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Abstract
Current clinical practice guidelines for managing Coronary Artery Disease (CAD) account for general cardiovascular
risk factors. However, they do not present a framework that considers personalized patient-specific characteristics. Using
the electronic health records of 21,460 patients, we created data-driven models for personalized CAD management that
significantly improve health outcomes relative to the standard of care. We develop binary classifiers to detect whether a
patient will experience an adverse event due to CAD within a 10-year time frame. Combining the patients’ medical history
and clinical examination results, we achieve 81.5% AUC. For each treatment, we also create a series of regression models
that are based on different supervised machine learning algorithms. We are able to estimate with average R2 = 0.801
the outcome of interest; the time from diagnosis to a potential adverse event (TAE). Leveraging combinations of these
models, we present ML4CAD, a novel personalized prescriptive algorithm. Considering the recommendations of multiple
predictive models at once, the goal of ML4CAD is to identify for every patient the therapy with the best expected TAE using a
voting mechanism. We evaluate its performance by measuring the prescription effectiveness and robustness under alternative
ground truths. We show that our methodology improves the expected TAE upon the current baseline by 24.11%, increasing it
from 4.56 to 5.66 years. The algorithm performs particularly well for the male (24.3% improvement) and Hispanic (58.41%
improvement) subpopulations. Finally, we create an interactive interface, providing physicians with an intuitive, accurate,
readily implementable, and effective tool.
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Highlights

• We present the first prescriptive methodology that uti-
lizes electronic medical records and machine learning
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to provide personalized treatment recommendations for
the management of coronary artery disease patients.

• We introduce a new quantitative framework to evaluate
the performance of prescriptive algorithms.

• We show that our data-driven approach can substan-
tially improve patient outcomes, increasing the average
time to an adverse event by 13 months for the overall
population.

• We provide an online user-friendly application that is
available to physicians where the algorithm suggestions
can be tested in real time.

1 Introduction

The clinical condition of Coronary Artery Disease (CAD)
also referred to as ischemic heart disease, is present when
a patient presents one or more symptoms or complications
from an inadequate blood supply to the myocardium [29].
This is most commonly attributed to the obstruction of
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the epicardial coronary arteries due to atherosclerosis [56].
CAD remains the number one cause of death in the United
States, accounting for over 360,000 annual casualties [1].
CAD is mostly prevalent in older patients (above the age
of 50 years) in the form of a chronic condition which
requires a principal intervention and subsequent systematic
medical therapy and monitoring [29]. The primary care
of patients with CAD includes ascertainment of the
diagnosis and its severity (with non-invasive and/or invasive
imaging), control of symptoms, and therapies to improve
survival [35]. The mainstay of treatment is medical therapy.
The latter may or may not be combined with coronary
revascularization (either Coronary Artery Bypass Graft
(CABG) surgery or Percutaneous Coronary Intervention
(PCI)) in an effort to slow the progress of the disease and
relieve its symptoms. Considering the magnitude and the
repercussions of CAD, the importance of medical therapy
to reduce its symptoms and prolong life expectancy is being
increasingly recognized [59].

There has been growing interest in using clinical
evidence to understand the effects of treatments in patients
with CAD. Nowadays, there are numerous evidence-based
clinical guidelines for CAD management [26, 27] and
angiographic tools for grading its complexity, such as the
SYNTAX Score [60, 61]. However, it is not clear how
to choose among different types of available therapies
(pharmacological, percutaneous intervention, and surgery)
to maximize effectiveness at an individual level. This is
likely due to the multitude of parameters that define the
form of the disease for each patient and the uncertainty that
lies behind an individual patient’s response to a particular
treatment [67]. One of the greatest challenges in developing
evidence-based guidelines applicable to large populations
is paucity of information about special subpopulations with
unique characteristics. This is attributed to the absence of
specialized clinical trials [26].

Considering the challenges and the significance of
CAD, a personalization approach may greatly impact the
effective management of the disease. Personalization is the
problem of identifying the best treatment option for a given
instance, i.e., a display add [70] or medical therapy [42].
There are two main challenges for designing personalized
prescriptions for a patient as a function of the features
recorded in the data:

1. While the outcome of the administered treatment for
each patient is observed, the counterfactual outcomes
are unknown. That is, the outcomes that would have
occurred had another treatment been administered. Note
that if this information were known, the prescription
problem would reduce to a multi-class classification
problem. Thus, the counterfactual outcomes need to be
inferred.

2. In the data, there is an inherent bias that needs
to be taken into account. The nature of data from
Electronic Medical Records (EMR) is observational
as opposed to data from randomized trials. In a
randomized trial setting, patients are randomly assigned
different treatments, while in an observational setting,
the assignment of treatments potentially depends on
features of the population.

1.1 Literature review

Our objective is to solve the problem of prescribing
the best option among a set of predefined treatments to
a given patient as a function of the samples’ features.
We are provided with observational data of the form
{(xi , yi, zi)}ni=1, comprising n observations. Each data point
{(xi , yi, zi)} is characterized by features xi ∈ R

p, the
prescribed treatment zi ∈ [T ] = {1, . . . , T }, and the
corresponding outcome yi ∈ R. We denote y(1), . . . , y(T )

the T “possible outcomes” resulting from assigning each of
the T treatments respectively.

A similar question has been studied in the causal
inference literature. In this setting, the main focus lies
on observational studies to identify causal relationships
between an intervention and outcomes in a particular
population [48]. Introduced by Neyman and popularized
by Rubin, the Potential Outcomes Framework uses a
probabilistic assignment mechanism to mathematically
describe how treatments are given to patients. It also
accounts for a potential dependence on background
variables and the potential outcomes themselves [2, 57].
More specifically, it focuses on the case where S = {C, T }
(treatment and control). For each patient i, the potential
outcome yi(T ) is the experienced outcome if exposed to
treatment T . The causal effect of T compared to C is then
computed as δi := yi(T ) − yi(C). Thus, causal effects
are solely defined for one treatment relative to another and
only if the individual could have been reasonably exposed
to both. The fundamental problem of causal inference is
that (yi(T ), yi(C)) are not jointly observable. That is,
only one observed response is present depending on the
treatment assignment. As a result, [55] focus on the average
treatment effect for a completely randomized experiment.
This scenario considers the difference of the sample means
for the units receiving the treatment and control.

ATE = 1

nT

∑

j :zj =T

yj (T ) − 1

nC

∑

j :zj =C

yj (C). (1)

However, in observational studies, treatment assignment is
not independent of the potential outcomes. Thus, further
analysis is required to account for latent differences between
the treated and control groups on the basis of observed
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covariates X (inverse probability weighting, propensity
score matching, nonparemetric regression, etc.) [54].

Causal effect approaches do not provide personalized
estimations of the treatment effect for each unit since they
focus on the aggregate population level. A personalized
prescription methodology would require a quantification
of the impact of each regimen for every individual in
isolation. This is the essence of the personalized medicine
field [34]: identifying the optimal therapy for a particular set
of phenotypic and genetic patient characteristics. Machine
learning (ML) algorithms are expected to enable the
utilization of rich datasets. They could provide improved
solutions for patients by learning the outcome function for
each treatment. They will particularly impact those that
belong to very specific subgroups and respond in unusual
ways to the available treatments [28].

A common approach in the literature to leverage these
algorithms is called “Regress and Compare”. It identifies the
expected effect yi(zi) of treatment zi ∈ [T ] for each patient
i based on the covariates xi and consequently prescribes the
regimen with the best potential impact;

max
zi∈[T ] yi(zi |xi ) ∀i ∈ [n],

where [n] is the set of patients in the sample. The “Regress
and Compare” methodology follows this paradigm, choos-
ing a treatment by maximizing among T regression func-
tions. A different regression model is fitted to the subset of
the data that received each treatment. It subsequently uses
them to predict outcomes and pick the one with the more
optimistic prediction [62]. This approach has been histori-
cally followed by several authors in clinical research [25],
and more recently by researchers in statistics [50] and oper-
ations research [8]. The online version of this problem,
called the contextual bandit problem, has been studied by
several authors [33, 43] in the multi-armed bandit literature
[31]. Even though it is intuitive, this methodology is subject
to prediction errors and potential biases of a single method.

