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Abstract This paper deals with an Integrated Elective
Surgery-Scheduling Problem (IESSP) that arises in a privately
operated healthcare facility. It aims to optimize the resource
utilization of the entire surgery process including pre-opera-
tive, per-operative and post-operative activities. Moreover, it
addresses a specific feature of private facilities where surgeons
are independent service providers and may conduct their sur-
geries in different private healthcare facilities. Thus, the prob-
lem requires the assignment of surgery patients to hospital
beds, operating rooms and recovery beds as well as their se-
quencing over a 1-day period while taking into account sur-
geons’ availability constraints. We present two Mixed Integer
Linear Programs (MILP) that model the IESSP as a three-
stage hybrid flow-shop scheduling problemwith recirculation,
resource synchronization, dedicated machines, and blocking
constraints. To assess the empirical performance of the pro-
posed models, we conducted experiments on real-world data
of a Tunisian private clinic: Clinique Ennasr and on randomly
generated instances. Two criteria were minimised: the pa-
tients’ average length of stay and the number of patients’
overnight stays. The computational results show that the pro-
posed models can solve instances with up to 44 surgical cases
in a reasonable CPU time using a general-purpose MILP
solver.
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1 Introduction

The private healthcare has been in a continual growth over
recent years. Indeed, more people are now using private
healthcare facilities rather than public, though the costs in
the latter are much more affordable. Moreover, medical tour-
ism is thriving, and patients are travelling from developed
countries (largely from the United States, Canada, and
Western Europe) to less developed ones mainly in Asia and
Latin America for reduced-wait time and/or high-quality med-
ical care at affordable prices [1].

To meet this growing demand, many private healthcare
facilities have emerged and global competition is strength-
ened. In this context, private healthcare facilities increasingly
strive for optimising their resource utilisation and thus im-
proving their care services quality while increasing their
profits. For that aim, they usually focus on the optimization
of the most cost-intensive and productive unit: the operating
theatre.

In practice, there are two types of surgery operations: elec-
tive operations that are planned in advance, and non-elective
or emergency operations that arrive unexpectedly and need to
be performed urgently. In both cases, patients can be hospital-
ized for either less than 24 h (called outpatients) or several
days (called inpatients).

Unlike the public sector where surgeons work for a specific
hospital, in the private sector, surgeons are independent ser-
vice providers and may refer their patients to several private
healthcare facilities. Thus, to increase the clinic workload,
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surgeon’s dependent processes have to be facilitated (e.g.,
surgery scheduling processes) [2].

In this paper, we investigate the Integrated Elective
Surgery-Scheduling Problem (IESSP) that arises in a pri-
vately operated healthcare facility. Moreover, we consider
the entire surgery process that comprises the following
three phases [3, 4]:

& The pre-operative phase: It commonly includes patients’
admission and allows performing tests, preoperative
fasting, patient preparation, etc.

& The per-operative phase: It begins when the patient is
transferred to the operating theatre and covers her/his stay
there until her/his transfer to the corresponding hospital
bed. During this phase, surgery operation and recovery
care are performed.

& The post-operative phase: It refers to the management of
the patient cares after a surgery. It starts when the patient is
transferred to her/his hospital bed and lasts until she/he
leaves it.

The contribution of this paper is twofold:

1. The integration of the hospital beds management within
the daily operating theatre scheduling problem: Most pre-
vious research focus on the operating theatre scheduling
in the context of public healthcare hospitals. They consid-
er diverse human and material resource constraints related
to the operating theatre but do not consider hospital ward
capacity. Consequently, the generated schedules may be
infeasible when the beds are scarce resources as patients
may not be admitted for bed shortage. Thus, the hospital
ward should be managed efficiently together with the op-
erating room scheduling to increase the number of accept-
ed surgical cases and reduce the number of refused admis-
sions. In the private context, managing the hospital beds
and the operating theatre simultaneously is becoming
compulsory since it may increase their profits and im-
prove the quality of their services for both patients and
surgeons.

2. The development of effective and flexible MILP models to
solve exactly the IESSP: The scheduling problem is
known to be NP-hard and is commonly solved using ap-
proximate methods or sophisticated exact approaches. In
this paper, we develop two effective mixed integer linear
models that can be efficiently solved to optimality using a
commercial software package without requiring the im-
plementation of tailored and sophisticated algorithms.
The first model is a network-flow MILP that uses the
same variable to express the two problem decisions: pa-
tient sequencing and resource assignment. The second
model is an assignment based MILP that defines two dif-
ferent variables that express these two decisions

separately. Moreover, the proposed models are flexible
and can be readily modified to accommodate several ex-
tensions. Thus, they may open the door for the develop-
ment of new efficient solution methodologies to model
uncertainty and robustness features in healthcare schedul-
ing problems.

This paper is organized as follows: Section 2 presents a
review of the literature pertaining to the surgery-scheduling
problem. Section 3 describes the considered integrated elec-
tive surgery-scheduling problem. Section 4 introduces two
mixed integer linear models and provides some extensions.
In Section 5, computational experiments are presented and
discussed. Finally, Section 6 draws conclusions and gives
some perspective topics.

2 Literature review

Patient and healthcare-resource planning and scheduling prob-
lems have been extensively studied and referenced in tradi-
tional Operational Research journals during these last de-
cades. In particular, operating theatre has deserved special
attention since it is considered to be the main engine of the
hospital.

Two major optimization problems are addressed: (1) oper-
ating room planning (ORP), also called advanced scheduling
that consists on assigning a surgery date to patients, and (2)
operating room scheduling (ORS), also called allocation
scheduling that deals with the assignment of patients to oper-
ating rooms and their sequencing.

More specifically, according to the operating theatre re-
source management strategy, three different surgery manage-
ment procedures have been studied [5]:

& Block scheduling: A preliminary timetable called master
schedule is established in order to allocate time slots to
surgeons, groups of surgeons or medical specialties.

& Open scheduling: Patients are scheduled without any spe-
cialty related restriction.

& Modified block scheduling: It is an intermediate strategy
that combines the block and open scheduling strategies.

In the literature, the operating room planning and schedul-
ing problems are addressed jointly or separately. In the former
case, the two problems are usually considered in a sequential
manner using two-phase approaches [5–8]. In the first phase,
mathematical formulations are proposed for the ORP problem
and in the second phase, heuristic approaches are devised for
the ORS problem. In more recent research works, the operat-
ing room planning and scheduling problems are addressed
simultaneously [9–12]. For a recent review, refer to Cardoen
et al. [13] and Francesca and Rosita [14].
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The operating room scheduling is a common problem in
healthcare sector. Different variants have been investigated,
dealing with divers human and material resources (i.e. recov-
ery beds, porters, nurses, etc.) in order to meet specific re-
quirements of the real world healthcare systems. However,
this problem is known to be very difficult to solve, especially
for real size instances, andmost of the papers propose tailored-
heuristic approaches.

Guinet and Chaabane [6] develop an extended version of
the Hungarian method to assign patients to operating rooms
on a medium term. They consider operating rooms and recov-
ery beds. In Fei et al. [5, 7], the daily ORS deals with the
availability of operating rooms and recovery beds under re-
spectively open and block scheduling strategies. The problem
is modeled as a flow shop-scheduling problem and then
solved using a hybrid genetic algorithm. Jebali et al. [8] de-
scribe a heuristic approach that solves the ORS problem while
considering operating rooms, recovery beds and Intensive
Care Unit.

Pariente et al. [15] derive an exact solution for the daily
ORS problem in a block scheduling system. They propose a
MILP that accounts for the availability of both operating
rooms and surgeons, while maximizing the number of treated
patients during the planning horizon.

Xiang et al. [4], Guoet et al. [16], and Beliäen and
Demeulemeester [17] develop an integrated approach for
building nurse and surgery schedules. They model the prob-
lem using integer programming and derive solutions using ant
colony approach, genetic algorithm and branch-and-price al-
gorithm respectively.

