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Abstract
In many modern hospitals, resources are shared between patients who require immediate care, and must be dealt with as they
arrive (emergency patients), and those whose care requirements are partly known to the hospital some time in advance (elective
patients). Catering for these two types of patients is a challenging short-term operational decision-making problem, since some
portion of each resource must be set aside for emergency patients when planning for the number and type of elective patients to
admit. This paper shows how symbiotic simulation can help hospitals with important short-term operational decisionmaking.We
demonstrate how a symbiotic simulation model can be developed from an existing simulation model by adding the ability to load
the state of the physical system at run-time and by making use of conditional length-of-stay distributions. The model is
parameterised using 18 months of patient administrative data from an Anonymised General Hospital. Further, we propose a
new Δ-Method that is suitable for validating a stochastic symbiotic simulation model. We demonstrate the benefit of our
symbiotic simulation by showing how it can be used as an early warning system, and how additional patient-level information
which might only become available after admission, can affect the predicted bed census.
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1 Introduction

In many modern hospitals, resources such as beds, theatre
time, medical equipment and staff are shared between patients
who require immediate care, and must be dealt with as they
arrive (emergency patients), and those whose care require-
ments are partially known to the hospital some time in ad-
vance (elective patients). Caring for these two types of patients
poses a logistical challenge in the sense that some portion of
each resource must be set aside for emergency patients when
planning for the number and type of elective patients to admit.
Hospitals have guidelines for the number of emergency pa-
tients they might expect to see in each planning period, al-
though the exact number is unknown. If too many elective
patients are admitted, the hospital’s ability to treat emergency
patients will be reduced, potentially resulting in negative

patient outcomes, such as having to turn patients away, and
Boutliers^ - a term which refers to patients whose ward might
not be ideally suited to their condition. On the other hand, if
too few elective patients are admitted, patients can be left on
waiting lists unnecessarily in the case of public health ser-
vices, or hospital income can be lost in the case of private
health care.

The potential benefits of using discrete event simulation
(DES) models in health care are well established, and they
are often preferred to other modelling approaches because of
their ability to emulate the randomness seen in physical sys-
tems at a level of detail which is necessary for models to be
convincing. Numerous literature surveys have tracked the
progress of this modelling approach, including [1–5].
However, the use of DES is often limited to strategic or tacti-
cal decision making, and few have attempted to produce
models which can help hospitals with short-term
(operational) decision making. This is where symbiotic simu-
lation can help.

Symbiotic simulation is a methodology in which there is a
close relationship between a physical system and the simula-
tion system that represents it. Based on the types of relation-
ship between the physical system and simulation system, [6]
classify symbiotic simulation into several categories. In this
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paper we describe research relevant to what they refer to as a
symbiotic simulation decision support system. In this type of
symbiotic simulation, the simulation reads data from the phys-
ical system regularly (i.e. to re-initialise the system state and if
necessary, update the decision variables and/or simulation pa-
rameters). The simulation outputs are then used for
what-if analysis, and an external decision maker can
choose to change the behaviour of the physical system.
In other words, the simulation system indirectly controls
the physical system via the external decision maker,
instead of an automatic actuator. As operational and
real-time data becomes more readily available in health
care, the use of symbiotic simulation in health care is
becoming more feasible and some early work, for ex-
ample [7, 8], is starting to appear. However, research into the
application of symbiotic simulation in health care is still a long
way behind industries such as manufacturing.

Our research aim for this paper is to investigate important
issues associated with the development and use of symbiotic
simulation decision support systems in the context of opera-
tional management of inpatients beds.

The challenges tackled in this paper are:

(i) symbiotic simulationmodel development – here we show
how development can be achieved from an existing DES
model by adding two functionalities: the ability to load
the state of the physical system at run-time (to make
predictions about how the physical system might evolve
in the short-term) and the use of conditional length-of-
stay distributions;

(ii) symbiotic simulation model validation – here we pro-
pose a new validation method, called ‘Δ-Method’;

(iii) symbiotic simulation model applications – here we
demonstrate some of the benefits of a symbiotic simu-
lation in a hospital context, in particular how it can be
used as an early warning system, and how additional
patient-level information (which might only become
available after admission), can improve the accuracy
of the simulation output.

In order to undertake this research we developed a whole-
hospital, proof-of-concept symbiotic simulation model. We
did this with the involvement of a real Anonymised General
Hospital (AGH) for a period of about 18 months, after which
we lost touch with them due to management changes. This
relationship gave us exactly what was needed for this research.
It provided us with a rich context, a full inpatient activity
dataset for an 18 month period, and clear indications of how
they would hope to use a symbiotic simulation, including the
main performance measures that would interest them. Hence
our proof of concept model is based on a conceptual model
agreed with AGH staff, its validity is investigated by compar-
ing model outputs versus actual performance, and its

application is demonstrated based on realistic scenarios and
real data sets.

The remainder of this paper is organised as follows.
Section 2 provides an overview of traditional applications of
simulation on hospital bed management, followed by a review
of symbiotic simulation and its early applications in health
care. In Section 3, we introduce the Anonymised General
Hospital (AGH) and the traditional proof-of-concept DES
model of the hospital that we developed with them. The main
contributions of the paper are presented in Sections 4, 5 and 6.
In Section 4, we show how a symbiotic simulation can be
developed from an existing DES model, which may well re-
duce the development cost if such a DESmodel already exists,
but also offers a viable approach even when starting from
scratch. In section 5, we propose and demonstrate a new val-
idation technique, calledΔ-Method, which is suitable for val-
idating symbiotic simulation models. In Section 6, we dem-
onstrate how the symbiotic simulation can be used as an early
warning system and how the additional information made
available at simulation run-time can be used to improve the
accuracy of the simulation output. Finally, we conclude the
paper and highlight future work in Section 7.

