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Abstract
This paper addresses a planning decision for operating rooms (ORs) that aim at supporting hospital management. Focusing
on elective patients, we determined the master surgical schedule (MSS) on a one-week time horizon. We assigned the
specialties to available sessions and allocated surgeries to them while taking into consideration the priorities of the
outpatients in the ambulatory surgical discipline. Surgeries were selected from the waiting lists according to their priorities.
The proposed approach considered operating theater (OT) restrictions, patients’ priorities and accounted for the availability
of both intensive care unit (ICU) beds and post-surgery beds. Since the management decisions of hospitals are usually
made in an uncertain environment, our approach considered the uncertainty of surgery duration and availability of ICU bed.
Two robust optimization approaches that kept the model computationally tractable are described and applied to deal with
uncertainty. Computational results based on a medium-sized French hospital archives have been presented to compare the
robust models to the deterministic counterpart and to demonstrate the price of robustness.

Keywords Master surgical schedule · Operating room planning · Ambulatory surgery · Post-surgery beds ·
Uncertainty · Price of robustness · Operations research

Highlights

• We propose a two-stage approach to address the master
surgical schedule and the surgical case assignment prob-
lems considering downstream resource capacity.
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• The scheduling of surgeries in outpatient surgery follows
a hygiene rule to reduce the risk of nosocomial infec-
tions.

• Uncertainty in surgery duration and intensive care unit
bed availability is considered. We formulate the models
as robust optimization problems.

• The proposed approach shows the impact of robust
optimization for tactical schedules and evaluates the
obtained solutions in terms of scheduled surgeries and
operating theater’s utilization rate.

1 Introduction

An operating theater (OT) consisting of several operating
rooms (ORs) is one of the most critical resources in
hospitals because it generates both high revenues (more
than 40% of a hospital’s total revenues [31]) and incurs
high costs [3, 73]. Therefore, optimizing its resources by
efficient scheduling becomes a top priority for an ever-
growing number of hospitals, considering the waiting list
of patients and different details on the characteristics and
availability of several resources (e.g., ORs, intensive care
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unit (ICU) beds, post-surgery unit and surgeons), as well
as the variability of surgery duration and patients’ length of
stay (LOS).

OT planning problems consist of determining the sched-
ule of surgeries, especially for critical services such as
the ambulatory discipline, to maximize multiple perfor-
mance measures such as OR utilization, efficiency, over-
time, patients’ priority, lateness, and so on.

Ambulatory surgery, also known as day surgery and
outpatient surgery, refers to surgery that does not require
an overnight hospital stay. “Outpatient” refers to surgery,
patients may enter and leave the facility on the same day.

Many countries are moving towards ambulatory surgery
due to its benefits such as reduced costs, reduced infection
rates, reduced complications, amenable appointment to
patient requirements and preferences, the opportunity for
the patients to heal at home, and shorter surgery duration,
and so on. Berg et al. [16] (see [4, 16, 28, 48, 66, 91]
and references therein for more details). The outpatient
service provides many gains in terms of a reduction in health
infections, since the exposure to the risk increases with
the length of hospitalization. Economically, international
studies have shown that outpatient care mobilizes fewer
resources than classical surgery in terms of direct hospital
costs [5].

The type of structure chosen is decisive for the estab-
lishment that performs the ambulatory surgery [5]. Four
models are widely defined for coordinating ambulatory
surgery, namely: the integrated facilities, the self-contained
unit on the hospital site, the satellite facilities, and the free-
standing self-contained unit. The integrated facilities are
the most developed in France. They have reception and
admission facilities that are dedicated to ambulatory surgery
while being located in a classical hospital unit; the OTs are
common to inpatient and outpatient admissions. The inte-
grated model has been used in almost all French facilities
over the last 20 years. This can be explained economically
because this type does not require new buildings or large
investments.

Our research aimed at finding an efficient planning and
scheduling tool for the common OT in integrated facilities.
Surgeries in ORs are carried out in sessions called “block
time”. The block time is an OR session reserved to each
surgical specialty, it can be a full day or a half-day. In this
study, a block time is considered a full day.

The planning involves two stages. The first stage consists
of deciding the surgical specialty that will be performed
in each block time, then selecting patients to be operated
in each block time according to the OT restrictions. In
accordance with the OT manager instructions, we consider
sequencing surgeries. The sequencing refers to assigning a
sequence of appointment times for each type of surgery [4,
16, 66, 91] according to outpatients’ priorities and type of

surgeries in the ambulatory surgery block time. The second
stage determines the optimal number of surgeries that can
be performed in each day according to their priorities and
the availability of the downstream resources (such as post-
surgery unit beds and ICU beds for patients requiring ICU
treatment).

The problem of deciding the surgical specialty to be per-
formed in each block time is tactical; it involves the master
surgical schedule (MSS), which is a cyclic timetable. It
gives the open time of available ORs to surgeons or spe-
cialties [106]. A new MSS is created whenever the total
amount of OT time changes [2, 100]. Selecting the patients
to be operated in each block time is operational, it refers
to the scheduling case assignment problem (SCAP), and
the problem of sequencing the surgeries in each block time
is the elective sequencing of surgeries (ESS); surgeries
must be scheduled in each block time and the sequence
of surgeries must be determined. Developing higher qual-
ity schedules that integrate uncertainty in surgery durations
may increase the satisfaction of both patients and sur-
geons, minimize costs, and produce improved health results
[91]. Approaches focusing on surgery scheduling and/or
sequencing can be found in [4, 16, 24, 31, 37, 48, 66,
91] and references therein for more details. In general,
the OT manager faces many difficulties to solve such prob-
lems; they require respecting many different types of cases
and various surgical procedures, many types of resources,
such as OR personnel (surgeons, nurses, etc.), OR med-
ical equipment, an so on. Moreover, many factors of the
MSS are subject to uncertainty because they are made in
an uncertain environment, such as surgery duration, patient
arrival, resource availability, and so on. The hospital calls
for strategies to promote decision-making tools and oper-
ation research approaches to handle scheduling and OT
planning. From the OT manager’s perspective, the plan-
ning must be protected against uncertainties that may occur
and sometimes respecting several objectives (e.g., overtime,
idle time, OR utilization, patients’ waiting time, etc.). These
problems lead to solving complex mathematical problems
under several constraints, uncertainties, and objectives.

In this paper, we first propose a two-stage approach to
address the MSS and SCAP on a one-week time horizon
by considering sequencing surgeries in the ambulatory
specialty. The approach consists of concurrently defining
the surgical specialty in each block time, the list of surgical
cases to be performed during each block time, and the
desirable sequencing for the ambulatory surgical discipline.
It is based on the current state of the patients’ waiting
list, the OT restrictions, availability of resources (surgeon,
OR, etc.), and downstream availability of resources (ICU
beds and post-surgery unit beds). Throughout this study,
“clean surgery” defines a surgery that requires a short
cleaning time. Approximately 5 minutes after performing
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the surgery, and does not involve a hygienic issue for
using the OR to treat future patients. In comparison, “dirty
surgery” defines a surgery that requires a longer cleaning
time (15 minutes) so as to prevent bacteria from spreading
to subsequent patients. Dirty surgeries may be gallbladder,
hemorrhoids, and cleaner surgeries may be a colonoscopy,
hernia, and so on. For example, in a block time of visceral
surgery, surgeries should follow a hygiene order (e.g.,
the first surgery to be treated is a hernia, the second is
gallbladder surgery, and the last is hemorrhoid surgery).
Therefore, the surgeries in the ambulatory specialty are
treated from the cleanest to the dirtiest to avoid the
infections from spreading to future patients and reduce
the risk of nosocomial infection. The sequencing in the
ambulatory specialty depends on various factors: the age of
the patient, the type of surgery: clean or dirty, and so on.
Secondly, we define and apply a robust optimization when
surgery duration (processing time) is subject to uncertainty.
The robust optimization approach by [17, 18] deal with
uncertainty by limiting the number of uncertainties by a
robustness parameter (the budget of robustness). We present
in detail how new variables and constraints are applied to
linear models to build robust models and evaluate the impact
of robust solutions on the objective function.

Furthermore, we study the problem when ICU bed avail-
ability is subject to uncertainties. One approach to solve this
problem involves the worst-case criterion [42, 93], and we
use it in this study. We generate and discuss several sce-
narios to evaluate the proposed robust approach in terms of
the utilization rate of the OT and the number of scheduled
surgeries. Our study is inspired by a real hospital; models
presented in this work are tested on empirical data from the
archives of a French hospital.

The organization of the paper is as follows. Section 2
reviews a relevant state of the art that covers OT planning
and highlights the contribution of the work. Section 3
describes the problem and the models. In Section 4, we
provide a short background on the robust optimization; we
present the approaches adopted in this study and highlight
the importance of considering the robust nature of the
problem. Computational results are given by comparing
the robust models with the deterministic counterpart in
Section 5. Finally, conclusions are given in Section 6, with
outlines for future work.

2 Literature review

In this section, we provide a literature review of studies
dealing with surgical scheduling. As stated in [106], the
problem of OR planning and scheduling has been the
subject of a wide number of contributions and it has been
thoroughly reviewed by several authors. The decisions of

OR planning and scheduling is divided into three levels:
Long-term strategic, medium-term tactical and short-term
operational [22, 55].

Strategic level Resources planning problems, resource allo-
cation problems, and case-mix problems (CMP) consist of
scheduling problems at the strategic level. The problems
generally have a long planning horizon and are based on
very aggregate information and forecasts. The basic goal
at this level is to enhance the use of resources and the
allocation of budgets among the common surgical special-
ties. It focuses on the number and specialties of surgeries
to be planned, and the number of the resources required,
and so on. [20, 103]. Nonetheless, following the classifi-
cation approach of most researchers, we classify capacity
planning, resources allocation, and case-mix problem into a
strategic level [106]:

a. Capacity Planning: It can be described as the process
of determining the number of resources needed to meet
cost-effectively the demands [21, 26, 34, 40, 49, 61, 80,
92].

b. Case-mix problems: It concerns the number and type of
surgeries performed in the ORs [23, 45, 51, 53, 63, 64,
102].

c. Capacity allocation: It refers to the allocation of
specialties in OR management to OR days [20, 25, 28,
33, 47, 60].

Tactical level The MSS is a tactical problem. Based on
strategic level decisions, MSS provides advice to facili-
tate operational level decision-making. MSS is a cyclic
timetable that determines the surgical unit associated with
each block of OT time. Usually the time-scale is monthly
or quarterly. MSS determines the distribution of the work-
load, which plays a major role in the scheduling process.
Researchers use a variety of approaches to build MSS.
Guido and Conforti [46] defined a MSS as that which
assigns OR time to specialties and surgeons by optimiz-
ing conflicting objectives while taking into consideration
the surgical characteristics and the maximum OR time set
for each surgical specialty and surgeon. Agnetis et al. [3]
focused on assigning the different surgical specialties to the
available sessions, then allocating surgeries to each session
to assess the weekly MSS. More papers focused on MSS
can be found in [6, 8, 27, 68, 69, 89, 96, 97].