Cardoen et al. [18] consider operation rooms and recovery
beds’ availability as well as instruments’ availability, patients’
priority and surgeons’ preferences. They formulate the prob-
lem as a multi-objective MILP and solve it using a branch-
and-price-based approach. In the same vein, Meskens et al.
[19] investigate a similar problem where instruments’ avail-
ability is replaced by surgical team affinities and availability.
They model and solve the problem using a constraint pro-
gramming approach. This same variant of the ORS is studied
later by Wang et al. [20]. The authors develop and compare
two models using MILP and constraint programming respec-
tively. Augusto et al. [21] study the transfer of patients be-
tween hospital beds and operating rooms, the cleaning activ-
ities of operating rooms as well as the surgery and the recovery
activities. They propose a nonlinear mathematic formulation
that they solve using a Lagrangian relaxation-based method.
Zhao and Li [22] investigate the operating room availability
and the sequence-dependent setup times between surgeries.
They describe and compare two programs: a mixed integer
nonlinear program (MINLP) and a constraint program.

Recently, stochastic optimization started to emerge to ad-
dress uncertainty issues. Min and Yih [23] study the elective
surgery-scheduling problemwith uncertain surgery operations

(surgery durations, surgical intensive care unit availability)
over multi-periods. They propose a stochastic MILP that min-
imizes patient costs and expected overtime costs. The problem
is then solved using a sampling-based approach. Wang et al.
[24] consider uncertain surgery durations and emergency de-
mands. They present an integer-programming problem that
minimizes the total expected operating cost including fixed
costs related to the number of open operating rooms and ex-
pected costs of variable overtime. A column-generation-based
heuristic algorithm is devised to solve the problem.

Hans et al. [25] propose constructive and local search heu-
ristics to solve the robust surgery-scheduling problem in block
scheduling strategy. The objective is to improve operating
room scheduling and reduce the risk of overtime and thus
patients’ cancellation.

In public healthcare facilities, dynamic generation of pa-
tient schedules having various priorities is modelled by
Patrick et al. [26] as a Markov decision process. The model
is solved using approximate dynamic programming and the
solutions quality is analysed through simulation.

Simulation approaches have been investigated for the ORS
problem. Persson and Persson [27] address the patient surgery
scheduling problem at a hospital in Sweden under specific
medical, economic and time constraints. To prevent long
queues, patients are allowed to be scheduled at other hospitals
according to the Swedish health policy. The authors develop a
hybrid simulation and integer-programming approach for
solving the problem. Simulation is also used in Patrick and
Puterman [28] to improve resource utilization for diagnostic
services through flexible inpatient scheduling. López et al.
[29] and Prudtikul and Pathomsiri [30] adopt simulation
models to analyse the impact of various improvement strate-
gies. Saremi et al. [31] propose three simulation-based tabu
search methods for outpatient scheduling in operating theatre
with stochastic service times.

To the best of our knowledge, hospital bed capacity con-
straints are not yet considered when solving ORS problem
although they have crucial impact on the number of operated
surgery cases and consequently on the hospital profit.
However, some research works deal with the hospital bed-
planning problem that assigns beds to patients. Wang et al.
[32] investigate the bed allocation problem and implement a
dynamic dispatching approach. They maximize the hospitali-
zation profit and minimize the bed supplementing cost with
both acute and ordinary inpatients. Thompson et al. [33] study
a practical bed-planning problem and present an admission
decision support system based on finite-horizon Markov de-
cision process model. They implement their system for a hos-
pital ward and prove to bring significant revenue. Ben
Bachouch et al. [34] present a decision support tool based
on an integer linear model for hospital bed planning with
various constraints (incompatibility between pathologies, seg-
regated rooms, continuity of care, etc.). Holm et al. [35]

378 K.H. Hejer, Z.M. Farah



describe a discrete event simulation approach for the alloca-
tion of hospital beds in order to minimize crowding. They also
develop optimization algorithms for analyzing the simulation
model output based on prevalence and incidence of crowding
bed usage.

We notice that the literature pertaining to surgery sched-
uling focuses on the operating theatre and its human and
material resources management. However, there is no pre-
vious work that considers the entire surgery process.
Moreover, most developed approaches are approximate in
nature and literature about exact methods is scarce. In this
paper, we build an integrated surgery schedule that takes
into account hospital beds, operating rooms and recovery
beds. We propose two effective MILP that can be solved to
optimality in a reasonable computation time using a com-
mercial software package.

3 Problem statements

The Integrated Elective Surgery-Scheduling Problem consists
on sequencing a fixed number of patients and assigning them
to resources, over a 1 day period, while considering pre-oper-
ative, per-operative and post-operative phases.

In the pre-operative phase, ward admission is performed
and patients are assigned to hospital beds. In the per-
operative phase, patients are transferred to the operating the-
atre where they are assigned to operating rooms and then to
recovery beds. Finally, in the post-operative phase, patients
return to the hospital beds.

A specific feature of the private healthcare sector is that
surgeons are independent service providers and are not en-
gaged by the healthcare facility. Consequently, patients
choose their surgeon and decide together where and when
the surgery will be performed. Thus, when scheduling surger-
ies, the availability of surgeons and their preferences regard-
ing the day and the time of their surgeries, should be taken into
account.

Moreover, in a private healthcare facility, most patients do
not need staying for a long period at the hospital ward and thus
most of them are outpatients or inpatients requiring only one
overnight stay.

Furthermore, the hospital ward is usually composed
of single-bed rooms available in a limited number.
Consequently, the assignment of patients to hospital
beds does not require the integration of the commonly
handled incompatibility constraints between man and
women, pathologies, etc. Besides, in order to optimize
the use of these beds, patients may be assigned to dif-
ferent rooms in the pre-operative and post-operative
phases, which allows the use of their rooms by other
patients when they are in the operating theatre.

However, additional rooms’ cleaning and disinfection
operations will be required.

In order to optimise the surgery process resources and to
shorten the patient’s waiting time in the healthcare facility, the
patients’ average length of stay is minimized. However, an
optimal solution may schedule outpatients in the evening
and inpatients in the morning, leading more patients to stay
overnight in the healthcare facility. Consequently, less beds
will be available for the next day activity and surgeries may
be cancelled for beds shortage. To overcome this drawback,
we investigate the minimization of patients’ overnight stays.
Indeed, this may schedule outpatients early in the day so less
patients are likely to stay overnight in the healthcare facility
and thus more free beds will be available for the next day
activity.

In this study, we consider small to medium-sized private
healthcare facilities where most cases are outpatients.
Moreover, we make the following assumptions:

& Emergency cases are not taken into account;
& Human and instruments resources are always available

whenever they are needed;
& The operating theatre comprises identical multifunctional

rooms without any specialty’s restriction. Therefore, the
open scheduling strategy is adopted;

& The surgery operation time, the recovery time and the
length of stay before and after the surgery are known in
advance, although they are subject to uncertainties in
practice;

& The surgery operation time comprises the time for prepar-
ing the patient (e.g., anaesthesia) in the operating room as
well as the surgical act time;

& Each patient is associated to a specific surgeon;
& The availability of each surgeon is known in advance. It is

expressed through a time-window during which the sur-
geon is available at the healthcare facility;

& The operating theatre is open all day (24 h/24 h);
& The hospital ward is composed of single-bed rooms avail-

able in a limited number.

This problem can be modelled as a three-stage hybrid flow
shop-scheduling problem that uses four different resources
(see Fig. 1): Hospital beds, operating rooms, surgeons and
recovery beds. Furthermore, the problem exhibits the follow-
ing additional features:

& Patients flow recirculation: patients can be assigned to
different hospital rooms in the pre-operative and post-
operative phases. Thus, resources of the hospital ward
(Stage 1) are used twice through the surgery process;

& Resource synchronization: In the operating room (Stage
2), the surgery operation requires two different resources
simultaneously: operating rooms and surgeons;
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& Dedicated resources: Each patient is operated by a pre-
assigned surgeon who referred her/him to the healthcare
facility;

& Blocking constraints: There is no buffer between stages.
Resources of a stage remain blocked even when the re-
quired cares are completed until resources of the next
stage become available.

According to [36], the two stage-hybrid flow shop-problem
with one machine in the first stage and two or more machines
in the second stage is an NP-hard problem in the strong sense.
Thus, our problem is NP-hard in the strong sense as well.

