z|𝜉i) is estimated to be qim.

We seek to solve

We approach Eq. 22 using the technique in [35], which first 
replaces f(X, Z) as the optimal value of a linear program 
(LP) given by

(21)Û = {P ∈ P ∶ P(zi ≤ qij) = rij, i = 1, .., n, j = 1, ..,m}

(22)min
x∈X

max
P∈Û

EP

[
f (X, Z)

]
.
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This can be derived from the definition of wi and l in Eqs. 1 
and 2, and considering the dual of the resulting LP, where 
y1,… , yn are the dual variables. A slight change of notation 
to (23) also leads to the dual formulation (see Appendix 1 
) when considering idle times. Then problem Eq. 22 can be 
rewritten as

where Ω refers to the constraint set in Eq.  23, and 
y = (y1,… , yn) . We now focus on the inner maximization 
problem, maxP∈Û EP

�
maxy∈Ω

∑n

i=1
(zi − xi)yi

�
 . The following 

lemma transforms it into a more manageable form:

Lemma 1  The dual representation of the optimization 
maxP∈Û EP

�
maxy∈Ω

∑n

i=1
(zi − xi)yi

�
 is

where �11,… , �nm are the dual variables corresponding to 
the quantile constraints.

For proof of Lemma 1 see Appendix 1.
By Lemma 1, problem Eq. 22 can be represented by

We want to transform Eq. 26 to a linear program. Note that 

maxy∈Ω
∑n

i=1
maxj=1,…,m

�
(qij − xi)yi −

∑m

k=j
�ik

�
 is a con-

vex maximization problem over the polyhedron Ω , and it 
suffices to consider its extreme points for an optimal solu-
tion. This allows us to follow the method discussed in Propo-
sition 2 of [35] to reduce it to solving an LP relaxation of an 
integer program using the following proposition.

Proposition 1  Problem Eq. 22 can be reformulated as the 
following linear program

(23)

max
y

n∑
i=1

(zi − xi)yi

s.t. yi − yi−1 ≥ −1 2 ≤ i ≤ n

yn ≤ �

yi ≥ 0 ∀i = 1, ..., n.

(24)min
x∈X

max
P∈Û

EP

[
max
y∈Ω

n∑
i=1

(zi − xi)yi
]
,

(25)

min
�

max
y∈Ω

n∑
i=1

max
j=1,…,m

{
(qij − xi)yi −

m∑
k=j

�ik

}

+

n∑
i=1

m−1∑
j=1

rij�ij +

n∑
i=1

�im,

(26)

min
x∈X,�

max
y∈Ω

n∑
i=1

max
j=1,…,m

{
(qij − xi)yi −

m∑
k=j

�ik

}

+

n∑
i=1

m−1∑
j=1

rij�ij +

n∑
i=1

�im.

where (�1, ..., �n) are the dual variables, �io = yi for all 
i ∈ [g, o] and any g ≤ o . Also, �io = maxj=1,…,m{qij�io −

∑m

k=j
�ik}

 for 
o = 1, ..., n + 1.

For proof of Proposition 1 see Appendix 1.
The following shows that the DRO under the quantile 

information drawn from the QRF gives an asymptotic bound 
for the true expected value:

Theorem 3  Assume that z and � satisfy the conditions in 
Appendix 1. Suppose that the true conditional distribution 
function F(z|�) is continuous and strictly increasing in z. 
Let H∗ be the optimal value of Eq. 3 with objective being 
Eq. 5, and Ĥ∗ be the optimal value of Eq. 27. Then for any 
𝜖 > 0 , we have

as N → ∞ , where N is the data size in constructing the QRF.

For proof of Theorem 3 see Appendix 1.
Note that Theorem 3 does not require strong duality of the 

dual formulation in Eq. 25, as the upper bound in Theorem 3 
can be obtained as long as Eq. 25 upper bounds its primal 
moment problem. However, we do need strong duality of an 
associated moment problem when the quantiles are set to 
be the true quantities, and this property is guaranteed by the 
continuity and strict monotonicity of F(z|�).

Finally, also note that, unlike SAA and RO discussed 
before, our DRO approach does not require running simula-
tion from the QRF.

(27)

min
x,�,�

n∑
i=1

�i +

n∑
i=1

m−1∑
j=1

rij�ij +

n∑
i=1

�im

s.t. �io ≥
{
qij�io −

m∑
k=j

�ik

}
1 ≤ i ≤ n

i ≤ o ≤ n + 1

1 ≤ j ≤ m

min{o,n}∑
i=g

�io ≤
min{o,n}∑

i=g

xi�io + �i 1 ≤ g ≤ n

g ≤ o ≤ n + 1

n∑
i=1

xi ≤ T

xi ≥ 0 1 ≤ i ≤ n,

(28)P
(
H∗ ≤ Ĥ∗ + 𝜖

)
→ 1
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5 � Numerical study

To examine the effectiveness of our approach, a numerical study 
was conducted using real-patient data from Memorial Sloan Ket-
tering Canter (MSKCC), New York, NY, USA, one of the lead-
ing cancer treatment and research institutions in the world. The 
center has surgical operations across thirteen different services 
and in a total of forty different operating rooms. Our data contains 
the recorded surgeries for all services between 2010 to 2016 with 
129,742 distinct patients, but for our analysis, we only used those in 
Urology (URO). Within the data, we considered hospital, patient, 
operational, and temporal factors as done by [39] to achieve highly 
accurate case duration predictions. Table 1 details the features 
corresponding to these factors and note that this includes patient-
specific information like age, gender, race, BMI, treatment history, 
and comorbidities to achieve individualization.

The surgical durations used in our analysis are defined as 
the recorded times measured from wheels-in to wheels-out. 
While no outliers were thrown out, each case in our data has 
similar time stamps as those described by [34] and, likewise, 
observations with discrepancies between recorded patient 
and operation times were removed. Our final dataset con-
tained 23,176 observations after also excluding patients with 
any missing time records. Table 2 summarizes the number 
of surgeries, unique primary surgeons, and unique current 
procedural terminology (CPT) codes, along with the number 
and proportion of inpatient surgeries and the historical dura-
tions of surgeries in the final dataset. Table 3 summarizes 
key demographics of patients in the data set.

5.1 � Test setup

The individualized distributions from QRF were evaluated 
for each optimization model in Section 4 by comparing their 
performances against equivalent models using alternatively 
constructed distributions. There were three distribution 
constructing benchmarks considered for our experiments 
and analysis. The first was a single distribution fitted to all 
case durations in the training set. The second benchmark 
stratified the data and fitted a distribution by the primary 
surgeons since durations for the same procedure can vary 
significantly between surgeons. Linear quantile regression 
(LQR) was used as the third benchmark to ensure the QRF 
can be compared to a similar method. Fitting distributions 

Table 1   Features (covariates) in the MSKCC dataset grouped into four main categories that were used for training the predictive models

* denotes ten most important variables identified from the QRF model

Category Features

Hospital The primary surgeon, experience of the primary surgeon in years, number of publications of the primary surgeon, surgery room*, 
number of panels in the surgical case*, the sum of all RVU measures for the case*, the mean of all RVU measures for the case*, 
the maximum of all RVU measures for the case*, the minimum of all RVU measures for the case, number of procedures for the 
surgical case, indicator of robotic procedure*, the mean duration of the last 5 similar cases based on the primary procedure, the 
number of times the surgeon had a similar surgery in the 30 days, the number of times the surgeon had a similar surgery in the 
past, whether or not a particular equipment was needed for the surgery, and the type/amount of required equipment

Patient Comorbidity measures such as obesity, depression, etc., Body Mass Index (BMI), weight, race, gender, age, indicator as inpatient 
or outpatient*, the number of days spent in the hospital prior to the surgery, the number of times patient underwent chemother-
apy, the number of times patient underwent radiation therapy, the number of times patient had a CT scan, the number of times 
patient had previously underwent surgery*, and the number of days since the patient’s last surgery*

Operational The number of days between the day of surgery and the day the surgery was scheduled, the number of cases assigned to the 
surgeon on the day of surgery, the number of cases assigned to the surgery room on the day of surgery, the number of cases 
scheduled on the day of surgery*, the sequence number of the surgery on the surgeon’s schedule, and the sequence number of 
the surgery in the surgery room

Temporal The weekday of the surgery, the month of the surgery, and the year of the surgery

Table 2   Characterization of operational data for URO service in 
MSKCC

Service Surgeries Surgeons CPT 
Codes

Inpatient 
(%)

Mean 
Duration 
(SD)

URO 23,176 49 437 9,428 
(40.7)

153.5 
(129.2)

Table 3   Demographics of the 
patient data from the URO 
service

Race, Number ofObservations (%)

Service Age (SD) Female (%) White Black Asian Other

URO 63.1 (13.6) 5196 (22.4) 19,544 (84.3) 1,466 (6.3) 799 (3.4) 1,367 (5.9)
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by CPT codes was not a considered benchmark because this 
approach follows closely with MSKCC’s planned times, 
which are a considered benchmark in Section 5.4. MSKCC’s 
scheduling system estimates these hospital planned times 
(H-PT) by using the median durations of the 20 most recent 
historical cases filtered by the CPT, then surgeon, and then 
operating room. The system will relax the filtering require-
ments for the operating room and surgeon if they do not 
yield any matches. Specific samples may also be excluded 
based on the system’s defined outlier threshold and on occa-
sion, these planned times can be overridden by a lead sur-
geon. We constructed predictions using the median from 
log-normal distributions fitted for each CPT (all had p-val-
ues > 0.1 using the Anderson-Darling test) and compared 
them with the H-PT. For CPTs with single instances, the 
lone value was considered the prediction. Our analysis pre-
sented in Table 13 of Appendix B found no statistical dif-
ference between the H-PT and CPT approach (see Appendix 
Table 14). Hence, we proceeded without considering CPT 
fitted distributions, given that we can infer their performance 
by examining the H-PT. We set 80% of the total available 
data for training/fitting each distribution approach and save 
the remaining 20% for use in evaluating the performance of 
the optimization methods. For the split, we used the most 
recently recorded observations in our data for the test set.