Operational level The operational level involves decision-
making in the short term, which is the surgery scheduling
problem (SSP) or patient scheduling. Following the tactical
level decisions, operational level implementation is sup-
posed to match and schedule resources or patients. Surgery
on the waiting list is scheduled for specific OR, day and time
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of commencement. The uncertainties in surgery duration
and patient attendance significantly impact patient appoint-
ment booking, sequencing, and scheduling decisions in
hospitals [16]. The surgeries on a day may end in longer
overall surgical durations. Late start times often result in
costs and staff overtime as the last surgery ends longer than
expected [31]. [31] showed the impact using sequencing
rules and surgery duration on total surgeon and OR team
waiting time, OR idling, and overtime costs. The authors
in [31] developed a Stochastic programming (SP) model
with some heuristics to schedule the surgeries under dura-
tion uncertainty. Their model can be applied using both the
block scheduling and the open scheduling scenario [106].
Berg et al. [16] developed an appointment scheduling model
based on a two-stage stochastic mixed-integer program for
optimizing booking and appointment times and sequencing
of outpatients under uncertainty. Later, [91] considered two
sets of decisions; sequencing and scheduling surgeries on a
day for a single provider. Shehadeh et al. [91] presented a
stochastic mixed-integer linear programming (MILP) model
for the stochastic outpatient procedure scheduling problem
to minimize patient waiting time, provider idling, and clinic
overtime. Many studies decompose the OR scheduling and
planning process into two steps:

a. Advance scheduling: Also called as intervention assign-
ment or SCAP [2] consisting of assigning an OR and a
day for each surgery [6, 29].

b. Allocation scheduling: It specifies the start time of
the surgeries. [7, 57, 62, 87]. Some authors focused
on the start times of surgeries and assumed that the
sequencing of surgeries is already fixed in advance [91],
(e.g., in [30, 37, 44] and references therein). Other
authors focused on the scheduling and the sequencing
of surgeries at the same time. Papers that addressed both
decisions can be found in [4, 16, 28, 31, 66, 91, 95] and
references therein.

c. Integration of advance scheduling and allocation
scheduling: Some authors integrate both the advance
scheduling problem and the allocation scheduling
problem [9, 35, 50, 52, 84, 85].

Basically, three different strategies design the scheduling
problems [54]: The block scheduling strategy, the open
strategy [10] and the modified block strategy. In the block
scheduling strategy, the OT is allocated to a single surgical
specialty [46, 56, 65], consisting of one or more surgeons in
the same surgical discipline, since the same type of surgery
is done in a given room over a given period. The physical
management of equipment and/or materials is usually
simplified [3, 7, 10, 12, 59, 78]. The block scheduling
strategy is applied more often than the open scheduling
strategy in European hospitals [106]. The open scheduling

strategy is more flexible, in which there is no prespecified
session-to-discipline assignment. Two surgical cares may be
operated in the same block time at the same time [10, 38, 67,
69, 71, 104]. However, some inconveniences are related to
the block scheduling strategy; if a block time is assigned to
one surgeon, other surgeons cannot fill the block even if that
surgeon does not schedule surgical cases in the block time.
This is why the modified block scheduling strategy has been
proposed [10, 31, 39, 75, 86, 101]. The modified scheduling
strategy is usually applied in American hospitals.

The literature indicates that the uncertainty of surgery
duration is implicit in surgical services. It is an affecting
problem due to the highly variable nature of surgical spe-
cialties [101]. Such uncertainty or variability is commonly
ignored in many OR planning and scheduling problems
which assume deterministic surgery duration [106]. The
duration of the surgery relates to the processing time. Dura-
tion uncertainty refers to the differences between the actual
and expected durations of surgeries; it can be caused by the
patient condition, the skill of the surgeon, and sometimes
it depends on the surgical specialty [106]. So many authors
have dealt with the duration uncertainty using stochastic
optimization using Monte Carlo simulation [39, 72, 73,
88, 107]. Tohid et al. [99] presented a two-level physician
planning framework for polyclinics under uncertainty. They
used a Monte Carlo simulation algorithm to demonstrate the
planning framework. Only a few of them have addressed
robust approaches to deal with uncertainties [8, 11, 81,
82]. Addis et al. [1] addressed a robust optimization model
to solve the advanced scheduling problem with uncertain
surgery durations. Neyshabouri and Berg [77] developed a
two-stage robust optimization approach for surgery schedul-
ing under surgery duration and LOS uncertainty in the
ICU based on the worst-case criterion. Neyshabouri and
Berg [77] adopted the block scheduling strategy and pre-
sented robust solutions to schedule the surgeries with a
low probability of lack of enough capacity. Min and Yih
[74] proposed a two-stage SP approach based on the sam-
ple average approximation (SAA) method to generate an
optimal schedule for the surgeries. Min and Yih [74] con-
sidered the uncertainty in surgery durations, LOS, and ICU
beds capacity each day. Their model minimized both patient
and overtime costs. Later, [90] introduced a distribution-
ally robust elective surgery scheduling (DRESS) to schedule
elective surgeries under block scheduling strategy. She-
hadeh and Padman [90]’s approach took into consideration
random surgery durations, random LOS in the ICU in addi-
tion to a limited ICU capacity. The DRESSmodel developed
in [90] minimized the surgery costs, overtime, idle time,
and ICU capacity. Zhang et al. [105] presented a two-stage
SP model to schedule surgeries over a short-term planning
horizon under surgery duration, LOS, and patients arrival
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uncertainty. They considered capacity constraints (ORs and
ICU). Zhang et al. [105] modeled the problem as a Markov
decision process and a two-stage SP.

In terms of problems addressed, this paper considers
the block scheduling scenario. We propose a two-stage RO
approach to address the MSS and SCAP in addition to the
decisions considered in [74, 77, 90, 105]. Our approach
can be considered as an extension of [3]. As in [3], the
authors have addressed a decomposition approach to solving
MSS and SCAP without taking into consideration several
factors such as surgeons’ timetables, the uncertainties of
surgery processing time, the particularity of the ambulatory
discipline, and the availability of both post-surgery units and
ICU beds.

The selected papers are listed in Table 1. Column 1
shows the references, the last row corresponds to the work
proposed in the respective paper. Column 2 provides a
short overview of the problem(s) addressed (strategical,
tactical or operational). Column 3 shows the methodology
used to solve the problem addressed. Column 4 defines the
objective functions used. Finally, column 5 refers to the
constraints considered.

3 Problem description andmathematical
modeling

3.1 Overview of problem

This study relies on the problem of allocating elective
surgeries to ORs over a week. The surgeries are grouped into
surgical specialties. For each surgery, a group of information
is considered:

• Specialty type (general surgery, urology, ambulatory
surgery, etc.)

• Nominal duration of surgeries (processing time)
• Decision time (day when the surgery entered the wait-

ing list)
• Waiting time (days since the decision time)
• Due date (nominal time by which the surgery should be

performed according to their priority)
• (Outpatient priority if the surgery is ambulatory) (chil-

dren, elder, clean/dirty surgery)
• Post-surgery LOS in recovery unit
• ICU LOS

The hospital has one ICU and several post-surgery units.
One of the post-surgery units is dedicated to ambulatory
surgery outpatients, noted by (u = DS) as shown in
Fig. 1. The patients stay in a bed in one of the surgical
units upon arrival on the day of surgery. After the surgery,
the patients expect to be monitored in the post-anesthesia
care unit (PACU) for a range of minutes (e.g., 30 to 40

minutes for endoscopy) to several hours. When ready, they
are transferred to the post-surgery unit. The outpatients are
brought back to the ambulatory surgery unit and are dis-
charged on the same day. On the other hand, some patients
have to stay in the ICU before taken to the post-surgery unit.

The main objective of this study is to define the best mix
of elective surgeries types that must undergo surgery during
the week according to the various hospital restrictions.

A block time can be a half-day [2] or the whole day (full-
day sessions). In this study, the block time is considered a
full-day session.

The elective surgical planning problem is a two-stage
approach. In the first stage, we aimed to define the MSS
by considering the OT restrictions. Some types of surgeries
may only be performed in a restricted set of ORs due
to limitations in size or equipment. Moreover, due to the
number of surgeons available for the surgical discipline,
only certain block times of the specialty can take place on
the same day. Due to hospital management rules, the lower
and upper limits block times for each surgical specialty are
known. Furthermore, sometimes the hospital can assign one
or more block time each day for some specialties. We took
into account the following:

• Session capacity and demand should be balanced as
much as possible [3].

• The due date of the patient must be taken into account,
because the quality of the service may be determined by
its due date results.

• Respecting the priority of surgeries in the ambulatory
discipline: The sequencing is important because it gives
children priority to undergo surgery first. Moreover,
the cleanest surgeries to be achieved before the dirtiest
ones. Besides, the sequencing may reduce health
infections, and so on.

• Testing the robustness of theMSS against the variability
of the duration of surgeries.

We considered a score of each surgery, which depends
on how close is the surgery to its due date ϕi = (W − Ri),
whereRi are the days to the due date andW is the maximum
waiting time for low priority surgeries. W guarantees that
urgent surgeries have a greater impact on the objective
function and thus the model has more incentives to select
them and consider the priorities of patients.

According to OT manager instructions, the scheduling
of the outpatients in the ambulatory surgery block time
must be respected. To do this, we assign two dummy
outpatients to each ambulatory surgery block time. The first
dummy outpatient is the first outpatient to be operated, its
processing time is zero and its preference is the highest (so
it can be always the first). The second dummy outpatient
is considered as the last outpatient to be operated, its
processing time is also zero and its preference is the lowest

67A two-stage robust optimization approach for the master surgical...



Ta
bl
e
1

C
om

pa
ri
so
n
be
tw
ee
n
th
e
m
ai
n
lit
er
at
ur
e
on

th
e
M
SS

an
d
th
e
SC

A
P
an
d
th
e
pr
es
en
te
d
w
or
k
in

th
is
pa
pe
r

R
ef
er
en
ce

Pr
ob
le
m

ad
dr
es
se
d

M
et
ho
do
lo
gy

O
bj
ec
tiv

e(
s)

C
on
st
ra
in
ts

Te
st
ie
ta
l.
[9
7]

•A
dd
re
ss

th
e
th
re
e
hi
er
ar
ch
ic
al

•B
in
-p
ac
ki
ng

m
od
el
fo
r

•O
pt
im

iz
e
ov
er
tim

e
•S

pe
ci
al
ty

pr
io
ri
ty

de
ci
si
on

le
ve
ls
:S

es
si
on

th
e
fi
rs
tp

ha
se

an
d
th
ro
ug
hp
ut

•S
ur
ge
on
s’
pr
ef
er
en
ce

pl
an
ni
ng
,M

SS
an
d
se
qu
en
ci
ng
s

•B
lo
ck
ed

bo
ok
in
g
m
et
ho
d

da
y

of
su
rg
ic
al
ac
tiv

iti
es

fo
r
th
e
w
ee
kl
y

or
th
e
M
SS

•P
at
ie
nt

L
O
S

sc
he
du
lin

g
of

O
R
s
fo
r
on
ly

on
e

•T
he

si
m
ul
at
io
n
so
ft
w
ar
e

su
rg
ic
al
sp
ec
ia
lty

en
vi
ro
nm

en
tW

itn
es
s
20
04

to
se
qu
en
ce

su
rg
ic
al

ac
tiv

iti
es

in
th
e
la
st
ph
as
e

A
gn
et
is
et
al
.[
2]

