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Abstract Increasing demand on hospital resources by an
ageing population is impacting significantly on the num-
ber of beds available and, in turn, the length of time that
elderly patients must wait for a bed before being admitted
to hospital. This research presents a new methodology that
models patient pathways and allows the accurate predic-
tion of patient length of stay in hospital, using a phase-type
survival tree to cluster patients based on their covariates
and length of stay in hospital. A type of Markov model,
called the conditional Coxian phase-type distribution is then
implemented, with the probability density function for the
time spent at a particular stage of care, for example, the
first community discharge, conditioned on the length of stay
experienced at the previous stage, namely the initial hospital
admission. This component of the methodology is subse-
quently applied to each cohort of patients over a number of
hospital and community stages in order to build up the pro-
file of patient readmissions and associated timescales for
each cohort. It is then possible to invert the methodology,
so that the length of stay for an observation representing
a new patient admission may be estimated at each stage of
care, based on the assigned cohort at the initial hospital
stage. This approach provides hospital managers with an
accurate understanding of the rates with which different
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groups of patients move between hospital and community
care, which may be used to reduce the negative effects of
bed-blocking and the premature discharge of patients with-
out a required period of convalescence. This has the benefit
of assisting hospital managers with the effective allocation
of vital healthcare resources. The approach presented is dif-
ferent to previous research in that it allows the inclusion of
patient covariate information into the methodology describ-
ing patient transitions between hospital and community care
stages in an aggregate Markov process. A data set con-
taining hospital readmission data for elderly patients from
the Abruzzo region of Italy is used as a case study in the
application of the presented methodology.

Keywords Readmissions · Survival tree · Coxian
phase-type distribution · Hospital predictions · Length of
stay

1 Introduction

National health care systems have a limited amount of
resources heavily in demand which have to be carefully
managed in order to offer efficient hospital care for their
population. Elderly patient care accounts for the greatest use
of hospital resources [1], due to issues surrounding frailty
and an increased number of comorbidities contributing to
hospital readmissions. However, in addition to this, it is
often the case that elderly patients must remain in hospi-
tal after they are declared fit to be discharged, because they
are waiting for an available place in community care. In the
United Kingdom National Health Service, this is known as
bed-blocking and represents an enormous consumption of
hospital resources that could be avoided if better resource
planning was in place [2]. Advanced knowledge, in the
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form of accurate predictions, for when elderly patients are
expected to leave hospital has the potential to help secure, in
advance, the community care anticipated, thereby reducing
or even eliminating this waste of vital resources. This is par-
ticularly important in ensuring that the proper care resources
are available for elderly patients readmitting to hospital after
a number of spells in both hospital and community care.

Previous research has shown that statistical models can
accurately capture the time taken for the progression of
patients through care as a single stage [3, 4]. The focus
of the current research is to describe the movement of
elderly patients through multiple ordered stages, from the
initial hospital admission, to the first community stage,
then the first hospital readmission stage, followed by the
second community stage and finally the second hospital
readmission stage. Nevertheless, due to the inherent vari-
ability in the time spent at each stage in the pathway for
elderly patients, an approach which makes predictions based
on the assumption that the elderly population is homoge-
neous with respect to length of stay, is often inaccurate [5].
Although length of stay may appear a simple metric, it can
be influenced by a number of factors including reason for
admission, hospital policy and issues extending beyond the
hospital environment.

This paper introduces a methodology which can account
for some of this variability by making predictions for sub-
groups of the population, known as cohorts, each of which
may be modelled by a separate distribution. This is car-
ried out by extending the conditional Coxian phase-type
distribution [6], a method which calculates the conditional
probability for length of stay at the current stage of care,
based on the length of stay experienced at the previous
care stage, to be further conditioned on a phase-type sur-
vival tree [7]. This latter technique may be used to partition
elderly patients into cohorts based on their length of stay
at the initial hospital stage, in such a way so that patients
in different cohorts have a significantly different length of
stay distribution. This allows the conditional Coxian phase-
type distribution to be subsequently employed to model the
survival data in each cohort through until the second hos-
pital readmission stage, taking into account the length of
stay at the previous stage of care, for each cohort separately.
The research presented allows the identification of multiple
patient care pathways, arising through specific combina-
tions of elderly patient covariates, with the illustration of the
aforementioned covariates provided in a tree-like structure.
The resulting parameter estimates from the implementation
of the conditional Coxian phase-type distribution to model
the pathway for each cohort, may be used to predict the
length of stay for an elderly patient with a given combi-
nation of covariates at a particular stage of care, thereby
allowing health care planners to more effectively allocate
vital health care resources.