2 Literature review

Given the importance of achieving reasonable levels of effi-
ciency in hospitals, bed management has been an active topic
of research in Operational Research/Management Science
(OR/MS) for a long time, resulting in numerous approaches
to the problem and large quantities of related literature. The
admission of elective patients can be viewed as a scheduling
problem, and the literature in this domain is dominated by
analytical methods which aim to provide optimal (or close to
optimal) schedules given a set of constraints. With the prolif-
eration of more powerful personal computers and program-
ming languages, simulation has become one of the accepted
tools in this domain that complement the analytical methods.
The prevalence of simulation is due (in part) to its flexibility,
which facilitates the modelling of complex systems, such as
hospitals. In this section, we provide a broad review of the
applications of simulation for bed management, followed by
an introduction to symbiotic simulation and its applications
including health care.

2.1 Applications of simulation for bed management

Some of the earliest literature surveys in bed management
include [9] whose surveyed papers investigate the relationship
between admissions scheduling policies and hospital re-
sources; [10] which focuses on the surgical scheduling litera-
ture, including Bmultiple constraint^ models which account
for bed numbers and nursing staff; and [11] whose survey
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covers the use of computer simulation across various
healthcare systems, including admissions control and bed
management.

Early work in this area includes [12], who developed a
simulation model of a hospital treating narcotics addiction.
While the type of patient differs significantly from the acute
patients this research is concerned with, the model’s structure
bears similarity to an acute hospital through the admission of
non-authorized (unplanned) and authorized (planned) pa-
tients. The authors also note that the authorized patient stream
is the most easily controlled, and therefore the decision vari-
ables for the model are based around their admission. The aim
of the work is to minimise variation in the bed census while
maintaining reasonable occupancy levels. Other early work
includes [13], which uses a simulation model to test three
routines for the development of an automated scheduler for
elective admissions, with a focus on how estimating each pa-
tient’s length-of-stay might improve scheduling decisions.

[14] develops models for emergency admissions but they
claim that it can be generalised to accommodate both emer-
gency and elective streams. The work is interesting in that
negative patient outcomes (crisis days and proportion of pa-
tients not admitted) are treated as a function of bed occupancy
for a hypothetical acute English hospital. One of the most
cited conclusions of the paper is that hospitals operating at
90% occupancy or higher will suffer regular crisis days, and
that operating staffed but empty beds is a necessity for absorb-
ing stochastic variation associated with emergency arrivals.

The simulation model described in [15] considers both bed
and operating theatre resources. However, its scope is high-
level, including multiple hospitals which draw from a
centralised waiting list. At this level of detail beds are treated
as a homogenous resource, therefore dependencies between
wards within a single hospital cannot be modelled. [16] de-
velops a generic framework for modelling hospital resources,
and outlines a number of modelling considerations for OR/
MS practitioners working in this domain. A model which
incorporates the prescribed framework is developed and used
to assess a set of competing theatre scheduling policies, and
their downstream effect on bed occupancy. The model is also
used to estimate the mean number of occupied beds per month
using a stochastic representation of hospital processes, and
shows that this can differ significantly from estimation
methods which only make occupancy estimates based on av-
erages. A similar approach has also been used in the simula-
tion described by [17], in which a multi-ward hospital is
modelled. However, this model appears to treat the elective
admissions as a stream of exogenous demand, rather than a
decision variable. [18] formulates a healthcare service as a set
of connecting servers in their simulation model. The key de-
cision is the resource allocation in each server. The simulation
model is used to generate data to train a neural network model
that will be used as a meta-model in their optimisation model.

Although they apply the approach to a blood transfusion cen-
tre, their approach can be applied to a network of hospital
wards.

Researchers have reported the development of comprehen-
sive simulationmodels either at the hospital or unit levels. [19]
proposes an interesting feature in their model which is the
existence of a feedback loop between the state of the hospital
and admissions decisions; allowing the admissions policy to
dynamically respond to the state of the simulated hospital.
[20] develops a whole-hospital simulation, designed at a level
of genericity such that it could be parameterised and applied to
most modern hospitals. The model has the ability to load a
user-defined waiting list so that the admission of elective pa-
tients can be treated as a decision variable. In general, the
whole-hospital simulation receives elective admissions from
the waiting list component and emergency admissions from
the accident and emergency component. These are used to
generate output statistics which include time spent on waiting
lists, elective cancellations and the number of patients who
become outliers.

In summary, the potential benefits of using simulation for
bed management are well established. However, their use is
often limited to (tactical and strategic) planning decisions, and
few have attempted to produce models which can help hospi-
tals with short-term (operational) decision making. Even few-
er have attempted to use data that are made available after the
model has been developed (or even during run-time) to re-
initialise or re-parameterise the simulation model. This is
where Symbiotic simulation can help.

