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Abstract Healthcare systems are facing a resources scarcity
so they must be efficiently managed. On the other hand, it is
commonly accepted that the higher the consumed resources,
the higher the hospital production, although this is not true
in practice. Congestion on inputs is an economic concept
dealing with such situation and it is defined as the de-
creasing of outputs due to some resources overuse. This
scenario gets worse when inpatients’ high severity requires
a strict and effective resources management, as happens in
Intensive Care Units (ICU). The present paper employs a
set of nonparametric models to evaluate congestion levels,
sources and determinants in Portuguese Intensive Care
Units. Nonparametric models based on Data Envelopment
Analysis are employed to assess both radial and non-radial
(in)efficiency levels and sources. The environment adjust-
ment models and bootstrapping are used to correct possi-
ble bias, to remove the deterministic nature of nonpara-
metric models and to get a statistical background on re-
sults. Considerable inefficiency and congestion levels were
identified, as well as the congestion determinants, including
the ICU specialty and complexity, the hospital differentiation
degree and population demography. Both the costs associated
with staff and the length of stay are the main sources of (weak)
congestion in ICUs. ICUs management shall make some
efforts towards resource allocation to prevent the congestion
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effect. Those efforts shall, in general, be focused on costs with
staff and hospital days, although these congestion sources may
vary across hospitals and ICU services, once several conges-
tion determinants were identified.
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Abbreviations

CapC Capital Costs

CI Confidence Interval

CGSC Costs of Goods Sold and Consumed
CRS Constant Returns to Scale
DEA Data Envelopment Analysis
DMU Decision Making Unit

DSE Degree of Scale Economies
EPE Entidade Publica Empresarial
EU European Union

GDP Gross Domestic Product

GSI Gini’s Specialization Index
HC Hospital Center

HospDays Hospital Day(s)

ICU Intensive Care Unit

InpD Inpatient Discharge(s)

LHU Local Health Unit

LVP Law of Variable Proportions
MP Marginal Product

RTS Returns to Scale

SA Sociedade Anonima

SDH Strong Disposability Hull
SEServ Supplies and External Services
SH Singular Hospital

SMI Service-Mix Index
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SPA Servico Publico Administrativo
StaffC Staff Costs

VRS Variable Returns to Scale
WDH Weak Disposability Hull

1 Introduction

The congestion effect on healthcare systems assumes a par-
ticular importance. By definition, congestion refers to situ-
ations where the reduction of one or more inputs generates
an increase of at least one output. Cooper et al. [1] state
that evidence of congestion is present when reductions in
one or more inputs can be associated with increases in one
or more outputs or, when increases in one or more inputs
can be associated with decreases in one or more outputs,
without worsening any other variable. Most of health man-
agers, policy makers and even the public opinion may think
that an increase of resources will always return an increase
of produced outputs. This is not true in practice as the
congestion phenomenon is not as unusual as it sounds.
Particularly, within a period featured by both the necessity
of resources saving and a growing demand for healthcare,
any inefficiency source (as the inputs-related congestion is)
must be carefully analyzed.

In 2013, about 9.1 % of the gross domestic product (GDP)
was relative to the health sector in Portugal. The healthcare
demand predictions are necessary for the hospital manage-
ment in order to avoid situations such as poor service quality
or inefficiency and congestion, being health care delivery sys-
tems particularly prone to congestion. According to Nayar
et al. [2], hospitals face pressures to maximize performance
in terms of production efficiency and quality, especially due to
difficult financial environment factors, such as expansion of
managed care, changes in public policy, growing market com-
petition for certain services, and growth in the number of
uninsured, [3]. In most situations, clinical practices may be
characterized by intense health resources consumption, e.g. a
large drugs supply, more surgeries and more hospital days
than the necessary, which is not always beneficial for patients,
eventually leading to the congestion phenomenon. That is
why greater expenditures do not imply better quality on health
care outputs.

By definition, the Intensive Care Unit (ICU) service is a
specific internment ward dealing with critically ill inpatients,
i.e. those ones who need for advanced, close and constant life
support for 24 h a day due to their life-threatening illnesses/
injuries (e.g. trauma, multiple organ failure, sepsis, preterm
birth, congenital disorder, birthing complications, cardiac

arrest, acute myocardial infarction, intracranial hemorrhages).
Most patients arriving to the ICU are admitted from the emer-
gency department. After their treatment, patients from the ICU
service(s) are usually transferred to another medical unit for
further care, if their severity of illness is not sufficiently high
to be considered for the ICU.

ICUs account for a considerable amount of hospital costs
across the world with, historically, up to two-fold variation in
risk-adjusted mortality, [4—5]. More recently, Halpern et al. [6]
stated that ICU is the most expensive, technologically ad-
vanced and resource-intensive area of medical care, consum-
ing about 13 % of hospital costs. As a consequence, ICU
should, in general, be earmarked for those patients with severe
and complex illness. According to Portuguese health care da-
ta, we conclude that, on average, a patient in ICU presents
much higher costs than the national average. The ICU services
cost, in Portugal, about seven times (per inpatient) more than a
standard service, defined as the geometric mean of all
Portuguese hospital services’ related unitary costs.
Additionally, Barrett et al. [7] state that critical care costs have
been rising for decades, representing a costly segment of
health care spending. Given these facts and the high severity
of'the inpatients threated in the ICU wards, resources allocated
to ICUs must be managed in the most efficient and effective
ways.