For the possible distribution to use, we considered the nor-
mal and log-normal distributions as they have been historically 
found to be good models for surgery durations [36, 56]. Note, 
these studies constructed distributions by conditioning on pro-
cedure type, while our distributions are not. For this reason, 
we fit a normal, log-normal, Weibull, and gamma distribu-
tion using all cases in the training set to verify if our setting 
is consistent with previous findings. Table 4 summarizes the 
estimated parameters for each model and their p-value from the 
Anderson-Darling (AD) test. The results indicate that each dis-
tribution was a poor fit which is not unexpected when the sam-
ple size is large, and the true distribution is not in the consid-
ered family. Since the log-normal model held the best p-value, 
we further checked how well this log-normal model would fit 
for the test set with the AD test and found it is an acceptable 
fit (p-value = 0.056). Lastly, we followed the procedure of 
[49] and obtained comparable results in that log-transformed 
data was considered a good fit in 71.1% of the Shapiro-Wilk 
tests while it was only 62.3% for non-transformed data. As a 

result, we proceeded with using the log-normal distribution to 
fit over all cases and cases grouped by the primary surgeon. 
The QRF model was built using 10-fold cross-validation for 
hyper-parameter tuning, while LQR requires no tuning. Both 
models used the same set of features described in Table 1 and 
no additional preprocessing was applied to the training set 
beyond encoding categorical variables for LQR.

5.2 � Numerical results

We break down the results for the URO surgery schedules 
into regimes that correspond to the number of cases per-
formed on a surgical day. Specifically, we organized the 
cases each day in the data set based on their operating room 
to yield schedules with the number of surgeries ranging from 
2 to 11. A breakdown of the total number of surgeries cor-
responding to each case size is presented in Table 12 of 
Appendix B. The tables we show in this section further bin 
the size of schedules into pairs of two to generate five dif-
ferent regimes to summarize our results. For a breakdown 
of waiting and overtime costs for schedules of each case size 
separately, we refer to Appendix Figures 5, 6, 7, 8, 9 and 10. 
One should keep in mind that because OR time is extremely 
costly, most surgical days have as many cases as can be fit 
into the day. Therefore, regimes on average that consist of 
more surgeries in a day reflect lower average case durations.

The results to be presented in this section is based on the 
out-of-sample performance cost computed using (1) and (2) 
and the realized surgery durations from the test set. Consistent 
with [35], all results assume equal penalties for waiting and 
overtime, which is sufficient to illustrate the type of behav-
ior each approach exhibits. For the intended OR surgical day 
length, T, we did not use MSKCC’s official hours. Their hours 
include planned late rooms, which every day extends the offi-
cial hours for a varied set of rooms, and this data is not col-
lected consistently enough to be available. Instead, we chose 
T to be the sum of actual surgical duration data for a given day 
because this is the minimal possible time a room would run. 
MSKCC considers waste as any minute past what is necessary 
for the OR, and so it remains consistent with their view that 
everything past this defined T is overtime. While total planned 
time in each model’s solution will be exactly equal to T, for our 
experiments, setting it this way still allows the realized objec-
tive costs to capture the accumulated inaccuracy of the distri-
butions provided by a prediction approach for the individual 
cases. In Section 5.3, we use the median of historical cases for 
T to establish that our methodology is practical.

We start with the SAA framework discussed in Sec-
tion 4.1. As a preliminary, we solved the problem repeat-
edly with sample sizes ranging from 10 to 6000, each with 5 
replications, to evaluate the convergence of the SAA model’s 
solutions. We use 90% of the training data to train our QRF 
model and select four instances of sizes 3,5,7 and 9 from 

Table 4   Parameter estimates and goodness of fit summary

Distribution Parameter 1 (Std. 
Error)

Parameter 2 (Std. 
Error)

P-value

Log-Normal 4.63(0.006) 0.951 (0.004) 0.013
Normal 153.5 (0.826) 129.2 (0.584) 0.000
Weibull 1.19 (0.006) 162.5 (0.934) 0.009
Gamma 1.35 (0.011) 0.0088 ( 8.49 ⋅ 10−5) 0.004
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the remaining 10% of the training data for validation. The 
validation set was split in the same manner as our test set, 
based on the chronological ordering of the cases. Appendix 
Figure 4 displays the trade-off between the size of samples 
drawn from QRF distributions and consistency of the solu-
tion cost for the SAA model. At 5000 samples, the model’s 
objective cost converges with minimal variance, and its solu-
tion is good compared to the actual case durations from the 
validation data. Moreover, it was observed that 5000 samples 
was a generous quantity for use with the surgery distribu-
tions derived from the benchmark approaches. Therefore, to 
define the schedule of start times for each problem instance, 
we implemented SAA by drawing, for every surgery in that 

surgical day, 5000 samples from the surgery duration dis-
tributions derived from each approach considered (i.e., the 
L-Norm, L-Norm-PS, LQR, and QRF).

In Figure 1, the distribution of overall costs for each of 
the four models, stratified by the number of surgeries in the 
surgical day, is shown. Our individualized approach using 
QRF suggests lower scheduling costs (in minutes) than 
the other three models. More concretely, we can see from 
Table 5 that the improvement in the solution cost tends to 
increase for instances with a larger number of surgeries. For 
a global comparison, we computed a weighted average (by 
the number of instances) of the performance of each model 
across all the categories of cases per day. We found QRF 

Fig. 1   Box-plots for the SAA method comparing the L-Norm, L-Norm-PS, LQR and QRF model’s out-of-sample error for the different surgery 
regimes organized by the number of cases scheduled each day

Table 5   Weighted percentage 
improvement of the out-of-
sample performance error when 
the QRF is used rather than the 
L-Norm, L-Norm-PS, LQR 
models in mean and percentiles 
for the Individualized Sample 
Average Approximation 
Optimization framework

The percentiles metric corresponds to the schedule whose cost by the QRF model falls at that percentile

Number of Surgeries per Day

Metric Model 2-3 4-5 6-7 8-9 10-11

Mean L-Norm 43.1 57.8 63.0 66.0 71.5
L-Norm-PS 54.7 54.2 55.8 59.7 69.6
LQR 28.0 16.8 11.4 20.2 23.7

75th percentile L-Norm-PS 42.9 58.0 64.4 64.5 70.4
L-Norm-PS 53.6 55.0 58.6 56.8 70.7
LQR 33.7 16.8 4.7 26.9 15.3

95th percentile L-Norm 45.1 60.0 57.4 52.7 70.9
L-Norm-PS 51.9 57.8 53.0 48.4 70.4
LQR 21.5 26.3 21.4 15.1 32.7
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yields a 55.1% , 56.6% , and 23.1% lower average cost than 
L-Norm, L-Norm-PS, and LQR across all case sizes.

Analogous to the approach above for SAA, we next 
consider the RO framework discussed in Section 4.2. For 
each schedule, we implemented RO using uncertainty sets 
based on Eq. 10 derived from L-Norm, L-Norm-PS, LQR, 
and QRF. We set K = 5000 and � = 0.05 for each model. 
Figure 2 depicts the distributions of overall costs for each 
of the four models grouped by the number of surgeries 
each schedule has in the test set. Here, we see that the 
RO approach’s conservative nature incurs a higher cost 
than the SAA approach. Table 6, however, still shows QRF 
again noticeably outperforms the L-Norm and L-Norm-
PS models. The percentage improvement of QRF over 

these two models is also even more significant than under 
the SAA framework as surgery size grows. On the other 
hand, LQR is a closer competitor to QRF under RO where 
for schedules with two to three surgeries, it outperforms 
QRF by 1.2% on average. This is not necessarily unex-
pected, given that both LQR and QRF are ML approaches 
capable of predicting individualized distributions. The 
fact that QRF is only outperformed slightly by LQR for 
one regime but outperforms LQR for all other, larger-size 
regimes indicates our approach remains favorable, espe-
cially when handling larger-size schedules. Altogether, 
QRF leads to 64.2% , 68.8% , and 2.0% less total cost than 
L-Norm, L-Norm-PS, and LQR based on weighted aver-
ages over all regimes.