2.2 Symbiotic simulation

The concept behind what we know today as symbiotic simu-
lation is not new. Computer scientists use software-in-the-loop
and hardware-in-the-loop simulation to test software and hard-
ware prototypes, respectively. In this approach, the software or
hardware to be tested is connected to a simulator that mimics
the environment in which the software or hardware will be
operating. This type of simulation is also called co-simulation.
Similarly, other terms have also been used in different do-
mains such as real-time simulation, online simulation, dynam-
ic data-driven simulation, digital twins, etc. [21] was among
the first to describe the architecture of the simulation in detail.
The term symbiotic simulation itself was coined at the 2002
Dagstuhl seminar on Grand Challenges for Modelling and
Simulation [22]. The initial definition was heavily influenced
by dynamic data-driven application systems which put an em-
phasis on the ability of the simulation to control the physical
system. [6] proposes a new definition that is less restricted. In
the new definition, symbiotic simulation is Ba close associa-
tion between a simulation system and a physical system,
which is beneficial to at least one of them.^ In this paper, we
use Aydt’s definition of symbiotic simulation.

Symbiotic simulation for the operational management of inpatient beds: model development and validation... 155



[21] provides an overview of the requirements for symbi-
otic simulation (referred to as Bonline simulation^) and pro-
poses the use of parallel models operating under alternative
control policies, along with a single model operating under the
current control policy. The performance of each model is
analysed, and the physical system adopts the policy which
generates the Bbest^ simulated results (given the physical sys-
tem’s current state) for the next planning period. Another im-
portant contribution of [21] is the discussion of Breactive^
versus Bproactive^ decision-making using symbiotic simula-
tion models (which is further formalised in [6]). In reactive
mode, a symbiotic simulation is used to develop a plan at a
point in time (a so-called Bdecision point^), possibly in re-
sponse to a critical state in the physical system, which is im-
plemented in the physical system until the next decision point
occurs. The alternative is a Bproactive^ mode, in which the
plan is updated between decision points as the physical system
evolves. While either of these modes of operation could in
theory be applied to operational bed management in hospitals,
they are dependent on the rate at which the hospital’s data-
bases can be synchronised with actual bed occupancy. For
instance, if it is known that up-to-date data entry occurs only
once per week, the hospital may be limited to reactive mode at
weekly decision points.

[23] further develops the theory of symbiotic simulation by
considering some of the challenges associated with their
initialisation. Since symbiotic simulation models are
initialised with a state reflecting the physical system and
analysed via their transient behaviour, the accuracy of the
initial conditions has a direct effect on the results. However,
in systems where the state descriptors change quickly over
time, the current state becomes a moving target. The authors
describe two initialisation methods. The first involves main-
taining a continuously synchronised parent model, from
which any number of child models can be generated and run
at any time. The second is more simplistic, and generates a
model from a specially formatted file whenever a new simu-
lation run is requested. Since the state of inpatient beds in our
study evolve at a slower rate than the example applications
described by [23] (traffic and pedestrian flow modelling), the
initialisation method envisaged for this research bears more
conceptual similarity with the second method. Additionally,
hospitals may be able to choose times during the day when
arrivals, discharges and transfers between wards are less likely
to occur, thereby reducing the chance that the bed-state will
change before the results are obtained.

From 2005, the symbiotic simulation literature has seen an
increase in the number applications focusing on how existing
technologies can be used to implement a symbiotic simula-
tion. Key applications include manufacturing (e.g. [24–27]),
unmanned aerial vehicles (e.g. [28–31]), transportation (e.g.
[32]) and Data Centre operations (e.g. [33, 34]). A small num-
ber of applications of symbiotic simulation also exist in the

context of health care, and it is clearly an area with scope for
further research, development and application. Published ap-
plications predominantly focus on managing the operations of
single departments, such as emergency departments (e.g. [7],
[35–37]) and cardiac care (e.g. [8]). Our research attempts to
further promote the application of symbiotic simulation in
health care, in part by demonstrating how it can be used be-
yond the ED.

3 A general hospital discrete-event simulation
model

When the AGH approached us, they expressed interest in B…
a core piece of work built around a predictive bed modelling
tool for operational purposes …^ After further email corre-
spondence, we were supplied with an anonymised extract of
the patient administrative (PA) database, for all patient epi-
sodes from the 1st of January 2010 to the 30th of June 2012.
The PA data supplied by AGH is split into two databases,
known as the Care and Stay databases. The Care database
contains information about the type of treatment a patient is
receiving; such as their specialty at any given time, and the
identification code of the doctor responsible for their care. The
Stay database contains information about the physical location
of the patient; including the identification code of the bed they
occupy and the ward on which they are staying. A new row in
the database is created when any of these features change, and
each row is populated with start and end dates/times. The data
are sufficiently detailed for us to develop a simulation model.

3.1 Key performance Indicator

SinceAGH is interested in a predictive bedmodelling tool, the
objective of the model is to estimate the number of occupied
beds. The PA data allows us to obtain bed occupancy at any
time of day. In this work we use a frequently-used metric
called the midnight bed census, and its breakdown between
emergency and elective patients, as shown in Fig. 1 (after
excluding all patients who are admitted and discharged on
the same day). Hence, we also use midnight occupancy level
as the main metric in our simulation model and the simulation
runs in discrete time, with each time unit representing one day
of hospital operations.

3.2 Conceptual model

Since this project is concerned with estimates of inpatient bed
occupancy at the ward level, the minimum level of structural
detail includes a network of wards (see Fig. 2). Patient stays
can be disaggregated into ward stay segments to parameterise
each ward in the simulated network. However, modelling ev-
ery ward which appears in the PA data is not considered
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sensible, as some wards rarely allow overnight stays, and
hence have very little relevant data. On the other hand, omit-
ting these wards would break the links in the ward network. A
pragmatic approach is to model wards that make up 90% of
the average occupancy individually, and aggregate infor-
mation relating to the remaining wards into one pseudo-
ward in the simulation (referred to as ward Other). This
means that the population of interest is captured entirely,
while modelling effort is reserved for wards which are indi-
vidually significant.