Several studies are devoted to the efficiency measurement
of this service. For instance, Puig-Junoy [8] studied the
Spanish ICUs performance. Some other studies about the
ICU efficiency assessment can be found in the literature:
Tsekouras et al. [9] and Dervaux et al. [10] are some remark-
able ones. The latter uses a robust partial non-parametric and
non-conditional frontier to assess some French ICU services
efficiency. Meanwhile, the former analyses the Greek ICU
services performance and the impact of the “significant
amount of financial resources [that] has been devoted by the
Greek Government and the European Union” to the ICU. That
study uses a bootstrap-based bias-corrected efficiency mea-
surement and the double bootstrap. Spain, France and
Greece have similar demographic and epidemiological patterns
to Portugal.

Several authors have dealt with the congestion phenome-
non in healthcare provision. Table 5 on Appendix A provides
a literature review on congestion measurement and/or on ICU
performance evaluation, as well as some comments/ critiques
on previous literature. For example, Clement et al. [11],
Valdmanis et al. [12], Ferrier et al. [13], Arrieta and Guillén
[14] and Matranga and Sapienza [15] employ an output-
oriented nonparametric method to assess whether some unde-
sirable outputs (e.g. mortality rates) are congesting hospital
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performance. In this case, the congestion is investigated over
the bad outputs and how they could be reduced so as to im-
prove the efficiency and effectiveness of hospitals. In all cases,
radial models were employed, still ignoring the environment
effect, the existence of other inefficiency sources and the pos-
sible existence of data noise. This means that a robustness
analysis over their results is lacking, which may jeopardize
conclusions that could be drawn from there. On the other
hand, they investigated solely the impact of undesirable out-
puts, ignoring the fact that resources may also have a role
on congestion (i.e. congestion over inputs), which is the
way we take in the present study, in line with Simdes and
Marques [16]. This seems to be the most appropriate route
within a period of resources scarcity, which in turn may
have a considerable impact on ICU management and on
the capacity and ability to treat highly critical ill patients.
Quotes like “the more, the better” are common among the
public opinion and healthcare managers but usually they
are wrong precisely due to the congestion effect. This
effect may then jeopardize the quality of care, in particular
the one in ICUs. Ensuring the best resource allocation at
the same time people’s lives are saved is a hot topic in
ICUs management. Since the congestion is an inefficiency
parcel it must be mitigated. Although the congestion of
ICUs has been previously studied under queuing theories,
e.g. [17-18], so far no study has neither simultaneously
employed a bias-corrected environment-based nonparamet-
ric congestion model, with both radial and non-radial
(in)efficiency measures, concerning the ICU services, and
identified the main sources of such phenomenon, over a
strong statistical background, nor investigated the impact
of the environment on ICU congestion. This paper then
tries to overcome those faults, with an empirical application to
the Portuguese ICU case.

This study is structured as follows: section 2 presents
some different ways to measure congestion and its sources;
section 3 presents the sample, the variables and the methods
for environment and biasing adjustment; in section 4 we
present and discuss the main results; finally, section 5
concludes this study.

2 Measuring the congestion levels and sources

2.1 Measuring the efficiency through non-parametric
methods: an overview

The assessment of technical efficiency employing non-
parametric linear envelopment of the data dates back to
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Farrell’s work, [19]. Charnes et al. [20] introduced the
Data Envelopment Analysis (DEA) estimator of techni-
cal efficiency. The technical efficiency of each decision
making unit (DMU) is obtained through the comparison
by distance with an efficient frontier formed by the best
practices, [21], which use the lower level of inputs for a
given output level, or produce the higher output level
for a given level of resources. A DMU is an entity to
be compared with others in similar conditions and pro-
duces the same kind of outputs from the same kind of
resources (usually, in different proportions).

DEA has become the dominant approach to efficiency
measurement in health care, as well as in many other
sectors of the economy, such as education or justice,
[22]. Ruggiero [23] and De Witte and Marques [24] point
out several advantages of nonparametric methods over the
parametric ones, such as the possibility of multiple inputs
and multiple outputs inclusion and the fact that a priori it
is not necessary to define the frontier shape. As a matter
of fact, unlike the parametric approaches, where the
analysis is driven by economic theory, DEA is a data-
guided approach, [25]. Regarding health care, the tech-
niques used are mainly based on DEA, [26], which is
consistent with the economic theory underlying the op-
timizing behavior, and the frontier deviations can be
interpreted as inefficiency and there are several ways
to overshoot the noise. These are the reasons why DEA is
considered hereafter.