Fig. 2   Box-plots for the RO method comparing the L-Norm, L-Norm-PS, LQR and QRF model’s out-of-sample error for the different surgery 
regimes organized by the number of cases scheduled each day

Table 6   Weighted percentage 
improvement of the out-of-
sample performance error when 
the QRF is used rather than the 
L-Norm, L-Norm-PS, LQR 
models in mean and percentiles 
for the Individualized Robust 
Optimization framework

The percentiles metric corresponds to the schedule whose cost by the QRF model falls at that percentile

Number of Surgeries per Day

Metric Model 2-3 4-5 6-7 8-9 10-11

Mean L-Norm 38.9 63.2 80.8 82.2 83.8
L-Norm-PS 62.0 64.3 78.1 79.4 81.1
LQR -1.2 5.8 7.0 4.3 12.8

75th percentile L-Norm 41.2 57.7 79.2 82.0 83.2
L-Norm-PS 62.7 56.4 77.2 78.7 81.5
LQR 0.7 4.5 9.9 10.5 19.4

95th percentile L-Norm 38.1 40.5 72.6 76.4 76.9
L-Norm-PS 55.1 52.2 71.3 74.6 75.4
LQR -6.5 -0.9 5.4 22.9 33.8
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Finally, we consider the DRO framework in Section 4.3. 
We implemented DRO with constraints dictated by percentiles 
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95} of the surgery 
duration distributions derived from L-Norm, L-Norm-PS, LQR 
and QRF. Figure 3 once again shows improvement of QRF over 
the other three models regarding the distributions of overall 
costs. In particular, Table 7 shows over all cases, QRF obtains 
a 67.1% , 62.8% , and 22.8% less out-of-sample cost than com-
pared to L-Norm, L-Norm-PS, and LQR, respectively.

5.3 � Sensitivity analysis of T

To understand the influence of the T parameter in models, 
we conduct sensitivity analysis to determine its effect on 
the out-of-sample performance. First, we rerun our models 
with scaling of the original T values used in our numeri-
cal experiments by {0.90, 0.95, 1.05, 1.10} . In Appendix B, 
Tables 20, 21 and 22 detail the results corresponding to this 
scaling for the SAA, RO, and DRO approaches. The results 
indicate a generally positive correlation between the QRF 
model’s performance over the other benchmark models and 
the scaling value. The association was nonlinear for only 
the RO framework with LQR. Even these results, however, 

Fig. 3   Box-plots for the DRO method comparing the L-Norm, L-Norm-PS, LQR and QRF model’s out-of-sample error for the different surgery 
regimes organized by the number of cases scheduled each day

Table 7   Weighted percentage 
improvement of the out-of-
sample performance error when 
the QRF is used rather than the 
L-Norm, L-Norm-PS, LQR 
models in mean and percentiles 
for the Individualized 
Distributionally Robust 
Optimization framework

The percentiles metric corresponds to the schedule whose cost by the QRF model falls at that percentile

 Number of Surgeries Per Day

Metric Model 2-3 4-5 6-7 8-9 10-11

Mean L-Norm 55.2 70.4 77.1 77.5 72.5
L-Norm-PS 52.9 65.7 72.7 72.6 67.7
LQR 22.5 20.6 21.9 27.7 20.6

75th percentile L-Norm 51.8 68.4 76.5 75.0 71.9
L-Norm-PS 51.1 61.2 73.3 70.4 66.7
LQR 21.9 19.3 26.3 29.4 19.7

95th percentile L-Norm 43.1 68.6 70.8 71.0 64.3
L-Norm-PS 46.0 63.6 66.2 65.4 63.5
LQR 7.7 28.0 7.5 18.5 21.2
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show that the QRF approach performs better than LQR for 
larger values of T. Averaging across all case sizes, we find 
by varying T that QRF improves L-Norm, L-Norm-PS, and 
LQR for all considered optimization methodologies by no 
fewer than 35.0% , 33.8% , and 0.8% , respectively.

The findings indicate that QRF will still be beneficial so 
long as MSKCC can set T to reasonably reflect the cases 
each day. Next, we provide results to show that MSKCC can 
realistically see the benefits of utilizing QRF in practice. In 
particular, each model was rerun with T set to the historical 
median sum of actual surgical durations in the training data 
based on their case size. Table 23 in Appendix B presents 
the median values found from the training and test set.

Table 8 presents the percent improvement in using the 
QRF approach over other benchmarks in each optimization 
framework with our median-based T. Like previous results, 
QRF strongly improves upon the standard distribution fit-
ting benchmarks across all optimization frameworks. The 
QRF demonstrated a better out-of-sample performance than 
L-Norm overall by 33.9% for SAA, 54.4% for RO, and 61.9% 
for the DRO framework. For L-Norm-PS, the QRF approach 
averaged across regimes was 30.2% , 59.0% , and 54.6% better 
under the SAA, RO, and DRO framework, respectively. LQR 
was the closest approach to QRF, having performed 1.1% 
better in the RO framework and 9.2% and 16.7% worse in the 
SAA and DRO framework. Even if MSKCC used the simple 
idea of medians to set T, the QRF approach can still typically 
provide superior results to other benchmarks. The results 
suggest that using a more sophisticated idea to estimate T 

more accurately will only lead to better performance with 
QRF.

5.4 � Insights

For insight into the improvement numbers, we analyzed 
each of the four approaches in terms of prediction accuracy, 
separate of the optimization task. This is because for each 
of the percentage improvements shown in Tables 5, 6, and 
7, all models were equal aside from their parameters. Note, 
the mean absolute error (MAE) and root-mean-square error 
(RMSE) presented in this section are in the unit of minutes 
and generally referenced as error(s).

Table 9 displays the MAE and RMSE from the true dura-
tions in the testing data for the median, min, and max values 
of the 5000 samples drawn as described in Section 5.2. The 
results displayed in Table 9 show that even the extremes of 
the drawn samples (i.e., the largest sampled value for each 
case) of the QRF is, on average, significantly closer to the 
true durations than L-Norm and L-Norm-PS. We see then 
QRF gives a distribution of the surgery time that has less 
variability, and this smaller variability, in turn, means smaller 
uncertainty in the optimization. As a result, the solution of 
the model needs to “hedge” a smaller variability of scenarios 
and is less conservative. This is the opposite of fitting a sin-
gle or limited number of distributions from the population. 
Although every patient’s durations, when aggregated, do 
form a “pooled” distribution, patients and procedures cor-
relate with the cases’ specifics. Thus, it is intuitive to see why 
having some patients share the same duration distribution 

Table 8   Setting parameter T 
with historic median based on 
schedule case size. The results 
show the weighted percentage 
improvement of the out-of-
sample performance error when 
the QRF is used rather than the 
L-Norm, L-Norm-PS, LQR 
models for each optimization 
framework

Number of Surgeries per Day

Model 2-3 4-5 6-7 8-9 10-11

SAA L-Norm 24.7 29.3 44.4 53.2 54.7
L-Norm-PS 24.9 24.6 35.5 45.8 51.4
LQR 10.5 5.4 5.0 14.2 9.2

RO L-Norm 22.7 53.5 75.4 78.4 76.7
L-Norm-PS 50.9 44.8 72.0 74.8 75.0
LQR -5.3 4.6 5.4 2.2 1.4

DRO L-Norm 55.1 53.0 71.5 73.7 68.4
L-Norm-PS 44.7 48.0 67.2 68.0 62.6
LQR 16.8 8.9 19.6 20.8 17.7

Table 9   MAE (RMSE) 
in minutes of the median, 
minimum, and maximum 
values of the samples drawn 
from QRF, LQR, L-Norm, and 
L-Norm-PS

MAE (RMSE) from MAE (RMSE) from MAE (RMSE) from
Median of Samples Min of Samples Max of Samples

QRF 24.5 (40.2) 50.5 (76.7) 66.3 (85.8)
LQR 34.4 (55.3) 65.0 (95.4) 86.7 (108)
L-Norm 110 (142) 135 (188) 329 (352)
L-Norm-PS 81.4 (111) 98.6 (144) 272 (294)
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with identical parameters can lead to more inaccurate mod-
eling and hence poorer optimization solutions. For addi-
tional analysis of each distribution model on the test data see 
Tables 18 and 19 in Appendix B.