The remainder of this paper is structured as follows:
Section 2 introduces the methodology implemented in the
current research, including the phase-type survival tree and
the conditional Coxian phase-type distribution process com-
ponent. In Section 3, an overview of the data set containing
hospital readmission data for elderly patients admitted to
hospitals in the Abruzzo region of Italy is presented. This
section also contains the application and validation of the
proposed methodology, along with prediction of length of
stay for all of the identified cohorts throughout each stage of
care. Conclusions, together with a discussion on the points
raised from the implementation of the research are presented
in Section 4.

2 Methodology

2.1 Coxian phase-type distribution

Phase-type distributions may be used to describe the time
until absorption of a finite Markov chain in continuous time,
where there is a single absorbing state and the process begins
in a transient state [8]. Coxian phase-type distributions [9]
incorporate a series of transient states in order to describe
the duration until an event of interest occurs, where the system
begins in the first transient state and proceeds in a sequen-
tial fashion through the transient states. The system may not
move more than one transient state at a time, neither is it per-
mitted to move backwards to any previous state. The method
determines the rates associated with the movement of the
system between the latent states, before absorption occurs,
representing the occurrence of the event. In this respect,
the Coxian phase-type distribution is particularly useful
for modelling elderly patient movements through hospital
[10–12], where the event of interest is the patient leaving
hospital [13]. In this research, elderly patients may leave
hospital through one of two different scenarios: death or dis-
charge to the community. This gives rise to the inclusion of
two absorption states in the Coxian phase-type distribution.
More formally, let X(t); t ≥ 0 be a Markov chain in con-
tinuous time with states 1, 2, ..., m,m + 1, m + 2, where
states m+ 1 and m+ 2 are the two absorbing states, the rest
being transient and ordered. With the system beginning in
state 1: X(0) = 1, Fig. 1 shows a representation of the Cox-
ian phase-type distribution with two absorbing states, where
transitions occur in a small time interval, h. The transition
rate from transient state i to the next transient state, i + 1,
is denoted by λi and the transition rate from transient state i

to absorbing state k is denoted by μk
i .

This approach uses available prior information in the
form of an indicator variable, describing which of the two
events has occurred for each observation. This is to make
sure that only the absorption rates for that mode of absorption
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Fig. 1 Coxian phase-type distribution with m transient states and two
absorbing states

are affected by instances of the system having that particular
event. The generator matrix Q, characterising the Markov
process, for the distribution of times until event k occurs is
given by
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The probability density function for the Coxian phase-type
distribution illustrated in Fig. 1 is given by

f (t) = p exp(Qt)q (2)

where

p = (1, 0, 0, ..., 0) (3)

q = (μk
1, μ

k
2, ..., μ

k
m)T (4)

It should be noted that the transition rates between tran-
sient states are common to the processes leading to the
occurrence of both events and are not superscripted with k

for this reason.

2.2 Conditional Coxian phase-type distribution

The Coxian phase-type distribution may be used to model
the movement of elderly patients through the initial hos-
pital stage, with two possible eventual outcomes: death or
discharge to the community. However, with the aim of this
research to model the movement of elderly patients through
an ordered sequence of care stages, an approach is employed
which can take into account the length of stay at a pre-
vious stage in the determination of transition rates for the
current stage of care. Such an approach is the conditional
Coxian phase-type (CCPh) distribution [6] where the sys-
tem of stages is considered using two stages at a time. Once

the information from the first stage is used to inform the
distributional form for the second stage, the process repeats,
whereby the second stage is used to inform that for the third
stage, and so on. This is so as to include as much infor-
mation as possible in the determination of transition rates
for each stage of care. This is achieved through the use of
Bayes’ theorem in the probability density function, where t1
is the length of time spent at the previous care stage, denoted
by A and t2 is the length of time spent at the current care
stage, denoted by B:

P(B = t2|A = t1) = P(A = t1 ∩ B = t2)

P(A = t1)
(5)

= pA exp(QAt1)TAB exp(Qk
Bt2)q

k
B

pA exp(QAt1)qA

(6)

where the notation is as described in Section 2.1, sub-
scripted with A and B to reflect the previous and current
stages respectively. Each element T AB(i, j) = μAiBj

, rep-
resents the rate of transition between the ith state of stage A

and the j th state of stage B. However, to meet the require-
ment that patients may only enter stage B at the first state,
T AB contains non-zero rates in the first column only. As
such, it takes the following form, where ka is the number of
transient states in stage A.

TAB =

⎛
⎜⎜⎜⎝

μA1B1 0 ... 0
μA2B1 0 ... 0

...
...

. . .
...