Throughout the past three decades, several works have
dealt with the hybrid flow shop-scheduling problem, leading
to the development of exact and approximate methods. We
refer the lecture to [37] for a comprehensive survey.

However, quite a few papers have been interested in the hy-
brid flow shop-scheduling problemwith recirculation. Bertel and
Billaut [38] present an industrial scheduling problem that they
model as a three-stage hybrid flow shop-problem with recircula-
tion. They develop a liner program and a genetic algorithm for its
solution. Boudhar and Meziani [39] consider a two-stage hybrid
flow shop-problem with one machine in the first stage and two
identical parallel machines in the second stage. Jobs can be
recirculated a fixed number of times in the second stage. They
propose a linear program and several heuristics to solve it.

Similarly, few researches investigate scheduling problems
with dedicated machines. Lin and Liao [40] consider a two-
stage hybrid flow shop-problemwith sequence-dependent set-
up times in stage 1, dedicated machines in stage 2 and due date
constraints. They develop heuristics that minimize the

weighted maximal tardiness time. Yang [41] propose a new
complexity proof of the two-stage hybrid flow shop-
scheduling problem with dedicated machines in stage 2. He
shows that the problem is unary NP-complete.

In this paper, we present two mixed integer linear programs
for the IESSP modelled as a three-stage hybrid flow shop-
problem with recirculation, resource synchronization, dedicat-
ed machines and blocking constraints.

4 MILP formulations

Prior to presenting the two MILP formulations, we introduce
the following notation.

4.1 Notation

In order to take into account the recirculation on the hospital
ward (Stage 1), we duplicate it into two separate stages denot-
ed by Stage 1 and Stage 4. We also duplicate its resources into
two sets: R1 and R4 that correspond to hospital rooms assigned
before and after surgeries, respectively.

Moreover, for a better understanding of the model, we de-
fine an extra stage for the surgeons, denoted by Stage 5.

Sets:

I set of stages indexed by i and i’, I = {1, 2, …, 5}
S set of surgeons, indexed by s
J set of patients, indexed by j and k
Js set of patients associated to surgeon s∈S, Js ⊂ J
Ri set of available resources at Stage i, indexed by l. We

notice here that R1 =R4 and R5 = S.

Data:

pij time to provide care at Stage i to patient j.
Tstarts and Tfinishs the earliest start time and the latest finish

time for surgeon s∈S to perform
surgeries, respectively. They express the
availability and/or the time preferences of
surgeon s∈S. These time limits can be
further specified for each patient j∈Js if
necessary. In this case, we define Tstartsj
and Tfinishsj as the earliest start time and
the latest finish time for surgeon s∈S to
operate patient j∈Js, respectively.

M a big positive value.

4.2 Network-flow model

The first model is a network-flow MILP that uses the same
variable X to express the decisions related to patient sequenc-
ing and assignment to resources. The decision variables are
defined as follows:

Resource 1:
Hospital ward

Resource 2:
Operating rooms

Resource S:
Surgeons

Resource 3:
Recovery beds

Resource 1:
Hospital ward

Patient arrival
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Fig. 1 Patient’s flow through the surgery process
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Xijk equals 1 if in Stage i, a same resource is assigned to
patient k immediately after patient j, and 0 otherwise.

Xsilj equals 1 if patient j is the first patient assigned to
resource l of Stage i, and 0 otherwise.

Xtij equals 1 if patient j is the last patient assigned to a
resource in Stage i, and 0 otherwise.

Qjk
14 equals 1 if a same clinic room is assigned to

patient k at Stage 4, after her/his surgery opera-
tion, immediately after patient j who is still in
Stage 1, and 0 otherwise.

Qjk
41 equals 1 if a same clinic room is assigned to patient k in

Stage 1, before her/his surgery operation, immediately
after patient j who is in Stage 4, and 0 otherwise.

Tij expresses the arrival time of patient j at Stage i.
dij defines the blocking/waiting time of patient j at Stage i.

Using these definitions, the network-flow mixed-integer
program (NF_MILP) can be written as follows.

NF MILP : Minimise
1

Jj j
X

j

T4 j þ p4 j−T1 j

� �
ð1Þ

Subject to

X

l∈R1

Xs1lk þ
X

j∈ Jn kf g
X 1 jk þ

X

j∈ Jn kf g
Q41

jk ¼ 1 ∀ k∈J ð2Þ
X

l∈R4

Xs4lk þ
X

j∈ Jn kf g
Xs4 jk þ

X

j∈ J
Q14

jk ¼ 1 ∀k∈J ð3Þ
X

l∈Ri

X silk þ
X

j∈ Jn kf g
X i jk ¼ 1 ∀i∈ 2; 3f g; k∈J ð4Þ

Xs5sk þ
X

j∈ J sn kf g
X 5 jk ¼ 1 ∀s∈S; k∈J s ð5Þ

X

k∈ Jn jf g
X 1 jk þ

X

k∈ J
Q14

jk þ X t1 j ¼ 1 ∀ j∈J ð6Þ
X

k∈ Jn jf g
X 4 jk þ

X

k∈ Jn jf g
Q41

jk þ X t4 j ¼ 1 ∀ j∈J ð7Þ
X

k∈ Jn jf g
X i jk þ X ti j ¼ 1 ∀i∈ 2; 3f g; j∈J ð8Þ

X

k∈ J sn jf g
X 5 jk þ X t5 j ¼ 1 ∀s∈S; j∈J s ð9Þ

X

j∈ J
X sil j≤1 ∀i∈In 1; 4f g; l∈Ri ð10Þ

X

j∈ J
X s1l j þ

X

j∈ J
X s4l j≤1 ∀ l∈R1 ð11Þ

T 2 j−T1 j ¼ p1 j þ d1 j ∀ j∈J ð12Þ

T 2 j ¼ T 5 j ∀ j∈J ð13Þ
T 3 j−T2 j ¼ p2 j þ d2 j ∀ j∈J ð14Þ
T 4 j−T3 j ¼ p3 j þ d3 j ∀ j∈J ð15Þ

M 1−Q14
jk

� �
þ T4k−T 1 j≥p1 j þ d1 j ∀ j∈J ; k∈J ð16Þ

M 1−Q41
jk

� �
þ T1k−T 4 j≥p4 j þ d4 j ∀ j∈J ; k∈J ; j≠k ð17Þ

M 1−X i jk
� �þ Tik−Ti j≥pi j þ di j ∀i∈In 5f g; j∈J ; k∈J ð18Þ

M 1−X 5 jk
� �þ T5k−T5 j≥p5 j ∀ j∈J ; k∈J ; j≠k ð19Þ

T 5 j ≥Tstarts ∀s∈S; j∈J s ð20Þ
T 5 j þ p5 j≤Tfinishs ∀s∈S; j∈J s ð21Þ
T 4 j≤1440 ∀ j∈J ð22Þ
Ti j≥0 ∀i∈I ; j∈J ð23Þ
di j≥0 ∀i∈I ; j∈J ð24Þ
X i jk∈ 0; 1f g ∀i∈I ; j∈J ; k∈J ; j≠k ð25Þ
Xsil j∈ 0; 1f g ∀i∈I ; l∈Ri; j∈J ð26Þ
X tik∈ 0; 1f g ∀i∈I ; k∈J ð27Þ
Q14

jk∈ 0; 1f g ∀ j∈J ; k∈J ð28Þ
Q41

jk∈ 0; 1f g ∀ j∈J ; k∈J ; j≠k: ð29Þ

The objective function (1) minimises the patients’ average
length of stay in the private healthcare facility. The number of
patients’ overnight stays minimization will be discussed in
Section 4.4.

Equations (2–9) are network-flow conservation constraints
and guarantee that all patients are assigned to exactly one
resource at each stage (see Figs. 2, 3, and 4).