We further extended our analysis to include the MSKCC’s 
planned times (H-PT) so that five approaches (QRF, LQR, 
L-Norm, L-Norm-PS, and H-PT) can be compared to the true 
durations in the test set. The median was taken as the predic-
tion to be consistent with how MSKCC’s planned times are 
derived when evaluating for accuracy. In addition, the median 
was also found to produce the lowest mean absolute error 
(MAE) for QRF and LQR. Table 10 provides the correlation, 
MAE, and RMSE associated with each approach. We also 
provide in Table 10 the MAE from the subset of predicted 
times that were greater than their observed duration (over pre-
dicted) and the subset of predicted times that were less than 
their observed duration (under-predicted). By ordering the 
MAE corresponding to each approach (excluding H-PT) from 
smallest to largest, a similar structure to the results in Tables 5, 
6, and 7 can be seen in that QRF performs best, followed by 
LQR, L-Norm-PS, and L-Norm. Table 10 details the number 
of non-identical distributions constructed over our entire data-
set to highlight the association between individualization and 
accuracy. Note, these are based on the quantiles for QRF and 
LQR, the distribution parameters for the log-normal distribu-
tions, and assumed for H-PT. The errors of the over-predicted 
and under-predicted groups further supports the notion that 
QRF produces fewer variable distributions.

As discussed previously, a known challenge in using CPT 
codes is that there exists a large number of them, a major-
ity of which have limited or no historical data [16, 34]. The 
results of table 10 show QRF outperforms the H-PT, which 
is from a model stratified by CPT code. To more precisely 

understand the reason, we examined if QRF is better suited 
than H-PT for predicting the duration of procedures with 
little to no historical data. Before proceeding, we note that if 
a procedure has zero past observations, MSKCC’s planning 
system will use similar surgeries performed by surgeons to 
impute a value for the H-PT. Likewise, ML methods can 
extrapolate for procedures with no historical observations by 
examining other relevant features. For analysis, we focused 
on CPT codes associated with ten or fewer historical obser-
vations and compared the predictive power of QRF versus 
H-PT in two breakdowns presented in Table 11. The first 
breakdown is predicted durations for procedures with at least 
one instance in the training data, while the second is for 
procedures with zero instances present in the training data.

The QRF slightly underperforms the H-PT when pre-
dicting the durations of previously unseen procedures but 
noticeably outperforms the H-PT if just a few records of a 
procedure are available. Interestingly, we find that all pro-
cedures with zero instances in the training data were part of 
secondary services scheduled through the URO department. 
Such events can occur when patients have urologic cancer 
that metastasized to regions like the thorax. As mentioned 
in Section 5.1, MSKCC’s scheduling system primarily filters 
by CPT to predict surgery durations. This means secondary 
URO services could have jointly used CPTs with another 
department. Therefore, we reason that H-PT is likely bet-
ter than QRF at predicting previously unseen procedures 
because H-PT uses historical records outside the URO 
department. It is still promising, however, that QRF could 
achieve statistically the same MAE as H-PT with fewer 
observations (t-test: p-value = 0.242).

A set of important/significant variables (see Table 17 in 
Appendix B) that showed up in both QRF and LQR were the 

Table 10   Using the median corresponding to distributions from QRF, L-Norm, L-Norm-PS, LQR, and H-PT to Predict Case Durations

Correlation MAE (RMSE) MAE (RMSE) of MAE (RMSE) of Num. of Non-identical
Over Predicted Under Predicted Distributions Constructed

QRF 0.955 23.7 (39.2) 18.6 (28.9) 27.8 (46.4) 23,176
LQR 0.909 34.4 (55.6) 25.0 (37.2) 43.2 (68.7) 23,176
L-Norm ≈ 0 110 (142) 54.9 (57.9) 168 (193) 1
L-Norm-PS 0.539 81.4 (111) 65.8 (78.2) 112 (155) 49
H-PT 0.921 31.8 (52.5) 30.1 (51.8) 33.5 (52.7) ≥ 437

Table 11   Breakdown of QRF 
vs. H-PT predictive power for 
procedures with 10 or less total 
instances in the entire data

Approach Corr. MAE (RMSE) MAE (RMSE) for MAE (RMSE) for
Over-Predicted Under-Predicted

Min. One Instance H-PT 0.696 91.3 (136) 93.1 (143) 88.9 (128)
in Training QRF 0.851 56.9 (82.7) 43.1 (62.9) 71.1 (97.4)
Zero Instances H-PT 0.890 70.2 (94.5) 67.8 (88.1) 73.8 (104)
in Training QRF 0.878 72.1 (108) 43.9 (48.1) 84.3 (125)
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relative value unit measurements (RVU). RVUs are standard 
scale measures currently used in the U.S. by the Centers for 
Medicare and Medicaid Services to determine physician fees 
(Hsiao et al., 1992). They are based mainly on the relative 
time, including pre-procedure, surgeons have previously taken 
to complete a specified service. As a result, RVUs are a proxy 
for the expected procedure duration that our QRF model can 
use without explicit knowledge of CPT codes. While the LQR 
model considered the primary surgeon as a significant vari-
able, it is interesting that the QRF model did not. QRF’s abil-
ity to accommodate complex, nonlinear associations makes 
it possible that our model also identifies surgeons inherently 
through trends in the number and value of RVUs along with 
other possible feature interactions. Thus, we believe our model 
incorporates the essential characteristics of the procedure and 
surgeon in large part through RVUs, and this allows it to make 
estimates even for cases without CPTs in the historical data.

6 � Conclusion

The integration of decision-making and individualization is a 
critically important area of research for advancing healthcare 
delivery. In the context of surgery scheduling, the duration of 
each case in a given day varies due to their distinct character-
istics, which leads to significant uncertainty. Previous studies 
have commonly captured this uncertainty by fitting case dura-
tion distributions at the aggregate level. However, this approach 
cannot generate individualized distributions to characterize the 
subtle differences in uncertainty across cases. Individualized 
distributions require conditioning on a patient’s unique features.

This paper shows how QRF is an alternative method to 
distribution fitting that yields duration distributions individ-
ualized to every case. We present a framework to incorporate 
the tailored distributions generated from QRF into SAA, 
RO, and DRO models. As theoretical justification, reformu-
lations and consistent statistical guarantees are derived for 
each optimization-under-uncertainty approach. We further 
conduct a case study using MSKCC data for empirical sup-
port of our framework. The numerical results reflect QRF 
and its individualized duration distributions can lead to 
optimization model solutions that significantly outperform 
distributions fitted at an aggregate and stratified level.

Our primary objective is to show the value of the QRF 
prediction method and the potential benefit individualized 
uncertainty modeling can bring to decision-making prob-
lems. Based on our numerical experiments, an alternative 
ML method to QRF can perform slightly better on specific 
case sizes depending on the optimization framework. To find 
the best ML model that works for a hospital, we would like to 
state that bootstrapping is a potentially viable way to obtain 
individualized prediction distributions from non-quantile-
based ML models. This approach, however, may not always 

be appropriate. For instance, the formalized approach to using 
bootstrap samples with linear regression models is limited in 
requiring random errors to be homoscedastic [12]. One benefit 
of a quantile method like LQR is that it is known to outper-
form least-squares linear models when errors are non-Gauss-
ian [29]. Even more appealing than LQR is QRF, given that it 
does not require any assumptions on the error distribution or 
the functional relationship between the outcome variable and 
its predictors. Ultimately, whether it is QRF, LQR, or boot-
strap sampling, choosing which approach to use is a multi-
faceted modeling decision, and we are not advocating that 
QRF is always the best ML method to use. This paper strongly 
suggests that QRF, as a theoretically compatible approach for 
various optimization modeling frameworks, strikes a nice 
balance between model flexibility, computation, and perfor-
mance. As a result, we believe any hospital not currently using 
individualized surgery schedules can easily obtain value in 
practice from individualized schedules through a QRF.

We foresee several potential directions to follow based on 
our study. It would be interesting to further understand how 
QRF predictions can impact solutions when the objective has 
waiting, idle, and overtime costs that are non-identical and how 
choosing the quantiles can trade off between idle and wait-
ing times. Other penalty and cost types, and their sensitivities, 
can also be considered. We also plan on a follow-up study to 
understand the effectiveness of each optimization approach, 
their comparisons, and trade-offs in practice as we continue 
our collaboration with MSKCC. In this regard, we are excited 
by the future direction in researching how our individualized 
framework can be further enhanced to provide practical value 
in building decision-support tools. For surgery scheduling, this 
could include additional ML methods for setting parameters in 
the optimization models that depend on the complexity of the 
surrounding cases. As another direction, we could extend our 
approach to other healthcare problems such as chemotherapy 
infusion treatment sessions scheduling [11] or operating room 
planning [24]. Precision medicine and personalized, prescrip-
tive analytics are evolving fields that can use sophisticated 
data-driven decision-making methods. We hope our framework 
and results encourage further exploration of individualized 
optimization under uncertainty in healthcare.