Figure 3 shows the structure of the model. The number of
emergency admissions per day is modelled using an empirical
distribution for each day of the week, in keeping with the
random nature of emergency arrivals in a real hospital. The
elective admissions are the decision variables in the model.
Hence, elective admissions occur deterministically by choos-
ing the day and ward of arrival for each elective patient in the
planning horizon. If the probability of non-attendance can be
estimated, this information can be used with the planned ad-
missions pattern to emulate unexpected patient absence.

After being admitted to the hospital, patients occupy a bed
for some period before being discharged or transferred to a
bed on another ward. This period is known as the patient’s
ward length-of-stay (WLOS). In the case of elective admis-
sions, it may well be estimated by clinicians and planners
responsible for scheduling procedures (which is the basis of
one of the example applications presented in 6.2). However,
there will still be random variation in length-of-stay from pa-
tient to patient. For emergency patients arriving at the hospital,
length-of-stay may be even less predictable due to the
unscheduled nature of their admission. For this reason,
WLOS are modelled as random variables. Patients can
stay in more than one ward while being treated in the
hospital. Hence, the sum of their WLOS form their total
length-of-stay (LOS) in the hospital. For readers who are fa-
miliar with the UK NHS, the terminologies are ward stay and
spell, respectively.

Once a patient’s ward stay is over, they may be discharged
from hospital or they can be transferred to another ward. If a
transfer to another ward is necessary, the choice of ward is not

Fig. 2 The network of ten
individually modelled wards
forms a complete graph

Fig. 1 The emergency and
elective midnight bed census
during the observation period of
560 days

Symbiotic simulation for the operational management of inpatient beds: model development and validation... 157



only dependent on the patient’s clinical requirements, but also
the availability of the resources needed to treat the patient,
such as beds, nurses and monitoring equipment. The potential
for uncertainty in the sequence of visited wards, along with the
unknown types of emergency arrivals occurring in each plan-
ning horizon, justify the use of stochastic transfers between
wards in the simulation. The probabilities which govern the
transfers from each ward are estimated from the PA data
by calculating the proportion of total departures moving
to each subsequent ward or to discharge. Modelling
transitions in this way is a simplification of the real
transfer/discharge process, since the probabilities depend
on the current ward and do not consider previously
visited wards (memorylessness). However, this approach
has been shown to work well in other models, see for example
[20], and maintains the average patient flows seen in the real
hospital.

3.3 Infinite server assumption

In his review of the development of queueing theory and ap-
plications, [38] comments that despite their assumption of
infinite resource, infinite server (i.e. uncapacitated) models
can provide the basis for the analysis of offered load for
multi-server systems with time-varying arrivals. Hospitals
such as AGH can be viewed as a network of servers with
time-varying patient arrivals. Whitt’s comment is confirmed

by the literature in which various authors have used both an-
alytical (e.g. [39–41]) and simulation (e.g. [8, 14, 42]) infinite
server models to address the bed management problem in
hospitals.

Infinite server models deliberately exclude real-world re-
source constraints, and hence produce simpler models. The
use of simple models that are fit for purpose is a good practice
for simulation modelling. In our case, infinite server models
are well suited to estimate the probability of demand exceed-
ing a certain level in the short term, which is a key piece of
information for hospital managers trying to assess the risk of
not being able to cope, given the number of beds at their
disposal. Similar statistics could be derived using a fixed ca-
pacity approach, however doing so adds considerable com-
plexity in terms of modelling the extent to which patients are
turned-away.

As noted in section 1, our research objectives require a
proof of concept symbiotic simulation model that can be used
to investigate the issues of model development, model
validation and model application. It is not the purpose
of this paper to argue that the infinite-server model
adopted here is the only, or ‘best’, way of modelling
inpatient bed occupancies. There will certainly be occa-
sions where it would be useful to increase the complexity of
the model to reflect management decisions taken when wards
are full, or for example to model the sorts of self-regulatory
behaviours described in [43].

Fig. 3 Schematic of the
simulation model. The πtype

ij

represent the transition
probabilities from ward i to j
for each admission type
(emergency/elective)
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3.4 Validation of DES model

The conceptual model described in the previous sections is
implemented in the Micro Saint Sharp simulation package.
We applied white-box validation as defined in [44] whilst work-
ing with the AGH, and black box validation in which the model
outputs were compared to some historic data generated by the
physical system to confirm that the model displays similar per-
formance characteristics when run under similar operating con-
ditions. Figure 4 compares the observed mean midnight occu-
pancy (by day of the week) with realisations of mean midnight
occupancy derived from the simulation outputs for emergency
and elective patients. The error bars within the bar charts are
two-tailed 90% confidence intervals for the mean midnight oc-
cupancy derived from the simulation. The result shows that at
the 10% significance level, there doesn’t appear to be any
misspecification of the model in terms of mean occupancy on
each day of the week at the admission type level (emergency/
elective). Further validation tests of the DES could be carried
out at this stage, however the main validation exercise needs to
be carried out on the symbiotic simulation model.

4 Symbiotic simulation development

This section describes the development of a symbiotic simu-
lation model from the DES model described in Section 3. The

objective is to demonstrate that in cases where we already
have a validated (non-symbiotic) simulation model (as in
some hospitals), we may not need to develop the symbiotic
version from scratch. This section shows that two key
functionalities can be added to the existing simulation
model to make it symbiotic. The functionalities are the
ability to load the state of the physical system at run-
time, and conditional service-time distributions which govern
patients’ lengths of stay.