For the hospital ward, Constraints (2) require that each
patient k∈J at the pre-operative phase (Stage 1) is either the
first patient assigned to a specific resource ∑l∈R1

Xs1lk ¼ 1
� �

,
or has exactly one predecessor assigned to the same resource.
This predecessor can be a patient at the per-operative phase
(∑ j ∈ J \ {k}X1 j k = 1) or at the post-operat ive phase
(∑j ∈ J\{k}Qjk

41 = 1). Constraints (3) impose similar restrictions
for patients at the post-operative phase (Stage 4). Indeed, each

Patient k at the post- 

operative phase

t

Patient j at the pre- 

operative phase

Fig. 2 Patients’ schedule at a hospital room: Constraints (16)
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patient k∈J at this stage is the first assigned to a specific
resource ∑l∈R4

Xs4lk ¼ 1
� �

, or has exactly one predecessor
assigned to the same resource while being at the per-
operative phase (∑j ∈ J\{k}Qjk

14 = 1) or at the post-operative
phase (∑j ∈ J\{k}X4jk = 1). Constraints (4) and (5) deal with
Stages 2, 3 and 5 where each patient k ∈ J is either the first
assigned to a specific resource or has exactly one predecessor
assigned to the same resource.

Similarly, constraints (6–9) ensure that, at each stage, each
patient is the last assigned to a resource or has exactly one
successor assigned to the same resource.

Constraints (10) and (11) specify that each available re-
source be assigned to at most one first patient.

Constraints (12–15) link the start time of performing care
to a patient at a specific stage, with her/his release time from
the previous stage and the corresponding blocking time.
Constraints (13) impose resource synchronisation at Stage 2
(operating rooms) and Stage 5 (surgeons) since they must be
used simultaneously.

Constraints (16–19) prevent the overlapping of cares per-
formed by a same resource to different patients.

Constraints (20) and (21) express the availability/
preferences of each surgeon and Constraints (22) ensure that
surgeries are performed in 1 day. Constraints (23–29) define
the domains of the decision variables.

Figure 2 illustrates Constraints (16) imposed on the hospi-
tal ward (i.e. Stages 1 and 4). It shows that, if a same resource
is assigned to patient k at the post-operative phase (i.e. Stage
4) immediately after patient j at the pre-operative phase (i.e.

Stage 1) then variable Q14
jk is set to 1 and constraint T 4k � T 1 j

≥p1 j þ d1 j holds.
Similarly, Fig. 3 illustrates Constraints (17). It shows that,

if a same resource is assigned to patient k at the pre-operative
phase (i.e. Stage 1) immediately after patient j at the post-

operative phase (i.e. Stage 4) then variable Qjk
41 is set to 1

and constraint T1k − T4j ≥ p4j + d4j holds.
In order to better explain patients sequencing and assign-

ment to the hospital ward resources, we consider an example
with 3 patients and 2 hospital rooms. Figure 4 presents a Gantt
chart that illustrates a feasible patients’ schedule satisfying
Constraints (2–3); (6–7) and (11).

In this example, non-zero decision variables related to pa-
tients’ sequencing and assignment in the hospital ward (Stage
1 and Stage 4) have the following values:

For room1 : Xs113 ¼ 1;X 132 ¼ 1;Q14
23 ¼ 1;X t43 ¼ 1:

For room2 : X s422 ¼ 1;Q41
21 ¼ 1;Q14

11 ¼ 1; X t41 ¼ 1:

Each hospital room is assigned to a sequence of patients
and each patient is assigned to one resource at the pre-
operative phase and one resource at the post-operative phase.

4.3 Assignment model

The second model is an assignment-based MILP that extends
the Bstandard^ mathematical programming formulation of the
hybrid flow shop-scheduling problem. Unlike the network-
flow model (NF_MILP) where X variables express both pa-
tients’ sequencing and assignment to resources, the
assignment-based model uses two different variables Y and
W for these two decisions respectively, defined as follows:

Yjk
ii ′ equals 1 if patient k in Stage i’ is scheduled after patient

j in Stage i, and 0 otherwise where (i, i’) ∈ {(1, 1), (2, 2),
(3, 3), (4, 4), (5, 5), (1, 4), (4, 1)}.

Wijl equals 1 if resource l of Stage i is assigned to patient j,
and 0 otherwise

Tij expresses the arrival time of patient j at Stage i
dij defines the blocking/waiting time of patient j at Stage i.

We notice here that X variables require consecutive pa-
tients to be served immediately one after the other by a same
resource of a stage whereas Yvariables are limited to the order
of serving two patients in a specific stage. More specifically,
Xijk equals one when a same resource is assigned to patient k
immediately after patient j in Stage i, while Yii

jk equals one

when patient k is scheduled after patient j (and not necessarily

Patient k at the pre- 

operative phase

t

Patient j at the post- 

operative phase

Fig. 3 Patients’ schedule at a hospital room: Constraints (17)

Room 
1

i=1
Patient 3

i=1
Patient 2

i=4
Patient 3

i=4
Patient 1

i=4
Patient 2

i=1
Patient 1

Room 
2

t

Fig. 4 Patients’ schedule at the
hospital ward
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immediately after patient j nor being served by a same re-
source) in Stage i.

Using these definitions, the assignment-based model
(A_MILP) can be written as follows.

A MILP : Minimise
1

Jj j
X

j

T4 j þ p4 j− T 1 j

� �
ð30Þ

Subject to
(12–15), (20–24)

X

lRi

Wi jl ¼ 1 ∀ i∈In 5f g; j∈J ð31Þ

W5 js ¼ 1 ∀s∈S; j∈J s ð32Þ

Tik ≥Ti j þ pi j þ di j −M � 1−Y ii
jk

� �
−M� 1−Wijl

� �
−M� 1−Wiklð Þ ∀i∈In 5f g; l∈Ri ; j∈J ; k∈J ; j≠k ð33Þ

T 5k ≥T5 j þ p5 j−M� 1−Y 55
jk

� �
∀ s∈S; j∈J s; k∈J s; j≠k

ð34Þ

T 1k ≥T4 j þ p4 j þ d4 j−M� 1−Y 41
jk

� �
−M� 1−W1klð Þ −M� 1−W4 jl

� �
∀ l∈R1; j∈J ; k∈J ; j≠k ð35Þ

T 4k ≥T1 j þ p1 j þ d1 j−M� 1−Y 14
jk

� �
−M� 1−W1klð Þ−M� 1−W4 jl

� �
∀ l∈R1; j∈J ; k∈J ð36Þ

Y ii
jk þ Y ii

k j ¼ 1 ∀i∈I ; j∈J ; k∈J ; j≠k ð37Þ
Y 14

jk þ Y 41
k j ¼ 1 ∀i∈I ; j∈J ; k∈J ; j≠k ð38Þ

Wijl∈ 0; 1f g ∀i∈I ; l∈Ri; j∈J ð39Þ
Y ii0

jk∈ 0; 1f g ∀ j∈J ; k∈J ; i∈I ; i0∈I ; j≠k: ð40Þ

The objective function (30) is the same as (1). It minimises
the patients’ average length of stay in the private healthcare
facility. Constraints (12–15) and (20–24) are those defined for
NF_MILP model.

Constraints (31) and (32) ensure that at each stage, each
patient is assigned to exactly one resource.

Constraints (33–36) are similar to Constraints (16–19) and
prevent the overlapping of cares performed by a same re-
source to any two patients.

Constraints (37) and (38) express the sequencing con-
straints between each pair of patients at a same stage and
expressions (39) and (40) are the integrality constraints to be
imposed on the variables.

4.4 Extensions

In this section, we present some possible extensions to the
proposed models that cope with further realistic features.

4.4.1 Minimizing the patients overnight stays

In order to have enough free hospital beds for the next day
activity, the number of patients who spend the night in the
hospital should be minimised.

In practice, outpatients have to leave the hospital ward
before a fixed time limit Tlimo (e.g., 7 pm) on the surgery
day, whereas the inpatients spend at least one night at the
hospital and have to leave the ward before a fixed time limit
Tlimi (e.g., noon) of the hospital discharge day. To account for
this feature, we denote by Jo the set of outpatients and by Ji the
set of inpatients.

The minimization of the patients’ overnight stays re-
quires considering the objective function (41) and
Constraints (42–44) in both models NF_MILP and
A_MILP, where Nj is a binary variable that equals 1 if
outpatient j spends a night at the hospital ward or inpa-
tient j spends more than one night at the hospital ward,
and 0 otherwise.