A: Proofs

A. 1: Proof of Theorem 1

By Conditions 1-5 in Appendix 1, we invoke Theorem 4 
so that

for each i. Now, consider

(29)sup
z∈A

|F̂(z|𝜉i) − F(z|𝜉i)|
p
→ 0 as N → ∞,
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by telescoping, which can be further written as

where

In other words, Hi(⋅) ’s are the conditional expectation of 
f(X, Z) given zi , where the underlying distributions that gen-
erate the other zj ’s are F̂ for j < i and F for j > i.

Next, with the assumption that zi is bounded and X  is 
compact, and thanks to the max-plus representation of 
f (X, ⋅) , we can verify that Hi(⋅, ⋅|⋅) has uniformly bounded 
total variation, i.e.,

where ‖ ⋅ ‖TV is the total variation norm. Consequently, we 
have

Ê[f (X, Z)|𝜉1,… , 𝜉n] − E[f (X, Z)|𝜉1,… , 𝜉n]

= ∫ f (X, Z)d

(
n∏
i=1

F̂(zi|𝜉i) −
n∏
i=1

F(zi|𝜉i)
)

= ∫ f (X, Z)d

(
n∏
i=1

F̂(zi|𝜉i) − F(z1|𝜉1)
n∏
i=2

F̂(zi|𝜉i)
)

+ ∫ f (X, Z)d

(
F(z1|𝜉1)

n∏
i=2

F̂(zi|𝜉i)

−F(z1|𝜉1)F(z2|𝜉2)
n∏
i=3

F̂(zi|𝜉i)
)

+ .. + ∫ f (X, Z)d

(
n−1∏
i=1

F(zi|𝜉i)F̂(zn|𝜉n) −
n∏
i=1

F(zi|𝜉i)
)

(30)

∫ H1(X, z1|𝜉2,… , 𝜉n)d(F̂(z1|𝜉1) − F(z1|𝜉1))

+ ∫ H2(X, z2|𝜉1, 𝜉3,… , 𝜉n)d(F̂(z2|𝜉2) − F(z2|𝜉2))

+ .. + ∫ Hn(X, zn|𝜉1,… , 𝜉n−1)d(F̂(zn|𝜉n) − F(zn|𝜉n))

H1(X, z1|𝜉2, .., 𝜉n) =∫ f (X, Z)d

n∏
i=2

F̂(zi|𝜉i)

H2(X, z2|𝜉1, 𝜉3, .., 𝜉n) =

∫ f (X, Z)d

(
F(z1|𝜉1)

n∏
i=3

F̂(zi|𝜉i
)

⋮

Hn(X, zn|𝜉1, .., 𝜉n−1) =∫ f (X, Z)d

(
n−1∏
i=1

F(zi|𝜉i)
)

sup
X∈X, 𝜉j∈Ξ,
j=1,..,n, i=1,..,n

‖Hi(X, ⋅�𝜉1, .., 𝜉i−1, 𝜉i+1, .., 𝜉n)‖TV ≤ C < ∞

by using Section 7.2.2 Lemma B(ii) in [43] in the first ine-
quality. Thus, from Eq. 30, we have

by using Eq. 29 and Sluksky’s Theorem.
Next, we argue that {f (X, ⋅) ∶ X ∈ X} is a Vapnik-

Cervonenkis (VC) class of functions. This can be seen 
by iteratively applying Lemma 2.6.18 in [51] on the 
max-plus construction of f (⋅, ⋅) and noting that lin-
ear functions are VC. Then, using our assumption 
that z is bounded, by Theorem 2.8.1 in [51] and the 
remark at the end of Section 2.8.1 therein, we see that 
{f (X, ⋅) ∶ X ∈ X} is a uniform Glivenko-Cantelli (GC) 
class, meaning that

as M → ∞ , where P is the set of all probability measures on 
Z where Z is bounded over An , EP̂[⋅] denotes the expectation 
under P̂ , and ℙP̂(⋅) generates K i.i.d. scenarios under P̂ that 
lead to the empirical distribution P̃ used in the expectation 
EP̃[⋅].

For convenience, we denote H̃(X) = Ẽ[f (X, Z)|𝜉1, .., 𝜉n] 
as the SAA objective function in Eq.  6 where the K 
scenarios are generated from 

∏n

i=1
F̂(zi�𝜉i) . Denote 

Ĥ(X) = Ê[f (X, Z)|𝜉1,… , 𝜉n] as the objective function evalu-
ated directly under 

∏n

i=1
F̂(zi�𝜉i) , and X̂∗ be an optimal solution 

to the formulation Eq. 3 but with this Ĥ(X) as the objective. 
Also denote X∗ as the optimal solution to Eq. 3 with objective 
H(X). We write

We analyze each term in Eq. 33. Note that the second and 
fourth terms are nonpositive by the optimality definition of 
X̃∗ and X̂∗ with respect to H̃(X) and Ĥ(X) respectively. For 
the last term, we have

� Hi(X, zi�𝜉1, .., 𝜉i−1, 𝜉i+1, .., 𝜉n)d(F̂(zi�𝜉i) − F(zi�𝜉i))
≤‖Hi(X, zi�𝜉1, .., 𝜉i−1, 𝜉i+1, .., 𝜉n)‖TV sup

zi∈A

�F̂(zi�𝜉i) − F(zi�𝜉i)�

≤C sup
zi∈A

�F̂(zi�𝜉i) − F(zi�𝜉i)�

(31)

|Ê[f (X, Z)|𝜉1,… , 𝜉n] − E[f (X, Z)|𝜉1,… , 𝜉n]|

≤ C

n∑
i=1

sup
zi∈A

|F̂(zi|𝜉i) − F(zi|𝜉i)|
p
→ 0

(32)

sup
P̂∈P

ℙP̂

(
sup
K≥M

sup
X∈X

|EP̃[f (X, Z)] − EP̂[f (X, Z)]| > 𝜖

)
→ 0

(33)

H(X̃∗)−H∗ = [H(X̃∗) − H̃(X̃∗)] + [H̃(X̃∗) − H̃(X̂∗)]

+[H̃(X̂∗) − Ĥ(X̂∗)] + [Ĥ(X̂∗) − Ĥ(X∗)]

+[Ĥ(X∗) − H(X∗)]

(34)

|Ĥ(X∗) − H(X∗)| ≤ sup
X∈X

|Ĥ(X) − H(X)| p
→ 0 as K → ∞
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thanks to Eq. 31. For the third term, we have

uniformly over 
∏n

i=1
F̂(zi�𝜉i) ∈ P , in the sense of Eq. 32. For 

the first term, we have

and that

and

uniformly over 
∏n

i=1
F̂(zi�𝜉i) ∈ P , argued similarly as in 

Eqs. 34 and 35. Then, putting all the above together, using 
Eq. 33 we get

as K,N → ∞ . Noting that H(X̃∗) − H∗ is nonnegative by the 
definition of H∗ , this concludes our theorem.

A.2: Proof of Theorem 2

For convenience, denote

where �j and �2
j
 are the mean and variance under F(zj|�j) . 

Correspondingly, denote

where we recall that 𝜇̂j and 𝜎̂2
j
 are the mean and variance 

under the QRF estimate F̂(zj|𝜉j).
Denote Γ as the (1 − �)-quantile of the random variable

Now, given a small positive constant � , using the assumption 
that F(z|�) is continuous and strictly increasing in z, we can 
find a small 𝜈 > 0 such that

(35)

|H̃(X̂∗) − Ĥ(X̂∗)| ≤ sup
X∈X

|H̃(X) − Ĥ(X)| p
→ 0 as N → ∞

H(X̃∗) − H̃(X̃∗) = [H(X̃∗) − Ĥ(X̃∗)] + [Ĥ(X̃∗) − H̃(X̃∗)]

|H(X̃∗) − Ĥ(X̃∗)| p
→ 0

|Ĥ(X̃∗) − H̃(X̃∗)| p
→ 0

H(X̃∗) − H∗
p
→ 0

(36)U(𝛾) =

⎧⎪⎨⎪⎩
Z ∶ max

k<i≤n

��������

∑i−1

j=k
zj −

∑i−1

j=k
𝜇j�∑i−1

j=k
𝜎2
j

��������
≤ 𝛾

⎫⎪⎬⎪⎭

Û(𝛾) =

⎧⎪⎨⎪⎩
Z ∶ max

k<i≤n

��������

∑i−1

j=k
zj −

∑i−1

j=k
𝜇̂j�∑i−1

j=k
𝜎̂2
j

��������
≤ 𝛾

⎫
⎪⎬⎪⎭

max
k<i≤n

��������

∑i−1

j=k
zj −

∑i−1

j=k
𝜇j�∑i−1

j=k
𝜎2
j

��������

Now let Ĝ(⋅|𝜉1,… , 𝜉n) be the distribution function of the 
random variable

where the zj are generated from F̂(zj|𝜉j) independently. Cor-
respondingly, let G̃(⋅|𝜉1,… , 𝜉n) be the empirical distribution 
using K scenarios drawn from 