•D
et
er
m
in
e
th
e
va
ri
ou

s
M
SS

•A
n
in
te
gr
at
ed

lin
ea
r

•S
at
is
fa
ct
io
n
of

pa
tie
nt
s

•O
R
re
se
rv
at
io
n

po
lic

ie
s
on

th
e
qu
al
ity

of
th
e

pr
og
ra
m
m
in
g
m
od
el
ba
se
d

•O
pt
im

iz
in
g
O
R
ut
ili
za
tio

n
•L

ow
er

an
d
up

pe
r
lim

its

su
rg
ic
al
pl
an
s
th
ro
ug
ho
ut

on
e

on
th
re
e
on
e-
w
ee
k
de
ci
si
on

•E
ac
h
su
rg
er
y
is
pe
fo
rm

in
g

on
th
e
nu
m
be
r
of

bl
oc
k

ye
ar

w
ith

in
th
e
re
sp
ec
tiv

e
du
e

tim
e
as
si
gn
ed

to
ea
ch

•S
ol
vi
ng

M
SS

an
d
SC

A
P

da
te

su
rg
ic
al
di
sc
ip
lin

e

•D
is
ci
pl
in
e-
to
-O

R

re
st
ri
ct
io
n

A
gn
et
is
et
al
.[
3]

•A
dd
re
ss

th
e
M
SS

pr
ob
le
m

•B
in
-p
ac
ki
ng

m
od
el

•S
at
is
fa
ct
io
n
of

pa
tie
nt
s

•O
R
re
se
rv
at
io
n

an
d
th
e
ad
va
nc
e
su
rg
er
y

•O
pt
im

iz
in
g
O
R
ut
ili
za
tio

n
•L

ow
er

an
d
up

pe
r
lim

its

sc
he
du
lin

g
pr
ob
le
m

•E
ac
h
su
rg
er
y
is
pe
rf
or
m
ed

on
th
e
nu
m
be
r
of

bl
oc
k

•S
ol
vi
ng

th
e
M
SS

an
d
th
e

w
ith

in
th
e
re
sp
ec
tiv

e
du
e

tim
e
as
si
gn
ed

to
ea
ch

SC
A
P
us
in
g
a
de
co
m
po
si
tio

n
da
te

su
rg
ic
al
di
sc
ip
lin

e

ap
pr
oa
ch

•D
is
ci
pl
in
e-
to
-O

R
re
st
ri
ct
io
n

A
ri
ng
hi
er
ie
ta
l.
[6
]

•D
et
er
m
in
e
th
e
al
lo
ca
tio

n
•A

tw
o
le
ve
lM

et
a-
he
ur
is
tic

•O
pt
im

iz
e
th
e
pa
tie

nt
•B

lo
ck

tim
e
le
ng

th

of
O
R
bl
oc
k
tim

e
to

an
d
a
1

−
0
lin

ea
r

ut
ili
ty

by
re
du

ci
ng

•O
R
re
se
rv
at
io
n

sp
ec
ia
lti
es

ov
er

on
e

pr
og
ra
m
m
in
g
fo
rm

ul
at
io
n

w
ai
tin

g
tim

e
co
st
s

•S
ur
gi
ca
lt
ea
m
s’
av
ai
la
bi
lit
y

w
ee
k
pl
an
ni
ng

ho
ri
zo
n

•O
pt
im

iz
e
ho
sp
ita
lu

til
ity

fo
r
ea
ch

sp
ec
ia
lty

da
ys

of

an
d
th
e
su
bs
et
s
of

by
re
du
ci
ng

pr
od
uc
tio

n
w
ee
ke
nd

pa
tie
nt

to
be

sc
he
du
le
d

co
st
s
m
ea
su
re
d
in

te
rm

s
•A

va
ila
bl
y
of

be
ds

in
ea
ch

tim
e
bl
oc
k

of
th
e
nu
m
be
r
of

w
ee
ke
nd

st
ay

be
ds

re
qu
ir
ed

by

th
e
su
r g
er
y
pl
an
ni
ng

68 S. Makboul et al.



Ta
bl
e
1

(c
on
tin

ue
d)

R
ef
er
en
ce

Pr
ob
le
m

ad
dr
es
se
d

M
et
ho
do
lo
gy

O
bj
ec
tiv

e(
s)

C
on
st
ra
in
ts

G
ui
do

an
d
C
on
fo
rt
i[
46
]

•D
et
er
m
in
e
th
e
O
R
tim

e
•A

m
ul
ti-
ob
je
ct
iv
e
in
te
ge
r
lin

ea
r

•M
ax
im

iz
e
ut
ili
za
tio

n
of

O
R
s

•O
R
se
ss
io
ns
-p
er
-d
is
ci
pl
in
e

as
si
gn
ed

to
ea
ch

su
rg
ic
al

pr
og
ra
m
m
in
g
m
od
el
ai
m
in
g

•M
ax
im

iz
e
th
ro
ug
hp
ut

re
st
ri
ct
io
ns

di
sc
ip
lin

e,
th
e
O
R
tim

e
at
pl
an
ni
ng

an
d
m
an
ag
in
g

•M
ax
im

iz
e
cl
in
ic
al
pr
io
ri
ty

•T
he

w
ai
tin

g
lis
to

f

as
si
gn
ed

to
ea
ch

su
rg
ic
al

ho
sp
ita
lO

R
su
ite
s

su
rg
er
ie
s
fo
r
ea
ch

su
rg
ic
al

te
am

,t
he

su
rg
er
y
ad
m
is
si
on

•P
re
se
nt
in
g
a
no
ve
l

te
am

pl
an
ni
ng

an
d
th
e
su
rg
er
y
sc
he
du
lin

g
hy
br
id

ge
ne
tic

so
lu
tio

n
ap
pr
oa
ch

•S
pe
ci
al
ty

pr
io
ri
ty

K
um

ar
et
al
.[
58
]

•D
et
er
m
in
e
th
e
M
SS

to
•A

st
oc
ha
st
ic
m
ix
ed

in
te
ge
r

•M
ax
im

iz
e
a
w
ei
gh
te
d

•R
es
ou
rc
e
av
ai
la
bi
lit
y

ac
hi
ev
e
a
be
tte

r
pa
tie
nt

pr
og
ra
m
m
in
g
m
od
el
so
lv
ed

th
ro
ug

hp
ut

w
hi
le
m
ai
nt
ai
ni
ng

•U
nc
er
ta
in

L
O
S

fl
ow

un
de
r
do
w
ns
tr
ea
m

us
in
g
a
si
m
ul
at
io
n
ap
pr
oa
ch

a
ba
la
nc
e
be
tw
ee
n
re
so
ur
ce

ca
pa
ci
ty

co
ns
tr
ai
nt
s

•M
ea
su
re

re
so
ur
ce

ut
ili
za
tio

n

ut
ili
za
tio

n
an
d
ca
nc
el
la
tio

ns
an
d
ca
nc
el
la
tio

ns

M
’H

al
la
h
an
d
V
is
in
tin

[7
3]

•D
et
er
m
in
e
th
e
nu
m
be
r
an
d

•A
tw
o-
st
ag
e
st
oc
ha
st
ic

•M
ax
im

iz
e
th
ro
ug
hp
ut

•S
to
ch
as
tic

su
rg
er
y
tim

e

ty
pe

of
el
ec
tiv

e
su
rg
er
ie
s

pr
og
ra
m
m
in
g
w
ith

re
co
ur
se

•S
to
ch
as
tic

IC
U
tim

e

to
pe
rf
or
m

in
ea
ch

O
R
an
d

•S
to
ch
as
tic

po
st
-s
ur
ge
ry

da
y
in

th
e
pl
an
ni
ng

ho
ri
zo
n

L
O
S

un
de
r
L
O
S
un
ce
rt
ai
nt
y

•A
va
ila

bi
lit
y
of

IC
U
be
d

•A
va
ila

bi
lit
y
of

po
st
-

su
rg
er
y
be
d

T
hi
s
w
or
k

•P
ro
po
se

a
ro
bu
st

•A
tw
o-
st
ag
e
ap

pr
oa
ch

•S
at
is
fa
ct
io
n
of

pa
tie
nt
s

•O
R
re
se
rv
at
io
n

so
lu
tio

n
fo
r
th
e
M
SS

an
d

to
ad
dr
es
s
th
e
M
SS

an
d

•O
pt
im

iz
e
O
R
ut
ili
za
tio

n
•L

ow
er

an
d
up

pe
r
lim

its
on

SC
A
P
an
d
co
ns
id
er

O
T

SC
A
P
on

on
e
w
ee
k
tim

e
•E

ac
h
su
rg
er
y
is
pe
rf
or
m
ed

th
e
nu
m
be
r
of

bl
oc
k
tim

es

re
st
ri
ct
io
ns
,d

ow
ns
tr
ea
m

ho
ri
zo
n
un
de
r
O
T
re
st
ri
ct
io
ns

w
ith

in
th
e
re
sp
ec
tiv

e
du
e

as
si
gn
ed

to
ea
ch

sp
ec
ia
lty

re
so
ur
ce
s
av
ai
la
bi
lit
y
un
de
r

an
d
do
w
ns
tr
ea
m

re
so
ur
ce
s

da
te
.

•L
im

its
on

sp
ec
ia
lty

pa
ra
lle

lis
m

su
rg
er
y
du
ra
tio

n
an
d
IC
U

av
ai
la
bi
lit
y

•D
is
ci
pl
in
e-
to
-O

R
re
st
ri
ct
io
n

be
d
av
ai
la
bi
lit
y
un

ce
rt
ai
nt
y

•A
ro
bu
st
fo
r
m
ul
at
io
n
un
de
r

•S
ur
ge
on
s’
sp
ec
ia
lty

su
rg
er
y
du
ra
tio

n
un
ce
rt
ai
nt
y

•S
ur
ge
on

s’
av
ai
la
bi
lit
y

•A
ro
bu
st
fo
rm

ul
at
io
n

•P
ri
or
iti
es

of
th
e
ou
tp
at
ie
nt
s

un
de
r
IC
U
be
d
av
ai
la
bi
lit
y

in
th
e
am

bu
la
to
ry

sp
ec
ia
lty

un
ce
rt
ai
nt
y

•A
va
ila

bi
lit
y
of

IC
U
be
d

•A
va
ila
bi
lit
y
of

po
st
su
rg
er
y

un
it
be
d

•U
nc
er
ta
in

su
rg
er
y
du
ra
tio

n

•U
nc
er
ta
in

IC
U
be
d
av
ai
la
bi
lit
y

69A two-stage robust optimization approach for the master surgical...



Fig. 1 Elective patient flow

(so it can be the last). This technique will simplify the
modeling of the problem. The outpatients will be scheduled
according to their preference and health infections will be
reduced. The model always favors children and cleanest
surgeries, by assigning to them maximal preference; unlike
dirty surgeries, to which we give lowest preference to be
scheduled last. Similar surgeries take the same preference;
for instance, two clean surgeries in the ambulatory specialty
block time obtain the same preference. Therefore, the
sequencing between the two is randomly chosen as they
have the same preference.

In the second stage of the approach, we aimed to find
the best mix of elective patients to be operated during the
week based on the MSS given in the first stage, considering
availability of both post-surgery units and ICU beds for the
patients requiring ICU treatment. The patients are selected
according to their scores, i.e., urgent surgeries have a greater
impact and more chances to be selected. Basically, ICU beds
are shared with the emergency department and may depend
on human resources availability. Consequently, we aimed
to build a robust solution when availability of ICU bed is
subject to uncertainties.

3.2 First stage

We describe the deterministic model, decision variables,
parameters and the objective function. We aimed to define
the MSS on a weekly basis and allocate surgeries to ses-
sions by considering the OT restriction and availability of
resources.