Minimize
X

j∈ J
N j ð41Þ

T 4 j þ p4 j≤N j �Mþ Tlimo ∀ j∈Jo ð42Þ
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T 4 j þ p4 j≤N j �Mþ Tlimi ∀ j∈J i ð43Þ
N j∈ 0; 1f g ∀ j∈J ð44Þ

4.4.2 Setup time sequence-dependent between surgeries

After each surgery, the operating room should be cleaned,
disinfected and sterilized for the next surgery. Moreover, some
surgeries need specific room preparation (e.g., installing spe-

cific equipment). These setup operations may depend on the
sequence of surgery types.

To cope with this situation, for Stage 2 (operating rooms),
Constraints (18) should be replaced by Constraints (45) in
NF_MILP and Constraints (33) should be replaced by
Constraints (46) in A_MILP.

M � 1−X 2 jk
� �þ T2k−T 2 j≥p2 j þ d2 j þ α jk ∀ j∈J ; k∈J ; j≠k

ð45Þ

T2k≥T2j þ p2 j þ d2 j þ α jk−M� 1−Y22
jk

� �
−M� 1−W2jl

� �
−M� 1−W2klð Þ ∀l∈R2; j∈J ; k∈J ; j≠k ð46Þ

where α jk is the setup time when the surgery of patient k is
performed immediately after the surgery of patient j.

4.4.3 Allowing patient recovery in the operating room

At the end of the surgery operation, the patient is transferred to
a recovery bed to wake up slowly under appropriate personal
and equipment monitoring. However, if no recovery bed is
available, the patient can wake up in the operating room until
the discharge of a recovery bed or until she/he is transported
back to the ward after her/his recovery.

To cope with this situation, Constraints (14) and (15) are
replaced by Constraints (47) and (48) in both models

NF_MILP and A_MILP. Also, for Stage 2 (operating rooms),
Constraints (18) and (19) in NF_MILP are replaced by
Constraints (49) and (50), respectively. Similarly, in
A_MILP, Constraints (32) and (33) are replaced by
Constraints (51) and (52), respectively. In addition, we append
Constraints (53) to both models to limit the recovery in the
operating room to its estimated time.

T 3 j−T2 j ¼ p2 j þ d2 j þ r j ∀ j∈J ð47Þ
T 4 j−T3 j ¼ p3 j þ d3 j−r j ∀ j∈J ð48Þ
M 1−X 2 jk
� �þ T 2k−T2 j≥ p2 j þ d2 j þ r j ∀ j∈J ; k∈J ; j≠k ð49Þ

M 1−X 3 jk
� �þ T 3k−T3 j≥ p3 j þ d3 j−r j ∀ j∈J ; k∈J ; j≠k ð50Þ

T 2k ≥T2 j þ p2 j þ r j−M � 1−Y 22
jk

� �
−M� 1−W2 jl

� �
−M� 1−W2klð Þ ∀l∈R2; j∈J ; k∈J ; j≠k ð51Þ

T 3k ≥T3 j þ p3 j−r j−M � 1−Y 33
jk

� �
−M� 1−W3 jl

� �
−M� 1−W3klð Þ ∀l∈R3; j∈J ; k∈J ; j≠k ð52Þ

0≤ r j ≤ p3 j ∀ j∈J ð53Þ

where r j is a decision variable that indicates the recovery time
spent by patient j in the operating room.

4.4.4 Performing the acts of the same surgeon successively

Surgeons may impose performing their surgeries successively
to reduce their travel time to/from the healthcare facility as
well as predictive errors in case durations and tardiness from
scheduled start times. This requires scheduling the cases of a

same surgeon in sequence [42, 43]. To deal with this situation,
Constraints (19) are replaced by Constraints (54) in NF_MILP
and Constraints (34) are replaced by Constraints (55) in
A_MILP.

T 5kX 5 jk ¼ T5 j þ p5 j
� �

X 5 jk ∀s∈S; j∈J s; k∈J s; j≠k

ð54Þ

T 5kY 55
jk ¼ T5 j þ p5 j

� �
Y 55

jk ∀s∈S; j∈J s; k∈J s; j≠k ð55Þ
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These nonlinear constraints can be linearized using the
Reformulation Linearization Technique developed by
Sherali and Adams in 1990 and 1994 [44, 45].

5 Computational experiments

To evaluate the performance of the proposed NF-MILP and
A_MILP models, we conducted experiments on real-world
data and on a set of randomly generated instances.
Moreover, we investigated the minimization of two criteria:
patients’ average length of stay and patients’ overnight stays.

The proposedmodels were solved using CPLEX 12.2 solv-
er with the default setting. All the experiments were run on an
Intel PC (R) Xeon (R) with a 3.30 GHz CPU processor and
8 GB RAM.

In the following paragraphs, we present the test-bed in-
stances, then we discuss the computational effort required to
solve them optimally. Finally, we investigate the impact of the
objective function on the solution’s quality.

5.1 Test-bed instances

The computational study is carried out on two types of in-
stances: (1) real-world instances provided by a Tunisian pri-
vate clinic: Clinique Ennasr and (2) randomly generated
instances.

5.1.1 Real-world instances provided by Clinique Ennasr

Clinique Ennasr is a private Tunisian clinic that is located in
Tunis. It offers a range of clinical services corresponding to
different medical and surgical specialties with a major on on-
cology. Its operating theatre comprises four identical operating
rooms and four recovery beds. It employs a qualified nursing
staff that along with well-dimensioned surgical facilities and
instruments, allows the opening of the operating theatre all
day long (24 h/24 h).

Clinique Ennasr provided us with six real-data instances
that represent different surgical activity levels in 2014. Table 1

presents the main characteristics of these instances: Column 1
provides the instance number (Inst.). Column 2 gives the num-
ber of patients (# Patients). Column 3 indicates the number of
surgeons (# Surgeons). The last column presents the number

of patients per clinic room ( #Patients
#Clinic rooms ).

Real-world instance data specifies for each surgery case,
the surgery date, the referred surgeon, the surgery specialty as
well as pre-operative, surgery, recovery and post-operative
times. This test-bed involves 20 clinic rooms that are available
at the beginning of each day, on average.

We notice here that on a given day, each surgeon operates
1.9 cases on average. This reflects the real-world context of
Clinique Ennasr and its private surgeons. Indeed, the clinic, as
a private facility, collaborates with various surgeons of differ-
ent specialties and surgeons as independent service provider
conduct their surgeries in several healthcare facilities.

5.1.2 Generated data

In order to conduct further experiments, we generated two sets
of 60 instances. The first set mimics the surgical activity of
Clinique Ennasr while the second set simulates the activity of
a larger surgery unit (see Table 2).

Table 2 presents, for each set of instances, the number of
generated instances (# Instances), the number of operating
rooms (# Operating rooms), the number of recovery beds (#
Recovery beds) and the number of clinic rooms (# Clinic
rooms).

In set 1, according to the Tunisian regulation that imposes
to have at least as many recovery beds as operating rooms
[46], the number of recovery beds is set to the number of
operating rooms. However, in the state of the art, it is often
recommended to have a number of recovery beds equal to 1.5
times the number of operating rooms [47], which is
considered in set 2.

For each set of instances, we simulated various activity
levels of the facility that correspond to different numbers of
surgeries to be scheduled (see Table 3). Moreover, in order to
draw the surgeons’ activity on a given day, we assigned ran-
domly three surgery cases on average to each surgeon.
However, we do not impose any preference/availability
restriction for the surgeons.

For each subset, we generated five instances with different
processing times (per-operative times, operating times,

Table 1 Real-world instances of Clinique Ennasr

Inst. #
Patients

#
Surgeons

# Patients
#Clinic rooms

I1 20 10 1

I2 20 13 1

I3 23 12 1.15

I4 23 10 1.15

I5 25 13 1.25

I6 29 13 1.45

Table 2 Description of the surgical unit of the generated instances

Set of instances # Instances # Operating
rooms

# Recovery
beds

# Clinic
rooms

1 25 4 4 20

2 35 6 9 30

Two-MIP models for scheduling elective surgeries 385



recovery times and post-operative times). To estimate these
times, we conducted an experimental study on historical data
related to the surgery activity during 2014 at Clinique Ennasr.
The results indicate that the processing times depend on three
types of elective surgery cases:

& Outpatients who can leave the hospital after their recovery,
without overnight staying. They represent 40 % of the
patients.