∏n

j=1
F̂(zj�𝜉j) . Since the class 

of functions {I(⋅ ≤ t) ∶ t ∈ ℝ} is VC (e.g., Chapter 2.6, Prob-
lem 20 in [51]), by using the arguments similar to the proof 
of Eq. 32 for Theorem 1, we have

uniformly over Ĝ(⋅|𝜉1,… , 𝜉n) ∈ G , as K → ∞ , where G 
denotes the class of all possible probability measures. This 
implies that, given any small 𝜈 > 0 , we have, when K is 
large enough,

uniformly over Ĝ(⋅|𝜉1,… , 𝜉n) ∈ G , where Γ̂ is the smallest 
number (i.e., infimum) that satisfies Eq. 18, or alternately the 
quantile of Eq. 38 under 

∏n

j=1
F̂(zj�𝜉j) . Now, by Conditions 

1-5 in Appendix 1, we invoke Theorem 4 so that

for each i, which further implies that

where G(u|�1,… , �n) is the distribution function of the ran-
dom variable Eq. 36 under 

∏n

j=1
F(zj��j) . Hence we have, 

when K is large enough,

Now, combining Eqs. 40 and 41, we have, as K,N → ∞ , that

and hence

(37)P

⎛
⎜⎜⎜⎝
max
k<i≤n

��������

∑i−1

j=k
zj −

∑i−1

j=k
𝜇j�∑i−1

j=k
𝜎2
j

��������
≤ Γ − 𝜈

⎞
⎟⎟⎟⎠
≥ 1 − 𝛿 − 𝜖

(38)max
k<i≤n

��������

∑i−1

j=k
zj −

∑i−1

j=k
𝜇̂j�∑i−1

j=k
𝜎̂2
j

��������

sup
u∈ℝ

|G̃(u|𝜉1,… , 𝜉n) − Ĝ(u|𝜉1,… , 𝜉n)|
p
→ 0

(39)Û(Γ̃) ⊃ Û

(
Γ̂ −

𝜈

2

)

(40)sup
z∈ℝ+

|F̂(z|𝜉i) − F(z|𝜉i)|
p
→ 0 as N → ∞,

sup
u∈ℝ+

|Ĝ(u|𝜉1,… , 𝜉n) − G(u|𝜉1,… , 𝜉n)|
p
→ 0 as N → ∞

(41)Û

(
Γ̂ −

𝜈

2

)
⊃ U(Γ − 𝜈)

Û(Γ̃) ⊃ U(Γ − 𝜈)

(42)H̃∗ = min
X∈X

max
Z∈Û(Γ̃)

f (X, Z) ≥ min
X∈X

max
Z∈U(Γ−𝜈)

f (X, Z)
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However, note that

where the first inequality is a direct implication from the 
property of RO, and the second inequality comes from our 
choice of � in Eq. 37. Hence,

the right hand side being the (1 − � − �)-quantile of f(X, Z). 
From Eq. 42, we have

Since � is arbitrary, and the distribution function of f(X, Z) 
is uniformly continuous because X  is compact, we deduce 
further that

which concludes our theorem.

A.3: Proof of Lemma 1

The dual formulation for � is

where � is the dual variable corresponding to ∫ dF(Z) = 1 . 
By analyzing the constraint, the model above can be simpli-
fied as

which is equivalent to

P

(
f (X, Z) ≤ max

Z∈U(Γ−�)
f (X, Z)

|||�1,… , �n

)

≥ P(Z ∈ U(Γ − �)|�1,… , �n) ≥ 1 − � − �

max
Z∈U(Γ−�)

f (X, Z)

≥ min{q ∶ P(f (X, Z) ≤ q|�1, .., �n) ≥ 1 − � − �}

H̃∗ ≥ min
X∈X

min{q ∶ P(f (X, Z) ≤ q|𝜉1,… , 𝜉n) ≥ 1 − 𝛿 − 𝜖}

H̃∗ ≥ min
X∈X

min{q ∶ P(f (X, Z) ≤ q|𝜉1, .., 𝜉n) ≥ 1 − 𝛿} = H∗

(43)

min
�,�

� +

n∑
i=1

m−1∑
j=1

rij�ij +

n∑
i=1

�im

s.t. � +

n∑
i=1

m∑
j=1

I(zi ≤ qij)�ij ≥ f (X, Z) ∀Z,

(44)� ≥ f (X, Z) −

n∑
i=1

m∑
j=1

I(zi ≤ qij)�ij ∀Z,

(45)� ≥max
z

max
y∈Ω

{ n∑
i=1

(zi − xi)yi −

n∑
i=1

m∑
j=1

I(zi ≤ qij)�ij

}

(46)=max
y∈Ω

max
z

{ n∑
i=1

(zi − xi)yi −

n∑
i=1

m∑
j=1

I(zi ≤ qij)�ij

}

where Eq. 46 holds by the change of the order in maximi-
zations. Equation 49 follows by defining upper and lower 
quantile values for any given duration, that is true ∀z ∈ Z . 
Finally, for any fixed ji , Eq. 50 is immediate. Therefore, we 
have a lower bound on � and since there is no other limits on 
� , the minimization problem Eq. 43 can be stated as

A.4: Proof of Proposition 1

It can be shown that for extreme points in Ω , yn equals to 0 or 
𝜙 > 0 and also yi equals to either 0 or yi+1 + 1 for i ≤ n − 1 
[54, 55]. Hence, by noting the structure of the constraints 
in Ω , recursive application of the given relations for some 
o = 1, ..., n + 1 results in

Given the recursive structure above, we can partition the 
integers 1, ..., n + 1 into intervals such that i ∈ [g, o] if and 
only if i = o ( yi = �io for i ∈ [g, o] ), which generates a one-
to-one mapping of Ω ’s extreme points and a partition of the 
integers. Now, by introducing a binary variable tgo indicating 
whether [g, o] is one of the partitions in [1, n + 1],

can be reformulated as

(47)=max
y∈Ω

max
z

{ n∑
i=1

(
(zi − xi)yi −

m∑
j=1

I(zi ≤ qij)�ij
)}

(48)=max
y∈Ω

n∑
i=1

max
zi

{
(zi − xi)yi −

m∑
j=1

I(zi ≤ qij)�ij

}

(49)=max
y∈Ω

n∑
i=1

max
j=1,…,m

max
qi(j−1)≤zi≤qij

{
(zi − xi)yi −

m∑
k=j

�ik

}

(50)=max
y∈Ω

n∑
i=1

max
j=1,…,m

{
(qij − xi)yi −

m∑
k=j

�ik

}
,

min
�

max
y∈Ω

n∑
i=1

max
j=1,…,m

{
(qij − xi)yi −

m∑
k=j

�ik

}

+

n∑
i=1

m−1∑
j=1

rij�ij +

n∑
i=1

�im.

(51)yi =

{
o − i, 1 ≤ i ≤ o ≤ n;

n + � − i, 1 ≤ i ≤ n, o = n + 1
.

max
y∈Ω

n∑
i=1

max
j=1,…,m

{
(qij − xi)yi −

m∑
k=j

�ik

}
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w h e r e  (qjn+1 − xn+1)�(n+1)o −
∑m

k=jn+1
�(n+1)k  e q u a l s 

�(n+1)(n+1) = 0 . Equation 52, due to the unimodularity of its 
constraint set, has a linear programming relaxation with an 
equivalent optimal objective value and binary optimal solu-
tion. Consequently, the dual of the linear relaxation of prob-
lem Eq. 52 can be written as

where (�1, ..., �n) are the dual variables. Now, by incorporat-
ing Eq. 53 in problem Eq. 25, we have

which, by introducing �io = maxj=1,…,m{qij�io −
∑m

k=j
�ik} , 

completes the transformation of problem Eq. 22 to its linear 
program equivalent given in Eq. 27. Refer to Proposition 2 
in [35] for a detailed discussion.

A.5: Proof of Theorem 3

Consider Û in Eq. 21 and

where sij are such that F(qij|�i) = sij , i.e., sij is the true con-
ditional distribution at qij for patient i.