We propose the following integer linear programming
(ILP) model:

3.2.1 Problem’s parameters

To formally define the problem, we use the following
notations and parameters:

S Set of surgical specialties
Cs Set of surgeons in specialty s

I Set of all surgeries in the waiting list
(I={1,...,n})

Is Set of surgeries in the waiting list of specialtys

J Set of days
Ro Set of the operating rooms
SPR Set of the outpatients with the same preference
NAORs Set of unavailable ORs for specialty s

r Index for operating room in Ro

j Index for day
i Index for surgery
s Index for surgical specialty in S

a Index for the ambulatory specialty in S

d Index for surgeon in Cs

α Dummy outpatient assigned to each
ambulatory surgery block time and would
be treated as the first outpatient

β Dummy outpatient assigned to each
ambulatory surgery block time and would
be treated as the last outpatient

Ri Days to due-date (nominal date) for surgery i

Pi Expected duration of surgery i

ϕi The score for surgery i

Omax Block time capacity
NBT max

s Maximum number of block time for specialtys

NBT min
s Minimum number of block time for specialtys

PBTs Maximum number of parallel block time for
specialty s

W Maximum waiting time for low-priority
surgeries

NWDd Number of days that surgeon d can work
in a week

prfi Preference of surgery i

M Very large number

dspdj =
{
1 if surgeon d is available on day j
0 otherwise
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3.2.2 Decision variables

We define the decision variables as follows:

xisrj =
{
1 if surgery i of surgical specialty s is assigned to room r on day j
0 otherwise

zdsrj =
{
1 if surgeon d of surgical specialty s is assigned to room r on day j
0 otherwise

wilrj =
{
1 if the outpatient l is operated immedietly after the outpatient i in room r on day j
0 otherwise

ysrj =
{
1 if surgical specialty s is assigned to room r on day j
0 otherwise

3.2.3 First stage’s ILP model

The objective considered in this paper is formulated as
follows:

max
∑
s∈S

∑
i∈Is

∑
r∈Ro

∑
j∈J

xisrj ϕi (1)

Subject to:∑
r∈Ro

∑
j∈J

xisrj ≤ 1 ∀s ∈ S ∀i ∈ Is \ {α, β} (2)

∑
s∈S

∑
i∈Is

Pi xisrj ≤ Omax ∀r ∈ Ro ∀j ∈ J (3)

∑
i∈Is

xisrj ≤ M ysrj ∀s ∈ S ∀r ∈ Ro ∀j ∈ J

(4)

∑
s∈S

ysrj ≤ 1 ∀r ∈ Ro ∀j ∈ J (5)

∑
r∈Ro

∑
j∈J

ysrj ≤ NBT max
s ∀s ∈ S (6)

∑
r∈Ro

∑
j∈J

ysrj ≥ NBT min
s ∀s ∈ S (7)

∑
r∈Ro

ysrj ≤ PBTs ∀s ∈ S ∀j ∈ J (8)

∑
r∈NAORs

∑
j∈J

ysrj = 0 ∀s ∈ S (9)

xαarj ≤ yarj ∀r ∈ Ro ∀j ∈ J (10)

xβarj ≤ yarj ∀r ∈ Ro ∀j ∈ J (11)

∑
i∈Ia

wiαrj = 0 ∀r ∈ Ro ∀j ∈ J (12)

∑
l∈Ia

wβlrj = 0 ∀r ∈ Ro ∀j ∈ J (13)

xiarj =
∑

l∈Ia/i �=l

wilrj ∀i ∈ Ia \ {β} ∀j ∈ J ∀r ∈ Ro

(14)

∑
l∈Ia

wilrj =
∑
l∈Ia

wlirj ∀i ∈ Ia \ {α, β} ∀j ∈ J ∀r ∈ Ro

(15)

prfi ≥wilrj ×prfl ∀i, l ∈ Ia ∀j ∈ J ∀r ∈ Ro

(16)

∑
r∈Ro

∑
j∈J

zdsrj ≤ NWDd ∀s ∈ S ∀d ∈ Cs

(17)

ysrj =
∑
d∈Cs

zdsrj ∀s ∈ S ∀r ∈ Ro ∀j ∈ J

(18)

zdsrj ≤dspdj ∀s ∈ S ∀d ∈ Cs ∀j ∈ J ∀r ∈ Ro

(19)
∑
r∈Ro

zdsrj ≤ 1 ∀s ∈ S ∀d ∈ Cs ∀j ∈ J (20)

∑
(i,l)∈SPR

wilrj ≤ | SPR | −1 ∀2 ≤| SPR |≤| Ia |

−1 ∀j ∈ J ∀r ∈ Ro (21)

wilrj , ysrj , zdsrj , xisrj ∈ {0, 1} ∀s ∈ S ∀i, l ∈ Is

∀r ∈ Ro ∀j ∈ J (22)
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Objective Eq. 1 aims to select the surgeries that maximize
the overall score. Constraint Eq. 2 ensures that each surgery
can be performed at most once. Constraint Eq. 3 ensures
that the upper limit of block time is respected. Constraint
Eq. 4 guarantees that patients are assigned to only block
time opened for their surgical discipline. Constraint Eq. 5
guarantees that at most one surgical specialty is assigned to
an OR in a day. Constraints Eqs. 6-7 bound the number of
weekly block time assigned to each discipline. Constraint
Eq. 8 limits the number of parallel block time assigned to
the same surgical discipline. Discipline-to-OR restrictions
are taken into account by constraint Eq. 9. Constraints
Eqs. 10-11 guarantee that the two dummy outpatients α

and β are assigned to each ambulatory surgery block time.
Constraint Eq. 12 ensures that the dummy outpatient α

cannot have a predecessor. Constraint Eq. 13 guarantees
that the dummy outpatient β cannot have a successor.
Constraint Eq. 14 ensures that if an outpatient is selected
from the ambulatory discipline, he/she has definitely one
successor; this constraint links between sequencing and
assignment variables. Constraint Eq. 15 ensures that if an
outpatient of the ambulatory specialty has a successor, then
the outpatient has definitely a predecessor (the conservation
of flow). Constraint Eq. 16 guarantees that the sequencing
of outpatients in the ambulatory surgery block time depends
on the preference value of each outpatient. Constraint
Eq. 17 limits the number of days that a surgeon can work.
Constraint Eq. 18 guarantees that a block time is assigned
to one surgeon of the same discipline. Days surgeons’
availability is taken into accounts by constraint Eq. 19.
Constraint Eq. 20 ensures that a surgeon is assigned to one
OR at most on a day. Schedule between outpatients with
the same preference in the ambulatory surgery block times
is considered by constraint Eq. 21, this constraint schedules
randomly outpatients with the same preference by avoiding
selecting outpatients already scheduled. Constraint Eq. 22
defines the integrality constraint.

3.3 Second stage

In the second stage, we aimed to find the best mix of
elective patients to be planned during the week according to
downstream resources’ availability (ICU and post-surgery
unit beds). Using the MSS defined in the first stage as input,
urgent patients have more chances to be selected and keep
their places in the MSS.
Hence, we propose the following MILP model:

3.3.1 Additional parameters

We define the following additional notation and parameters:

F Set of classes of patients’ post-surgery LOS
Ω Set of block times
K Set of surgical groups
U Set of post-surgery units in the hospital
Ik Set of surgeries in the waiting list in group k ∈K

k Index for surgical group in K . A group k ∈ K

of patients is characterized by its class and
block time

f Index for a class in F , f = 1 refers to
outpatients surgical class

u Index for the post-surgery units. u = 1 refers
to the ambulatory surgery unit

ω Index of block time in Ω

ϑi The score of the surgery i

τuj Number of post-surgery beds available in
surgical unit u ∈ U on day j

νj Number of ICU beds available on day j ∈ J

LSICU
ik The total LOS in the ICU for patient i ∈ Ik

LSU
ik The total LOS in the post-surgery unit for patient

i ∈ Ik

pi Surgery duration of patient i according to first
stage

V Lkω =
{
1 if the block time ω ∈ Ω contains group k ∈ K

0 otherwise

WLkj =
{
1 if the group k ∈ K is assigned to day j ∈ J

0 otherwise

rck =
{
1 if surgeries in group k ∈ K require a ICU bed
0 otherwise

eckf =
{
1 if the group k ∈ K is of class f ∈ F

0 otherwise

qil =
{
1 if the outpatient l is scheduled immedialtly after the outpatient i
0 otherwise

3.3.2 Decision variables

We define the decision variables as follows:

Aiωj Start time of the outpatient iof block time ωon dayj

γikωj =
{
1 if surgey i of group k and block time ω is assigned to day j
0 otherwise

3.3.3 Second stage’s MILP model

The objective considered is formulated as follows:

max
∑
k∈K

∑
i∈Ik

∑
ω∈Ω

∑
j∈J

γikωjϑi (23)
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Subject to:∑
j∈J

γikωj ≤V Lkω ∀k ∈ K ∀i ∈ Ik ∀ω ∈ Ω (24)

∑
ω∈Ω

γikωj ≤WLkj ∀k ∈ K ∀i ∈ Ik ∀j ∈ J (25)

∑
k∈K

∑
i∈Ik

∑
ω∈Ω

eck1γikωj ≤ τ1j ∀j ∈ J (26)

∑
k∈K

eck1=0

⎡
⎢⎢⎢⎣(1 − rck)

⎛
⎜⎜⎜⎝

∑
i∈Ik

∑
ω∈Ω

γikωj +
∑
j ′∈J

j ′>j−LSU
ik

j−1
γikωj ′

⎞
⎟⎟⎟⎠

+rck

∑
i∈Ik

∑
ω∈Ω

j−1∑
j ′∈J

j ′>j−LSU
ik−LSICU

ik

γikωj ′

⎤
⎥⎥⎥⎥⎦

≤
∑
u∈U
u�=1

τuj ∀j ∈ J (27)

∑
k∈K

eck1=0

rck

∑
i∈Ik

∑
ω∈Ω

⎛
⎜⎜⎜⎜⎝γikωj +

j−1∑
j ′∈J

j ′>j−LSICU
ik

γikωj ′

⎞
⎟⎟⎟⎟⎠

≤ νj ∀j ∈ J (28)

Alωj ≥ Aiωj + pi − M(1 − qil

∑
k∈K

γikωj )

∀(i, l) ∈ Ia

∀ω ∈ Ω ∀j ∈ J (29)

γikωj ∈ {0, 1} ∀k ∈ K ∀i ∈ Ik

∀ω ∈ Ω ∀j ∈ J (30)

Aiωj ≥ 0 ∀i ∈ Ia ∀ω ∈ Ω ∀j ∈ J (31)

Objective Eq. 23 aims to select the surgeries that maximize
the overall score. Constraint Eq. 24 guarantees that each
surgery is assigned at most one time during the planning
horizon according to their corresponding group and block
time in the MSS (linking with the MSS planning of the
first stage). Constraint Eq. 25 guarantees that each surgery
is assigned at most to one block time during the planning
horizon according to their corresponding group and day
in the MSS (linking with the MSS planning of the first
stage). Constraint Eq. 26 ensures that the sum of elective
surgeries not requiring an overnight stay does not exceed
the number of beds in the outpatient surgical unit (u = 1)
on day j . Constraint Eq. 27 guarantees beds’ availability in

the post-surgery unit u on the day j . It is divided into two
possibilities; (i) If surgeries of the group k require ICU stay,
then rck = 1. Only the last term remains in the inequality.
Consequently, the surgeries of ICU transferred on the day j

to the unit u must not exceed the number of beds available
in unit u on the day j . (ii) If surgeries of the group k do not
require ICU stay, then rck = 0 the last term in the inequality
is zero. The first term accounts for surgeries performed on
the day j and transferred immediately to the unit u and the
surgeries that have been and would stay in the unit u on
the day j , the total of these surgeries must not exceed the
number of beds available in unit u on the day j . Constraint
Eq. 28 guarantees beds’ availability in the ICU on the day
j ; the sum of the surgeries performed on that day j and
transferred to the ICU and the surgeries that were performed
on previous days and used the ICU and would stay using the
beds must not exceed the number of ICU beds available on
the day j . Constraint Eq. 29 defines the start time for each
surgery from the ambulatory specialty. Constraints Eqs. 30
and 31 enforce the binary variable of the model and the
non-negativity restrictions.