In the field of precision medicine, [8], first, introduced
a personalized prescriptive algorithm for diabetes man-
agement that harnesses the power of EMR. It was based
on a “Regress and Compare” k nearest neighbors (k-NN)
approach. This methodology yielded substantial improve-
ments in patient outcomes relative to the standard of care.
Moreover, it provided physicians with a prototyped dash-
board visualizing the algorithm’s recommendations. Their
work showed that tailored approaches to particular dis-
eases coupled with medical expertise provide the medical
community with highly accurate and effective tools that
will ameliorate patient treatment. Even though this effort
provided promising results, the k-NN approach is not appli-
cable to diseases where the effects of a treatment are not
promptly observable. The same individual was tracked via

multiple visits in the hospital system. Thus, the algorithm
suggested alterations in the medication only when there was
significant reduction on the expected Hemoglobin A1c mea-
surement. The physician could measure the effectiveness of
a treatment by ordering a blood test in the near future. On
the contrary, at the CAD setting the adverse effects of the
disease are observed in the span of ten years from the time
of diagnosis.

Focusing mostly on the personalization and not the
prediction objective, [38] proposes a recursive partitioning
methodology for personalization using observational data.
This new algorithm is tailored to optimize a personalization
impurity measure. As a result, it hardly places any emphasis
on the predictive task. Therefore, it raises questions
regarding the accuracy of the suggested treatment effect.
[10] modify the latter’s objective to account for the
prediction error, and use the methodology of [6, 7] to design
near optimal trees, improving performance substantially.
Continuing on tree based approaches, [4], and [66] also
use a recursive splitting procedure of the feature space
to construct causal trees and causal forests respectively.
They estimate the causal effect of a treatment for a
given sample, or construct confidence intervals for the
treatment effects. However, they do not infer explicit
prescriptions or recommendations. Also, causal trees (or
forests) are designed exclusively for studies comparing
binary treatments.

In the cardiovascular field, the benefit of ML based
personalization methods has been recognized and is
expected to play a significant role in facilitating precision
cardiovascular medicine [39]. Nevertheless, in the case
of CAD, personalization approaches have been primarily
focused on utilizing genomic information [5], and not on
employing EMR and ML. Since 2014, the US mandated
all public and private healthcare providers to adopt and
demonstrate “meaningful use” of EMR to maintain their
existing Medicaid and Medicare reimbursement levels. This
decision contributed to the creation of clinical databases
that contain in-depth information for many patients. These
data can be leveraged using ML to construct models and
algorithms that can learn from and make predictions on data
[53].

One of the greatest challenges of EMR is the presence
of right censored patients [37, 40], which arises when a
patient disappears from the database after diagnosis and
treatment of the disease. Traditional approaches to address
right censoring, including the Cox proportional hazards
model [17] or the Weibull Regression [36], do not allow
for time-varying effects of covariates. Their weaknesses are
especially relevant to datasets that span over long periods of
time, providing results that are not validated by the medical
literature (e.g. positive correlation between a patient’s BMI
and his/her expected time to adverse event).
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Our work addresses most of the challenges encountered
in the personalized prescription setting that uses EMR,
including counterfactual estimation and censoring.

1.2 Contributions

In this paper, our objective is to find the best primary treat-
ment for a CAD patient to maximize the time from diagnosis
to a potential adverse event (TAE) (myocardial infarction or
stroke). We consider the latter as the primary endpoint of
our models. Our dataset includes CAD patients who were
administered treatment through the Boston Medical Center
(BMC), a private, not-for-profit, 487-bed, academic medi-
cal center located in Boston, MA, USA. We retrieved each
patient’s medical history, the primary treatment followed
after diagnosis, and the most recent clinical examination
results to the time of diagnosis. We considered five pri-
mary prescription approaches available for each patient.
We developed predictive and prescriptive algorithms that
provide personalized treatment recommendations. We pro-
pose a new prescription algorithm to assign the regimen
with the best predicted outcome leveraging simultaneously
multiple regression models. The effect of the prescriptive
algorithm was evaluated by comparing the expected TAE
under our recommended therapy with the observed outcome
prescribed by physicians at the medical center. Successful
treatment recommendations increase the TAE. On the con-
trary, ineffective prescriptions negatively impact the patient,
decreasing the time from diagnosis to a myocardial infarc-
tion or stroke. We tested the robustness and effectiveness
of our methodology. We considered different ground truths
regarding the treatment effect of a given therapy to a patient.
The ground truths comprise the standard of care as well as
combinations or individual predictions from ML models.
The main contributions of this paper are:

1. A new methodology to treat right censored patients that
utilizes a k-NN approach to estimate the true survival
time from real-world data.

2. Interpretable and accurate binary classification and
regression models that predict the risk and timing of a
potential adverse event for CAD patients. We selected
a diverse set of well-established supervised machine
learning algorithms for these tasks.

3. The first prescriptive methodology that utilizes EMR
to provide treatment recommendations for CAD. Our
algorithm, ML4CAD (Machine Learning for CAD),
combines multiple state-of-the-art ML regression mod-
els with clinical expertise at once. In particular, it uses a
voting scheme to suggest personalized treatments based
on individual data.

4. A novel evaluation framework to measure the out-
of-sample performance of prescriptive algorithms.
It compares counterfactual outcomes for multiple
treatments under various ground truths. Thus, we assess
both the accuracy, effectiveness, and robustness of
our prescriptive methodology. Using this evaluation
mechanism, we demonstrate that ML4CAD improves
upon the standard of care. Its expected benefit was
validated by all considered ground truths and TAE
estimation models.

5. An online application where physicians can test the
performance of the algorithm in real time bridging the
gap with the clinical practice.

The structure of the paper is as follows. In Section 2, we
describe the data used to train and validate our methods.
In Section 3, we outline the method used to handle the
challenge of censoring. Section 4 describes the methods and
results of the binary classification models, and similarly
Section 5 refers to regression. In Section 6, we present
the personalized prescription algorithm and its evaluation
framework. Results under different ground truths and
recommendation policies are compared in Section 7. We
conclude our work in Section 8. We provide a list of all
the abbreviations definitions in alphabetical order in the
Appendix.

2 Data

In this section, we provide detailed information about
the dataset under consideration. We outline the patient
inclusion criteria as well as a description of the covariates
included in the ML models. Subsequently, we refer to the
treatments identified from the EMR and their aggregation
as features for our algorithms. We also present the missing
data imputation procedure that was followed.

2.1 Sample population description

Through a partnership with the BMC we obtained EMR
for 1.1 million patients from 1982 to 2016. In this dataset,
21,460 patients met, at least, one of the following inclusion
criteria:

– Population 1: Patients associated with CAD risk of
at least 10% based on the Framingham Heart Study
formula [69] who were prescribed antihypertensive
medication as primary treatment. The 10% threshold
was selected since it is considered one of the primary
indications for physicians to prescribe CAD treatment
to their patients [68];
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– Population 2: Patients who were administered at least
one CABG surgery or, at least, one PCI and were
prescribed antihypertensive medication;

We used the conditions outlined above due to the absence
of a systematic CAD diagnosis code in the system [64].
Note that the two inclusion criteria are mutually exclusive as
a primary CAD prescription could either involve exclusively
pharmacological treatment or a drug combination with a
CABG surgery or a PCI. All patient EMR were processed
to identify the time t0 that corresponds to the point of
initial diagnosis prior to any coronary revascularization. We
reverted to the record that corresponds to this time to create
the patient features X. Thus, we avoided the inclusion of two
populations whose conditions are fundamentally dissimilar.
Our sample comprised recently diagnosed CAD patients,
similar to the ones physicians encounter in practice. We
identified, using the totality of the EMR after the time t0, the
main therapy prescribed to each patient while being in the
system. Notice that every member of the sample population
was medicated with antihypertensive drugs. If in addition
to the pharmacological therapy they were administered
surgical or percutaneous interventions, we set the latter as
the main treatment administered by the hospital.

BMC patients come predominantly from underprivileged
socioeconomic backgrounds. As a result, in most cases they
do not have the financial capability to support alternative
health providers. They need to appeal to the BMC for
healthcare services for the majority of their medical needs.
Thus, most of their EMR are concentrated in the same
database, allowing us to follow the trajectory of each
patient’s health from a single source. The ethnicity and age
distributions of the population are depicted in Fig. 1a and b,
respectively.