Since the true joint distribution 
∏n

i=1
F(zi��i) lies in U , we 

have

(52)

max
t

n+1∑
g=1

n+1∑
o=g

(
o∑
i=g

max
j

{
(qij − xi)�io −

m∑
k=j

�ik

})
tgo

s.t.

i∑
g=1

n+1∑
o=i

tgo = 1∀i ∈ {1, ..., n + 1}

tgo ∈ {0, 1}1 ≤ g ≤ o ≤ n + 1,

(53)

min
�

n∑
i=1

�i

s.t.

min{o,n}∑
i=g

�i ≥
min{o,n}∑

i=g

max
j

{
(qij − xi)�io −

m∑
k≥j

�ik

}

1 ≤ g ≤ n, g ≤ o ≤ n + 1,

(54)

min
x,�,�

n∑
i=1

�i +

n∑
i=1

m−1∑
j=1

rij�ij +

n∑
i=1

�im

s.t.

min{o,n}∑
i=g

max
j=1,…,m

{
(qij − xi)�io −

m∑
k≥j

�ik − �i

}
≤ 0

1 ≤ g ≤ n, g ≤ o ≤ n + 1

n∑
i=1

xi ≤ T

xi ≥ 01 ≤ i ≤ n,

U = {P ∶ P(zi ≤ qij) = sij, i = 1,… , n, j = 1,… ,m}

and hence

where H(⋅) is the objective function Eq.  5. Now, under 
Conditions 1-5 in Appendix 1, we invoke Theorem 4 to 
obtain rij

p
→ sij as N → ∞ . Next, we look at the duals of 

maxP∈U EP[f (X, Z)] and maxP∈Û EP[f (X, Z)] , namely

and

respectively, which are upper bounds to maxP∈U EP[f (X, Z)] 
and maxP∈Û EP[f (X, Z)] by weak duality. Hence

where (�∗
ij
)ij is a dual optimal solution to Eq. 56. Note that, 

since we assume F(z|�) is continuous and strictly increasing, 
sij ’s are all distinct, and one can verify that the vector (sij)ij 
l i e s  i n  t h e  i n t e r i o r  o f  t h e  m o m e n t  s e t 
{P ∈ P ∶ P(zi ≤ qij) = sij ∶ i = 1,… , n, j = 1,… ,m} , which implies strong 
duality for optimization maxP∈U EP[f (X, Z)] (e.g., [31]). This 
then implies the existence of a dual optimal solution (�∗

ij
)ij 

that is finite.
Note that Eq. 58 is equal to

since Eq. 57 is equivalent to Eq. 27 as they both dualize 
maxP∈U EP[f (X, Z)] (but with different representations). 
Thus, using our deduction that rij

p
→ sij as N → ∞ and 

Eq. 55, we have

as N → ∞ , for any given 𝜖 > 0.

E[f (X, Z)] ≤ max
P∈U

EP[f (X, Z)]

(55)H∗ = min
X∈X

H(X) ≤ min
X∈X

max
P∈U

EP[f (X, Z)]

(56)min
�ij,j=1,…,m

∑
i,j

sij�ij s.t.
∑
i,j

I(zi ≤ qij)�ij ≥ f (X, Z) ∀Z

(57)min
�ij,j=1,…,m

∑
i,j

rij�ij s.t.
∑
i,j

I(zi ≤ qij)�ij ≥ f (X, Z) ∀Z

(58)

min
X∈X

max
P∈U

EP[f (X, Z)]

≤ min
X∈X,�ij

{∑
i,j

sij�ij ∶
∑
i,j

I(zi ≤ qij)�ij ≥ f (X, Z) ∀Z

}

≤ min
X∈X,�ij

{∑
i,j

rij�ij ∶
∑
i,j

I(zi ≤ qij)�ij ≥ f (X, Z) ∀Z

}

+
∑
i,j

(sij − rij)�
∗
ij

(59)Ĥ∗ +
∑
i,j

(sij − rij)𝜌
∗
ij

P(H∗ ≤ Ĥ + 𝜖) → 1
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A.6: QRF consistency conditions

Let Ξ be the predictor variable with dimensionality p and 
B be the space in which Ξ lives. The following lists the 
assumptions from [38]:

Condition 1  B = [0, 1]p and Ξ is uniform on [0, 1]p.

Alternatively, one may assume that the density of covari-
ates is bounded from above and below by positive constants.

Condition 2  The proportion of observations in a node, relative 
to all observations, is vanishing as the size of data increases, 
( n → ∞ ). The minimum number of observations in a node is 
non-decreasing in the limit as the size of data goes to infinity.

Condition 3  The probability that a variable is chosen for the 
splitpoint is bounded from below for every node by a positive 
constant. If a node is split, the split is chosen so that each of 
the resulting sub-nodes contains at least a proportion � of the 
observations in the original node, for some 0 < 𝛾 ≤ 0.5.

Condition 4  There exists a constant L so that F(z|Ξ = �) 
is Lipschitz continuous with parameter L, that is for all � , 
�� ∈ B,

Condition 5  The distribution function F(z|Ξ = �) is, for 
every � ∈ B , strictly monotonically increasing in z.

Theorem 4  Under the conditions listed in Appendix 1, it 
holds that, for every feature value � ∈ B , the output of QRF, 
F̂(z|𝜉) , satisfies

where N denotes the number of i.i.d. observations, F(z|�) 
is the conditional cumulative distribution function of the 
response variable and p→ denotes convergence in probabil-
ity [38].

A.7: Idle time

Let si denote the idle (stand-by) time before the ith patient 
arrives. Consider the following modification to formula-
tion (4) that includes the idle time variables

sup
y

|F(z|Ξ = �) − F(z|Ξ = ��)| ≤ L||� − ��||1.

sup
z∈ℝ

|F̂(z|𝜉) − F(z|𝜉)| p
→ 0 N → ∞.

We claim this is equivalent to the formulation below.

Consider a feasible solution set of w, x, l for (61) and suppose 
that si+1 = wi+1 − (wi + zi − xi) . Since wi+1 ≥ wi + zi − xi and 
w ≥ 0 , then for i = 1 to n − 1 , we have si+1 ≥ 0 and

which shows wi+1 − (wi + zi − xi) is a feasible solution for 
(60). It follows that the corresponding objective function is

where the second to last inequality uses the fact that we 
assume w1 = 0 . Thus, we obtain our desired result.

(60)

min
x∈X

f (X, Z) =

n∑
i=2

wi + si + �l

s.t. wi+1 ≥ wi + zi − xi ∀i = 1, ..., n − 1

si+1 ≥ xi − (wi + zi) ∀i = 1, ..., n − 1

l ≥ wn + zn − xn

wi, l, si ≥ 0 ∀i = 2, ..., n.

(61)

min
x∈X

f (X, Z) =

n−1∑
i=1

(wi+1 − zi + xi) + wn + �l

s.t. wi+1 ≥ wi + zi − xi ∀i = 1, ..., n − 1

l ≥ wn + zn − xn

wi, l ≥ 0 ∀i = 2, ..., n.

wi+1 ≥0
wi+1 − (wi + zi − xi) ≥xi − (wi + zi)

si+1 ≥xi − (wi + zi),

=

n∑
i=2

wi + si + �l

=

n∑
i=1

wi +

n−1∑
i=1

(
wi+1 − (wi + zi − xi)

)
+ �l

=

n∑
i=1

wi −

n−1∑
i=1

(zi − xi) + wn − w1 + �l

=

n∑
i=2

wi −

n−1∑
i=1

(zi − xi) + wn + �l

=

n−1∑
i=1

(wi+1 − zi + xi) + wn + �l,

Table 12   Summary of schedules at different case sizes used in 
numerical results

Case Size 2 3 4 5 6 7 8 9 10 11

Instance Count 716 190 67 62 66 49 45 21 16 6
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A.8: Dual formulation for idle time

Note that formulation (60) can be equivalently rewritten as

The dual of this formulation is

(62)

min
x∈X

f (X, Z) =

n∑
i=1

wi + si + �l

s.t. wi+1 − si+1 = wi + zi − xi ∀i = 1, ..., n − 1

l ≥ wn + zn − xn

wi, l, si ≥ 0 ∀i = 2, ..., n.

(63)

max
y

n∑
i=1

(zi − xi)yi

s.t. yi − yi−1 ≥ −1 2 ≤ i ≤ n

yi ≥ −1 1 ≤ i ≤ n − 1

yn ≤ �.

It can be seen from the structure of the LP that the extreme 
points correspond to yn ∈ {�,−1} and yi ∈ {yi+1 + 1,−1} 
for i = 1, ..., n − 1 . As shown by [25], we can construct a 
similar partition as the one used in Appendix 1 to complete 
the analysis of our DRO approach with uniform/identical 
idle time costs.

B: Supplementary results

Figure 4, Tables 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 
23, Figures 5, 6, 7, 8, 9, 10.