μAka B1 0 ... 0

⎞
⎟⎟⎟⎠ (7)

Equation 6 may be used as the probability density func-
ton for the conditional Coxian phase-type distribution with
two absorbing states. It is important to note that both the
optimal parameter estimates from the implementation of the
methodology for the previous stage of care and the times
experienced at the previous stage of care are necessary in
Eq. 6. Additionally, there are no superscript k values in Eq. 6
as those patients who have entered stage B, from stage A,
have done so through the absorbing state representing com-
munity discharge in stage A. The remaining patients have
already left the aggregate system through the alternative
absorbing state in stageA (representing death) and therefore
are not considered for stage B.

2.3 Phase-type survival tree

The methodology described so far has been concerned with
the distributional fit for a sequence of skewed survival distri-
butions. However, with the application under consideration
that of elderly patient care, there is often a large amount of
variability in length of stay in care, due to the wide-ranging
circumstances surrounding admission and discharge from
hospital. As a result, elderly patient length of stay is usu-
ally not homogeneous, and a technique is sought which
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can account for a large proportion of this variability. Main-
stream data mining techniques have been considered, for
example, logistic regression, decision trees, Bayesian net-
works and random forests. However such methods require
the presence of a categorical response variable, the levels of
which both have significantly different distributions of the
survival variable and may be accurately predicted using the
remaining variables in the data set. Given the application
under consideration, it is often difficult to identify a suitable
candidate response variable, due to the complicated set of
circumstances usually surrounding each individual elderly
patient admission to hospital. The destination of the patient
on leaving hospital, for example, death or discharge, is often
associated with significantly different length of stay distri-
butions. However, this detail is accounted for through the
provision of separate absorbing states in the component of
the methodology which models the survival distributions at
each stage of care.

With the above considerations in mind, an alternative
approach is presented, which does not require the parti-
tioning of patient observations at the indication of a single
variable. Instead, observations may be separated into sub-
groups based on whether or not splitting using a sequence
of variables results in a significant reduction in the over-
all variability of the data. A technique which intrinsically
partitions observations into subgroups is a phase-type sur-
vival tree [7, 14, 15]. This is carried out through splitting
observations into cohorts based on their characteristics (or
covariates), so that patients in the same cohort have a sim-
ilar distribution for length of stay and patients in different
cohorts have significantly different distributions for length
of stay. Using a survival tree, the heterogeneity apparent in
the data is reduced to multiple smaller sets of data which
are each homogeneous with respect to a particular survival
distribution. The survival tree is constructed using Coxian
phase-type distributions, with the Akaike information cri-
terion (AIC) [16] corresponding to the optimal distribution
used as the splitting criterion. For this reason, the method is
called the phase-type survival tree. This component of the
methodology is applied to observations representing elderly
patient admissions at the initial hospital stage only.

Figure 2 shows a simple conceptual diagram of how the
survival tree and conditional Coxian phase-type distribu-
tion components are used in conjunction. All of the elderly
patient records referring to an initial hospital admission
are used as input to determine the root node variable of
the survival tree, denoted by variable A. To determine the
root node, the Coxian phase-type distribution is fitted to
all observation times, with the optimal AIC value recorded.
The data set is then partitioned according to both variable
and variable level. The Coxian phase-type distribution is fit-
ted to the observations within each level, with the resulting
optimal AIC values summed to obtain a total AIC value

for each variable. The variable corresponding to the great-
est improvement in AIC value from that corresponding to
the un-partitioned fit is selected as the root node. Once this
variable has been identified, the records are split according
to the different levels of variable A with the same pro-
cess used once again to determine variables B and C from
the remaining pool of variables. This process is repeated
until the survival tree is constructed, at which point the
Coxian phase-type distribution (with two absorbing states)
fitting each leaf of the tree represents the initial hospital
length of stay data for the respective patient cohort. In the
example given by Fig. 2, there are four identified patient
cohorts, numbered ‘1’ through to ‘4’. The methodology then
considers the next stage of the aggregate process, the first
community stage. The conditional Coxian phase-type distri-
bution is fitted to each cohort separately for those patients
undergoing this stage and the rates of transition for this stage
of care determined. This is carried out for the remaining
stages of care in the aggregate process (pathway) until the
second hospital readmission stage. Once placed into cohorts
based on the initial hospital stage data, patients remain in
these cohorts until either the time-frame for the study ends
(the second hospital readmission stage), or they leave one of
the care stages through death or they do not require a further
readmission to hospital.