We excluded all patients whose diagnosis date was
identical to their last observation in the healthcare system.
Moreover, we removed from the data those whose cause
of death was observed but not related to heart disease
(e.g., cancer non-survivors). We retrieved for each patient
a set of values that describe their demographics, medical
therapy, and clinical characteristics at the time of diagnosis
t0 (Table 1). We used ICD-9, CPT, and hospital specific
codes to identify the corresponding records as well as
lab test results for particular measurements (i.e., low-
density lipoprotein (LDL) or high-density lipoprotein
(HDL) levels). Along with demographic information, we
included features that are considered risk factors for heart
disease, according to the medical literature. We excluded all
covariates whose values were not known for at least 50%
of the patients in the dataset. Further information regarding
the characteristics of the overall population, as well as
split by training, validation, and testing set are available in
the Supplemental Material. We identified an adverse event

Fig. 1 Demographic characteristics of the population

(myocardial infarction or stroke) attributable to CAD and
recorded the date of occurrence. This way, we define the
time between a diagnosis and an adverse event. In case the
patient disappeared from the EMR before the lapse of 10
years after diagnosis, we recorded that the patient was right
censored. We did not take into account the severity of the
adverse event in our evaluation.

2.2 Treatment options

We considered five primary options for each patient, shown
in Table 2. These options are mutually exclusive and
thus each patient received only one of them as primary
treatment. CAD is a chronic disease whose management
may differ across time. However, we noticed that a certain
pattern was followed for the vast majority of the patients
throughout their presence in the academic medical center.
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Table 1 Patient characteristics considered. The column “% NA”
indicates the percent of missing data that was present in the original
dataset

Category Variable name % NA

Demographics Age 0.0%

Gender 0.0%

Ethnicity 0.0%

Language 0.0%

Marital Status 15.3%

Ethnicity 0.0%

Treatment ACE inhibitors 0.0%

Adrenergic Receptors 0.0%

Angiotensin Agonists 0.0%

Antiarrhythmics 0.0%

Blockers (beta, alpha, etc.) 0.0%

CABG 0.0%

Cardiac Glycosides 0.0%

Diuretics 0.0%

Lipid lowering medication 0.0%

Muscle relaxants 0.0%

Nitrates 0.0%

Other antihypertensive 0.0%

PCI 0.0%

Phosphodiesterase inhibitors 0.0%

Statins 0.0%

Family history Diabetes 26.8%

Hypertension 23.9%

Medical records Body Mass Index (BMI) 16.6%

LDL Cholesterol 21.4%

HDL Cholesterol 21.3%

Diastolic Blood Pressure 7.1%

Systolic Blood Pressure 7.1%

Diabetes 0.5%

Observed behavior Smoking 23.6%

Time observed in the EMR database 0.0%

Coronary revascularization is a major operation and thus we
distinguish CABG and PCI as separate treatment categories.
In agreement with the general guidelines of the American
Heart Association for the management of Stable Ischemic
Heart Disease [26], most of the patients are prescribed
blocking medication to treat hypertension and statins as a
lipid lowering treatment. Therefore, we chose combinations
of those two lines of therapy as primary prescription
options. Nevertheless, the pharmaceutical treatment for a
CAD patient may include not only blockers, but also a
more complicated combination of drugs, depicted in Table 3
under “Treatment”. As the set of all those combinations is
too wide, we considered only the most common prescription
options. We did not account for aspirin (ASA) since all
patients were prescribed this line of therapy.

Note that we did not consider ACE inhibitors as a
prescription option because they usually accompany another
type of antihypertensive medication for CAD patients [51].
They are prescribed in combination to blockers or as a
substitute of the latter in cases where a patient has some
prohibitive medical condition to the former. Thus, the
majority of the population that belongs in the “Drugs 2
and 3” categories are effectively under ACE inhibitors. The
latter drug class was administered in less than 50% of the
sample population. As a result, a separate pharmacological
treatment option would thin the training sets presented in
the following sections significantly.

2.3 Handling of missing values

We collected each patient’s medical records (lab test results
and clinical measurements) associated with the most recent
clinical examination before or at the time of diagnosis. We
omitted from our analysis any risk factors whose missing
values proportion was higher than 50% (i.e., ejection
fraction, ECG measurements). Table 1 shows the percent of
missing data that was present in the original dataset. Note
that all demographic variables other than Marital Status
were consistently recorded for all patients. A treatment was
considered to be present if there was an active prescription
for the patient in the EHR. If there was no record of a
treatment, we assumed that the patient was not administered
the specific medication. Thus, the missing percentage for all
treatments is 0.0%. Family history and smoking habits were
available in the database for only a portion of the patients.
Continuous features, such as cholesterol and blood pressure
levels, were extracted from the vitals and lab tests records.

We imputed missing values using opt.cv, the state-
of-the-art ML algorithm proposed by [9]. Given that the
underlying pattern of missing data was not known, we
opted for a method whose performance remained consistent
across different types of “missingness”. In [9], the authors
demonstrated on 84 data sets that the accuracy of their
algorithm relative to benchmark ones does not appear
to differ drastically between the missing completely at
random (MCAR) and not missing at random (NMAR)
patterns. The latter constitutes the most common type
of missing data in health care applications, as values
are not usually randomly incomplete for reasons such as
missed study visits, patients lost to follow-up, missing
information in source documents, and lack of availability
among others. We created artificial missing data under
the NMAR mechanism and compared opt.cv with other
well-established missing data imputation techniques in our
dataset. We evaluated the resulting imputation error and
the effect on downstream predictive performance for the
binary classification task. Our results showed that opt.cv
provided an edge across all metrics considered. Thus, it was
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Table 2 The prescription options

Option Description Num. of patients %

CABG Coronary artery bypass graft surgery with pharmaceutical treatment 1854 8.64%

PCI Percutaneous coronary intervention with pharmaceutical treatment 4042 18.85%

Drugs 1 Pharmaceutical treatment including blockers and statins 6833 31.86%

Drugs 2 Pharmaceutical treatment including blockers and excluding statins 3767 17.56%

Drugs 3 Pharmaceutical treatment excluding blockers (potentially including statins) 4964 23.09%

selected as the imputation algorithm for the independent
covariates of both the binary classification and regression
models (see Table 3 of the Supplemental Material).

3 Estimating time to adverse event for right
censored patients

In censored datasets the outcome of interest is generally
the time until an event (onset of disease, death, etc.), but
the exact time of the event is unknown (censored) for some
individuals. When a lower bound for these missing values
is known (for example, a patient is known to be alive until
at least time t) the data is said to be right censored. In
our dataset, we considered the time of censoring to be the
last event-free visit of the patient to the academic medical
center. Thus, for each patient i where ti < 10 (years) and
no adverse event (stroke/heart attack) has been recorded, we
set the censoring time ci = ti , the last time observed in
the EMR. Our sample was comprised of 13,498 censored
observations (62.9% of the overall population).

Table 3 The percentage of the overall population that received each
treatment. Note that the same patient may have been prescribed
multiple treatments

Treatment name Proportion

ACE inhibitors 46.12%

Adrenergic receptors 6.38%

Angiotensin agonists 13.62%

Antiarrhythmics 13.65%

Blockers (beta, alpha, etc.) 68.03%

CABG 7.01%

Cardiac Glycosides 2.45%

Diuretics 47.90%

Lipid lowering medication 5.29%

Muscle relaxants 4.81%

Nitrates 77.02%

Other antihypertensive 11.37%

PCI 19.60%

Phosphodiesterase inhibitors 3.59%

Statins 58.78%

Methods from the survival analysis literature are usually
employed in the presence of censored populations. A
common survival analysis technique is the Cox proportional
hazards regression [17] which models the hazard rate for
an event as a linear combination of covariate effects.
Although this model is widely used and easily interpreted,
its parametric nature makes it unable to identify non-linear
effects or interactions between covariates [12].

We propose a data-driven methodology that utilizes a k-
NN approach to identify patients with similar outcomes and
known trajectories based on their covariates. We consider
the set A (B) of patients that had (did not have) an adverse
event within 10 years. Note that within set B the EMR
indicate that no adverse event occurred within the defined
time frame. Let C be the set of censored patients that did not
have an adverse event within a time tc (less than 10 years)
and they disappear from the EMR after tc. It is not known
whether they experienced an adverse event within 10 years
or not. In order to estimate the TAE for patient X in the set
C, we consider patients within A ∪ B such that:

1. They have the same gender as X. It has been recognized
that women form a distinct subpopulation within
patients with CAD [41].