Fig. 4   Convergence of model 
solution as the number of sam-
ples drawn increases

Table 13   MAE at median for CPT fitted distribution, H-PT, and QRF

Only observations with single procedures were included to avoid pos-
sible confounding

MAE

CPT 25.63
H-PT 25.12
QRF 20.78

Table 14   Statistical tests comparing the median prediction from CPT 
fitted distributions and H-PT

Only observations with single procedures were included to avoid pos-
sible confounding

P-value

T-test 0.120
F-test 0.598
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Table 15   Evaluation of QRF over its quantiles

Quantile

0.05 0.25 0.5 0.751 0.95

% of Over-Predicted Cases 0.053 0.25 0.482 0.742 0.935
% of Under-Predicted Cases 0.947 0.75 0.498 0.249 0.065
MAE of Over-Predicted Cases 11.3 13.6 19.4 30.7 61.2
MAE of Under-Predicted Cases 49.5 34.8 28.9 26.4 28.3
RMSE of Over-Predicted Cases 25.3 23.6 29.5 44.3 81.7
RMSE of Under-Predicted Cases 74.8 55.0 47.4 44.5 46.3

Table 16   Evaluation of LQR over its quantiles

Quantile

0.05 0.25 0.5 0.75 0.95

% of Over-Predicted Cases 0.044 0.232 0.487 0.730 0.946
% of Under-Predicted Cases 0.956 0.768 0.513 0.270 0.054
MAE of Over-Predicted Cases 13.5 17.9 25.0 41.8 89.5
MAE of Under-Predicted Cases 67.5 47.9 43.2 39.8 41.1
RMSE of Over-Predicted Cases 23.4 28.4 37.2 56.8 110.0
RMSE of Under-Predicted Cases 97.6 74.6 68.7 64.0 66.6

Table 17   Important/significant variables from QRF and LQR

The ten most important variables for QRF are presented. Variable importance for QRF are computed using the prediction accuracy from out-of-
bag sample data permuted for each predictor variable. More details can be found in [32] under the section titled ‘importance’. The significant 
variables from LQR are based on the coefficient p-values and a significance level of 0.05

Model Features

QRF the maximum of all RVU measures for the case, the sum of all RVU 
measures for the case, the mean of all RVU measures for the case, 
surgery room, indicator as inpatient or outpatient, indicator of 
robotic procedure, the number of cases scheduled on the day of 
surgery, number of panels in the surgical case, the number of times 
patient underwent surgeries, the number of days since patient’s last 
surgery

LQR the maximum of all RVU measures for the case, the sum of all RVU 
measures for the case, the mean of all RVU measures for the case, 
surgery room, indicator as inpatient or outpatient, indicator of 
robotic procedure, the number of times patient underwent surgeries, 
the number of cases scheduled on the day of surgery, gender, age, 
weight, the number of days since the patient’s last surgery, race, 
the number of times patient underwent chemotherapy, height, the 
primary surgeon, the number of times patient had a CT scan

Table 18   Percent of patients that fall within the quantiles of QRF, LQR, L-Norm, and L-Norm-PS

This table presents the percent of patients that were over predicted by each model for the specified quantiles. Taking 1 minus each value will give 
approximately the percent of patients that were under predicted

Quantile

0.25 0.5 0.75 0.95

QRF 0.25 0.502 0.751 0.935
LQR 0.232 0.487 0.730 0.946
L-Norm 0.363 0.501 0.625 0.986
L-Norm-PS 0.538 0.649 0.780 0.952
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Table 19   MAE (RMSE) of Patients that Fall Within the Quantiles of QRF, LQR, L-Norm, and L-Norm-PS

This table presents the MAE and RMSE for the patients that fell within (i.e., over predicted) the values corresponding to the specified quantiles. 
These should be compared by matching with the values in Table 18 first

Quantile

0.25 0.5 0.75 0.95

QRF 12.6 (22.7) 18.6 (28.9) 30.4(44.1) 61.1 (81.7)
LQR 17.9 (28.4) 25.0 (37.2) 41.8 (56.8) 89.6 (110.0)
L-Norm 16.4 (18.3) 54.8 (57.8) 135 (133) 333 (355)
L-Norm-PS 35.1 (47.0) 65.8 (78.2) 118 (133) 280(399)

Table 20   Sensitivity analysis of parameter T. The results show the weighted percentage improvement of the out-of-sample error when the QRF 
is used rather than the L-Norm, L-Norm-PS, LQR models in mean and percentiles for the Individualized Stochastic Optimization framework

Number of Surgeries per Day

Model 2-3 4-5 6-7 8-9 10-11

T ⋅ 0.9 L-Norm 21.0 45.2 48.7 53.9 60.4
L-Norm-PS 25.1 42.7 39.9 48.2 57.7
LQR 13.2 13.2 6.7 17.9 18.3

T ⋅ 0.95 L-Norm-PS 28.4 51.3 56.2 60.4 66.3
L-Norm-PS 37.3 48.2 48.2 54.7 64.4
LQR 18.3 14.9 9.0 19.7 21.9

T ⋅ 1.05 L-Norm 58.0 63.9 68.7 71.2 76.2
L-Norm-PS 67.8 60.3 62.0 65.0 73.9
LQR 38.6 19.4 12.5 23.2 27.5

T ⋅ 1.10 L-Norm-PS 69.2 69.7 73.3 75.5 80.0
L-Norm-PS 77.1 66.3 67.4 69.3 78.3
LQR 45.6 23.2 13.3 24.8 29.0

Table 21   Sensitivity analysis of parameter T. The results show the weighted percentage improvement of the out-of-sample error when the QRF 
is used rather than the L-Norm, L-Norm-PS, LQR models in mean and percentiles for the Individualized Robust Optimization framework

Number of Surgeries per Day

Model 2-3 4-5 6-7 8-9 10-11

T ⋅ 0.9 L-Norm 29.7 59.0 75.8 77.0 77.5
L-Norm-PS 47.6 61.0 71.8 74.4 74.8
LQR -0.7 4.9 1.7 3.0 4.7

T ⋅ 0.95 L-Norm-PS 33.6 61.7 78.3 79.6 80.3
L-Norm-PS 54.5 62.4 75.2 77.2 77.7
LQR -1.3 4.7 4.1 3.5 7.2

T ⋅ 1.05 L-Norm 46.1 65.6 82.7 84.0 86.5
L-Norm-PS 69.2 65.6 80.3 81.0 84.3
LQR 2.0 5.8 9.7 4.3 18.1

T ⋅ 1.10 L-Norm 52.8 67.6 84.6 85.7 88.5
L-Norm-PS 75.8 66.6 82.1 82.9 86.7
LQR 6.1 4.4 14.6 5.5 20.9
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Table 22   Sensitivity analysis of parameter T. The results show the 
weighted percentage improvement of the out-of-sample error when 
the QRF is used rather than the L-Norm, L-Norm-PS, LQR models 

in mean and percentiles for the Individualized Distributionally Robust 
Optimization framework

Number of Surgeries per Day

Model 2-3 4-5 6-7 8-9 10-11

T ⋅ 0.9 L-Norm 44.1 63.5 71.0 71.8 67.8
L-Norm-PS 41.3 59.0 66.6 66.7 63.4
LQR 16.6 16.6 17.5 24.8 18.1

T ⋅ 0.95 L-Norm-PS 49.3 66.9 74.4 74.5 69.8
L-Norm-PS 46.8 62.4 69.9 69.5 65.0
LQR 18.9 17.7 20.2 25.2 19.3

T ⋅ 1.05 L-Norm 61.5 73.1 80.0 79.9 75.5
L-Norm-PS 59.7 68.1 75.6 75.2 71.0
LQR 27.8 22.9 24.2 29.3 22.4

T ⋅ 1.10 L-Norm 67.6 75.5 82.5 82.2 77.8
L-Norm-PS 66.4 70.0 78.3 77.8 73.3
LQR 33.9 24.3 25.8 31.2 24.4

Table 23   Summary of median surgery durations by case size for sensitivity analysis

Total times presented in minutes

Case Size 2 3 4 5 6 7 8 9 10 11

Median Total Time of Training set 503 481.5 253 248 283 318 350 385 390 398
Median Total Time of Test set 494 486 242 237 298.5 328 349 363 415 398.5
Mean Total Time of Test set 484.1 447.3 319.1 260.9 303.8 344.5 374.3 369.9 439.6 403.2

Fig. 5   Box-plots for the SAA method comparing the L-Norm, L-Norm-PS, LQR and QRF model’s out-of-sample waiting time error for the dif-
ferent surgery regimes organized by the number of cases scheduled each day
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Fig. 6   Box-plots for the SAA method comparing the L-Norm, L-Norm-PS, LQR and QRF model’s out-of-sample overtime error for the different 
surgery regimes organized by the number of cases scheduled each day

Fig. 7   Box-plots for the RO method comparing the L-Norm, L-Norm-PS, LQR and QRF model’s out-of-sample waiting time error for the differ-
ent surgery regimes organized by the number of cases scheduled each day

1 3

706



Quantile regression forests for individualized surgery scheduling

Fig. 8   Box-plots for the RO method comparing the L-Norm, L-Norm-PS, LQR and QRF models out-of-sample overtime error for the different 
surgery regimes organized by the number of cases scheduled each day

Fig. 9   Box-plots for the DRO method comparing the L-Norm, L-Norm-PS, LQR and QRF model’s out-of-sample waiting time error for the dif-
ferent surgery regimes organized by the number of cases scheduled each day
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