The following DEA radial model, Eq. (1) [f—model], can
evaluate the (in)efficiency of a specific DMU, concerning
the production of s different outputs, y, €R’_ op 7= L.,
using m different inputs, x;€R”, i = 1..m, [27-29], and
under the potential influence of ¥ exogenous variables, z,.
€Ry, h=1... 9. In Eq. (1), € is a non-Archimedean, ¢ ~0,
and p;eR” , and p/eR’ , are slacks (non-radial
inefficiencies) to be optimized by the linear model (1).
The unit DMUj (X0, 0, 20)€R”™ x R” is evaluated
concerning a set of comparable units, €2y, which empiri-
cally determines a conditional frontier. This topic will be
discussed below, see subsection 3.3. This model is output-
oriented, thus 0;2 1.'A DMU is technically efficient if and

! Hereinafter, stars * stand for linear programming models’ variables
optima.
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only if 0; =1, so it cannot increase its outputs without in-
creasing at least one input. However, it
is only strongly efficient concerning the strong
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2.2 Measuring the congestion

By replacing the objective function of Eq. (1) by ﬁg = max
P0sAj

(Bo+eXi_pS) and the second constraint by

Yt e Ve Py = Bovyos We get a weak disposability

s
{80, 1" B Yypy = max Bo+ey bl
’ 30)\1)\7#13?[‘}; r=1 '

output-oriented based model, henceforward S—model, cf.
Eq. (2), [30]. Therefore, the DMU, is strongly efficient
regarding the weak disposability hull (WDH) if and only
if By = 1NV,—;_p; = 0. In this model, 5, keeps the same
meaning as p; in Eq. (1).

It is possible to show that, under the output-oriented frame-
work, f,>3,>1. In view of that, we can construct the output
congestion score, C, on its standard way, as in Eq. (3), [31].
Co < 1 indicates the presence of congestion in the evaluated
DMU, [30-35]. The value of C, indicates the amounts of
outputs that should be increased to reach the non-congestion
situation, so the lower Cj, the higher the congestion level. If
Co=1, the DMU is not congested, i.c., there is absence of
congestion inefficiency. However, even an inefficient DMU
may be non-congested: it is sufficient that it does not belong to
a weak disposability region, i.e., 9; :ﬁ; > 1.

Colby. ) =2 <1 ()
%
Let f,, : R"—R be an aggregation function of ¢ arguments,
e.g. the geometric mean. So, let’s define the following ineffi-
ciency index, Ao, where the optima set (6;, p; ", p ", By, 5,")
eRﬁj{zgfz are obtained by using all ¥ environment variables

and Egs. (1-2):

Ao=7, (x"‘)_s"_*) S, (ﬁ W+ D) ) <1 (4)

Xi0 ez;yro _|_pl+1<
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I Vg py” = 0NV, upf " =57 = 0NGy = By = 1,
then the DMU, is technically efficient regarding the
SDH and A = 1. However, Ag < 1 does not imply that
congestion is present. As a matter of fact, if V,_; ,Spj*

=B = 000, = o = 1N3irpy #0, (25) < 10

1, (ﬂo;voii» ) =1=A¢ < 1 and the DMUj is just techni-
0 0 r

cally inefficient regarding SDH. Only when f (M)

Ooyro+p)

< 1 congestion can be identified, [36]. This means that
the non-radial inputs inefficiency component must be re-
moved from Eq. (4), leading to a congestion composite

index:
* ~+*

No=r, (LRt ) o (5)
00y1‘0 +p}

Ay is comparable to Co (6, 3y). Indeed, if V,__pi* =
b =0, then Ag = Cy (0; , ﬂ;). Still, Ag encompasses both
radlal and non-radial inefficiency sources, so it is a more ro-
bust measure of congestion than Cy (6, 3, ). Additionally, the

ratio A° measures the extension of congestion in the whole

s m
E Uy, — 5 vioXjj + po<0
r=1 i=1
S
E U0y, o = 1
r=1

inefficiency. It is easy to show that f, (x“’ 5 )<1 Eq. (4),

which means that /A\—g <lI.

2.3 Marginal Products and Scale Elasticities

Dual formulation of Eq. (1) is given by Eq. (6), where u,.and v;
represent, respectively, the virtual weights of the 7-th output and
the i-th input, p is a variable that controls for returns to scale
(RTS) (CRS — constant returns to scale, VRS — variable returns
to scale), and € (a non-Archimedean) ensures variables’ weights
are non-zero. Replacing the first constraint of Eq. (1) by
Z;f:l; e, AjXij = Xio is equivalent to unrestraint the inequity
vio>¢ in Eq. (6), [30]. That is, By = min

V10« V0,110 - - - Us0 5 fLg
[Z;”Zlf/ioxig—ﬁo] if ¥y is free in sign, Vi=1...m, cf. Eq. (7),
[31, 35]. In Egs. (6) and (7), u,o and #,, share the same
meaning; the same applies to v, and V. Tiles are utilized
to differentiate them. As usually there is no reason to be-
lieve that one input has a considerable higher impact on
congestion than the remaining resources, no further restric-
tions to Eq. (7) are required. That is, Eq. (7) allows finding
out which input is a congestion source with no further
assumptions.

m
{HO}SDH = Vm_”vmurj}llol'l_'m% Zl VioXi0 ~ Ho o> € (6)
B Vo€
o free in sign<=p,>—o0
i=1l..mr=1..s
J€€