3 Application

3.1 Tree-building process and identification of cohorts

The methodology presented in this research is applied to a
data set consisting of hospital readmission information for
elderly patients in the Abruzzo region of Italy. To the best of
the authors’ knowledge, the hospitals from which the data
is collected provide very similar levels of care to elderly
patients, with rehabilitation taking place at additional facil-
ities, for example, specialised hospitals and residential care.
As such, each of the hospitals may be assumed to provide
adequate care for all elderly patients in the data set. The data
set contains length of stay times for 7,251 patients, of which
1,067 experience a readmission and 261 patients undergo a
further readmission, between the 10th November 2008 and
the 31st of December 2009. Due to the relatively short dura-
tion of the study and in keeping with previous literature [17]
incorporating Italian patient readmissions, all subsequent
admissions to hospital for a particular patient, within this
time interval, are classified as a readmission. The purpose
of the study is to provide a methodology which is capa-
ble of modelling the movement of elderly patients between
hospital and community care, with a view to addressing
the clinical need for a more effective allocation of health-
care resources. As such, the data set under consideration
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Fig. 2 Conceptual schema of
the approach with the survival
tree identifying cohorts based on
the initial hospital stage before
the conditional Coxian phase-
type distribution is applied
successively to each cohort
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does not include information on the specific type of care
that patients receive in or between hospital spells, only
whether they have left each hospital stage through death
or discharge. Furthermore, the data set contains informa-
tion on only those patients who are readmitted to hospital
from the community; there is no information on patients
who have died in the community, or indeed, those who
are still alive in the community without requiring an addi-
tional readmission to hospital. However, with the focus of
the current research to provide an insight into the readmis-
sion patterns of elderly patients in order to facilitate hospital
managers in the allocation of hospital resources, data on the
patients who are readmitted to hospital is what is essential to
do so. Consequently, when employing the methodology to
model community stages, only one absorbing state is used,
representing readmission to hospital.

Patients in the study are aged between 65 and 104 years,
with lengths of stay ranging from 1 to 85 days in hospi-
tal care. There are three variables of interest, representing
patient covariates, recorded in the data set: age, gender and
admission method. The age variable has been discretised to
take values< 76, 76−82 and> 82 years respectively. These
intervals are chosen as they simultaneously indicate signif-
icantly different distributions of length of stay for patients
between the levels (p-value = 0.0289) so as to facilitate the
construction of the survival tree, whilst also containing large
enough numbers of observations in each level so as to elim-
inate any class imbalance. This latter reason is particularly
important because many patient observations are lost from
each cohort as the number of readmissions increases, mean-
ing that at the second hospital readmission stage there is a
risk of having insufficient observations over which to run
the methodology. To this end, it is desirable to have roughly
representative numbers of patients at the each of the hospi-
tal stages to demonstrate the working of the methodology,
given the relatively small data set. Other age intervals, for
example age bands of ten years, have been considered in this

research, however this results in a greater number of inter-
vals leading to smaller numbers of observations within each
cohort. Additionally in other tested partitions, the lengths
of stay for the variable levels are either not significantly
different, or result in the introduction of class imbalance.

The admission method variable also consists of three
levels: ‘Emergency’, ‘Planned’ and ‘Other’, giving an indi-
cation as to the urgency of the admission to hospital for
each patient. The vast majority of hospital admissions are
recorded as either ‘Emergency’ or ‘Planned’, with the small
proportion (<3%) representing ‘Other’ perhaps arising from
rare instances which do not fall broadly within either of the
aforementioned categories, or have simply been unrecorded.
They have been included in this analysis due to the results
of running the methodology over a similar additional data
set of elderly patient records from an Italian region, where
elderly patients having an admission method categorised as
‘Other’ were found to have significantly different lengths
of stay from those categorised as either ‘Emergency’ or
‘Other’, thereby indicating a third admission method in its
own right. Table 1 details the construction of the survival
tree, where the variable showing the greatest AIC improve-
ment is chosen to partition at that point in the construction
of the tree.

Application of the phase-type survival tree to the 7,251
observations from the initial hospital stage results in the
identification of seven cohorts, with the survival tree shown
in Fig. 3. The AIC value for 7,251 observations without
using any variables to split is 44,508. In the determination
of the root node for the survival tree, only the admission
method variable is successful in reducing the variability in
the length of stay variable (AIC improvement of 3). There-
fore, this variable is used for splitting at the root node. The
resulting branches representing patients entering hospital
as ‘Emergency’ and ‘Planned’ admissions show additional
improvement when split by both Age and Gender, with
Age in both cases representing optimal improvement (AIC
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Table 1 Numerical construction of the survival tree

Node Variable Variable level Patients L No. of states AIC Improvement

All All All 7251 −22237 6 44508 −
1 Age < 76 910 −2831 4 5683

Root node 76-82 2679 −8134 5 16297 -4

>82 2535 −6233 5 12480

Admission Emergency 4995 −15300 5 30628

method Planned 2052 −6325 5 12678 +3

Other 204 −592 3 1199

Gender Female 4058 −9584 6 24996

Male 3193 −9745 5 19517 −5

2 Age < 76 430 −1356 3 2728

Admission 76-82 1846 −5589 7 11198 +27

method > 82 2719 −8320 6 16674

(Emergency)