2. They belong to the same age group as X. Age at time of
diagnosis plays a major role in the development and the
effects of CAD [69].

3. Their ground truth outcome metric is greater or equal
to the censoring time of X. The patient will potentially
experience an adverse event after the censoring time tc.

Based on the Euclidean distance across the patient
specific factors depicted in Table 1 (factors with continuous
values were normalized to have zero mean and standard
deviation of one), we find the k-nearest neighbors of X

within the cohort outlined. We assign to the censored patient
X the average time to adverse event of their k-nearest
neighbors. We used cross-validation to set the parameter
k = 50. The outcome of interest was the area-under-the-
curve (AUC) performance of the binary classification model
presented in Section 4 (Fig. 2). We selected the value of
the unsupervised learning model parameter according to the
performance of the binary classification model on the 10-
year risk task. Our method allows us to build for every
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Fig. 2 Cross-validation results
for the selection of the k

parameter for the k-NN model

censored patient a unique cluster of k-NN, introducing a
personalization aspect in the estimation of TAE.

Our k-NN algorithm’s performance is R2 = 0.81
according to the following process:

1. Select a sample of the population which was not
censored (the TAE ti is known).

2. Artificially generate a censoring time tci , sampled
uniformly across the interval [1,ti] corresponding to a
day in the 10 year time frame.

3. Apply the k-NN algorithm to estimate the TAE and
compare the results with the ground truth that is known.

We impute the outcomes of 13,679 censored observa-
tions, following this approach. We create a complete dataset
that is further used for the creation and validation of the
predictive and prescriptive models. The inclusion of the
censored patients permitted a higher sample size for the
binary classification and regression models that led to more
accurate and stable results (see Tables 4 and 5 of the Supple-
mental Material). The exclusion of such cases would restrict
the overall population to only 7,962 observations, limiting
the downstream predictive performance of the models.

4 The binary classifications models

The first problem we addressed is the creation of
personalized risk prediction models for CAD patients. Our
binary outcome of interest is the occurrence of an adverse
event (stroke or heart attack) within a 10-year time period.
This time frame is in accordance with the vast majority
of established CAD risk calculators [18, 32, 52]. The
medical community recognizes the chronic nature of the
disease and as a result it focuses on evaluating its impact
on the health of the patient over a long-term horizon.
Both the American Heart Association and the American
College of Cardiology annually update their guidelines on
the primary prevention of cardiovascular disease releasing
new versions of 10-year CAD risk scores [3]. Although
this time frame is challenging and the health condition can
significantly change over years, we decided to follow the
paradigm of the existing literature. Moreover, we present
corresponding results for two and five year horizons in
Table 6 of the Supplemental Material. Thus, a comparison
of different time windows is available to the reader for
comparison.

Table 4 Results of the different ML algorithms used to predict the occurrence of an adverse event within 10 years after diagnosis. We consider as
Baseline the simple model that predicts that all patients will experience an adverse event. Accuracy is measured using a probability above 50% as
the threshold. The term “Out-of-sample” signifies the performance of the model on the Test set and “In-sample” on the Training set

Out-of-sample AUC In-sample AUC Out-of-sample accuracy In-sample accuracy

OCT 81.54% 81.35% 81.45% 81.36%

CART 73.33% 72.66% 80.23% 80.12%

Random forest 84.29% 83.29% 81.88% 82.35%

Logistic regression 80.83% 82.21% 80.55% 80.98%

Boosted trees 81.43% 82.76% 81.03% 81.27%

Baseline 73.51% 73.51%
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We apply state-of-the-art ML algorithms to the data and
compare their out-of-sample performance on the testing set.
Table 4 provides a summary of the results for Logistic
Regression, Random Forest [13], Boosted Trees [15], CART
[14], and Optimal Classification Trees (OCT) [6, 7].

We split the n = 21, 460 patients in 75% for Training
and Validation and 25% for Testing, using p = 31
patient characteristics (Table 1). Our sample includes all
censored observations whose values were imputed using
the methodology described in Section 3. These observations
were not excluded as a higher sample size improved
the model’s out-of-sample performance. A higher sample
size had a significant positive effect on the downstream
performance of the binary classification models. We
evaluated the predictive power of the algorithm under
additional random splittings of the data. Thus, we ensured
that the evaluation of the global algorithm was not sensitive
to a particular split of the dataset.

L2 regularization was used for the logistic regression
model and 10-fold-cross-validation was employed to set the
hyper-parameters of each method. In the case of OCT and
CART, we tuned the complexity parameter, the maximum
depth, and minimum bucket. Based on cross-validation
results, the number of greedy trees used for the Random
Forest model was set to 500.

Our objective was to create an accurate model that would
have high chances of affecting the medical practice. Even
though there has been a steep increase in publications
that utilize artificial intelligence and ML in the field of
medicine, only a small proportion of those models have
been integrated into the healthcare system [21]. Clinicians
need actionable insights and guidelines they can explain and
understand [45]. Algorithms have to satisfy this condition.
Otherwise, the final outputs of these methods do not actually
impact the patients. The [24] validated such concerns by
mandating the use of interpretable ML models when it
comes to medical decision making.

For this reason, we decided to focus on the model of the
Optimal Classification Trees (OCT) algorithm, which was
proposed by [6], see also [7]. Its tree structure accounts
for non-linear interactions among variables providing an
edge compared to Logistic Regression. This new supervised
learning method uses modern mixed-integer optimization
techniques to form the entire decision tree in a single step,
allowing each split to be determined with full knowledge
of all other splits. The OCT algorithm creates the final
model in a holistic manner yielding better performance
than traditional decision tree approaches, such as CART
(Table 4). It increases interpretability due to its tree form
which allows predictions through a few decision splits
on a small number of high-importance variables. Thus,
physicians are able to associate a risk profile to each
patient that comprises up to seven risk factors even if the

entire dataset includes a significantly higher number of
features. This property is not inherently shared by other
well-established non-linear algorithms, such as Random
Forest or Boosted Trees. As a result, the users cannot
easily attribute changes in the patient’s estimated risk
to specific model variables. To address this challenge,
complementary frameworks, like the SHapley Addittive
exPlanations approach [44], are needed to explain the output
of these machine learning models.

Random Forest (84.29%) yields better AUC results
compared to OCT (81.54%), although quite similar in
terms of accuracy for a fixed threshold (81.88%, 81.45%
respectively). However, Random Forest grows multiple
decision trees and assigns for each observation the class
that is indicated by the majority of the decision trees.
OCT provides us with a single tree whose branches can
be easily explained to physicians. Each path leads to
comprehensible clinical decision rules that could positively
affect the cardiovascular practice. Its model achieves
superior performance in both accuracy and AUC when
compared to all other ML methods, including the advanced
ensemble algorithm of Boosted Trees. Moreover, Logistic
Regression (80.83% AUC) is more accurate compared to
CART (73.33% AUC), but slightly under-performing with
respect to more sophisticated algorithms (81.43% AUC).

The final OCT model is depicted in Figs. 3, 4, and
5. Table 5 presents its ten most significant variables. An
analysis of the most predictive features follows below:

– Time in the System (TimeinSystem): the time that the
patient has been observed in the BMC database (from
the first record until time of diagnosis t0). It serves
as an indicator of their medical condition and history
information depth. TimeinSystem does not incorporate
any patient details after the time t0, avoiding the
inclusion of survivorship bias in the data. As shown in
Figs. 3, 4, and 5, higher values of the TimeinSystem
variable are associated with leaves that predict positive
outcomes for the patient. This result indicates that
physicians are more effective when they have extensive
amount of information available and follow their
patients’ trajectories over longer periods of time.

– Prescription of Medication (Nitrates/ Beta Blockers/
Statins/ ACE Inhibitors): whether a patient has been
systematically treated with one particular type of
medication. Depending on the decision path of the
tree, the risk of an adverse event might increase or
decrease if the medication has been prescribed. There
need not be a causality relation for the changes in
risk. Only association can be deduced from such a
model. However, these results reinforce the argument
that personalization in the treatment can indeed affect
the survival of the CAD population.
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Fig. 3 Visualization of the first part of the OCT model. Paths 1 and 2 are indicated with blue dashed rectangular frames. Shaded nodes include a
collapsed subset of the tree model

– CABG/PCI: whether the patient has performed a
revascularization procedure. We notice that positive
values in these two variables are associated with
leaves that suggest pessimistic patient prognoses.
Diagnosed CAD patients with more severe symptoms
of atherosclerosis are usually suggested to perform
at least one of these interventions (CABG, PCI)
[26].