S

r=1

m

E i—1 VioXio ~ fo

B min
{ O}WDH V10 V05810 - - Us0 /Lo
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The Law of Variable Proportions (LVP) states that as the
quantity of one factor increases, keeping the other factors
fixed, the marginal product (MP), or marginal rate of produc-
tion, of that factor will eventually decline after a certain stage,
[32-34]. When the variable factor becomes abundant, the MP
may become negative. Then, the total product (defined as the
total of outputs resulting from efforts of all factors of produc-
tion) decreases if and only if the MP value of that factor be-
comes negative, i.e., when the entity is congested.
Additionally, Sueyoshi [35] demonstrated that the MP be-
tween the i-th input x,; and the r-th output y ,, of DMU,, is
given by Eq. (8). Such formula was derived from the first
restriction of Eq. (7). Under the weak disposability assump-
tion, \7;) can be negative; if this is the case and since
a;“ozs > 0, by Eq. (7), then MP (x,,,y,,,) is negative as well,

m

s
Z ;"yrifz vixg + pT <0
r=1

i=1

Z Z:lr)’ro_z: ViXio + pr=0
r=1 i=1

pg =1+_ max  {pf >y =1
VigeeasVimsll 1y sllsypg —1
u.>e
3,- free in Sign(:nz/iz—oo
pe free in sign<=>pj >~
i=1,...mr=1,...s

i€

which means that the i-th input is one source of congestion
because an increase of such an input reduces the quantity of
the r-th produced output. That is, MP (x,, y,,) <0, such that
MP is computed between the r-th output and the i-th input
reveals the existence of congestion in the unit (x,,,y,,), and
then ﬁg < 9; and A, <1, in other words, the i-th input of
DMU, is congested. In view of that, congestion sources can
be easily identified as those inputs leading to a negative MP
(which, in turn, is consistent with the economic meaning of
congestion).

MP(xi0,¥,9) = ay"“/axio = D"0/_* (8)

Uy

Consistent with the preceding argument, one can easily
compute the corresponding scale elasticity, po, as in Eq. (9),
being pj " given by Eq. (10), [30, 36]*:

po=(ps" +r)/2 )

(10)

Clearly, pj“>p,", which means that if pj" < 0, then
po<0 as well, i.e., the Degree of Scale (Dis) Economies
(DSE) is negative for the DMUy (x;9, V0, Z10)- However,
a DMU can exhibit p, < 0Np >0, which happens
when p," < —pj". Negative RTS exists if and only if
pi < 0=py < 0, [30, 36], ie., MP(xq,y,) < 0opi <
0=p, < 0.

2.4 Weak congestion

The previous approach assumes that, under the conges-
tion phenomenon, a “proportional reduction in all in-
puts warrants an increase in all outputs”, [30], which
is a rather restrictive assumption. Tone and Sahoo [36]

call it strong congestion, so they relax that assumption
and introduce the weak congestion concept, such that
“an increase in one or more inputs causes a decrease
in one or more outputs”, [30]. Strong congestion im-
plies weak congestion, but the reciprocal is not neces-
sarily true, [36]. Because of that, their proposal relies
on a semi-radial (and units invariant) approach, as in
Eq. (11), where ¢ and ¢, are slacks to be optimized,
as before ¢ is a non-Archimedean number and
(xYi0, 3" ) = (Mmﬁ;yro +l~?:r*), i.e., (x;0,5,0) 1is
projected on WDH, cf. Eq. (2), that is (xY,)",) is
efficient concerning the WDH technology (frontier).

2 py™" is achieved by minimizing the linear program in Eq. (10), instead of
maximizing.
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From the {r",...,t/",1;",...,1,"} optima obtained in
Eq. (11), it is possible to construct a ratio measuring the aver-
age improvement in outputs to the average reduction in inputs,
[30, 36], as in Eq. (12), where s and m' respectively represent
the numbers of positive 7" and positive 7", [30]. In short,
such a ratio is a DSE measure for weakly congested units.
Still, sources of congestion can be identified by those slacks,

* * — — % Y
{ef" L} #0.

by

P | R
osn (3 40)/ (w2 )

i=1

(12)

As in Eq. (5), we define a composite congestion index for
weak congestion:

. « +* "

Xii _t'i* /G'r +~r +t;f
Aweak,o :fm( lox_ol >/fs 0o yp
i r0

P Ao (00 + 1)) + 177
= -2
fm( O) /ﬁv( -

: " o NopT 4t
me(l—’—)/fx<1\0'90+70p’ : )51
Xi0 Y

r0

(13)

Where A, is obtained from Eq. (5), p, * from Eq. (1), and
{#f". .}, " .c,"} from Eq. (11). It is worthy to mention
that strong congestion implies weak congestion (Ag<
1= Ayear.0< 1), but even DMUs with no strong congestion
can exhibit weak congestion though, i.e., Ag=1# Ayeur 0=
1. As a matter of fact, Ag = [=>Ayeak0 :fm(lf%) /S

Ooy,0tpi +t : ; ; i i
(—U}VO‘T' th ) which is unitary if and only if
0

P = = 0Nyt = 0NGy = 1, ie., if the
unit is technically efficient regarding SDH. If there is no
weak congestion (A,.x.0=1), then by definition

Vr*l

.....
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Vo1 st =0NViey ut;" = 0, which means that the DMU
(xi0,v,0) is strongly efficient regarding SDH and
{0p=10Y,21_p/ =0} ={8,=10V,—_p/ =0},
and finally, Ag=1. That is, Ayeur.0=1= Ap=1, in other
words, if the DMU, has no evidence of weak conges-
tion, then it is not congested. So, A, ..o defines the
link between the weak and the strong congestion mea-
sures; the ratio A,..x o/Ao gives, then, the extent of
weak congestion in the whole congestion. It is easy to show

that 0 < “se<y,

2.5 Final considerations regarding the congestion models

Input-congestion models have been defined so far. However, a
strategy must be employed so as to check whether DMUs are
effectively congested or not, and if so, whether there are either
strongly or weakly congested, or not. Such strategy is sum-
marized in Table 1.