4 Robust formulation

4.1 Overview of robust optimization

Robust optimization (RO) is a framework for modeling
uncertainty in stochastic optimization problems when the
distribution of uncertain problem data is not known. It has
gained renewed interest over the past two decades with
many applications from both practitioners and theorists
[83]. RO models uncertain data using continuous or discrete
sets of possible values, with no attached distributional
probability. RO generates optimal solutions that are feasible
for a defined set of values that uncertain parameters can take
[77]. A solution is called “robust” if it is resistant to data
disruption, at least within a given range. The robust solution
is feasible for various data scenarios and not necessarily
optimal for all of them. The term “robust” was used for the
first time by [76].

Earlier, [93] introduced a robust approach that represents
a guarantee against all possible realizations of uncertainties,
reducing the problem’s resolution under uncertainty to
solving a deterministic problem in which all the uncertain
parameters take their worst-case values. Such robust
solutions can be considered too pragmatic and are
characterized in the literature as conservative solutions. A
worst-case decision will not always be acceptable. The cost
can be unnecessarily high if it is unlikely to happen. Later,
[13, 14, 36] introduced less conservative approaches to
deal with uncertainty. However, their models are nonlinear
and hard to solve [79]. Consequently, a less conservative
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approach has been presented in [17, 18], and it is used in this
study. A recent survey of literature about RO can be found
in [15, 19, 43]. Bertsimas and Sim [18] state that in real life,
not all parameters attain their worst values simultaneously,
and only a part of them deviate from nominal values.
The robust model introduced by [18] remains linear and
computationally tractable.

Not privileging uncertainty may impact patients’ health
and hospital quality of service. Using RO to evaluate uncer-
tainty in health care and surgery planning problems can
be more efficient than SP. SP has a significant drawback,
which concerns the large size of the problems it generates,
and involves memory space and computation time problems.
The solutions given by the RO are protected against uncer-
tainty and generate a probabilistic guarantee for the feasibility
of solutions. SP may provide incorrect solutions for short-
term planning, while RO can be successfully used [77].

Some specialties may be very sensitive and require par-
ticular attention (e.g., cardiology, oncology, vascular surgery).
Cardiology and vascular surgery patients may undergo com-
plicated surgeries that require long surgery duration and
LOS in the post-surgery units and ICU beds. RO can pro-
duce solutions that are protected against uncertainty for
short-term planning in such complex situations, and when
it is not evident to receive probabilistic information or
infeasibility cannot be tolerated [77].

4.2 Surgery duration uncertainty

The ILP model Eq. 1-22 assumes that the input duration
data of surgeries (processing time) are precisely defined and
equal to certain nominal values. Nonetheless, the impact
of data uncertainties on accuracy and variability of the
model is not taken into account. It is likely that since the
data take values that are different from the nominal values,
certain constraints may be violated and the optimal solution
found using the nominal data may no longer be optimal or

even feasible. The processing time of surgeries is subject
to fluctuations because of several factors, namely surgeon’s
skills, patient’s age and health, and so on. This is why
we are looking to adopt our model to be resistant to data
uncertainty.

Let assume that the processing time values are symmetric
and bounded random variables that take values in [P i −
P̂i , P i + P̂i], where P i denotes a nominal value and P̂i its
deviation (P̂i ≥ 0). The robustness parameter ∇ protects the
constraint Eq. 3.

We define the random variables: ηi = Pi−P

P̂i
, where ηi ∈

[−1, 1]. The data uncertainty is defined by the polyhedral
uncertainty set as follows [18]:

Γ P
rj = {Pi ∈ R

n|Pi = P i + P̂iηi,
∑
i∈I

ηi ≤ ∇, 0 ≤ ηi ≤ 1}

(32)

The decisions variables are assumed to be nonnegative.
Consequently, the worst case will be reached at the right-
hand side of the range [P i − P̂i , P i + P̂i]. Hence, the
random variable η in Eq. 32 is assumed to be positive (0 ≤
ηi ≤ 1). Without loss of generality, the confidence range
[P i − P̂i , P i + P̂i] does not have to be symmetric.

For each day j , and OR r , a subset of patients which
cardinal is denoted by ∇ follows the worst-case scenario
in surgery duration. The worst-case value is reached by
considering the largest surgery duration deviation. The
subset chosen is the one with the worst effect on the block
time capacity from all possible subsets, and the solution is
assumed to be feasible concerning this subset [1].

The protection function was included in the constraint
Eq. 3 as follows:

∑
s∈S

∑
i∈Is

P ixisrj + βrj (x
∗, ∇) ≤ Omax ∀r, j (33)

Where,

βrj (x
∗, ∇) = max

{S′
rj ∪{trj }|S′

rj ⊆I,card(S′
rj )=�∇,trj ∈I\S′

rj }

⎧⎪⎨
⎪⎩

∑
s∈S

∑
i∈S′

rj

P̂ix
∗
isrj + (∇ − �∇)P̂trj x

∗
isrj

⎫⎪⎬
⎪⎭ (34)

Where P i the nominal value of the processing time, for
all r and j . βrj is equivalent to the following problem:

max
∑
s∈S

∑
i∈Is

P̂ix
∗
isrj gi (35)

∑
i∈I

gi ≤ ∇ (36)

0 ≤ gi ≤ 1 ∀i ∈ I (37)

Note that x∗
isrj is the optimal solution of the deterministic

model and not a variable in this problem. gi is the decision
variable, P̂ is the precision range.

The dual of model Eqs. 35–37 is written as follows:

min∇urj +
∑
s∈S

∑
i∈Is

visrj (38)

urj + visrj ≥ P̂ixisrj ∀s ∈ S ∀i ∈ Is (39)

urj ≥ 0 (40)
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visrj ≥ 0 ∀s ∈ S ∀i ∈ Is (41)

Where urj and visrj are the dual variables associated to
constraints Eqs. 40 and 41, respectively. By strong duality,
the optimal values of Eqs. 38 and 35 coincide. The dual
model Eqs. 38-41 is replaced with the protection function to
obtain the robust formulation of Eq. 33:∑
s∈S

∑
i∈Is

P ixisrj +∇urj +
∑
s∈S

∑
i∈Is

visrj ≤Omax ∀r, j (42)

urj + visrj ≥ P̂ixisrj ∀s ∈ S ∀i ∈ Is ∀r, j (43)

urj ≥ 0 ∀r, j (44)

visrj ≥ 0 ∀s ∈ S ∀i ∈ Is ∀r, j (45)

The robust optimization problem Eqs. 1-22 can be
reformulated as the following ILP model:

max
∑
s∈S

∑
i∈Is

∑
r∈Ro

∑
j∈J

xisrj ϕi (46)

subject to: Eqs. 2, 4-22∑
s∈S

∑
i∈Is

P ixisrj +∇urj +
∑
s∈S

∑
i∈Is

visrj ≤Omax ∀r, j (47)

urj +visrj ≥ P̂ixisrj ∀s ∈ S ∀i ∈ Is ∀r, j (48)

urj ≥ 0 ∀r, j (49)

visrj ≥ 0 ∀s ∈ S ∀i ∈ Is ∀r, j (50)

The robust approach increases the number of constraints and
variables, but the big advantage is that the model remains
linear and computationally tractable. Thus, it can be solved
using commercial optimization solvers in a reasonable time.

4.3 ICU bed availability uncertainty

We consider the MILP model Eqs. 23-30; we suppose that
the number of available ICU beds in each day j is uncertain.
We deal with uncertainty on right hand sides with inequality
constraints. The approach introduced by [18] cannot always
be usefully applied [42]; [41] presented a critical analysis.
Hence, the worst-case criterion can be relevant [42, 93].

We consider the following linear programming model:{
min cx

s.t . Ax ≥ b
(51)

Where A is an n × m matrix, and b ∈ R
m. We suppose

that bi is uncertain and varies in an interval [bi, bi]. Let Π

be the Cartesian product of interval [bi, bi].
For all b ∈ Π , we define the nonempty polyhedron Xb≥ =
{x ∈ R

n : Ax ≥ b}; it contains the feasible solutions under
scenario b. The smallest feasible solution set of Eq. 51 is
obtained when b is b.

For all x inXb≥ the worst value is equal to cx for all scenarios.

A solution x, which does not belong toXb≥ has a worst value
equal to+∞ (because x is at least infeasible for one scenario)
[42]. Hence, the optimal solution according to the worst-case
criterion necessarily belongs to Xb≥ and the optimal solution
according to the worst-case criterion is solved as follows:{

min cx

s.t . Ax ≥ b
(52)

The number of available ICU beds in each day j ∈ J

is uncertain and varies in an interval [νj , νj ]. As a result,
the optimal solution according to the worst-case criterion is
solved as follows:

max
∑
k∈K

∑
i∈Ik

∑
ω∈Ω

∑
j∈J

γikωjϑi (53)

subject to: Eqs. 24–27,29-31

∑
k∈K

eck1=0

rck

∑
i∈Ik

∑
ω∈Ω

⎛
⎜⎜⎜⎜⎝γikωj +

j−1∑
j ′∈J

j ′>j−LSICU
ik

γikωj ′

⎞
⎟⎟⎟⎟⎠

≤ νj ∀j ∈ J (54)

The problem is solved in polynomial time [42]. The
optimal solution of Eqs. 53-54 is considered as the robust
solution, since it is feasible under any possible scenario.

5 Computational experience

The experimental tests aim to evaluate the behavior of
the proposed two-stage approach for the deterministic and
the robust case in terms of utilization rate and number of
scheduled surgeries from the waiting list. The dataset is
taken from the archives of the OT of a medium-sized public
French hospital. The assessments were carried out over a
week. The choice of week was made based on two factors; a
week with a large volume of outpatient surgery and a week
not containing school holidays.

The OT has R = 8 ORs; nevertheless, we only take into
consideration 7 of them. In fact, the 8th room is devoted
to the emergencies (EMR). All the ORs are identically
equipped, but some rooms are more suitable for some
specialties than others. Surgeries belong to the following
specialties as shown in Table 2: Gynecology (s=GYN),
urology (s=URO), orthopedic surgery (s=ORTH), vascular
surgery (s=VAS) and ambulatory surgery (s=DS).

We tested three different sizes of the OT, 8 ORs, 12
ORs and 16 ORs with 2 different waiting lists (140 and
180 surgical cases). For instance (P .140, R.8) refers to the
waiting list contains 140 surgical cases; (45 outpatients, 95
patients from the different specialties) and 20 surgeons.
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Table 2 Specialties of the hospital

Specialty Description

GYN Gynecology

URO Urology

ORTH Orthopedic surgery

VAS Vascular surgery

DS Ambulatory surgery

The number of days that surgeons can work in a week is
fixed to 4 days per week. The age of the outpatients in the
ambulatory surgery is generated randomly between 1 and
100 years, 50% of the surgeries are considered clean and
50% dirty, the block time lasts 450 minutes, we set W = 90.