Gender Female 2802 −8567 6 17167

Male 2193 −6705 7 13449 +11

3 Age < 76 471 −1289 4 2601

Admission 76-82 762 −2311 5 4650 +287

method > 82 819 −2556 5 5140

(Planned)

Gender Female 1139 −3530 4 7082

Male 913 −2760 5 5548 +48

4 Age < 76 9 −17 2 40

Admission 76-82 71 −210 3 437 −3

method > 82 124 −355 3 725

(Other)

Gender Female 117 −342 3 701

Male 87 −250 3 515 −17

5 Gender Female 200 −617 3 1251

Adm (Emerg.) Male 230 −739 3 1494 −17

Age ¡76

6 Gender Female 911 −2758 6 5549

Adm (Emerg.) Male 935 −2831 6 5696 −46

Age 76-82

7 Gender Female 1691 −5187 5 10401

Adm (Emerg.) Male 1028 −3130 6 6294 −21

Age ¿82

8 Gender Female 203 −644 3 1303

Adm (Planned) Male 268 −785 5 1597 −299

Age ¡76

9 Gender Female 409 −1246 4 2513

Adm (Planned) Male 353 −1072 4 2166 −29

Age 76-82

10 Gender Female 527 −1662 5 3351

Adm (Planned) Male 292 −889 4 1800 −11

Age ¿82
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Fig. 3 Survival tree to identify
cohorts based on the initial
hospital stage
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improvements of 27 and 287 respectively). The node result-
ing from the ‘Other’ admission method level becomes a
leaf, due to the absence of significant improvement when
splitting using age or gender. For the remaining nodes, split-
ting using the only other available variable, gender, does not
result in a significant reduction of variability in the length
of stay variable. The fitted distributions for both death and
discharge patients are plotted in Fig. 4.

Figure 4 shows that the survival tree has been successful
in identifying cohorts of patients with significantly different
distributions for length of stay. This is particularly true for
the case where patients leave hospital through death, with
the survival curves visibly disparate. However, the benefit
of using the survival tree may also be seen when patients
who are discharged from hospital are considered, although

they are less visibly distinct from one another. Nevertheless,
although apparently similar, the Coxian phase-type distribu-
tions representing the seven cohorts generally have differing
numbers of phases, ranging from three to seven, thereby
supplying additional evidence that the distribution of times
between the cohorts are significantly different.

As patients move into the subsequent stages of care, they
remain in the cohorts to which they were assigned at the
initial hospital stage. Table 2 shows the number of elderly
patients at each stage of care by cohort. It should once again
be noted that when elderly patients leave a particular hospi-
tal spell, they may do so through either death or community
discharge. Those patients who are discharged may die in
the community, remain alive whilst not requiring a further
hospital readmission or be readmitted to hospital. It is only

Fig. 4 Distributional fits to the cohorts in the initial hospital stage for death (above) and discharge (below)
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Table 2 Number of patients in
each admission for every cohort Cohort Initial admission First readmission Second readmission

Emergency; < 76 430 56 18

Emergency; 76 − 82 1846 272 68

Emergency; > 82 2719 439 111

Planned; < 76 471 42 6

Planned; 76 − 82 762 103 23

Planned; > 82 819 121 23

Other 204 34 12

this latter group of patients which are accounted for in the
data set, explaining why the numbers between successive
hospital readmissions decrease by such a high factor. Addi-
tionally, this also means that the number of patients in each
community stage is the same as the number of patients in
the subsequent hospital readmission stage. After the initial
hospital stage, each community and hospital readmission
stage is represented using a conditional Coxian phase-type
distribution with one and two absorbing states respectively.

3.2 Validation of methodology and prediction of length
of stay for new observations

The above methodology may be validated through the com-
parison of the empirical median length of stay value for
a given cohort of patients at a particular stage, with the
median value of simulated data obtained through the use
of the associated fitted distribution. The median is cho-
sen due to the high level of positive skewness in the data.
Specifically, a set of times for each fitted distribution is
simulated and the median value is calculated. This fitted
median value is compared with the 95% confidence interval
for the median value of empirical times for the correspond-
ing cohort and stage. If the fitted median value lies within
this confidence interval, then that distribution is said to
be representative of the underlying data used to fit it. The
methodology as a whole is validated if this is true for a high
proportion of the fits for each cohort and stage combina-
tion. A 95% confidence interval for the median value of a
distribution may be obtained by using Eq. 8 to calculate the
Normal approximation to the Binomial distribution:

(t[np−1.96
√

np(1−p)], t[np+1.96
√

np(1−p)]) (8)

where t[i] is the ith ordered time, n is the number of obser-
vations and p = 0.5 to specify that the confidence interval
is calculated for the median. The simulation of times for
a given distribution may be carried out through the use of
the survivor function for that distribution. For a phase-type
distribution, the survivor function is given by:

S(t) = p exp(Qt)e (9)

where e is the unity column vector. A simulated time from
this distribution may be obtained by first selecting a ran-
dom number from the uniform distribution, substituting this
value for S(t) and using the Newton-Raphson method [18]
to solve for t . This process is repeated until n times are
simulated. It should be noted that this validation step is
carried out to ensure that the individual conditional Cox-
ian phase-type distribution components have each captured
the time-distributional features of the underlying data. Once
verified, focus then moves to the determination of predictive
intervals for each cohort/stage combination using a slightly
different approach.

3.2.1 Validation of methodology for the Abruzzo data set

The distributions for patients leaving hospital through death
and discharge are validated separately, since each hospital
stage is represented by two processes; for patients who leave
through death and discharge. This gives rise to an extra three
distributions (since there are three hospital admissions con-
sidered: the initial admission, first readmission and second
readmission) for each of the seven cohorts, making a total
of 56 fitted distributions to be validated. Only three fitted
median values do not lie within the 95% confidence interval
for the empirically calculated medians, giving an accuracy
of 94.6%. The three distributions which do not validate
the methodology are all in the second hospital readmission
stage for patients leaving through death, and as such, have
an extremely small number of observations in the distribu-
tion (n = 1, 1 and 2). In each case and because of the lack
of data for this distribution, the empirical 95% confidence
interval for the median value is constrained to have a range
equal to a single value, for example, (2, 2), meaning that
for a model using continuous data, it is very unlikely for the
representative value to fall within this interval. In any case,
the authors are confident that this is an issue simply with
the quantity of data available for later stages of care and that
the survival tree has been successful in accounting for the
variation in length of stay across all considered stages of
care, even as far along as the second hospital readmission
in most cases. The fitted median value and 95% confidence
interval for each cohort at every stage are shown in Table 3,
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Table 3 Validation of the methodology and predicted intervals for each cohort

Stage Number of patients Fitted median Empirical 95% CI Predicted 95% CI

Cohort 1 - Emergency; Age < 76

H0 (Death) 35 9 (5, 13) (8, 9)

H0 (Discharge) 395 9 (9, 10) (9, 10)

C1 56 47 (32, 72) (42, 50)

H1 (Death) 4 8 (4, 14) (7, 8)

H1 (Discharge) 52 8 (7, 9) (7, 8)

C2 18 31 (8, 70) (28, 33)

H2 (Death) 1* 3 (4, 4) (3, 3)

H2 (Discharge) 17 7 (4, 13) (6, 8)

Cohort 2 - Emergency; Age 76 − 82

H0 (Death) 177 4 (3, 6) (4, 5)

H0 (Discharge) 1669 8 (8, 8) (8, 9)

C1 272 54 (41, 59) (51, 59)

H1 (Death) 41 4 (2, 6) (4, 5)

H1 (Discharge) 231 8 (7, 9) (8, 9)

C2 68 38 (28, 52) (35, 42)

H2 (Death) 4 4 (1, 9) (4, 5)

H2 (Discharge) 64 8 (6, 10) (8, 9)

Cohort 3 - Emergency; Age > 82

H0 (Death) 399 6 (5, 6) (5, 6)

H0 (Discharge) 2320 9 (8, 9) (8, 9)

C1 439 56 (50, 64) (50, 63)

H1 (Death) 79 5 (3, 7) (4, 5)

H1 (Discharge) 360 8 (8, 9) (8, 9)

C2 111 42 (25, 51) (39, 46)

H2 (Death) 14 4 (2, 6) (4, 4)

H2 (Discharge) 97 7 (6, 7) (6, 7)

Cohort 4 - Planned; Age < 76

H0 (Death) 14 14 (9, 18) (13, 15)

H0 (Discharge) 457 8 (8, 9) (8, 8)

C1 42 69 (53, 109) (63, 76)

H1 (Death) 3 7 (2, 16) (7, 8)

H1 (Discharge) 39 8 (7, 11) (8, 9)

C2 6 44 (1, 73) (40, 48)

H2 (Death) 1* 4 (6, 6) (4, 4)

H2 (Discharge) 5 5 (3, 18) (4, 5)

Cohort 5 - Planned; Age 76 − 82

H0 (Death) 36 7 (3, 13) (6, 7)