– Patient Age at Diagnosis: the age of the patient at
the time of diagnosis in the EMR system. Across the
model we notice that older populations are associated
with higher risk, confirming a wide range of CAD risk
calculators published in the medical literature [16, 18,
49].

– HDL (mg/dL) levels: the HDL (mg/dL) levels from
a blood test conducted at the time of diagnosis.
Depending on the position of the split in the tree, higher
levels of HDL may positively or negatively impact the
ten year risk of CAD.

– Median Systolic Blood Pressure: the median of
the systolic blood pressure measurements recorded
in the EMR across all visits in a window of three
months before t0. We consider the median due to the
noise frequently encountered in systolic blood pressure
measurements [19, 22, 65].

4.1 Analysis of characteristic decision paths

We analyze distinctive risk profiles from the OCT model
that provide interesting insights for the management of
CAD patients.

– Paths 1 & 2: Contain samples whose presence in the
EMR was recorded only for two months before the
diagnosis. Leaf 1 refers to patients that are administered
a PCI operation and leaf 2 to those who perform a
CABG surgery. Both paths associate extremely high
risk to the corresponding population.
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Fig. 4 Visualization of the second part of the OCT model. Paths 3 and 4 are indicated with blue dashed rectangular frames. Shaded nodes include
a collapsed subset of the tree model

– Paths 3 & 4: Refer to individuals who are present in the
BMC system at least seven years. They are not treated
with PCI, neither with beta blockers nor statins. Their
baseline risk of an adverse event is 7.78%. However,
this risk differs depending on the age group they belong.
Specifically, those individuals under 68 years old have
1.45% probability of having a stroke or heart attack over
the next ten years. On the contrary, older patients have
18.11% chance of experiencing an adverse event.

– Paths 5 & 6: Include patients who are present in the
BMC system for at least two months and are prescribed
PCI but no CABG surgery. They are not treated with
beta blockers nor statins and their blood glucose levels
are lower than 149 mg/dL. Their baseline risk of

an adverse event is 12.53%. This risk differs again
depending on the age group they belong. Specifically,
those under 57 years old have 95.19% probability of
avoiding a stroke or heart attack over the next ten years.
On the contrary, patients older than 57 years of age have
14.03% chance of experiencing such an event.

5 The regressionmodels

Predicting the risk of an adverse event within a 10-year
time frame is an important question that we address in
Section 4. However, a personalized prescriptive algorithm
requires the creation of accurate regression models that,
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Fig. 5 Visualization of the third part of the OCT model. Paths 3 and 4 are indicated with blue dashed rectangular frames. Shaded nodes include a
collapsed subset of the tree model

given the condition of a patient, estimate the exact TAE for
each potential treatment. We leveraged various state-of-the-
art ML methods, both interpretable and non-interpretable, to
generate a set of estimations at an individual level [6, 7, 13–
15]. We trained a separate model for each combination of
method and treatment using as sample population patients
that exclusively received this regimen. For example, we
applied the Random Forest algorithm to generate five
predictive models that correspond to CABG, PCI, Drugs 1,
2, and 3. We followed the same process for CART, Linear
Regression, Boosted Trees, and Optimal Regression Trees
(ORT). As in the classification task, we applied 10-fold-
cross-validation to determine the hyper-parameters of each
model, including the complexity parameter, the maximum
depth, and minimum bucket for ORT and CART. Based
on the cross-validation results for the regression task, the
number of greedy trees for the Random Forest model was

set to 250 in contrast to 500 that were chosen for the binary
classification outcome. We used L2 regularization for the
linear regression model. Table 6 provides a summary of each
method’s out-of-sample performance for every treatment
option in terms of the R2 metric.

The results from Table 6 indicate that Random Forest
outperforms the other methods in all tasks in terms of the
R2 metric. CART, on the other hand, appears as the least
performing method across all tasks. ORT have an edge over
the greedy tree-based approach, other than in the case of
category “Drugs 3”. We observe that Linear Regression
and Boosted Trees have comparable performance for all
types of treatment. We will leverage all these models as the
main component of our prescriptive algorithm, presented in
Section 6.

We created separate models for each treatment popula-
tion to avoid biases in the prediction due to the existing
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Table 5 Demonstration of the independent variable ranking in the
OCT binary classification model. The importance of each variable is
measured as the total decrease in the loss function as a direct result of
each split in a tree that uses this variable. The results are normalized
so that they sum to one. We include the ten most important features

Feature Importance

Time in the system 27.40%

Prescription of nitrates 19.80%

Prescription of beta blockers 15.01%

PCI operation 12.96%

Prescription of statins 10.53%

CABG operation 3.23%

Patient age at diagnosis 2.87%

Prescription of ACE inhibitors 1.86%

HDL (mg/dL) levels 1.31%

Median systolic blood pressure 1.06%

treatment prescription patterns in the EMR [30]. Our goal
was to identify, for each patient, what is the therapy that
would maximize their TAE. Therefore, a distinction was
needed between the different populations that received each
treatment option. The existing regimen allocation process
could have significantly biased the prescriptive algorithm if
included as an independent feature in the set of covariates X

[58]. For instance, if physicians in BMC prescribed CABG
only to the younger population, the ML model would not
have been able to distinguish between the effect of CABG
and the age of the patient.

6 ML4CAD: The prescription algorithm

The regression models serve as the basis for the prescription
algorithm, utilizing the point predictions as counterfactual
estimations. The objective of the prescription algorithm is
to understand the potential effect of every therapy that each
patient would have experienced, had it been prescribed to
them. For example, knowing the outcome of patient X who
received CABG surgery, we aim to estimate the outcome
metric of a PCI intervention and for each of the Drugs
options. We present ML4CAD, a personalized prescriptive

algorithm that utilizes multiple ML models at once to
identify the most effective therapy for CAD patients. Our
method is structured as follows:

1. We impute the missing values of the patient charac-
teristics (Table 1) using a state-of-the-art optimization
framework [9].

2. We compute the TAE for right censored patients.
3. We split the population into training and test sets.

The training set is used to train the regression models
and the test set is utilized to assess the predictive and
prescriptive performance of the algorithm.

4. We train a separate regression model for each treatment
option for all predictive algorithms to estimate the TAE.
The set of covariates X′ used to create the predictive
models does not include any features that refer to
the treatment options (see Table 1 for a summary of
the independent features and Table 2 for the list of
prescription options).

5. We use all models to get estimations of the TAE for
each treatment option and every patient in the test set.
Thus, we have at our disposal a table of estimations
for any new individual considered. Table 7 provides an
illustration of the output for patient X.

6. We select the most effective treatment for the patient
according to a voting scheme among the ML methods:

(a) If the majority of the regression models votes a
single treatment (regimen with the best expected
effect), the algorithm recommends this therapy to
the physician. In the example of patient X (see
Table 7), ML4CAD suggests the prescription of
CABG.

(b) If there are ties between the different therapies
(i.e., two methods suggest Drugs 1 and two others
indicate Drugs 2), then the votes get weighted
by the out-of-sample accuracy of the predictive
models. For the analysis of this paper, the R2 metric
was used.