The surgeons are grouped in sets of surgical specialties
that are allowed to work 4 days distributed across the week.
We generated a matrix of availability of surgeons, which is
0 if the surgeon is not available in a day, otherwise 1.

The scheduling of the surgeries in each ambulatory
specialty block time takes into consideration the priorities
of the outpatients. According to the preference values given
by the decision-maker to the ambulatory surgeries, the
model always favors children and the cleanest surgeries,
hence, they are always scheduled first by assigning maximal
preference to them. Unlike dirty surgeries, we give to the
similar surgery types the same preference. For instance, two
clean surgeries in the ambulatory specialty have the same
preference. The choice between two surgeries with the same
preference is random and has no criterion.

Table 3 shows the restrictions on rooms in the compu-
tational settings for the instance (P .140, R.8). The second
column defines the set of unavailable ORs for each disci-
pline. The gynecology specialty can only be assigned to OR
2 and 3 then NAORgyn = {1, 4, 5, 6, 7, 8}, although the
ambulatory surgery can be assigned to any OR in the OT
except OR 8 because this room is reserved to the emergen-
cies. Furthermore, columns 3 and 4 refer to the number of
minimal/maximal block time for each discipline. Column 4
shows that parallel block times are only allowed in some
surgical specialties, for example, the ambulatory specialty
and the orthopedic surgery.

We define NBT max
s (the number of maximal block time

for specialty s) as the weighted sum of two components

Table 3 Restriction on MSS for instance (P .140, R.8)

Specialty NAORs NBT min
s NBT max

s PBTs

Gynecology {1,4,5,6,7,8} 3 9 1

Ambulatory surgery {8} 4 12 2

Urology {1,2,8} 2 9 1

Orthopedic surgery {2,3,5,6,7,8} 3 11 2

Vascular surgery {1,2,3,4,5,6,8} 4 8 1

NBT max
s = w1 × HNBTs + w2 × LNBTs , where w1 and

w2 are positive numbers such that w1 + w2 = 1. The first
component HNBTs is the historical number of block time,
which have been assigned weekly to specialties, the second
component LNBTs is the number of sessions to clear the
waiting list of specialties.

5.1 Deterministic models computational results

The hospital has 8 ORs, one of them is devoted to emer-
gencies. Three post-surgery units are dedicated to elective
surgeries. The post-surgery unit (u = 1) is committed to
ambulatory surgery, it has 15 beds and it closes at nights.
The two other units (u = 2, u = 3) are dedicated to elective
patients and have respectively 14 and 18 beds. The ICU has
7 beds shared with the emergency department.

The LOS of the patients varies from 1 to 10 days. The
patients requiring ICU treatment are limited. Hence, we
generate 3 scenarios; 0%, 1% and 2% of patients requiring
ICU treatment. (I .1) refers to 1% of surgeries on the waiting
list require ICU treatment.

5.1.1 Operated patients

Numerical results for a deterministic model are given in
Table 4. Column 2 shows the number of scheduled surgeries
for each instance without taking into account the availability
of ICU beds and the post-surgery unit beds. While column
3, 4 and 5 give the number of scheduled surgeries with
taking into account the availability of ICU beds and post-
surgery unit beds with 0%, 1% and 2% of patients requiring
ICU treatment, respectively. When the number of patients
requiring ICU beds increase, the number of patients selected
decreases. The experiments were performed using CPLEX
Optimization Studio 12.6 on Dell computer Intel Xeon CPU
E5 − 2667 v4 3.20 GHz 64 G RAM.

Table 5 shows results obtained for instance (P .140, R.8).
The MSS planning respects all constraints and discipline-
to-OR restrictions.

Figure 2 shows an example of the scheduling obtained in
the ambulatory surgery block time with respect to outpatient

Table 4 Operated patients of the deterministic models

Instance Without DR with (I .0) with (I .1) with (I .2)

(P .140, R.8) 108 108 105 98

(P .140, R.12) 134 134 129 127

(P .140, R.16) 137 137 135 131

(P .180, R.8) 107 107 104 99

(P .180, R.12) 134 134 130 125

(P .180, R.16) 140 140 138 134
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Table 5 MSS planning for instance (P.140, R.8)

MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY

R=1 ORTH ORTH ORTH ORTH ORTH

R=2 GYN DS DS EMPTY GYN

R=3 URO GYN GYN GYN DS

R=4 ORTH ORTH ORTH ORTH URO

R=5 DS DS DS DS DS

R=6 DS URO URO DS EMPTY

R=7 VAS VAS VAS VAS VAS

R=8 EMR EMR EMR EMR EMR

priorities and preferences. Dirty surgeries are scheduled last
to avoid health infections.

5.2 Robust models computational results

Table 6 provides statistics related to the distributions of
surgery durations for each surgical specialty. We present
the mean surgery duration denoted by μs

P , and the
standard deviation σ s

P for each specialty s. For each
patient i from specialty s, the nominal surgery duration
P i is computed by randomly generated from a lognormal
distribution according to the statistics corresponding to
specialty s [94]. To compute stochastic surgery time,
the lognormal distribution is recommended by several
authors [32, 70, 94] and it is consistent with the data
analysis of surgery duration. Figures 3 and 4 present
the distribution of surgery durations of orthopedic and
gynecologic surgery, respectively. The maximum deviation
P̂i (worst-case deviation) in surgery duration for each
patient i is computed as follows: P̂i = δσ s

P , we set δ = 1.
The effect of protection level on objective function value

is illustrated in Fig. 5. When ∇ = 0 the optimum value
is 11106. Which represents the deterministic model; while
with a maximum protection, it refers to [93] method; the
optimum value is reduced to 4.65% by 10589, the decrease
in the objective value is the price of robustness.

The degree of protection for a given constraint i is
determined by the level of protection ∇i . The parameter is
related to the probability bound to determine the value ∇i to
meet the ith constraint with a given probability [79].

Bertsimas and Sim [18] evaluated the degree of cons-

traint satisfaction by a probability bound exp(−∇2
i

2n ); the
probability bound depends on the size of the problem; more
precisely, the number of uncertain coefficients within the

Table 6 Data statistic on the distributions of surgery durations related
to specialties

Specialty(s) Mean value Standard deviation Number of

μs
P (min) σ s

P (min) surgeries

ORTH 91 53 156

GYN 72 46 70

VAS 111 54 109

DS 55 31 67

URO 82 58 56

Fig. 3 Distribution of surgery durations of orthopedic surgery

Fig. 4 Distribution of surgery durations of gynecologic surgery

Fig. 2 Example of scheduling in
an ambulatory surgery block
time
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Fig. 5 Optimal value as
function of ∇

same constraint. The approach becomes relevant when the
value of n is high; it brings a significant gain compared to
[93] approach [83].

Table 7 presents the results of the robustMSS; the objective
function value and the probability bound of constraint viola-
tion. Column 4 refers to the decrease of the objective value,
which is the price of robustness; when ∇ = 12 the opti-
mum value is 10607, while with a maximum protection, it
refers to the method of [93]; the optimum value is reduced
to 4.65% by 10589. The decrease in the objective function
as result of robust solution compensated by the benefit in
terms of robustness or feasibility.

The price of robustness is calculated by the following
formulation:
f (x(∇)) − f

f
.100% (55)

Where x(∇) is the optimal solution for the defined
budget ∇ and f (x(∇)) its objective value, and f represents
the optimal objective value of the deterministic problem.

In Fig. 5, we plot the optimal value as a function of ∇
the robust decision has a small effect on the objective value;
when there is no protection the objective value is 11106.

Table 7 Result of the robust MSS for instance (P .140, R.8)

∇ Probability Bound Optimal Value Reduction (%)

2.2 9.82 × 10−1 10917 1.7

5.7 8.90 × 10−1 10884 1.9

7.9 8.00 × 10−1 10806 2.7

10 6.99 × 10−1 10703 3.62

12 5.97 × 10−1 10607 4.49

22.6 1.61 × 10−1 10589 4.65

52.4 5.51 × 10−6 10589 4.65

71.1 1.44 × 10−9 10589 4.65

When ∇ ≥ 12 the model is insensitive to ∇. This is exactly
the solution given by the method of [93]. With maximum
protection, the objective value is reduced by 4.65%.

Figure 6 shows the optimal value with respect to the
probability bound of constraint violation. The horizontal
axis represents the probability of violation, and the vertical
axis shows the optimal value according to the budget of
robustness. To have a probability guarantees at most a
0.8% chance of constraint violation, the objective is only
reduced by 1.9%. We noticed that the optimal value is
marginally affected when we increased the protection level.
The approach of [18] succeeded in showing the price of
robustness; it is not necessary to penalize the objective
function value to protect the model against constraints
violation.

We aim to calculate the infeasibility probability of robust
solutions for different budgets by considering random real-
izations of the uncertain surgery duration. We empirically
assess the number of times a given optimal solution is
infeasible. Therefore, we randomly generate 300 random
realizations provided by the Monte Carlo simulation for
uncertain surgery duration from the lognormal distribution.

The simulation steps are presented as follows:

1. Input. Solution x(∇)

2. For � =1 to 300, do:
-P �

i ∼ lognormal(μs
P , σ s

P ) i ∈ I

-Evaluate the feasibility of x(∇) using P �
i

3. Output. The empirical probability evaluating constraint
violation of the solution.

The significant impact of the budget of robustness ∇
on the infeasibility probability of robust solutions out of
300 random realizations of uncertain surgery duration is
depicted in Fig. 7. It also shows the price of robustness as a
function of ∇.

According to Fig. 7, the budget of robustness that ensures
the feasibility is 6. Moreover, the penalty of robust solutions
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Fig. 6 Optimal value as a
function of the probability
bound of constraint violation

feasibility is about 2.3%. Figure 7 shows the trade-
off between feasibility and robust schedules penalty for
different values of ∇.

Figure 8 illustrates the decrease in the objective function
for the worst case criterion approach for three instances.
1,2,3 and 4 correspond to without DR, (I .0), (I .1) and
(I .2), respectively.

5.2.1 Scheduled surgeries

The ICU has 7 beds shared with the emergency department.
Only a number of them are dedicated to the OT (2 or 3). The
availability of the ICU beds depends generally on human
resource availability and the emergency department. Hence,

we suppose that the availability of beds varies on each day
within an interval νj ∈ [νj , νj ] ∀j ∈ J . The number
of surgeries performed according to the proposed two-stage
approach is given in Table 8. The first block of Table 8
refers to the first stage problem when downstream resource
availability is not taken into consideration. Blocks 2, 3, and
4 give the number of scheduled surgeries when 0%, 1%, and
2% of patients require ICU beds. The availability of ICU
beds is uncertain. (P .140, R.8, I .0) denotes instance of 140
patients, 8 ORs, and 0% of patients require ICU beds.

Table 8 presents the number of scheduled surgeries for
each instance to observe the influence of ∇ on the number
scheduled surgeries. The objective function becomes con-
stant when ∇ reaches a certain level, and it varies for

Fig. 7 Infeasibility probability
and price of robustness for
robust solutions
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Fig. 8 Comparison between
wost case and deterministic
solutions

different instances. In the following tables we denote (−) to
when ∇ reaches that value.
We remark that for greater values of∇, the number of sched-
uled surgeries decreases, because the solution becomes

more robust and a larger subset of patients require the
maximum surgery duration.