4.1 Ability to load the state of the physical system
at run-time

This functionality ensures that the simulation can be initialised
to the state of the physical system being modelled to investi-
gate how the physical system might evolve given its current
state. In general, having a communication line with the phys-
ical system means that the physical system state can be que-
ried by the simulation model at any time. However, in a hos-
pital setting this may not be possible, since data entry into the
patient administration system may not occur automatically.
This may change in the future as more data are being collected
automatically in hospitals via sensors, RFID, mobile electron-
ic devices and other technologies. Likewise, future commer-
cial simulation software is likely to include the functionality to
interface with these real-time data sources. Currently, most
commercial simulation tools (including Micro Saint Sharp)

Fig. 4 Mean midnight bed
occupancy by weekday for
emergency patients (a) and elec-
tive patients (b)
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have the ability to read a file that can be used to initialise a
simulation. Hence, a symbiotic simulation can be implement-
ed using existing software packages that share this feature.

The system state that is needed to make the simulation
model in Section 3 symbiotic consists of:

& The number of emergency admissions resident on each
ward.

& The number of elective admissions resident on each ward.
& The day of the week on which each patient was admitted.
& The amount of time already spent on the current ward for

each patient at the time the state data is collected.

The first and second pieces of information are the most
obvious requirements when attempting to describe the state
of the model. The third piece of information relates to the way
in which ward length-of-stay is modelled. More specifically, a
statistically significant relationship was found between the
day of the week on which a patient was admitted, and the
length of time they subsequently spent in hospital. Thus, day
of admission information is required for each patient’s ward
length of stay to be drawn from the appropriate empirical
distribution. The use of empirical distributions aligns closely
with the data-driven nature of symbiotic simulation. However,
this does not prevent the use of theoretical distribution when
appropriate. The fourth piece of information ensures that the
patients who are resident on a ward when the state data is
captured are loaded as simulation entities who have spent
the same amount of time on the ward.

4.2 Conditional distributions

In systems where each Bjob^ has a service time, new jobs have
service times sampled from their underlying probability dis-
tributions, whereas any job currently in service when the sim-
ulation is initialised should be loaded into the model with its
remaining service time. In our case, ward length-of-stay
(WLOS) is the service time of interest and is treated as a
random variable conditional on admission type, weekday of
admission and hospital ward. Therefore remaining length-of-
stay of a patient already in a ward when the simulation is
initialised is stochastic, and cannot be known at run-time.
However, this remaining WLOS is likely to be dependent on
the time already spent on the ward and hence necessitates the
use of conditional distributions (also used in the analytical
models of [45–47]).

The conditional WLOS distribution for each resident pa-
tient is straightforward to derive, given their time already
spent on the ward, and the marginal distribution of length of
stay (accounting for admission type, weekday of admission
and hospital ward) applicable to the patient. Suppose the ran-
dom variable T represents the total number of nights a given
patient will spend on the ward, and that when the simulation is

initialised the patient has already been on the ward for s mid-
nights. The random variable R = T − s therefore represents the
number of midnights the patient remains on the ward after the
simulation is initialised. If the CDF of total length of stay,
FT(t), is estimated using the empirical data, the conditional
CDF FT(t, s) = ℙ{T ≤ t| T ≥ s} can be obtained simply using
the formula:

FT t; sð Þ ¼ ℙ T ≤ tjT ≥sf g ¼ FT tð Þ−FT s−1ð Þ
1−FT s−1ð Þ ð1Þ

Since R is the difference between T and s, the sampling
distribution for R is then readily given by:

FR r; sð Þ ¼ FT sþ rð Þ−FT s−1ð Þ
1−FT s−1ð Þ ð2Þ

For a given s, realisations of R can then be drawn from
FR(r, s) using the inverse transform sampling method, and
these realisations represent remaining length of stay on the
ward, given length of stay already spent on the ward at the
time the simulation is initialised. Most commercial simulation
software will allow the user to specify any function for the
sampling distribution of activity durations, and hence this is
simple to implement in such software.

It is worth noting that conditional WLOS does not need to
be considered for models whose service times are best de-
scribed using exponential distributions (when service times
are continuous) or geometric distributions (when service times
are discrete), due to the memoryless property. However,
memorylessness does not apply to the empirical distributions
from which WLOS is drawn in this model.

5 Validation for stochastic symbiotic
simulation using Δ-method

One of the characteristics of stochastic symbiotic simulation
(e.g. built from Discrete-Event Simulation or Agent-Based
Simulation) is that the simulation needs to be re-initialised
with the data from the physical system it is meant to control.
Hence the distribution of a metric estimated by the stochastic
symbiotic simulation (e.g. midnight occupancy in this paper)
changes as a function of the elapsed time from initialisation.
Figure 5 shows the result from running our symbiotic simula-
tion for 100 replications, re-initialising it on the Monday of
each week over an 18-week period. The choices of Monday
and weekly updates are arbitrary, and are intended to provide a
realistic example. Note that the bed occupancy status each
Monday is unique, and has a unique trajectory over the fol-
lowing 6 days which we wish to compare with our simulated
results. Our validation analysis below is based on 80 weeks of
data, however we limit ourselves to 18 weeks in Fig. 5 so that
the detailed nature of the results is clearly visible.
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Figure 5 shows a typical example of a symbiotic simulation
output. The thick line shows the observed metric (in our case,
midnight occupancy). The dashed lines show the 5th and 95th
percentiles (90% prediction intervals) of the midnight occu-
pancies from the symbiotic simulation. First, this figure shows
that the prediction intervals cover the observed data well (87%
of observations fall within their corresponding 90% prediction
interval). Secondly, we can see that the prediction intervals
collapse to the observed midnight occupancy every Monday
where the simulation is re-initialised. This is the primary fea-
ture which distinguishes symbiotic simulation from non-
symbiotic simulation. Based on this feature, we propose the
‘Δ-Method’ as a validation test for stochastic symbiotic sim-
ulation which compares the distribution of the simulation out-
puts over time, to that of the historic data.