H0 (Discharge) 726 9 (8, 9) (9, 9)

C1 103 64 (59, 92) (60, 71)

H1 (Death) 7 4 (1, 7) (4, 4)

H1 (Discharge) 96 9 (8, 10) (8, 9)

C2 23 56 (32, 96) (52, 61)

H2 (Death) 4 6 (5, 16) (6, 7)

H2 (Discharge) 19 6 (3, 14) (5, 6)

Cohort 6 - Planned; Age > 82

H0 (Death) 72 7 (6, 8) (7, 7)

H0 (Discharge) 747 10 (9, 10) (9, 10)

C1 121 63 (44, 77) (57, 68)
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Table 3 (continued)

Stage Number of patients Fitted median Empirical 95% CI Predicted 95% CI

H1 (Death) 16 4 (2, 7) (4, 4)

H1 (Discharge) 105 9 (8, 10) (9, 10)

C2 23 41 (29, 52) (39, 44)

H2 (Death) 6 5 (2, 7) (4, 5)

H2 (Discharge) 17 8 (3, 14) (7, 8)

Cohort 7 - Other admission method

H0 (Death) 29 5 (4, 7) (5, 5)

H0 (Discharge) 175 9 (8, 10) (8, 9)

C1 34 40 (12, 86) (35, 48)

H1 (Death) 3 2 (1, 3) (2, 2)

H1 (Discharge) 31 7 (6, 9) (7, 8)

C2 12 33 (4, 84) (31, 36)

H2 (Death) 2* 1 (2, 2) (1, 1)

H2 (Discharge) 10 6 (4, 12) (6, 7)

where the care stages have been abbreviated to Hi and Cj ,
denoting the ith hospital stage (i = 0, 1, 2 denoting the ini-
tial admission, first readmission and second readmission)
and j th community stage (j = 1, 2 denoting first and sec-
ond discharge), respectively. The three instances where the
fitted median does not fall within the empirical confidence
interval have the number of observations marked with a *.

3.2.2 Prediction of length of stay for new observations for
the Abruzzo data set

Having used simulations to validate the methodology, a sim-
ilar approach may be used to predict the length of stay for
a new elderly patient arriving to hospital, in addition to pre-
dictions for length of stay in potential successive stages of
care. Upon arrival to hospital for their initial admission,
the survival tree may be used to classify the patient into
a cohort based on the method of admission and their age
(both of which would be available at the point of entering
the hospital). Confidence intervals for the median values of
the simulated sets of times may then be calculated, through
the use of Eq. 8 and the fitted distributional form for each
cohort, serving as predictions on when the patient is likely to
leave the stages of care they enter, beginning with the initial
hospital stage and extending through to the second hospital
readmission stage.

Table 3 shows the prediction intervals for each of the
seven cohorts across all stages of care. These results indicate
that elderly patients generally spend less time in hospital,
across all of the cohorts, as the number of readmissions
increase. This may be because hospital staff better know the
medical requirements of their patients, with increased hospi-
tal readmissions, although this is assuming that patients are

readmitted to the same hospital department on their read-
mission. Furthermore, elderly patients who are admitted as
planned admissions generally stay for a longer period in
hospital than those who are admitted as emergency cases.
Upon consultation with a clinical director and geriatrician of
significant experience in this field, this is once again not an
unreasonable result. This may be because emergency cases
are generally regarded as more urgent than planned admis-
sions and the case may be that they are treated as more of
a priority, thereby leading to a shorter duration in hospi-
tal. This often results in planned admissions waiting longer
for the treatment they require. This trend observed from the
methodology output agrees with that obtained by simple cal-
culation of the median length of stay for elderly patients as
a whole, which shows a decrease from 8 days at the initial
hospital stage to 7 days at the second hospital readmission
stage. The methodology presented in this research paper has
since been applied to a set of elderly patient records from
hospitals in a different region, with the same general trends
evident.

4 Conclusion and Discussion

The research presented in this paper extends previous
methodologies which aim to model the pathway of elderly
patients between various types of care [6, 19] to a method-
ology which incorporates patient characteristics, in order to
provide predictions on length of stay for cohorts of elderly
patients having significantly different length of stay dis-
tributions. This is carried out by employing a phase-type
survival tree, previously used in conjunction with a stan-
dard Coxian phase-type distribution to model just a single
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stage of care [15], to group patients into cohorts based on
the length of stay in their initial hospital spell. Differently to
the research in [15], the survival tree is constructed using a
Coxian phase-type distribution with two absorbing states, to
reflect the significantly different length of stay distributions
for both death and discharge within each hospital stage.
Once the survival tree is used to categorise elderly patients
according to length of stay at the initial hospital stage, the
conditional Coxian phase-type distribution is employed for
each cohort separately during the subsequent stages, tak-
ing into account each individual’s length of stay, at both
the previous and current stages, in the determination of the
transition rate parameters for the current stage. Previous
research [6] has shown the conditional Coxian phase-type
distribution to outperform the standard Coxian phase-type
distribution when considering a number of stages within an
overall aggregate system, for a population assumed to be
homogeneous. This paper presents the phase-type survival
tree as a front-end for this composite methodology, able to
account for a heterogeneous population. The primary results
of the research presented are the predictive intervals for all
combinations of stage/cohort and may be found in Table 3.