The number of scheduled surgeries remains the same
when ∇ exceeds a certain value, it is related to the fact that

Table 8 Scheduled surgeries
Instance (∇.2.2) (∇.5.7) (∇.7.9) (∇.10) (∇.14) (∇.52.4) (∇.71)

(P .140, R.8) 104 102 101 99 – – –

(P .140, R.12) 133 132 129 125 – – –

(P .140, R.16) 135 132 130 129 127 – –

(P .180, R.8) 107 105 104 100 – – –

(P .180, R.12) 130 127 124 121 118 – –

(P .180, R.16) 137 136 131 129 – – –

(P .140, R.8, I .0) 104 102 101 99 – – –

(P .140, R.12, I .0) 133 132 129 125 – – –

(P .140, R.16, I .0) 135 132 130 129 127 – –

(P .180, R.8, I .0) 107 105 104 100 – – –

(P .180, R.12, I .0) 130 127 124 121 118 – –

(P .180, R.16, I .0) 137 136 131 129 – – –

(P .140, R.8, I .1) 99 98 94 92 – – –

(P .140, R.12, I .1) 129 125 123 121 – – –

(P .140, R.16, I .1) 131 127 126 124 – – –

(P .180, R.8, I .1) 99 95 93 91 90 – –

(P .180, R.12, I .1) 127 124 121 118 – – –

(P .180, R.16, I .1) 133 131 128 125 – – –

(P .140, R.8, I .2) 91 90 88 86 – – –

(P .140, R.12, I .2) 119 116 115 112 – – –

(P .140, R.16, I .2) 124 121 118 117 – – –

(P .180, R.8, I .2) 94 92 88 85 84 – –

(P .180, R.12, I .2) 124 121 120 117 – – –

(P .180, R.16, I .2) 130 127 126 124 – – –
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∇ is equal or greater to the number of maximum patients
that can be scheduled in one block time. Consequently, all
the patients require their maximum surgery duration. The
subset of scheduled surgeries is not the same for different
values of ∇.

5.2.2 Comparison of the deterministic models and robust
models in computational time

Table 9 presents the computational time required to solve
the two-stage models.

The first block of Table 9 shows the computational time
required to solve the first-stage model. The gap is fixed to
1.e-4 when the solver attends the gap; we refer to it with “ag”.
The deterministic case (DC) is not complicated in terms of
computational time. For the DC, all instances are solved to
optimality. Concerning the second stage of the problem, the
computational time requires more effort because of the limited
number of ICU beds and the increasing number of patients
requiring ICU beds. The computational time increases, but
the models are still solved to optimality. Concerning the
robust model of the first stage problem (the first block
of the Table 9 with varying ∇), the model requires more

computational time compared to its deterministic counter-
part. The computational time increases when the value of ∇
increases. We observed that it reaches its maximum when
∇ is between 6 and 10. Since the number of surgeries that
can be operated during the block time is achieved and all the
scheduled surgeries require their maximum surgery dura-
tion, the computational time is not dramatical for a weekly
planning. The number of block times considered during the
planning horizon and the number of patients on the wait-
ing list have a significant effect on the computational time
required to solve the robust model of the first stage prob-
lem. Two instances run out of memory (they are denoted
with “∗”), and three instances were interrupted by the user
because no optimal value was reached within a time limit
of three hours (denoted with “∼”). However, the gaps are
reasonable, with an average value of 4.01 %.

5.2.3 Comparison of the deterministic models and robust
models in utilization rate

Table 10 shows the utilization rate of block times. The
second column refers to the DC when no uncertainty occurs.
The DC has a high utilization rate and varies between

Table 9 Computational time

Instance DC ∇.2.2 (∇.5.7) (∇.7.9) (∇.10) (∇.14) (∇.52.4) (∇.71)

(P .140, R.8) 501.87 ag 1568.10 ag 5741.69 ag ∼ 3.96 7563.23* 2.75 2869.78 ag 2856.14 ag 3669.41 ag

(P .140, R.12) 491.16 ag 1647.12 ag 9851.42 ag 9102.12 ag 9465.78 ag 6869.87 ag 5533.54 ag 4596.79 ag

(P .140, R.16) 412.14 ag 2637.12 ag 9931.42 ag 9102.12 ag 6412.78 ag 5869.87 ag 5658.36 ag 4663.12 ag

(P .180, R.8) 474.16 ag 2746.12 ag 9465.78 ag ∼ 5.8 ∼ 6.37 4891.16 ag 3746.74 ag 4696.79 ag

(P .180, R.12) 498.10 ag 3639.12 ag 9836.42 ag 8928.12 ag 8410.14* 3.25 3823.64 ag 2732.65 ag 4541.49 ag

(P .180, R.16) 469.36 ag 2667.12 ag 9839.42 ag 9928.12 ag 5465.78 ag 5869.87 ag 2533.54 ag 3569.21 ag

(P .140, R.8, I .0) 37.52 ag 46.91 ag 60.98 ag 67.98 ag 46.98 ag 68.75 ag 89.98 ag 98.41 ag

(P .140, R.12, I .0) 40.32 ag 86.47 ag 89.75 ag 45.78 ag 73.56 ag 68.25 ag 65.45 ag 69.72 ag

(P .140, R.16, I .0) 59.36 ag 65.95 ag 63.87 ag 56.78 ag 63.47 ag 42.96 ag 64.21 ag 72.45 ag

(P .180, R.8, I .0) 32.46 ag 63.25 ag 47.25 ag 56.14 ag 96.45 ag 76.34 ag 68.21 ag 50.24 ag

(P .180, R.12, I .0) 42.69 ag 65.21 ag 44.23 ag 47.32 ag 87.69 ag 70.29 ag 60.32 ag 74.96 ag

(P .180, R.16, I .0) 58.32 ag 54.36 ag 31.42 ag 29.56 ag 27.39 ag 63.25 ag 54.23 ag 64.32 ag

(P .140, R.8, I .1) 102.25 ag 130.96 ag 98.23 ag 150.42 ag 99.10 ag 250.36 ag 142.36 ag 201.85 ag

(P .140, R.12, I .1) 236.21 ag 199.52 ag 203.75 ag 176.54 ag 210.87 ag 260.61 ag 179.55 ag 250.74 ag

(P .140, R.16, I .1) 196.45 ag 211.75 ag 290.36 ag 201.96 ag 142.86 ag 138.24 ag 196.96 ag 201.36 ag

(P .180, R.8, I .1) 145.23 ag 169.32 ag 254.32 ag 263.85 ag 236.74 ag 201.36 ag 210.78 ag 190.30 ag

(P .180, R.12, I .1) 265.63 ag 20.36 ag 210.65 ag 230.74 ag 198.36 ag 204.75 ag 196.34 ag 198.07 ag

(P .180, R.16, I .1) 198.36 ag 204.75 ag 209.36 ag 211.86 ag 196.75 ag 189.47 ag 210.45 ag 263.14 ag

(P .140, R.8, I .2) 230.25 ag 269.36 ag 301.25 ag 236.75 ag 246.76 ag 268.45 ag 304.82 ag 264.76 ag

(P .140, R.12, I .2) 361.25 ag 302.42 ag 298.31 ag 274.09 ag 292.14 ag 325.69 ag 347.12 ag 336.24 ag

(P .140, R.16, I .2) 263.25 ag 340.98 ag 285.34 ag 301.72 ag 298.65 ag 310.85 ag 345.75 ag 369.69 ag

(P .180, R.8, I .2) 305.32 ag 298.36 ag 247.61 ag 301.78 ag 241.25 ag 386.45 ag 374.21 ag 210.85 ag

(P .180, R.12, I .2) 205.96 ag 243.14 ag 340.74 ag 360.12 ag 360.70 ag 260.25 ag 378.96 ag 403.96 ag

(P .180, R.16, I .2) 304.25 ag 405.85 ag 306.95 ag 457.30 ag 469.34 ag 380.61 ag 431.95 ag 397.15 ag
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Table 10 Utilization rate of the
OT (%) Instance DC (∇.2.2) (∇.5.7) (∇.7.9) (∇.10) (∇.14) (∇.52.4) (∇.71)

(P .140, R.12) 94.89 86.47 75.69 73.54 71.12 – – –

(P .140, R.16) 94.39 82.68 74.98 71.36 70.45 69.88 – –

(P .180, R.8) 97.87 84.68 79.68 77.36 74.36 – – –

(P .180, R.12) 98.79 82.36 69.58 67.01 66.45 66.03 – –

(P .180, R.16) 93.74 87.65 69.84 68.78 64.15 – – –

(P .140, R.8, I .0) 91.36 78.65 71.24 70.36 69.35 – – –

(P .140, R.12, I .0) 94.89 86.47 75.69 73.54 71.12 – – –

(P .140, R.16, I .0) 94.39 82.68 74.98 71.36 70.45 69.88 – –

(P .180, R.8, I .0) 97.87 84.68 79.68 77.36 74.36 – – –

(P .180, R.12, I .0) 98.79 82.36 69.58 67.01 66.45 66.03 – –

(P .180, R.16, I .0) 93.74 87.65 69.84 68.78 64.15 – – –

(P .140, R.8, I .1) 89.36 75.24 69.45 64.87 62.78 – – –

(P .140, R.12, I .1) 90.61 82.47 75.69 71.45 67.65 – – –

(P .140, R.16, I .1) 85.64 80.68 74.98 71.96 68.96 – – –

(P .180, R.8, I .1) 84.12 74.68 79.68 74.96 68.98 64.58 – –

(P .180, R.12, I .1) 93.47 72.36 69.58 64.39 61.84 – – –

(P .180, R.16, I .1) 86.11 77.65 69.84 67.94 64.74 – – –

(P .140, R.8, I .2) 80.23 72.65 71.24 69.16 65.87 – – –

(P .140, R.12, I .2) 81.46 76.47 75.69 69.58 62.96 – – –

(P .140, R.16, I .2) 83.12 76.68 76.98 69.83 65.87 – – –

(P .180, R.8, I .2) 81.74 74.68 79.68 68.74 64.66 63.59 – –

(P .180, R.12, I .2) 90.12 76.36 65.58 69.78 61.87 – – –

(P .180, R.16, I .2) 81.75 79.65 71.84 70.14 64.85 – – –

100% and 80%. While the utilization rate decreases when
the value of ∇ increases, the number of patients requiring
longer surgery duration increases. The utilization rate below
100% is related to a lack of OR capacity utilization.
The utilization varies according to the instances and the
uncertainties that occur. The utilization rate of the OR
could be 70% and 60% but it is still above 60%. We can
remark that small ∇ guarantees a better utilization of the
OT. In other words, only a small number of surgeries can
be allowed to deviate its duration on each block time to
properly explore the OT. The unexplored OR capacity could
be managed to concern emergencies. Besides, it can be used
to schedule surgeries that cannot be handled by theMSS and
the SCAP generated, without changing the planning.

The DC model gives the optimal solutions in reasonable
computational time, provides a high utilization rate, and it
helps to schedule a large number of surgeries. However,
sometimes the higher utilization rate may lead to overtime,
delay, and so on. Speaking intuitively, it is unlikely that
none of the surgeries will deviate from the nominal surgery
duration. The results show that the proposed robust mod-
els can be used since they give protected solutions against
uncertainty. The robust models can have a challenging com-
putational time but still suitable for the weekly schedules;

the gaps are limited even for the larges instances. The
behavior of robust models in terms of utilization rate and
scheduled surgeries are reasonable for all instances; the uti-
lization rate is above 60% even for a high value of ∇. In
other words, the robust models can produce good results by
correctly turning the budget of robustness ∇.