3 Data and methodological issues
3.1 Sample

For this paper, each DMU is a different ICU service in a specific
hospital. That is, a hospital, which has several different ICU ser-
vices, has several DMUs. A measure of homogenization between
them is required and discussed below. The sample is constituted
by 630 DMU, distributed across 8 years (2002-2009),3 and four
ICU specialties: (a) Polyvalent ICUs, # = 278 DMUs, (b)
Cardiology ICUs, # = 143 DMUs, (c) Pediatric, Gynecology,
Obstetrics and Neonatology ICUs, # = 105 DMUs, and (d)
Surgical ICUs, # = 104 DMUs. Surgical ICUs’ classification

3 We are aware that data can be somehow old. Still, there is no apparent
reason to believe that both congestion sources and the environment im-
pact on congestion could significantly change till the present days.
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Table 1  Strategy
Step Equation(s) Expected results Hypothesis being ~ Condition(s) to not Next step, ~ Next
to be solved tested reject that hypothesis * if that step,
condition(s) otherwise
holds
1 (9-10) PP B DMU is neither 2 4
Po » Py and p, (as a DSE strongly Py >0
S+ 0
measure) ** nor weakly Po =
congested Py 20
2 (1) v e e s ; DMU; is Stop 3
100012 2T P spm technically and ¢t (HO)D{IL
strongly efficient Vv’:”’nizi{cé(fQ 2*})?;
regarding b r =
SDH (then, not
congested)
3 N.A DMUj is . Stop
technically C1(0y)={1 },4 .
. . Jim1._nmax{CI(p;") }>>¢ ,or equivalently,
inefficient : SR Rt
: min{CI(p;”) } ==
regarding SDH, * L
but not { Vr:l,,,serECI (90%0 +pj* )
congested Jiet....mx0€CI (xi0 + p; )
4 5,7 b e s s DMU, exhibits i 5 6
{Bos 101150, V1o Fwpn strong po <0
o congestion Use Ay to assess the strong
Boyio+p, .
Ao =550k congestion level.
oVi0t+Py
5 8) MP(x;0, y10) The i-th inputisa  max{CI(MP(x;y, 1))} <0 Stop N.A.
source of
(strong)
congestion
6 (2, 11-13) B v e s DMU, exhibits .
EZ AT A P el S, weak pg =0
DSE congestion; po <0
A the i-th inputisa Use A, 4.0 to assess the weak
source of congestion level.
weak congestion
if 1,40

%

* CI — confidence interval, 95 %; ¢ is a Non-Archimedean; **. Under this framework, there is solely one output, which means that ﬁg * = Zl’.”:;/i X0,

5

from Eq. (10). Identically, 5," = 1 + min;, ; , o = Y79,

. o
Xjo, which results into p, = %Z;":l (vl. -V; )x,-o, from Eq. (9). That is, the scale elasticity is

basically the relationship between the optimal virtual weights of inputs obtained from maximization and minimization linear problem. *** N.A. — not
applicable; **** The aggregating function f,, is assumed to be the average of its arguments, i.e., f,, (?) =Y g;/m. By means of the present case, as

there is only one output, there is no need of an aggregation function f;

includes “General surgical ICUs” (# = 41), “Neurosurgical
ICUs” (# = 36), “Cardiothoracic surgical ICUs” (# = 9),
“Transplants’ ICUs” (# = 6) and “Burn Units” (# = 12).
Those 630 DMU  are spread over a range of 25 — 40 hospitals
(depending on the year), giving an average of 2 — 3 ICUs per

4 We do not include “work force” variables, such as number of nurses and
doctors, as inputs, once they are multidisciplinary, working in different
hospital dimensions, but the information provided by the official sources
do not allow to disentangle the staff number working in ICU from other
departments.

> All required data for this research is available at the official database of
the Portuguese Ministry of Health, the Central Administration of Health
Systems, cf. http://www.acss.min-saude.pt/, in lawful annual reports of
each hospital, and in http://www.pordata.pt/en/Municipalities.

hospital. Still, the DMU definition remains as the ICU specialty
service.

3.2 Variables

Given, at least, the theoretical financial unsustainability of the
health system and/ or the high financing provided to this de-
partment by most governments, [9], an economic outlook is
desirable. Therefore, the following inputs were chosen, [27,
28, 9-10]*:

i. X; — Costs of Goods Sold and Consumed (CGSC) — ex-
penditures with drugs and clinical materials;

@ Springer
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ii. X, — Supplies and External Services (SEServ) — expendi-
tures with external labor outsourcing;

iii. X3 — Staff Costs (StaffC) — expenditures with staff, in-
cluding salaries and bonuses to physicians, nurses and
other (non-administrative) ancillary staff;

iv. X, — Capital Costs (CapC) — expenditures with techno-
logical asset investments;

v. Xs— (ICU) Hospital Days (HospDays) — total number of
days used by all inpatients treated on the ICU service,
within 1 year, [27], as time is a resource required to pro-
duce the output(s), [10].