The survival tree is successful in partitioning elderly
patients such that those in different cohorts have a sig-
nificantly different distribution for length of stay at the
initial hospital stage. This is shown through the illustra-
tion of visibly disparate survival curves for each cohort.
The methodology is verified through the comparison of the
median from a set of simulated survival times for each fit-
ted distribution with the 95% confidence interval for the
empirical median of the represented length of stay data.
Out of a total of 56 fitted distributions spanning hospital
(for patients who leave through both death and commu-
nity discharge) and community care stages, 53 fitted median
values fall within the 95% confidence interval for the empir-
ical median. The remaining three fitted distributions do not
succeed in this respect simply due to a lack of data. The
methodology has subsequently been inverted to allow pre-
dictive intervals on length of stay to be calculated for new
patients entering a hospital department.

A number of assumptions made in the presentation of
this research. The reasons for patient admission, whilst usu-
ally likely to have an effect on an individual’s duration of
stay in hospital, have been deliberately omitted from con-
sideration. This is because the application of the research
is in response to the problem surrounding the increase of
elderly admissions and readmissions to hospital in a general
sense, regardless as to whether each patient’s subsequent
readmission is for a related medical issue. In this respect,
the study has been endorsed by an experienced geriatri-
cian, highlighting the need for hospital managers to obtain
a greater understanding of the movement of elderly people

between hospital and community care. A further assumption
is that all patient admissions have occurred from the starting
date of the study, with patients having no related hospital
admissions before this point. An extension to the method-
ology, incorporating censoring, is to be sought to help
towards alleviating this assumption. As further work, patient
information may be included through the incorporation of
covariates directly into the conditional Coxian phase-type
distribution, thereby enabling more patient-centred predic-
tions to be made. Additionally, this work may be extended to
account for the precise type of community care that elderly
patients are discharged into, for example, residential care or
the patient’s own home.

The current research has the potential to become a deci-
sion support tool to allow hospital managers to accurately
predict when a given patient is likely to leave hospital upon
entering the department, or when they are likely to be read-
mitted to hospital upon their discharge to the community.
This would make it possible to reduce, or even eliminate, the
negative effects of bed-blocking, whereby elderly patients
are fit enough to be discharged from hospital, but are unable
to do so due to a lack of organisation of a suitable place in
community care. Additionally, alternative measures of com-
munity care may be put in place, once a given elderly patient
has been discharged from hospital, in time for when they are
expected to be readmitted, so that the hospital readmission
may be avoided altogether. As a next step, the adaptation of
the methodology presented in this research may be tested
as part of a trial for a localised area, under the proviso that
enough data in each of the cohorts can be obtained. With
the data set in the current research taken over a period of 14
months, it may be necessary to use a wider time interval to
ensure that enough observations are present for the cohorts
which are determined.

The benefit of using the conditional Coxian phase-type
distribution is its ability to additionally take into account the
length of stay experienced by elderly patients at the previ-
ous stage of care, in the determination of transition rates for
the current stage. However, the assumption that all elderly
patients exhibit a similar survival distribution, and as such
are homogeneous with respect to length of stay, is often not
valid. The novel incorporation of the phase-type survival
tree as a front-end component to the conditional Coxian
phase-type distribution, results in the estimation of more
accurate rate parameters, in turn allowing more precise and
representative predictions to be made for a population which
is heterogeneous in nature. Predictive intervals may then be
calculated through the estimation of an interval based on the
median of simulated times, generated from each distribu-
tion corresponding to both a stage of care and cohort. This
would allow hospital managers to accurately predict when
an elderly patient is likely to leave hospital, reducing the
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negative effects of bed-blocking, and also to predict when
an elderly patient is likely to require readmission to hospital,
meaning that an alternative source of community care may
be put in place, thereby avoiding readmission altogether.
Implementation of the presented methodology, with a view
to addressing both of the aforementioned scenarios, has the
potential to lead to a more effective allocation of both hospi-
tal beds and staff, thereby meaning that vital resources may
be saved.
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