& Medium length of stay inpatients who are required to
spend only one night in the clinic. They represent 40 %
of the patients.

& Long length of stay inpatients who need to spend more
than one night in the clinic. They represent 20 % of the
patients.

According to the experimental study, we set the per-
operative times to 2 h for outpatients and medium length of
stay inpatients. However, for long length of stay inpatients,
they usually enter the clinic a day before the surgery, and thus
their per-operative time is set to only 10 min.

For surgery and post-operative times, we analysed the data
using Minitab software [48] and we compared the P_value of
different distributions functions. Table 4 presents the obtained
results for the four best fitting distributions functions: Normal,
Exponential, Lognormal and Gamma, for each patient type.

Table 4 shows that the best fitting probability distribution
function is the lognormal distribution since it has the largest
P_value exceeding the significance level α of 5 %. This result
confirms previous works, where the surgery times are usually
generated using a lognormal distribution ([8, 22, 49, 50]) or a
Pearson III distribution [6].

Tables 5 and 6 provide the mean and the standard deviation
of the considered lognormal distribution for surgery times and
post-operative times, respectively.

Moreover, in order to better estimate surgery and post-
operative times, we propose to use a truncated lognormal dis-
tribution that imposes minimum and maximum values.

To validate the characteristics of the selected distribution
functions, we presented them to the practicians of Clinique
Ennasr who suggest minor rounding adjustments. The final
characteristics of the truncated lognormal distribution for the
surgery and post-operative times are displayed in Tables 7 and
8, respectively. The columns give the mean, the standard de-
viation, the minimum and the maximum values in minutes,
respectively,

For recovery times, we set them equal to surgery times for
all inpatients and to surgery times minus 10 min for
outpatients.

5.2 Computational results

To assess the empirical performance of the proposed formula-
tions NF_MILP and A_MILP, we compared their computa-
tional time to solve the test-bed instances optimally.

We conducted three sets of experiments with different ob-
jective functions. The first set considers the minimization of
patients’ average length of stay and the second set minimises
the number of patients’ overnight stays. Finally, in the third
set, patients’ average length of stay of patients is minimised
with additional constraints on the maximal number of pa-
tients’ overnight stays.

Table 3 Main characteristics of the generated subsets of instances

Inst.
subset

#
Patients

#
Surgeons

# Patients
#Clinic rooms

I-1-24 24 8 1.20

I-1-26 26 9 1.30

I-1-28 28 9 1.40

I-1-30 30 10 1.50

I-1-32 32 11 1.60

I-2-32 32 11 1.07

I-2-34 34 11 1.13

I-2-36 36 12 1.20

I-2-38 38 13 1.27

I-2-40 40 13 1.33

I-2-42 42 14 1.40

I-2-44 44 15 1.47

Table 4 P-value Results

Outpatient Medium length
of stay in-
patients

Long length
of stay in-
patients

surgery time Normal 0.08 0.025 0.699

Exponential 0.021 0.055 0.003

Lognormal 0. 81 0.28 0.78

Gamma >0.250 >0.250 >0.250

Post-operative
time

Normal 0.006 0.011 0.052

Exponential 0.088 <0.003 0.306

Lognormal 0.25 0.13 0.37

Gamma 0.062 0.032 >0.250

Table 5 Characteristics of the lognormal distribution for surgery times

Patient type Mean (min) Standard
deviation
(min)

Outpatient 32 21

Medium length of stay in-patients 74 36

Long length of stay in-patients 166 64

386 K.H. Hejer, Z.M. Farah



In all our experiments, we pre-set the CPU time limit to 1 h.
In the subsequent paragraphs, the generated instances are

denoted by I-s-n-k where s is the instance set number (s∈{1,
2}), n is the number of patients and k is the instance number
(k∈{1, …, 5}).

5.2.1 The patients’ average length of stay minimization

In this set of experiments, the objective function of the
Integrated Elective Surgeries’ Scheduling Problem (IESSP)
minimises patients’ average length of stay. Tables 9 and 10
display the results of real-world instances and generated in-
stances, respectively. The two first columns indicate the prob-
lem instance identification (Inst.) and the optimal patients’
average length of stay, in minutes (ALS* (min)). The next
two columns provide the CPU times, in seconds required by
NF_MILP (CPU_NF (s)) and A_MILP (CPU_A (s)) formu-
lations, respectively. The last column indicates the CPU time
improvement achieved by A_MILP against NF_MILP in per-
centage (CPU_IMP (%)) given by (56).

CPU IMP %ð Þ ¼ CPU N F−CPU A
CPUN F

� 100 ð56Þ

*** indicates that no optimal solution was found within 1 h
of computation time.

Tables 9 and 10 show that A_MILP model outperforms
NF_MILP model. In Table 9, all the real-world instances are
optimally solved in less than 21 min. NF_MILP model re-
quires longer CPU times than A_MILP model, ranging from
8.07 s to 1208.92 s, whereas the CPU times of A_MILPmodel
do not exceed 69.44 s. For the generated instances, Table 10

show that, within 1 h of CPU time, A_MILP model provides
optimal solutions for all instances in less than 183.71 s in
average, whereas NF_MILP model solves only 56.7 % of
the instances within 361.10s in average.

It is worth mentioning that for the generated instances of set
2, and when the number of patients per clinic room is less than
1.2, NF_MILP model requires less CPU time than A_MILP
model.

Not surprisingly, we observe that the CPU time increases as
the number of patients and the number of patients per clinic
room increase. Indeed, the problem becomes more
constrained and thus more difficult to solve.

5.2.2 Number of patients’ overnight stays minimization

In this second set of experiments, the objective function of
IESSP aims to minimise the number of patients’ overnight
stays. Thus, we replace the objective function by expression
(41) and append Constraints (42–44) in both models NF-
MILP and A_MILP.

Tables 11 and 12 provide the results of real-world instances
and generated instances, respectively. The two first columns
indicate the problem instance identification (Inst.) and the op-
timal number of patients’ overnight stays (# PO*). The next
two columns provide the CPU times, in seconds required by
NF_MILP (CPU_NF (s)) and A_MILP (CPU_A (s)) formu-
lations, respectively. The last column indicates the CPU time
improvement achieved by A_MILP against NF_MILP in per-
centage (CPU_IMP (%)) and given by (56).

Table 6 Characteristics of the lognormal distribution for post-operative
times

Patient type Mean (min) Standard
deviation (min)

Outpatient 306 135

Medium length of stay in-patients 865 785

Long length of stay in-patients 2327 1779

Table 7 Characteristics of the selected truncated lognormal distribution
for surgery times

Patient type Mean
(min)

Standard
deviation (min)

Minimum
(min)

Maximum
(min)

Outpatient 30 20 15 120

Medium length of
stay in-patients

70 35 30 300

Long length of stay
in-patients

150 70 60 540

Table 8 Characteristics of the selected truncated lognormal distribution
for post-operative times

Patient type Mean
(min)

Standard
deviation
(min)

Minimum
(min)

Maximum
(min)

Outpatient 300 150 60 480

Medium length of stay
in-patients

900 800 600 1740

Long length of stay
in-patients

2280 1740 1740 7200

Table 9 Patients’ average length of stay minimisation for the real-
world instances

Inst. ALS* (min) CPU_NF (s) CPU_A (s) CPU_IMP (%)

I1 1522.65 8.07 15.80 −95.79
I2 2051.50 10.01 5.21 47.95

I3 1683.30 20.01 12.60 37.03

I4 1525.57 30.01 29.76 0.83

I5 1358.48 30.02 18.50 38.37

I6 1585.66 1208.92 69.44 94.26
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Tables 11 and 12 confirm that A_MILP model con-
sistently outperforms NF_MILP model. Indeed, A_MILP
model solves to optimality all the real-world instances
in less than 133.52 s of computation time, whereas
NF_MILP solves only 66.7 % of these instances within
the pre-set CPU time of 1 h. Moreover, NF_MILP mod-
el requires longer CPU times than A_MILP model ex-
cept for the first instance.