5.2.4 Overtime impact

We evaluate the impact of allowing overtime in the model.
In other words, we permit some block times to have over-
time. Then, we observe its behavior on scheduled surgeries
and utilization rate. Maximum overtime equal to 1.5 hours
is allowed for half-block times of the MSS.We add a param-
eter as follows:

orj =
{

t if overtime is allowed on day j and room r
0 otherwise

t The amount of overtime

The following constraint is added to the model Eqs. 1-22
as follows:∑
s∈S

∑
i∈Is

Pixisrj ≤Omax +orj ∀r ∈ Ro ∀j ∈ J (56)
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Table 11 Scheduled surgeries with allowed overtime

Instance DC (∇.2.2) (∇.5.7) (∇.7.9) (∇.10) (∇.14) (∇.52.4) (∇.71)

(P .140, R.8) 114 107 102 104 103 – – –

(P .140, R.12) 139 135 134 131 128 – – –

(P .140, R.16) 145 138 135 132 130 129 – –

(P .180, R.8) 117 110 108 106 103 – – –

(P .180, R.12) 138 133 131 129 127 121 – –

(P .180, R.16) 145 139 138 133 131 – – –

(P .140, R.8) 114 107 102 104 103 – – –

(P .140, R.12) 139 135 134 131 128 – – –

(P .140, R.16) 145 138 135 132 130 129 – –

(P .180, R.8) 117 110 108 106 103 – – –

(P .180, R.12) 138 133 131 129 127 121 – –

(P .180, R.16) 145 139 138 133 131 – – –

(P .140, R.8, I .1) 106 101 101 95 93 – – –

(P .140, R.12, I .1) 134 131 127 123 121 – – –

(P .140, R.16, I .1) 139 132 127 127 125 – – –

(P .180, R.8, I .1) 109 101 96 95 92 90 – –

(P .180, R.12, I .1) 132 127 124 121 119 – – –

(P .180, R.16, I .1) 141 133 131 128 126 – – –

(P .140, R.8, I .2) 99 91 90 88 86 – – –

(P .140, R.12, I .2) 129 119 116 115 112 – – –

(P .140, R.16, I .2) 135 124 121 118 117 – – –

(P .180, R.8, I .2) 102 94 92 88 85 84 – –

(P .180, R.12, I .2) 130 124 121 120 117 – – –

(P .180, R.16, I .2) 137 130 127 126 124 – – –

Table 12 Utilization rate of the OT with allowed overtime (%)

Instance DC (∇.2.2) (∇.5.7) (∇.7.9) (∇.10) (∇.14) (∇.52.4) (∇.71)

(P .140, R.8) 95.23 91.63 98.45 82.36 81.21 – – –

(P .140, R.12) 96.32 91.25 89.36 84.21 86.36 – – –

(P .140, R.16) 97.25 92.37 90.71 89.25 85.14 82.14 – –

(P .180, R.8) 99.75 95.36 91.42 86.31 85.75 – – –

(P .180, R.12) 98.97 97.25 95.75 91.25 81.25 80.63 – –

(P .180, R.16) 97.25 94.61 92.36 89.45 87.58 – – –

(P .140, R.8, I .0) 95.23 91.63 98.45 82.36 81.21 – – –

(P .140, R.12, I .0) 96.32 91.25 89.36 84.21 86.36 – – –

(P .140, R.16, I .0) 97.25 92.37 90.71 89.25 85.14 82.14 – –

(P .180, R.8, I .0) 99.75 95.36 91.42 86.31 85.75 – – –

(P .180, R.12, I .0) 98.97 97.25 95.75 91.25 81.25 80.63 – –

(P .180, R.16, I .0) 97.25 94.61 92.36 89.45 87.58 – – –

(P .140, R.8, I .1) 95.05 85.20 79.98 76.95 75.36 – – –

(P .140, R.12, I .1) 93.54 90.25 88.45 83.75 81.74 – – –

(P .140, R.16, I .1) 92.63 89.46 86.74 81.32 80.25 – – –

(P .180, R.8, I .1) 91.93 83.25 87.40 81.64 79.61 77.58 – –
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Table 12 (continued)

Instance DC (∇.2.2) (∇.5.7) (∇.7.9) (∇.10) (∇.14) (∇.52.4) (∇.71)

(P .180, R.12, I .1) 95.17 87.256 84.25 82.65 81.75 – – –

(P .180, R.16, I .1) 96.19 89.70 86.42 84.95 79.85 – – –

(P .140, R.8, I .2) 89.25 85.36 82.36 79.25 77.10 – – –

(P .140, R.12, I .2) 90.14 86.47 84.28 80.61 76.68 – – –

(P .140, R.16, I .2) 92.36 86.96 86.10 80.96 78.96 – – –

(P .180, R.8, I .2) 90.60 87.69 83.52 79.13 76.98 75.89 – –

(P .180, R.12, I .2) 94.54 89.96 87.59 84.96 75.41 – – –

(P .180, R.16, I .2) 91.52 89.99 81.74 80.64 76.98 – – –

Constraint Eq. 56 allows the block times to have an over-
time.

The following Tables 11 and 12 show the impact of over-
time on the number of scheduled surgeries and utilization
rate of OT, respectively.

Allowing overtime influences the obtained solution. It
increases the number of scheduled surgeries for most
instances as shown in Table 11. In addition, the overtime
improves the utilization rate of OT as given in Table 12. The
utilization rate has a significant impact for most instances
and reaches a high rate for some of them, which ensures
a high hospital productivity. For the robust solutions, the
limited number of ICU beds still produces a good rate of
utilization, especially with ∇ between 0 and 8. Allowing
a few surgeries to deviate for each block time can be
acceptable to achieve a good utilization rate of the OT.

Allowing overtime has a significant impact on hospitals
in terms of costs [74]. A good trade-off between hospital
quality of service and cost can be reached by fixing the bud-
get of robustness ∇, and the block times allowed to have
overtime. However, allowing overtime not only impacts in
terms of extra costs and staff salaries but also can signifi-
cantly impact staff performance. Nurses and surgeons may
become overtired or inattentive due to overtime fatigue.
Hence, performance efficiency may suffer by eventual risks
of errors and mistakes [98].

6 Conclusion and perspectives

This investigation established a new two-stage approach
to solving the MSS and SCAP, which considered patients’
priorities, OT restrictions, and downstream resource avail-
ability in an integrated hospital facility. The approach gave
a particular interest to ambulatory surgery. Two robust opti-
mization approaches were applied. Using the approach by
[17, 18], we incorporated duration uncertainty. The trade-
off between conservatism and robustness was explored, and
the price of robustness was demonstrated.

Moreover, the worst-case criterion [42, 93] was applied
when the availability of ICU beds was uncertain. Computa-
tional results were tested on empirical data from the archives
of a French hospital. The results obtained showed the impact
of uncertainty in surgery duration and ICU bed availabil-
ity on the scheduled surgeries and the utilization rate of the
OT; the budget of robustness had a significant impact on the
obtained planning. The robust model is an efficient tool to
schedule the OT in a real context.

This study may be the basis for further developments by
considering the emergency department. In the future, we
would like to work on a robust version with more uncertain
parameters (e.g., LOS uncertainty in the post-surgery recov-
ery beds and ICU beds) to build robust decisions to evaluate
OT efficiency and performance.

Appendix: Overview of the robust
optimization approach by [18]

We consider the linear programming problem:

max
n∑

j=1

cj xj (57)

subject to:
n∑

j=1

aij xj ≤ bi ∀i (58)

xj ≥ 0 ∀j (59)

The variable xj , the cost cj , indexes and the dual
variables defined in this section are independent.

We consider J ′
i the set of coefficient aij that are subject

to uncertainty. The coefficients aij belongs to a symmetric
range [aij − âij , aij + âij ], where aij is the nominal
value and âij ≥ 0 its deviation. A random variable of
deviation can be introduced as τij = (aij − aij )/̂aij ,
τij takes values in [−1, 1]. The decisions variables are
assumed to be nonnegative. Hence, the worst case will be
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achieved at the right-hand side of the range [aij − âij , aij +
âij ]. Therefore, the random variable τ is assumed to be
positive (0 ≤ τi ≤ 1). The confidence range [aij −
âij , aij + âij ] does not have to be symmetric. For every i

a parameter ∇i is introduced. This parameter is the sum of
the total deviations of the nominal values of the uncertain
coefficients in the same constraint i. This parameter is
called “the budget of robustness”; its role is to protect the
constraint against uncertainty and to adjust the robustness
of the method against the degree of conservatism. This
parameter is not necessarily an integer but takes values
in [0, card(J ′

i )]; if the parameter is zero no deviation is

allowed on the coefficients of the ith constraint and this case
is the deterministic case, whereas, if ∇i is equal to card(J ′

i )

all the parameters are likely to deviate and this case is the
one considered in [93].

We consider the following nonlinear formulation of con-
straint Eq. 58:

n∑
j=1

aij xij + βi(x
∗, ∇i ) ≤ bi ∀i (60)

where:

βi(x
∗, ∇i ) = max

{S′
i∪{ti }|S′

i⊆J ′
i ,card(S′

i )=�∇i,ti∈J ′
i \S′

i }

⎧⎨
⎩

∑
j∈S′

i

âij x
∗
j + (∇i − �∇i)̂aiti x

∗
j

⎫⎬
⎭ (61)

The formulation Eq. 61 is the protection function of
constraint i. The protection function protects the left-side of
the inequality to be lower than bi for different values of aij ;
the protection function is defined for every constraint with
uncertain coefficient. It is an optimization problem in itself;
it depends on the protection level ∇i ; when ∇i = 0, then
βi = 0 and the problem is deterministic [79].

In the following formulation, the protection function is
transformed into an optimization problem; the formulation
Eq. 61 can be replaced by the following linear problem:

max
∑
j∈J ′

i

âij x
∗
j wij (62)

subject to:∑
j∈J ′

i

wij ≤ ∇i (63)

0 ≤ wij ≤ 1 ∀j ∈ J ′
i (64)

x∗
j is not variable in the problem, wij is the new

variable corresponding to τij described below, to prove
the equivalence of problems Eq. 61 and Eqs. 62-64, the
optimal solution value of problem Eqs. 62-64 consists of
�∇i variables at 1 and one variable at ∇i − �∇i, it is
equivalent to selecting a subset :
{S′

i ∪ {ti}|S′
i ⊆ J ′

i , ti ∈ J ′
i \ S′

i , card(S′
i ) = �∇i} with the

corresponding objective value
∑

j∈S′
i
âij x

∗
j + (∇i − �∇i)

âiti x
∗
j [18].

The model Eqs. 62-64 is nonlinear when x is considered
as variable, nonetheless, by using its duality, it can be
linearly expressed. By strong duality, since problem Eq. 62-
64 is feasible and bounded for all ∇i , then the duality is also
feasible and bounded:

min∇izi +
∑
j∈J ′

i

pij (65)

subject to:

zi + pij ≥ âij x
∗
j ∀j ∈ J ′

i (66)

pij ≥ 0 ∀j ∈ J ′
i (67)

zi ≥ 0 (68)

Finally, we replace the protection function with the dual
model Eqs. 65-68, then, the robust model is as follows:

max
n∑

j=1

cj xj (69)

subject to:

n∑
j=1

aij xj + zi∇i +
∑
j∈J ′

i

pij ≤ bi ∀i (70)

zi + pij ≥ âij xj ∀i, j ∈ J ′
i (71)

xj ≥ 0 ∀j (72)

pij ≥ 0 ∀i, j ∈ J ′
i (73)

zi ≥ 0 ∀i (74)
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