Additionally, the following output was chosen, [27, 28,
9, 10]:

i. Y —Inpatient Discharges (InpD) — total number of patients
treated within a specific ICU service (DMU) in a year,
excluding deaths.®

Costs (inputs 1. up to iv.) were all updated to 2009 by using
the GDP deflator. Note that the higher the length of stay
(HospDays), the higher the probability of other diseases ap-
pearance, such as nosocomial infections and pressure ulcers in
bedridden patients, increasing the ICU mortality rate (or, at
least, its associated death probability), as stated by Ferreira
and Marques [28] and Chan et al. [18]. Given the limited
capacity (number of beds) of the service, the higher the num-
ber of (ICU) hospital days, the lower the possible discharges.
That is, HospDays may contribute to the ICU services con-
gestion. We also assume that the remaining inputs are prone to
congestion. Indeed, we have observed a considerable and pos-
itive correlation between all costs and HospDays, which is an
expected result because more inpatient days require more ex-
penses with staff (nurses), drugs and other clinical material.
As aresult, since we suspect that HospDays can be a source of
congestion, the remaining inputs can be either. As a matter of
fact, by definition, if there is an entity producing more InpD
than a specific DMUj, spending fewer resources, say StaffC
and keeping the remaining inputs unchanged, then StaffC is
obviously congested on DMUj, because the production could
be increased at the same time that StaffC would be decreased.
The advantage of using the previously described nonparamet-
ric methods is that we do not need to make strong assumptions
over the inputs; we only assume that it is somehow possible
that they can be eventually congested.

Table 2 contains the descriptive statistics of the main vari-
ables utilized in our analysis, by ICU specialty. As we can
observe, there is considerable resources consumption in
ICUs, but also a huge heterogeneity on both resources

® The adjustment for environment (subsection 3.3) shall be enough for
inpatients complexity accounting, as claimed by Ferreira and Marques
[27].

@ Springer

consumption and outputs production (standard deviations
and averages are quite close). In general, ICUs resource con-
sumption lies essentially on staff costs (StaffC) and costs
with drugs and clinical material (CGSC), while capital
investments and expenses with outsourcing are generally
low compared with the other costs. Surgical ICUs are
responsible for the majority of inpatients treated, being
followed by Cardiology ICUs. Furthermore, if we assume that
the average delay is a measure of the inpatients complexity
(because the higher the average delay, the higher the expected
inpatient needs as well as their own complexity, [38]), as is the
case-mix, then we also observe a significant diversity. As ex-
pected, the most complex services (as Burn Units and
Transplants ICUs) deal with more complex inpatients, which
present a priori higher probability of death, and then require a
higher length of stay.

3.3 Adjusting for internal and external environment
variables

Section 2 has detailed the models to be utilized so as to assess both
congestion levels and sources. However, for the sake of compa-
rability issues, units that create the appropriate reference set are
addressed to 2y, which is computed for each unit
(Xi0, Y0, 200 )ERY X R x RY. It is commonly accepted that
DMUs efficiency must be assessed taking into account the envi-
ronment they face, which in turn may jeopardize/ benefit the units’
performance. By environment we mean both internal (e.g. legal
status) and external environments (e.g. demographic patterns).
Adjusting for the environment allows homogenizing the sample.

The question is how to derive such set {2y. Let’s consider a
generic unit (xj,y,o)€R" x R’ , characterized by + different
characteristics, zy0€ R”, h = 1... 9. These features (variables)
can be either independent, zhuoeRﬁ", h,=1... 9, or dependent,
o 0eR™,  h=1... 9, being ¢ =0,+9, and
Zh0 = {ZhuOUZth}' Let also Khu : NHR[O;” and Ky, : R—
Rjp,1;) be two kernel functions with compact support (e.g.
Epanechnikov), and 4, >0 and 4,,>0 some appropriate band-
widths for those kernels, triggering the comparability between
units for each criterion. In other words, only those DMUs whose
operational environment variables are close to DMU
(Xi0, Y0, 200 )ERY X RS x R” can be utilized to compose the
latter reference set, €. This reference set is, then, achieved by a
global kernel function, as discussed below.