7. The final TAE is computed as the average of the ML
methods whose suggestion agreed with the algorithm
recommendation.

Table 6 Results of supervised
ML algorithms to predict the
TAE since diagnosis. We report
the “Out-of-sample” R2

performance of each model on
the Testing set. We highlight
the algorithm with the best
performance for each treatment
option

ORT CART Random forest Linear regression Boosted trees

CABG 73.14% 71.91% 83.00% 80.32% 80.06%

PCI 68.30% 67.73% 74.58% 73.21% 73.21%

Drugs 1 78.64% 75.35% 83.92% 82.94% 82.48%

Drugs 2 73.46% 72.56% 80.02% 79.98% 79.50%

Drugs 3 67.10% 69.03% 77.71% 75.34% 75.29%
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Table 7 Estimations of TAE (years) for patient X from the five ML
methods considered for each treatment option. We highlight the best
treatment option for each ML model. Note that four out of the five
models agree on the CABG recommendation

ML method CABG PCI Med. 1 Med. 2 Med. 3

ORT 4.65 4.59 3.89 3.76 3.54

CART 7.13 3.38 6.10 4.16 3.96

Random forest 5.77 4.93 5.44 4.26 4.49

Linear regression 5.75 3.53 5.75 4.17 4.44

Boosted trees 4.08 6.28 5.39 5.31 3.37

ML4CAD provides a new framework for personalized
prescriptions which is structured on the plurality of different
ML models. In contrast to the simple Regress and Compare
approach, it combines multiple ML models to identify
the most beneficial treatment option. The validity of
the algorithm’s recommendations gets reinforced by an
increasing number of underlying ML models that provide
accurate estimations of the counterfactuals. In other words,
the user gains more confidence in the capability of the
algorithm to identify the optimal therapy the more models
are available for comparison. This methodology also allows
for transparency towards the decision maker. Potential
recommendations can be compared at an individual level to
be decided what would be the best option for each particular
case.

6.1 Bridging the gap with practitioners

We created an online ML4CAD application for physicians
who would be interested to inform their decision making
process using our personalized algorithm. Practitioners
can now have access to our website (https://personalized.
shinyapps.io/ML4CAD/), where they are able to quickly
test the recommendations of the algorithm on new patient
data. Figure 6 shows an image of the main application
dashboard. The platform computes online a table similar
to Table 7, demonstrating to the user all the available
options and their projected outcomes. The final ML4CAD
suggestion is highlighted on the right of the screen. A
detailed comparison of the out-of-sample performance of
all ML models across the five treatment tasks is also
available. Moreover, clinicians can view aggregate results
about the treatment allocation mechanism according to
different demographic features such as gender, ethnicity,
or age group. With this application we aspire to turn
the proposed ML-based recommendation system into an
actionable framework for the cardiovascular community.
The latter can now leverage this tool as an assistance to its

decision making process and prolong the life expectancy of
its patients.

6.2 Prescriptive algorithm evaluation

Assessing the quality of the prescriptive algorithm poses a
challenge. We do not have at our disposal data that indicate
the TAE for all counterfactual outcomes of each patient.
We created appropriate metrics that provide an objective
evaluation framework of the algorithm’s performance. We
define the problem as follows, let:

– p be a variable that takes values in the set [T ] of all the
prescriptive options;

– j be a variable that takes values in the set [M] of all the
predictive models;

– zi be the treatment that patient i followed at the standard
of care;

– ti be the TAE for patient i and treatment zi ;
– τi be the treatment recommendation of ML4CAD for

patient i;
– θ

j
i be the treatment recommendation of machine

learning model j ∈ [M] for patient i using a simple
“Regress and Compare approach”;

– g
j
i (p) be the estimated TAE for patient i for treatment

p from the regression model j , where j ∈ [M];
– yi(p) to be the estimated TAE for patient i when

ML4CAD recommends treatment p;
– tp average TAE observed in the data for all patients who

were prescribed treatment p.

Using the notation above, the expected TAE for patient i is
according to ML4CAD:

yi(τi) = 1

K

∑

j :arg maxp g
j
i (p)=τi

g
j
i (τi),

K = |j : arg max
p

g
j
i (p) = τi |, i ∈ [n]. (2)

We evaluate the quality of the algorithm’s personalized
recommendations based on the following metrics:

1. Prescription Effectiveness and Robustness:
The goal of the first metrics is to compare the

performance of the ML4CAD recommendations with the
regimens prescribed at the standard of care. Due to the
uncertainty in counterfactual estimation, we consider
different predictions of the TAE and a multitude of
ground truths. Our baseline ground truth refers to
realizations of TAE that we observe in the BMC
database. This ground truth provides us with the exact
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Fig. 6 Visualization of the online interface of ML4CAD

TAE associated to the treatment regimen that was
prescribed by the physicians at the hospital. Alternative
ground truths refer to estimations of the TAE by
treatment-based regression models.

– Prescription Effectiveness (PE)
We fix, for each patient i ∈ [n], the treatment

suggestion τi from the ML4CAD algorithm. We
know the outcome ti for treatment choice zi

(observed in the data - baseline ground truth).
Thus, comparing the prescription effectiveness of
the ML4CAD versus the standard of care would be

equal to:

PE(ML4CAD) = 1

n

n∑

i=1

yi(τi) − ti . (3)

ML4CAD averages the TAE projected by the regres-
sion models that agree on the most beneficial treat-
ment for patient i, namely τi . We can evaluate the
prescription effectiveness of this recommendation
by considering each ML model in isolation. Each
regression model j provides for patient i and reg-
imen p an estimation g

j
i (p). Therefore, if we fix
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p = τi , we can get an evaluation of the projected
TAE and compare it to the standard of care.

PE(MLj ) = 1

n

n∑

i=1

g
j
i (τi) − ti ,

∀j ∈ {1, . . . , M}. (4)

Comparing multiple ML estimations for the TAE
of the recommendation τi renders the results more
credible to biases of a specific predictive algorithm.

– Prescription Robustness (PR)
The PE metric measures the effect of the

ML4CAD recommended therapies against a fixed
given ground truth from the EMR of the BMC.
Nevertheless, knowing that each patient i was
given a treatment ti , we can generate alternative
ground truths. We can, then, evaluate the benefit
of the personalization approach against those. Each
ground truth corresponds to an estimation of what
would happen to patient i if ML model j was
an oracle that knew the reality and the effects of
treatment zi .

PR(MLj,k) = 1

n

n∑

i=1

(g
j
i (τi) − gk

i (zi)),

∀j, k ∈ [M]. (5)

In this setting, decisions τi, zi are fixed and we
evaluate all the combinations between Random
Forest, CART, ORT, Boosted Trees, and Linear
Regression. We include also the case where
ML4CAD is used to estimate the effect of τi but not
the one of ti .

PR(ML4CADk) = 1

n

n∑

i=1

(yi(τi) − gk
i (zi)),

∀k ∈ [M]. (6)

The goal of this metric is to evaluate the robustness
of the treatment effect under different ground
truths. In Section 7, we perform an extensive
comparison over all methods and ground truths
considered (see Table 8). We introduce this
approach to avoid biased estimates of performance.
The latter could not have been avoided if we were
comparing our results only to the baseline ground
truth.

2. Prediction accuracy of TAE:

R̃2(ML4CAD) = 1 −
∑

i∈S(yi(zi) − ti )
2

∑
i∈S(tzi

− ti )2
,

S = {i : τi = zi}, i ∈ [n]. (7)

This metric follows the same structure as the well-
known coefficient of determination R2. We apply it
for each patient i ∈ S, the set of all samples where
there is agreement between the ML4CAD and baseline
prescription; S = {i : τi = zi}. Similar to the
original measure, the known outcome ti is compared to
the estimated treatment effect yi(zi) and to a baseline
estimation. The latter in our case is tzi

, the mean TAE
observed in the data for all patients who were prescribed
treatment zi . The adjusted coefficient of determination
R̃2 helps us evaluate whether the outcome that ML4CAD
predicts for the known counterfactuals is accurate
or not. It is impossible to evaluate the prescriptive
algorithm across all treatment options. Only one out
of the five is actually realized in practice. We focused
on comparing for each patient the TAE according to
the algorithm versus the one present in the data only
for the cases where there was agreement between the
two. This estimation, even though limited, provides us
with a good baseline regarding the accuracy of our
recommendations. We can extend the use of this metric
to the “Regress and Compare” approach. Thus, we
can estimate the R̃2(MLj ) of each predictive model
j ∈ [M].

R̃2(MLj ) = 1 −
∑

i∈S(g
j
i (zi) − ti )

2

∑
i∈S(tzi

− ti )2
,

S = {i : θ
j
i = zi}, i ∈ [n]. (8)

3. Degree of ML Agreement (DMLA):
This measure refers to the degree of agreement

among the ML models (DMLA) with the recommended
treatment τi . For each patient, we count the number of
methods that agree on the ML4CAD suggested treatment
τi . We report the distribution of this metric across the
whole population. Cases where there is high degree
of agreement are associated with higher confidence on
the suggested prescription. On the contrary, we are less
confident in cases where there is misalignment between
the ML models regarding the best treatment option.