The validation test is based on comparing the distributions
of simulated and observed changes in ward occupancies over
the range of prediction periods of interest h (e.g. 1 to 6 days
ahead). With 560 days of observed data, for each ward we
have 560-h observations of:

Δt;h ¼ Mt−Mtþh ð3Þ
whereMt represents the measure of metric M, t days from the
start of the observation period.

If the symbiotic simulation is initialised at time t0, thenMt0
will take the same value in both the simulation and the phys-
ical system. In our case the length of the planning horizon is
assumed to be one week and the symbiotic simulation model
is initialised weekly, hence there are 80 weekly initiation
points, and 6 empirical distributions of Δh (one for each day
of the planning horizon (Δ1,… , Δ6)). If Fsimulation(δh ) and
Fphysical system(δh ) denote these empirical cumulative distribu-
tion functions over the support of Δh, denoted by δh, then the
coordinates (Fsimulation(δh ),Fphysical system(δh)) form a proba-
bility-probability plot or P-P plot, see for example [48] for a
description of their use as a graphical technique. If the

distributions are similar, the coordinates will lie close to the
identity line (y = x), providing a visual indication of the simi-
larity of the distributions ofΔh at each possible elapsed time h
from initialisation, or equivalently, on each of the h days in the
planning horizon.

To illustrate how Δ-Method works, we apply it to our
symbiotic simulation. In this case we are interested in the
midnight occupancy of each ward. Hence, ourΔh-occupancy
on ward w is:

Δw
t;h ¼ Mw

t −M
w
tþh ð4Þ

whereMw
t represents midnight occupancy t days from the start

of the observation period on ward w.
Figures 6a and 7a show the results of applying the ‘Δ-

Method’ for two different wards, the ED ward and ward 5D.
Each figure compares the six cumulative distributions of Δh-
occupancy observed in the historic data, with equivalent dis-
tributions generated by the output of 100 replications of the
symbiotic simulation model, for the ED ward. The results in
Fig. 6a are typical of many wards across the hospital, showing
good agreement when compared to the empirical distributions
of Δh-occupancy across the six-day planning horizon. This
indicates that the simulationmodel, including the infinite serv-
er assumption, seems to be representing the performance of
these wards quite well. However the result in Fig. 7a indicates
problems with using the model if its purpose were to predict
occupancies for ward 5D. Here the P-P plots show that the
distributions from the observed data have less cumulative
probability than the simulated distributions below their re-
spective medians (for the same values of the support), how-
ever this difference reduces towards the point (0.5,0.5), and
changes to a positive difference above it. With both the simu-
lated and observed data having very similar medians for each
value of h, this pattern is indicative of lower variance in the
distributions plotted on the vertical axis, compared to the dis-
tributions plotted on the horizontal axis.

Fig. 5 90% prediction intervals of bed occupancy generated by the symbiotic simulation for all wards combined, for all admissions
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Figures 6b and 7b show the results of more traditional
validation tests, simply comparing the overall (i.e. averaged
over all 80 weeks) observed and simulated occupancy distri-
butions for the ED and for Ward 5D. Whilst obtaining these
overall distributions are not the purpose of the symbiotic sim-
ulations, they do help understand the strengths and weak-
nesses of the chosen model. For the ED the distribution of real
midnight occupancy is positively-skewed, is quite unlikely to
be near, or at its maximum capacity, and hence is relatively
well represented by infinite-server assumption. On the other
hand, as Fig. 7b shows, the capacity of Ward 5D is often
reached, which stops further patient stays from occurring.
This behaviour will clearly not be mimicked when assuming
infinite capacity wards. However, as noted in Section 3.3, one
important use of infinite-server models is to warn manage-
ment of the likelihood of demand exceeding capacity, rather
than attempting to model the detail of the possible conse-
quences. Hence, as will be seen in Section 6, whilst the vali-
dation test for Ward 5D warns us that it will not fully repro-
duce actual ward occupancies, it can nevertheless provide a

valuable warning that there will be occupancy problems to be
dealt with.

In summary, this section has focused on the develop-
ment of a new validation technique suitable for stochastic
symbiotic simulation in which the time-dependence of the
simulation outputs is accounted for, and which are well
suited to bed management applications. By defining the
Δh random variable, the observed metric can be pooled in
such a way that comparisons can be made with the simu-
lated metric, whose distribution evolves with time-from-
initialisation. Since Δh is analysed via a comparison of
the entire empirical distribution function, differences in
trend, variability, or cycling behaviour which may occur
over time, can all be detected.