Under a multivariate framework, i.e., >0, it is common to
assume that environmental variables share no dependence be-
tween them, so a natural choice for the global kernel, K : R’ —
Ry, 13, would be the product of all univariate kernels, K, : R —
Ryo: 13, [27], as in Eq. (14), being

W= {up;h = 1.9} = {“;%h = 1...19}e1R<19.
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Table 2 Variables basic statistic, per ICU specialty. Values are presented in the form “average + std. deviation” and costs (CGSC, SEServ, StaffC and CapC) in thousand €

AvDelay *

X; (StaffC) Xy (CapC) Xs (HospDays)

X, (SEServ)

X, (CGSC)

Y (InpD)

ICU Specialty

11.48 £9.78
457 +£3.57

2983.47 +£2760.94
2075.50 £ 1175.20
3388.45 +£2953.04

120.39 + 168.04
74.93 £192.80
70.25 + 69.46

816.67 + 746.74 108.87 £+ 110.06 1519.15 £1355.10
608.74 +405.18

545.56 + 891.16
307.91 £216.41

360.04 +394.47
611.45+425.42

Polyvalent ICUs

104.25 £ 134.85
98.48 +135.78

Cardiology ICUs

11.48 £9.86

1249.42 +913.96

491.48 + 1157.69

Pediatric, Gynecology, Obstetrics

and Neonatology ICUs
General surgical ICUs

545+933
7.76 £7.77

2330.73 £ 1048.27
3153.78 £ 1575.25

2256.89 £ 993.61

226.63 +429.94
46.39 +32.32

935.31 +£451.83
932.31 +546.34
751.97 £411.80
319.93 +164.80
853.94 +232.28

58.99 +39.73
36.44 + 38.29

504.82 £ 281.97
478.26 +249.26

807.15 £ 616.02
576.81 +386.92
605.33 +374.26
94.33 +74.50
89.42 +53.72

Neurosurgical ICUs

9.40 £17.41

173.52 + 348.15
32.19 £ 55.15
71.92 +48.22

11.64 + 14.66
28.86 +38.94
50.15 +£27.31

529.75 £233.19
146.82 + 69.67
464.72 +230.93

Cardiothoracic surgical ICUs

Transplants ICUs

14.06 +£5.10

1083.50 + 770.01
1916.17 + 744.25

2445 +5.52

Burn Units

HospDays/ InpD)

*AvDelay — Average Delay (

9

K(E’) = I Ki(u) (14)

However, it is not always true that environment variables
share no interdependence. Unless their correlation is quite
low, we may take advantage of such dependence. To do so,
we adapt the approach proposed by Daraio and Simar [38],
which can be synthetized as in Eq. (15), where S is the covari-
ance matrix of the ¥ variables u,, and as usual # is the sample
size and [ is the indicator function.

H(diag <7’s*‘7s"*4 RO 2E 1)16 2>2>)
n2(9 +
€[0; 1] (15)

; 16
/ dwl| diag| @S W<,
Jow n?(9+2)

Splitting environment variables into independent (cate-
gorical), u, and depedent (either discrete, categorical or
continous), w, allows us to create a global multivariate
kernel, K : R% x R'ﬂ"—»R[O:l], as follows:

K(u) =

X

- LR 1
/ a7 1 ding " (5) Wt 10 5
R n2(9, +2)

Where W = {th; hw = ]...ﬁw} = {Zhw()—zhwj; hw =1...

9t eR™, W = {uphy = 1...9,} :{H—hz

1...19,,}6]1%’9“, and S only regards the dependent variables.
Kernel functions for independent variables shall be triggered
by a small bandwidth, such that no other units belonging to
different categories can be utilized for comparability issues;
in other words, as those categories are usually defined by
integer values (typically 1, 2, 3...), the bandwidth H}, shall
be lower than 1, ie., H;,€R:0 < H,, < 1; in this work,
we impose Hj, = 0.5, V), —1. 4,, a choice that does not im-
pact on final results, [40]. Finally, the comparability set {2,
for the DMUy: (xi0,¥,0,2n0)€RY x RY x R”, is composed
by only those DMUs verifying K (7, W) > 0.

Hospitals can be classified by different points of view and face
a meaningful environment impact on their performance, [27, 28,
37]. Such environment must adjust efficiency scores, which can
be either internal or external. Similarly, each ICU faces (a) the
same external environment as the whole hospital, and (b) specific
ICU-related environment variables, mostly due to the inherent
complexity of inpatients that ICUs take care. Table 3
identifies and describes the environment variables, either
internal or external, to be utilized in the present study.

The adoption of a single independent categorical variable,
Z1,i.e.,9,=1under the proposed framework (assuming a

@ Springer
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Statistics

Description and comments

Variable name

Table 3 (continued)

Variable

@ Springer

Std. Dev: 42.46

» Demographic related variable (external environment)

Z1o < [82.10; 228.90]

* The aging index is measured by the number of elderly (>65 years old) per 100

youth (0-14 years old)
» From the Grossman’s model, health care expenses commonly increase with age

due to diseases complexity, [27, 28]

*The following ICU specialties were excluded from the sample due to the low number of DMUSs: gastroenterology ICUs, psychiatric ICUs and infectious diseases ICUs. Polyvalent ICUs are, by the
standard international definition, undifferentiated services receiving and treating severely ill patients from various specialties. Depending on the inpatient severity/ complexity level, he can be treated on

Polyvalent or on differentiated ICUs (such as Cardiology ICUs or Surgical ICUs, for inpatients whose illness is more severe/ complex)

**Pgsychiatric hospitals were discarded from the classification of Z, as there are no hospitals of such a kind in our sample

*#*The adoption of the SMI and the GSI as environment variables follows Simdes and Marques [16], the first approach of Ferreira and Marques [27] and Dervaux et al. [10]. In line with Dervaux et al. [10],

this adjustment is able to control for patients’ heterogeneous severity

*##4For these environment variables, data is available per municipality (http://www.pordata.pt/en/Municipalities). Usually, hospitals serve the population of more than one municipality. Eventually, they

may serve a whole district or a specific region (as in the case of General hospitals, like “CH Lishoa Norte”). Therefore, municipal, district and regional data are suitably allocated for ICUs taking into account

the type of hospitals where those ICUs are placed

+The inclusion of these classifications intends only to differentiate hospitals (ICUs) because the underlying reforms have significantly changed the management of the entities. Such inclusion follows the

general and governmental classification of hospitals as well as Ferreira and Marques [27]. For instance, it is not correct to compare hospital centers to singular hospitals, e.g. due to their different scale sizes.