7 Prescriptive algorithm results

In this Section, we present numerical results with respect to
the evaluation metrics introduced in Section 6. We provide
insights regarding different sample population subgroups.
We also discuss new treatment allocation patterns based on
ML4CAD recommendations.
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Table 8 Comparison of the “Prescription effectiveness” (PE) and “Prescription robustness” (PR) metrics for all estimation models and ground
truths considered. The column (Baseline) presents results with respect to the PE metric and refers to the TAE observed in the BMC database. All
subsequent columns refer to the PR measure. Each of them represents a distinct ground truth. All units are shown in years. See Eqs. 4, 3, and 5

Estimation model Baseline ORT CART Random forest Linear regression Boosted trees

ML4CAD 1.1011 1.162 1.158 1.140 1.178 1.283

ORT 0.779 0.840 0.835 0.818 0.855 0.961

CART 0.923 0.983 0.979 0.965 0.999 1.105

Random forest 0.757 0.818 0.813 0.796 0.8332 0.939

Linear regression 0.485 0.546 0.541 0.524 0.561 0.667

Boosted trees 0.591 0.652 0.647 0.630 0.667 0.773

1The PE of the algorithm when the estimation model gj is ML4CAD and the ground truth relates to the patient outcomes observed in the BMC
database (See Eq. 4)
2The PR of the algorithm when CART is the chosen estimation model gj for the prescriptions zi , i ∈ [n] and the ground truth outcomes are
computed according to the Linear Regression model gk (See Eq. 5)

7.1 Prescription effectiveness (PE) and robustness
(PR)

We summarize our results with respect to the PE and PR
metrics in Table 8. The first table column corresponds to
PE (baseline ground truth), whereas the rest of the columns
refer to PR (ML-based ground truths). Table 8 presents
the expected relative gain in TAE of ML4CAD over the
baseline. Its values demonstrate the average benefit in years
of TAE when comparing the current and ML4CAD treatment
allocation plan across different estimation models. Each
ground truth (column) refers to alternative estimations of
the TAE under the current treatment allocation plan. Thus,
if the ground truth is the baseline (BMC Database), the
suggested times correspond the TAE observed in the data.
When the ground truth is set to be the ORT algorithm, the
predicted times gORT

i (zi) mirror ORT estimations when the
treatment allocation is fixed to the physicians’ decisions
from the hospital (zi). Each prediction model (row) provides
us with a continuous prediction of a patient’s TAE when the
treatment allocation plan is set by the ML4CAD algorithm
(τi). Thus, the values in Table 8 correspond to the
metrics defined in Eqs. 4 (first column) and 5 (subsequent
columns).

When compared to the current allocation scheme, our
prescription algorithm improves the average TAE by
24.11%, with respect to the PE metric, with an increase
from 4.56 to 5.66 years ( 13 months). Column “Baseline
(PE)” of Table 8 summarizes the results with respect to
all regression models considered. ML4CAD provides the
most optimistic estimations. It suggests a higher TAE versus
its counterparts by at least 0.18 years (2 months). Linear
Regression appears to be the most pessimistic method with
an average benefit over the baseline of 6 months (0.59
years). ORT and Random Forest provide similar estimations
of 0.77 and 0.75 years of improvement, respectively.

The comparable performance of the various estimation
models presented in Table 8 reinforces the credibility of
the prescription algorithm. We show that there is agreement
between the potential improvement in the average TAE by
an alternative treatment allocation scheme. Even in cases
where we include ML models that did not participate in the
ML4CAD recommendation, there is substantial benefit in the
patients’ life expectancy.

We observe better results across all age and ethnic-
ity patient subgroups and for both genders. The benefit
of using the algorithm was 17.09% (0.9 years) for Black
patients, 29.03% (1.16 years) for Caucasian patients and
58.41% (1.86 months) for Hispanic patients. We also note
22.5% (0.99 years) improvement for patients 65 − 80 years
of age and 46.9% (1.58 years) for patients aged 80 or
older. Male patients are expected to increase their time
from 4.62 years to 5.73 (24.19% improvement) similar
to female patients (from 4.42 years to 5.48). The perfor-
mance of the prescriptive algorithm for selected patient
subgroups compared to the BMC baseline is summarized
in Fig. 7.

In terms of the PR metric, our results demonstrate
a consistent improvement of the patient population TAE
across all ground truths and estimation models. Table 8
summarizes the results of our analysis. We note that
ML4CAD achieves the highest benefit when compared to
all alternative scenarios of outcome realization. This is due
to the incorporation of the voting system for the selection
of the most effective treatment that accounts for all ML
models. We show that even in the case of more pessimistic
estimators, such as Boosted Trees or Linear Regression,
there is a substantial benefit compared to the standard
of care. Our approach does not guarantee optimality
for the treatment selection problem. Nevertheless, it is
experimentally shown that it can bring about substantial
benefit to the CAD population.
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Fig. 7 Comparison of the expected TAE for the proposed prescriptions
to the true treatments administered in practice broken down by various
patient features. The difference between the two bars for each sub-
population refers to the prescription effectiveness (PE) of the algorithm

for each respective patient group. “Current.TAE” refers to the out-
comes observed in the EHR of the BMC. “ML4CAD.TAE” represents
the expected TAE according to the prescription algorithm

We can also identify for each estimation model combi-
nations with ground truths that outperform the rest of the
alternatives. All methods demonstrate the highest improve-
ment when associated with the Boosted Trees ground truth.
For example, the ORT and CART model increase the aver-
age TAE by 0.96 and 1.10 years respectively. The next most
optimistic contestant is Linear Regression. This is due to the
fact that some methods on average overestimate or underes-
timate the expected TAE, translating these discrepancies in
the PR metric.

7.2 Prediction accuracy of TAE

The “prediction accuracy of TAE” for the proposed pre-
scriptive algorithm is R̃2(ML4CAD) = 78.7%. Table 9
provides a summary of the results for both the suggested
method as well as “Regress and Compare” approaches
from the baseline ML models. ML4CAD achieves better
performance compared to the single prediction model coun-
terparts. Aggregated predictions from different regression
models lead to more accurate outcomes. The suggested
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Table 9 Results summary for the Prediction Accaracy of TAE (R̃2)
metric

Method R̃2

ML4CAD 78.70%

ORT 72.68%

CART 70.54%

Random forest 77.25%

Linear regression 76.66%

Boosted trees 76.59%

voting scheme, not only reduces the uncertainty and bias of
the estimations (See Section 7.1), but also results in highly
accurate predictions.

7.3 Degree of ML agreement (DMLA)

The majority of the ML4CAD recommendations zi are based
on a common suggestion between at least three distinct ML
models. Specifically, in 14.53% of the patients all methods
suggest the same treatment for each individual. In 26.74%
of the cases there is agreement between four models and
in 34.48% of the observations three methods participate in
the decision. Only in 0.26% of the samples, each regression
model suggests a different prescription. In such cases, the
ML4CAD recommendation is solely based on the suggestion
of the most accurate one.

Table 10 provides detailed results for each treatment
option. The last table column summarizes the results as
a function of the total population. Each treatment specific
column presents the proportional degree of agreement
for all patients for which this treatment was suggested.
Thus, we notice that CABG as well as Drugs 1 &
2 recommendations are, on average, more confident
compared to Drugs 3 or PCI due to the higher degree of
agreement. This is particularly true in the case of Drugs

1, where for 85.49% of the patients, three out of the five
methods voted for the same regimen.

7.4 Treatment allocation patterns

In this section, we present insights regarding the ML4CAD
treatment allocation patterns and we perform comparisons
with the standard of care at the BMC. Our method agrees
with the physicians’ decisions in 28.24% of the cases. The
results indicate a shift towards drug therapy and CABG,
reducing the overall proportion of PCI (from 18.84% to
6.04%). The prediction model indicates that patients with
severe symptoms do not benefit significantly from a PCI
versus a CABG surgery due to the eminent need for
revascularization. Figure 8 illustrates a significant shift
towards “Drugs 1” for both women and men. The algorithm
also recognizes that treatment “Drugs 2” is less effective on
female patients versus male. The ML4CAD allocation is in
agreement with the most recent guidelines published by the
American Heart Association [63]. In the vast majority of
cases, a combination of antihypertensive drugs (Blockers)
with lipid lowering treatment (statins) is suggested. The
overall proportion of the population that is recommended
an invasive intervention is reduced due to the significant
decline of PCI operations.