6 Example applications

We present the following two examples to demonstrate how
the symbiotic simulation could be used in practice.
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6.1 Early warning system

Motivated in part by the needs of AGH, the first example
application demonstrates how the symbiotic simulation model
could be used as an early-warning system to anticipate days in
the planning horizon when the demand for beds is at risk of
exceeding the maximum capacity of the wards. A particularly
busy week is chosen from the PA database, and the symbiotic
simulation is used to assess the likelihood of demand exceed-
ing capacity for the observed elective schedule. We initialise
the symbiotic simulation with the PA data on Monday of the
chosen busy week and run the symbiotic simulation for 400
replications. Based on our testing, 400 replications re-
sulted in sufficiently stable midnight occupancy distri-
butions when only the random seed was changed. For
brevity, only Wards 5B and 5D are shown in Fig. 8
since their real midnight occupancies sit above their
respective 90% capacity thresholds for every day during the
week; making them suitable for demonstrating the simula-
tion’s use as an early warning system.

Figure 8 shows the histograms for each day during the busy
week for two of the modelled wards. The dashed red line
represents the 90% occupancy threshold, while the solid red
line represents the maximum occupancy of the ward. The
solid blue cells indicate the actual level of midnight occupan-
cy which the ward experienced. For both wards, the distribu-
tions derived from the simulation outputs indicate that mid-
night occupancy is more likely to be above the 90% occupan-
cy threshold, rather than below. Therefore, the symbiotic sim-
ulation could have been used to warn hospital staff of the high
probability of high midnight occupancy for most days during
the week.

In addition to indicating the days when midnight occupan-
cy is likely to be above the 90% threshold, Fig. 8 also shows
that the symbiotic simulation can be used to anticipate days
where the demand for beds might be more than the number of
available beds. This shows how our simple uncapacitated
model can be used as an early warning system by showing
the probability of over-occupancy. When the probability of
exceeding capacity is high, as in this example, the hospital
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manager has more time to plan for some sort of preventative
action, such as an alternative elective schedule.

Suppose we nowwant to evaluate two possible revisions to
the elective admissions schedule for the busy week in ques-
tion. Many of the admissions take place on the Other ward
which is an aggregate of smaller wards, meaning the actual
ward of admission has low average midnight occupancy. The
actual admissions schedule for the busy week is shown in
Table 1, and the proposed revisions are highlighted. The post-
ponement schedule postpones one patient from Tuesday to
Wednesday and two patients from Thursday to Friday. The
cancellation schedule is the same as the postponement sched-
ule but also cancels one patient from Thursday.

Clearly, the likelihood of demand exceeding capacity
should be assessed for every ward, in a holistic way. Hence,
to compare the three elective schedules (observed, postpone-
ment and cancellation), we chart the probability of bed de-
mand exceeding the maximum capacity on every simulated
ward as shown in Figs. 9, 10 and 11. Monday is excluded
because this is when the symbiotic simulation is initialised.
Added to the figures are estimates of ‘bed-midnights over
capacity’ (BMOC), which is the total number of beds in ex-
cess of each ward’s capacity, for all wards, summed over the
midnights in the planning horizon (based on [49]). A single

estimate is obtained by averaging this metric over all replica-
tions for the simulated week.

The charts clearly show that Ward 5B is the most likely
ward to encounter capacity issues for most days of the week if
the observed schedule is not revised. The Postponement
Schedule is able to reduce the peaks in probability on both
Wednesday and Friday for Ward 5B, and as expected, in-
creases the probabilities on Thursday and Saturday.
However, the level of risk is now more even across the week,
and hospital managers may consider these two days to be in a
better position to accommodate additional patients than
Wednesday and Friday. The estimated BMOC also sees a
decrease of 0.49 bed-midnights, also indicating a net improve-
ment across all wards using this schedule. The Cancellation
Schedule further reduces the probability of Ward 5B encoun-
tering capacity issues by approximately 5%, and BMOC by
0.29. Whilst operation cancellations are clearly undesirable,
hospital managers may nevertheless sometimes need to trade-
off this sort of an improvement against the consequences of
cancelling the patient.

This example illustrates how our symbiotic simulation
might be used to best reduce the likelihood of excessive bed
demand, thereby balancing emergency and elective
workloads.

Fig. 8 Distributions of midnight
occupancy generated by the
symbiotic simulation on Ward 5B
and 5D
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Fig. 9 Symbiotic simulation estimates of the probability of the demand for beds exceeding total capacity on each of the ten modelled wards during a busy
week using the observed schedule

Table 1 Alternative elective schedules: postponement (top) and cancellation (bottom)

Postponement Schedule
Ward Monday Tuesday Wednesday Thursday Friday Saturday Sunday

ED - - 1 - 1 - -
Ward4D - - - - 1 - -

Ward4K 2 3 - 1 - - -

Ward5A - 1 - 1 - - 1

Ward5D - - - 2 - - -

Other 6 8-1=7 6+1=7 12-2=10 4+2=6 - -

Cancella�on Schedule
Ward Monday Tuesday Wednesday Thursday Friday Saturday Sunday

ED - - 1 - 1 - -
Ward4D - - - - 1 - -

Ward4K 2 3 - 1 - - -

Ward5A - 1 - 1 - - 1

Ward5D - - - 2 - - -

Other 6 8-1=7 6+1=7 12-3=9 4+2=6 - -
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6.2 The benefit of additional information

One of the benefits of symbiotic simulation is the ability to
use newly available data that are made available after the
simulation model is developed; including at simulation run-
time. This example investigates the potential for improving
the accuracy of results generated by the symbiotic simula-
tion (e.g. estimates of bed demand) by making use of addi-
tional (and potentially subjective) patient information that
might be available at simulation run-time. This could

include information about the location of subsequent ward
stays, or the likelihood of requiring an Intensive Care bed.
In this example, the additional information being consid-
ered concerns the length-of-stay of patients on the elective
admissions schedule, and the remaining length-of-stay of
any patient (emergency or elective) who occupies a bed
when the symbiotic simulation is initialised. This informa-
tion is used as a proxy for the Estimated Date of Discharge
(EDD) which [50, 51] emphasises is an essential care coor-
dination tool within the UK.