For the generated instances, Table 12 show that, within
1 h of computation time, A_MILP model provides opti-
mal solutions to 91.7 % of the instances while requiring
313.01 s of CPU time in average, whereas NF_MILP
model solves only 21.7 % of the instances within 1679s
of CPU time in average.

Besides, for the instances solved to optimality by both
models, A_MILP provides solutions in less CPU time than
NF_MILP for 82.3 % of the instances with 91.5 % of CPU
time improvement in average.

Finally, here again, we observe that the CPU time
increases as the number of patients and the number of
patients per clinic room increase. More specifically, in-
stances where the number of patients per clinic room
exceeds 1.2 seem to be harder to solve by NF_MILP
model.

Table 10 Patients’ average length of stay minimisation for the
generated instances

Inst. ALS* (min) CPU_NF (s) CPU_A (s) CPU_IMP (%)

I-1-24-1 1705.38 120.54 30.56 97.88

I-1-24-2 1751.21 37.47 30.92 17.48

I-1-24-3 1383.17 15.27 34.91 −128.62
I-1-24-4 1485.54 543.76 31.07 94.29

I-1-24-5 1522.80 95.07 28.61 69.91

I-1-26-1 1753.92 634.49 44.40 93.00

I-1-26-2 1630.77 1039.32 43.00 95.86

I-1-26-3 1521.46 398.91 37.62 90.57

I-1-26-4 1618.35 1899.11 84.28 95.56

I-1-26-5 2057.69 856.74 39.72 95.36

I-1-28-1 1709.04 *** 53.07 ***

I-1-28-2 1576.75 2630.37 54.24 97.94

I-1-28-3 1462.36 358.89 53.76 85.02

I-1-28-4 1536.75 *** 425.28 ***

I-1-28-5 1838.75 *** 6.91 ***

I-1-30-1 1534.93 *** 230.28 ***

I-1-30-2 1652.40 *** 83.38 ***

I-1-30-3 1782.10 *** 90.54 ***

I-1-30-4 1673.60 *** 100.27 ***

I-1-30-5 1582.63 *** 90.40 ***

I-1-32-1 1594.50 *** 301.44 ***

I-1-32-2 1475.63 *** 171.98 ***

I-1-32-3 1602.63 *** 302.44 ***

I-1-32-4 1621.50 *** 197.43 ***

I-1-32-5 1646.38 *** 642.59 ***

I-2-32-1 1511.19 35.24 61.49 −74.49
I-2-32-2 1796.56 68.29 15.13 77.84

I-2-32-3 1662.94 30.27 134.07 −342.91
I-2-32-4 1612.75 37.10 140.26 −278.06
I-2-32-5 1648.06 32.81 89.93 −174.09
I-2-34-1 1930.88 45,00 155.36 −245.24
I-2-34-2 1637.79 56.60 152.87 −170.09
I-2-34-3 1546.62 47.31 66.24 −40.01
I-2-34-4 2107.18 101.70 66.22 34.89

I-2-34-5 1984.29 127.34 142.63 −12.01
I-2-36-1 2010.36 60.91 181.98 −198.77
I-2-36-2 1868.11 69.22 186.44 −169.34
I-2-36-3 1835.81 249.41 205.73 17.51

I-2-36-4 1929.86 51.25 86.77 −69.31
I-2-36-5 1765.92 57.06 189.48 −232.07
I-2-38-1 1578.18 176.02 207.58 −17.93
I-2-38-2 2028.24 81.33 333.35 −309.87
I-2-38-3 1800.32 77.75 31.49 59.50

I-2-38-4 1561.61 550.93 268.31 51.30

I-2-38-5 1503.68 110.73 94.20 14.93

I-2-40-1 1711.35 1147.99 327.84 71.44

I-2-40-2 1829.30 433.44 242.30 44.10

I-2-40-3 2017.63 *** 274.43 ***

Table 11 Number of patients’ overnight stays minimization for real-
world instances

Inst. # PO* CPU_N (s) CPU_A (s) CPU_IMP (%)

I1 9 11.58 17.35 −49,83
I2 8 175.04 5.04 97.12

I3 7 3167.83 9.88 99.69

I4 6 1757.45 7.96 99.55

I5 5 *** 10.73 ***

I6 6 *** 133.52 ***

Table 10 (continued)

Inst. ALS* (min) CPU_NF (s) CPU_A (s) CPU_IMP (%)

I-2-40-4 1719.60 *** 315.04 ***

I-2-40-5 1875.18 *** 294.50 ***

I-2-42-1 1724.40 *** 323.98 ***

I-2-42-2 1972.48 *** 122.37 ***

I-2-42-3 1821.43 *** 163.80 ***

I-2-42-4 1697.19 *** 480.33 ***

I-2-42-5 1838.17 *** 315.03 ***

I-2-44-1 1810.43 *** 465.49 ***

I-2-44-2 1726.66 *** 495.14 ***

I-2-44-3 1940.41 *** 376.62 ***

I-2-44-4 1787.09 *** 449.26 ***

I-2-44-5 1729.50 *** 357.855 ***
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5.2.3 Patients’ average length of stay minimization
under patients’ overnight stays constraints

In this last set of experiments, we consider theminimization of
both criteria: patients’ average length of stay and number of
patients’ overnight stays. We apply a hierarchical approach to
solve this multi-objective problem.

Since A_MILP model performs better than NF_MILP
model, according to the two previous experiments, we use it
for the multi-objective problem. Thus, we build the so-called
MO_A_MILP model by appending to A_MILP model
Constraints (42–44) as well as the following constraint (57),

X

j

N j ¼ OP* ð57Þ

where OP* is the minimum number of patients’ overnight
stays.

Constraint (57) enforces the number of patients’ overnight
stays to be equal to its minimum value OP*.

Tables 13 and 14 display the computational results of the
multi-objective model MO_A_MILP for the real-world in-
stances and generated instances, respectively. The first column
indicates the problem instance identification (Inst.). The two
next columns give the optimal patients’ average length of stay

Table 12 Number of patients’ overnight stays minimization for the
real-world instances

Inst. # PO* CPU_NF (s) CPU_A (s) CPU_IMP (%)

I-1-24-1 9 *** 16.18 ***

I-1-24-2 8 *** 15.30 ***

I-1-24-3 6 *** 17.75 ***

I-1-24-4 7 *** 34.63 ***

I-1-24-5 7 *** 37.32 ***

I-1-26-1 8 *** 49.87 ***

I-1-26-2 11 *** 7.18 ***

I-1-26-3 10 *** 55.52 ***

I-1-26-4 9 *** 48.45 ***

I-1-26-5 11 *** 44.96 ***

I-1-28-1 8 *** 288.4 ***

I-1-28-2 11 *** 232.66 ***

I-1-28-3 10 *** 74.21 ***

I-1-28-4 10 *** 425.28 ***

I-1-28-5 12 *** 67.7 ***

I-1-30-1 11 *** 131.76 ***

I-1-30-2 *** *** *** ***

I-1-30-3 11 *** 126.46 ***

I-1-30-4 *** *** *** ***

I-1-30-5 12 *** 3044.28 ***

I-1-32-1 11 *** 832.70 ***

I-1-32-2 9 *** 980.91 ***

I-1-32-3 11 *** 364.12 ***

I-1-32-4 *** *** *** ***

I-1-32-5 *** *** *** ***

I-2-32-1 11 226.00 41.12 81.81

I-2-32-2 8 3279.75 151.01 95.40

I-2-32-3 10 28.89 109.44 −278.82
I-2-32-4 10 393.23 42.32 89.24

I-2-32-5 11 292.66 125.56 57.10

I-2-34-1 13 761.46 49.31 93.52

I-2-34-2 12 3077.31 73.64 97.61

I-2-34-3 10 *** 128.56 ***

I-2-34-4 14 3204.27 156.94 95.10

I-2-34-5 15 43.47 58.34 −34.21
I-2-36-1 15 1859.97 185.63 90.02

I-2-36-2 13 2238.14 148.94 93.35

I-2-36-3 14 2974.97 74.81 97.49

I-2-36-4 11 *** 221.04 ***

I-2-36-5 13 3456.24 210.17 93.92

I-2-38-1 13 *** 269.16 ***

I-2-38-2 12 *** 256.49 ***

I-2-38-3 12 *** 245.03 ***

I-2-38-4 12 *** 213.43 ***

I-2-38-5 13 *** 915.52 ***

I-2-40-1 16 *** 325.02 ***

I-2-40-2 13 *** 434.15 ***

I-2-40-3 14 *** 314.86 ***

Table 12 (continued)