Figure 9 illustrates a comparison of the treatment allo-
cation patterns between the ML4CAD algorithm, individ-
ual “Regress and Compare” models, and the standard of
care we observe in the data. The graph demonstrates an
agreement across all methods to increase the proportion
of the population under “Drugs 1”. The ML4CAD algo-
rithm is more aligned with the Random Forest policy
due to the high predictive performance associated with
the latter. We also note the reduction of “Drugs 2 &
3” across all methods. In the case of CABG there is
disagreement between the ML models. Boosted Trees and
Linear Regression suggest a significant raise in the pro-
portion of CABG surgeryat the expense of “Drugs 1”. On
the other hand, ORT, Random Forest, and CART identify

Table 10 Degree of ML Agreement between the models analyzed for each treatment option as well as a function of the overall test population.
We highlight the proportion of the maximum number of ML models that agree with the proposed recommendation for each treatment option

Number of ML methods that agree
with the recommendation

CABG Drugs 1 Drugs 2 Drugs 3 PCI Population proportion

1 1.13% 0.22% 0.00% 0.00% 0.00% 0.26%

2 20.82% 14.29% 41.54% 59.65% 49.10% 23.99%

3 35.41% 32.30% 43.98% 36.23% 39.07% 34.48%

4 27.34% 33.58% 13.26% 3.64% 10.28% 26.74%

5 15.30% 19.61% 1.22% 0.47% 1.54% 14.53%
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Fig. 8 Population allocation to treatments split by gender

CABG as the optimal therapy for a lower proportion of the
patient population. Table 11 provides further details regard-
ing the proposed reallocation of patients in the treatment
options with respect to the standard of care.

8 Discussion and conclusions

Combining historical data from a large EMR database and
state-of-the-art ML algorithms resulted in an average TAE
benefit of 24.11%% (1.1 years) for patients diagnosed
with CAD. Our results show that differing medication

regimens and revascularization strategies may produce
varying clinical outcomes for patients. The use of ML
may facilitate the identification of the optimal treatment
strategy. Such efforts could directly address the primary
objectives of the clinical cardiovascular practice, leading
to symptoms reduction and an increase in the population
life expectancy. Our findings uncover the greatest clinical
benefit in medical therapy changes, consistent with themes
that have emerged in clinical trials [11]. The optimal
revascularization strategy in patients with multi-vessel CAD
is an area of active investigation, with efforts focused
on identifying which patient subgroups may benefit from
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different revascularization procedures [23]. Our technique
may add clarity to this clinical challenge.

Our prescriptive approach is accurate, highly inter-
pretable, and flexible for other healthcare applications. The
use of multiple ground truths derived from independent
ML models renders credibility to the results. In prescriptive
problems where counterfactual outcomes cannot be eval-
uated against a known reference, leveraging multiple ML
models can reduce the uncertainty behind suggested recom-
mendations. For this reason, we believe that metrics such as
the prescription effectiveness and robustness are key to the
validation process.

Moreover, our online application bridges the gap between
clinicians and the algorithm. Users can directly and simul-
taneously interact with multiple ML models from a user-
friendly interface. Our method should easily accommodate
alternative cardiovascular disease-management approaches
within specific disease subpopulations, such as arrhyth-
mia and valvular disease management. A novelty of our
approach is in the personalization of the decision-making
process. It incorporates patient-specific factors, and pro-
vides guidelines for the physician at the time of diagnosis
/ clinical encounter. We believe this personalization is the
primary driver of benefit relative to the standard of care.
Similarly, there is emerging data on use of ML techniques
to improve cardiac imaging phenotyping of cardiac disease
states, such as heart failure [46].

The widespread use of EMR in clinical medicine was ini-
tially viewed with much optimism, however more recently
it has been met with frustration by clinical providers.
Concerns are being raised over the administrative bur-
den to document the EMR and the resultant develop-
ment of clinician “burn out”. The methodology pre-
sented in this paper identifies a mechanism to harness
the power of the EMR in an effort to improve patient
care and make it more personalized. It is true that the
clinical acumen developed over time spent caring for
patients cannot be replaced by algorithms. Nevertheless,
the prospect of ML to guide clinicians and complement

clinical decision making may help improve clinical out-
comes for patients with cardiovascular and other diseases
[20].

Our work has several limitations due to the nature of
the EMR. A large percentage of the sample was right-
censored. Patients were not randomized into treatment
groups. Our data does not include socioeconomic factors
or patient preferences that may be important in treatment
decisions, such as income or fear of invasive treatment
strategies. Although our matching methodology controls for
several confounding factors that could explain differences
in treatment effects, we can only estimate counterfactual
outcomes. In addition, the study population of BMC is
not representative of the general U.S. population as we
observe a higher representation of non-Caucasian patients.
As a result, the ability of ML4CAD to generalize in other
institutions needs to be tested. Similarly to other studies,
we recommend prospective validation of the models to the
new population prior to the application of the algorithm
to a different healthcare system [47]. Moreover, we should
consider that the accuracy of the prediction model is limited,
though significantly better than the baseline model. It
leaves room for improvement in that field by including
new variables and further risk factors that are associated
with CAD. Due to lack of sufficient data, we did not take
into account different types of CABG surgery (i.e. arterial
versus venous conduits) and PCI (i.e. newer versus older
generation drug eluting stents, or bare metal stents versus
drug eluting stents). Should more data were available,
we could further differentiate the prescription categories
beyond the five we include in this analysis, including
drug specific recommendations. Moreover, the algorithm
does not agree with the standard of care in most cases.
This result indicates that new personalization techniques
would need further input from clinicians that was not
originally recorded in the EMR. Future research could
address the issue of right censored patients with different
approaches, which incorporate the time varying effects of
the explanatory variables using optimization rather than

Table 11 Allocation of patients
in the treatment options based
on the standard of care and
ML4CAD

ML4CAD allocation

Treatment CABG Drugs 1 Drugs 2 Drugs 3 PCI

Current allocation CABG 1.3% 4.1% 0.9% 1.6% 0.8%

Drugs 1 2.3% 22.1% 3.7% 2.1% 1.7%

Drugs 2 2.0% 12.3% 2.0% 0.2% 1.0%

Drugs 3 3.2% 16.3% 1.0% 1.4% 1.1%

PCI 2.2% 9.5% 1.3% 4.5% 1.4%
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heuristic methodologies. The ultimate validation of our
algorithm would be the realization of a clinical trial. There
we would be able to test the personalized recommendation
to patients directly utilizing their EMR from the hospital
system.

Despite these limitations, our approach establishes strong
evidence for the benefit of individualizing CAD care.
To our knowledge, this work represents the first ML
study in treating cardiovascular disease and serves as a
proof of concept. Moreover, the success of this data-
driven approach invites further testing using datasets from
other hospitals and patient populations. That includes
care settings that contain more detailed information
regarding the patients’ condition, such as electrocardiogram
findings and exercise and other lifestyle factors. The
algorithm could be integrated in practice into existing EMR
systems to generate dynamically personalized treatment
recommendations. Testing the prescriptive algorithm in
a clinical trial setting could provide conclusive evidence
of clinical effectiveness. As large-scale genomic data
become more widely available, the algorithm could readily
incorporate such data to reach the full potential of
personalized medicine in cardiovascular disease care. Our
work is a key step toward a fully patient-centered approach
to coronary artery disease management and the application
of modern analytics in the medical field.
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Appendix

Acronym Acronym Definition

AHA American Heart Association
ASA Aspirin
AUC Area Under the ROC Curve
BMC Boston Medical Center
BMI Body Mass Index
CABG Coronary Artery Bypass Graft
CAD Coronary Artery Disease
CART Classification and Regression Trees
DMLA Degree of ML Agreement
ECG Electrocardiogram
EMR Electronic Medical Records
FDA US Food and Drug Administration
HDL High-Density Lipoprotein
k-NN k-Nearest Neighbors
LDL Low-Density Lipoprotein
ML Machine Learning
OCT Optimal Classification Trees
ORT Optimal Regression Trees
PE Prescription Effectiveness
PR Prescription Robustness
PCI Percutaneous Coronary Intervention
ROC Receiver Operator Characteristic
TAE Time from diagnosis to a potential

Adverse Event

List of all acronyms used in the manuscript in
alphabetical order along with the corresponding definition.
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