Fig. 10 Symbiotic simulation estimates of the probability of the demand for beds exceeding total capacity on each of the ten modelled wards during a
busy week using the postponement schedule

Fig. 11 Symbiotic simulation estimates of the probability of the demand for beds exceeding total capacity on each of the ten modelled wards during a
busy week using the cancellation schedule
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EDD (and thus, estimated length-of-stay) aligns with the
symbiotic simulation method particularly well. New system
state data is already read into the model at regular intervals,
and this can easily be augmented with information about a
patient’s condition (i.e. how long they are expected to stay)
as it develops. For the incoming elective patients, clinicians
will have an approximate EDD in mind to help manage hos-
pital resources, and to inform patients of the time they can
expect to spend in hospital. For the emergency patients al-
ready in the hospital, clinicians should have more information
than when they were first admitted, which can contribute to an
EDD. In fact, [49] recommends that an EDD should be set at
the first consultant review, and set no later than the first con-
sultant ward round the following morning. Therefore, esti-
mates of remaining length-of-stay should also be available
for most, if not all acute patients occupying a bed.

However, clinician’s assignment of an EDD is by nomeans
a guarantee that the corresponding patient will be
discharged on their estimated date. Factors such as var-
iation in individual recovery times, and complications
associated with treatment, can contribute to differences
between the EDD and the actual date of discharge. Therefore,
as part of assessing the value of using discharge date estimates
in a symbiotic simulation, it is also important to consider how
accurate they might be.

Although estimates of LOS/EDD were not explicitly pro-
vided by the AGH participating in this study, the actual ward
lengths-of-stay can be loaded from the PA data, retrospective-
ly. The use of actual observations would represent a scenario
in which clinicians were able to perfectly predict LOS. To
model the uncertainty associated with clinicians’ LOS esti-
mates, we considered information about LOS on each pa-
tient’s current ward, and introduce a parameter d, which

controls the proportion of correct estimates of current ward
LOS. Hence, in the simulation, clinicians make correct esti-
mates of LOSwith the probability of d, and inaccurate but still
good estimates (by sampling from the empirical LOS distri-
butions) with the probability of 1-d. The symbiotic simulation
is run for 400 replications using the same settings used in
Section 5.

Figure 12 shows the impact of different LOS error levels
(d) on the standard deviation of the midnight occupancy on
Ward 5B, where d = 0means no additional information is used
(as in Section 5) and d = 1 means the additional information is
accurate for all patients. Ward 5B has been chosen as an ex-
ample (other wards with similar characteristics display similar
features).

As one would expect, as d increases the standard deviation
of midnight occupancy on Ward 5B decreases, resulting in
increased accuracy of the midnight occupancy estimates.
However, Fig. 12 also suggests that clinicians’ EDD accuracy
should be greater than 25% for those improvements to be
discernible from the existing model in which the additional
information is not used. Used in this way, the case can be
made for the collection and inclusion of potentially subjective
data, by also simulating the levels of accuracy at which they
become useful. Such improvements could enable hospital
managers to make better decisions, especially when the hos-
pital is busy, as shown in the earlier examples.

7 Conclusion and future work

The main contributions of this paper are concerned with mod-
el development, model validation and model application for
symbiotic simulation models in the context of operational

Fig. 12 The estimated standard deviation of simulated midnight occupancy for each day in the observation period is averaged over the day of the week
on which it occurs
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management of inpatient beds. In particular we have shown
how a symbiotic simulation can be developed from an existing
and validated (non-symbiotic) simulation model. This should
reduce the cost of implementing and validating the symbiotic
simulation model and promote model reuse.

The second contribution is the development of the Δ-
Method; whilst based on the simple principle of compared
simulated and observed outputs this new validation technique
is suitable for validating a stochastic symbiotic simulation
models and is well-suited to bed management problems.
While other methods for validating symbiotic simulations
are known to exist (such as [7]), the Δ-Method is the first
known technique to consider the full distribution of the simu-
lation outputs over time, rather than using select summary
statistics. Furthermore, whilst developed for our healthcare
context, it also provides a new method to aid the validation
of symbiotic simulation models more generally.

The third contribution is in the form of example applica-
tions which show how our symbiotic simulation can be used
in practice and something of their potential value.

Whilst these are the main contributions of the work, we
also note that the data requirements of the symbiotic model
were quite manageable, and were met by extracts fromAGH’s
patient administrative (PA) database. Clearly, in practice, the
outcome of the model validation might have been to request a
more complex model, in which case the data required for
calibration could become considerably more demanding.

Reflecting on Aydt’s definition of symbiotic simulation
[6] as Ba close association between a simulation system
and a physical system, which is beneficial to at least
one of them^, we note that both example applications in
section 6 show the potential value of this approach.
However we also note that they also warn the potential user
that the value of recent information on the physical system can
wear off quite quickly as the desired prediction period for the
application increases.

In the future, we plan to extend our work to include two
further components into our symbiotic simulation model. The
first component provides an optimisationmodel to find a good
elective patient schedule given the availability of the new
information when the simulation is re-initialised. The second
component provides a learning algorithm so that the symbiotic
simulation can learn by adjusting its parameters to improve
the accuracy of the outputs. In a separate stream, we plan to
apply the proposed development approach and validation
method to different problems.
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