Inst. # PO* CPU_NF (s) CPU_A (s) CPU_IMP (%)

I-2-40-4 13 *** 442.08 ***

I-2-40-5 17 *** 928.68 ***

I-2-42-1 14 *** 387.94 ***

I-2-42-2 15 *** 395.1 ***

I-2-42-3 18 *** 389.46 ***

I-2-42-4 13 *** 545.42 ***

I-2-42-5 13 *** 922.87 ***

I-2-44-1 13 *** 408.24 ***

I-2-44-2 13 *** 2.73 ***

I-2-44-3 13 *** 524.52 ***

I-2-44-4 15 *** 621.92 ***

I-2-44-5 *** *** *** ***

Table 13 Multi-objective solutions for the real-world instances

Inst. MO_ALS* (min) MO_CPU (s) GAP_ALS (%)

I1 1522.80 2.33 −0.009
I2 2051.50 2.80 0

I3 1683.31 7.91 −0.001
I4 1525.57 13.68 0

I5 1358.48 17.79 0

I6 1585.66 53.57 0
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in minutes (MO_ALS* (min)) and the CPU times in seconds
(MO_CPU (s)). The last column indicates the gap between the
patients’ average length of stay (MO_ALS*) obtained by the
multi-objective problem MO_A_MILP and its minimum val-
ue (ALS*) provided by the A_MILP model.

GAP ALS %ð Þ ¼ ALS*−MO ALS*

ALS*
� 100 ð58Þ

In Tables 13 and 14, +++ indicates instances for which the
minimum number of patients’ overnight stays OP* is un-
known; and *** indicates unsolved instances within 1 h of
computation time.

Tables 13 and 14 provide empirical evidence that A_MILP
based models perform very well. Table 13 shows that all the
real-world instances are optimally solved within less than
53.75 s. For the generated instances, the results of Table 14
indicate that, within the pre-set CPU time limit of 1 h,
MO_A_MILP model provides optimal solutions to 81.7 %
of the instances while requiring a CPU time of 140.27 s in
average, ranging from 36.67 s to 524.52 s. Moreover, the
solution of 8.3 % of the instances is not considered because
we do not have the minimum number of patients’ overnight
stays OP*.

Besides, appending constraints on the number of patients’
overnight stays has a little impact on the patients’ average
length of stay. Indeed, for 89.8 % of the generated instances,
patients’ average length of stay (MO_ALS*) provided by the
hierarchical approach is equal to its minimum value (ALS*).
For the other instances, patients’ average length of stay is
increased by only 0.04 % in average.

6 Conclusions and future research

In this work, we focused on the optimal solution of the
Integrated Elective Surgeries’ Scheduling Problem

Table 14 Multi-objective solutions for the generated instances

Inst. MO_ALS* (min) MO_CPU (s) GAP_ALS (%)

I-1-24-1 1705.38 16.76 0

I-1-24-2 1751.21 37.68 0

I-1-24-3 1383.17 32.78 0

I-1-24-4 1485.54 3.52 0

I-1-24-5 1522.80 23.33 0

I-1-26-1 1753.92 39.78 0

I-1-26-2 1630.77 38.46 0

I-1-26-3 1521.46 10.82 0

I-1-26-4 1618.35 77.76 0

I-1-26-5 2057.69 13.76 0

I-1-28-1 1709.04 43.71 0

I-1-28-2 1576.75 58.52 0

I-1-28-3 1462.36 61.43 0

I-1-28-4 *** *** ***

I-1-28-5 1838.75 49.67 0

I-1-30-1 *** *** ***

I-1-30-2 +++ +++ +++

I-1-30-3 1782.10 99.89 0

I-1-30-4 +++ +++ +++

I-1-30-5 1582.63 362.72 0

I-1-32-1 1594.50 259.31 0

I-1-32-2 1475.63 562.45 0

I-1-32-3 *** *** ***

I-1-32-4 +++ +++ +++

I-1-32-5 +++ +++ +++

I-2-32-1 1511.19 56.36 0

I-2-32-2 1796.63 13.57 −0.003
I-2-32-3 1662.94 34.84 0

I-2-32-4 1612.75 13.47 0

I-2-32-5 1649.94 77.66 −0.11
I-2-34-1 1930.88 54.69 0

I-2-34-2 1637.79 64.46 0

I-2-34-3 1546.62 39.62 0

I-2-34-4 2107.18 162.95 0

I-2-34-5 1984.29 62.64 0

I-2-36-1 2010.36 63.27 0

I-2-36-2 1868.11 56.88 0

I-2-36-3 1835.81 169.43 0

I-2-36-4 1929.86 72.39 0

I-2-36-5 1765.92 21.14 0

I-2-38-1 1578.18 63.58 0

I-2-38-2 2028.24 233.53 0

I-2-38-3 1800.32 181.68 0

I-2-38-4 1561.61 206.72 0

I-2-38-5 1503.68 215.10 0

I-2-40-1 1711.35 329.58 0

I-2-40-2 1829.30 25.70 0

I-2-40-3 2017.63 200.47 0

I-2-40-4 1719.60 274.12 0

Table 14 (continued)

Inst. MO_ALS* (min) MO_CPU (s) GAP_ALS (%)

I-2-40-5 1875.18 287.56 0

I-2-42-1 1724.40 310.09 0

I-2-42-2 1972.48 110.64 0

I-2-42-3 1821.43 311.64 0

I-2-42-4 1697.19 310.74 0

I-2-42-5 1838.17 408.24 0

I-2-44-1 *** *** ***

I-2-44-2 1728.60 524.52 −0.11
I-2-44-3 *** *** ***

I-2-44-4 *** *** ***

I-2-44-5 +++ +++ +++
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(IESSP) that arises in a privately operated healthcare
facility. It consists on scheduling surgery cases over 1-
day period while taking into account four main re-
sources: Hospital beds, operating rooms, surgeons and
recovery beds.

We modelled this problem as a three-stage hybrid
flow-shop scheduling problem with recirculation, re-
source synchronization, dedicated machines, and
blocking constraints. We developed two mixed integer
linear programs that can be efficiently solved using a
general-purpose MILP solver. The first program is
based on network flow model (NF_MILP) and the sec-
ond program is an assignment-based model (A_MILP).
Both models are compact and can be easily extended to
accommodate several specific restrictions of the real-
world healthcare context.

Two objective functions were investigated: patients’ av-
erage length of stay and number of patients’ overnight
stays minimization. First, we tested the two criteria sepa-
rately and then we considered them simultaneously using a
hierarchical approach.

The results of the computational experiments con-
ducted on six real-world instances delivered by
Clinique Ennasr and 60 instances generated randomly
provide an empirical evidence that the assignment-
based model (A_MILP) outperforms the network flow-
based model (NF_MILP). Indeed, within 1 h of CPU
time, A_MILP model gives optimal solutions for all
real-world and generated instances in less than
188.49 s in average, whereas NF_MILP model solves
all real-world instances but only 56.7 % of the generat-
ed instances within 348.37 s in average.

Moreover, the experimental results of the multi-
objective problem validate the proposed hierarchical ap-
proach that minimises the patients’ average length of stay
while setting the number of patients’ overnight stays to its
minimum value. Indeed, patients’ average length of stay
kept its minimum value for 92.5 % of the solved test-bed
instances and has increased by less than 0.11 % for the
remaining instances.

In practice, surgical process times are highly variable
and uncertain. Thus, accounting for this random behav-
iour in patients’ scheduling is crucial. For future re-
search, we aim to develop a stochastic approach based
on the proposed deterministic assignment model
(A_MILP).

Furthermore, in day-to-day operation, surgical pro-
cess times are often subject to disruptions that perturb
the optimized schedules and causes delays and cancel-
lations. Thus, an interesting perspective is to build ro-
bust schedules having less likelihood to be damaged by
unpredicted events. This is a topic of our ongoing
research.
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