Although these were important reforms, it is not intended to deeply explore their effect on congestion or congestion sources, rather only to check whether they are determinant factors on congestion or not

sufficiently small bandwidth, H;, = 0.5, and a uniform
kernel, K;, ) avoids unadvisable comparisons among
DMUs from different ICU specialties. For instance, by
using the variable Z; — ICU Specialty, DMUs from a
specific ICU specialty are only compared with those
ones from the same very ICU specialty. That is,
‘Polyvalent ICUs’ are not compared with ‘Cardiology
ICUs’, for instance. In other words, the best practice
frontier for each DMU is ICU specialty-specific.

On the other hand, variables such as Z, — Year, Z; — Legal
Status, Z4 — Hospital Type and Zs — Merging Status, are de-
fined as dependent categorical variables to be included in the
multidimensional kernel function as defined in Egs. (15)-(16)
and to enjoy possible interactions they may have between
them and with continuous variables, Zg up to Z,o, so 9,,=9.”

Table 6 (Appendix E) contains the Pearson’s correlation
coefficients for those dependent discrete and continuous envi-
ronment variables. There is a considerable correlation among
some of them, which justifies the adoption of the multivari-
ate kernel of Eq. (16). Clearly, the SMI, Zg, is not corre-
lated with the remaining environment variables as their
effect (as well as the technical inefficiency of resources
consumption) was filtered in the SMI computation, see
Appendix A. Finally, the GSI and the demographic var-
iables show significant correlation among them: hospi-
tals located in urban regions, where the population den-
sity and the purchasing power are higher and the aging
indexes are lower, tend to present more medical specialties.

3.4 Methodological issues

Efficiency under both SDH and WDH is computed by
using the models presented in section 2, and following
a conditional framework imposed by the method pro-
vided in subsection 3.3.°% However, those models do
not provide robust bias-corrected efficiency estimates
due to their deterministic nature, neither do they allow
achieving statistic-based results (such as confidence
intervals) nor doing statistical inference tests over
some hypotheses. Accordingly, we employ the boot-
strap technique, as introduced by Simar and Wilson
[47] and detailed in Appendix D, over a pooled con-
ditional frontier. Such a technique allows obtaining B
(a large number, say B 1000) pseudo-frontiers,
which are close to the true, still unobserved, frontier.
Additional model features include: VRS and output-
orientation, to be in line with the models described

7 This results in This results into 9“‘;/ ; +/__16_2~( 3175, which rep-
resents a bandwidth for the mult1d1me smnaﬁ«%rnel function.

8 The authors, using the software Matlab®, developed all computational
frameworks.
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in section 2.° This study adopts the strategy defined in
Table 1 (section 2). We can make use of bootstrap
iterations to employ a set of statistical tests and check
whether:

(1) Strong congestion levels are not significant across the
entire sample, i.e., Ho1) : p,= = p,= = 0NBy = 0 =
Loy = 1vs Hy) : p,l #5700 B, > g < 1

(2) Both strong and weak congestion levels are similar, i.e.,
Hoy: Mo = Ayeak.0 VS Hi): Ao> Ayeak .0

(3) Weak congestion levels are not noteworthy, i.e.,

Ho) ifm(lfi) =A0‘93+A0'P;% Vs Hy3) : fon

Xi0
4 * ) Nop 4
(1) < Agiy + brtor”

Yro

Let’s define the following general tests to evaluate the
second hypothesis'®:

Tb:jw; T"”“ZM (17)
£, (a) £a(A)

Where, as before, f, is an aggregating function of n argu-
ments (# is the sample size). The p-value utilized is as follows:

B
1
p:E-E (TP <T) (18)
b=1

Where [ is the indicator function. A very small p (say,
p < 0.05) allows us rejecting the null hypothesis at the 5 %
level. In this paper, as aggregating function, f,, we use the
arithmetic mean, the geometric mean, the median and the
10 % trimmed mean.

Measuring the impact of a specific environment variable
implies running previous models with and without such a
variable, z;,,h=1...1. As there are 10 environment vari-
ables, this means that the aforementioned analysis is conduct-
ed 11 times. Furthermore, let Ay(z) (resp. A(2\z,)) be a con-
gestion index computed by using all environment variables
(resp. The same index computed when z;, is excluded). We
utilize the ratios I'g(z;,) = Ao(2)/Ao(z\z), YVh=6... 10, and
Fwea.k, O(Zh) = Awea.k , O(Z)/Aweak , O(Z\Zh) . Vh=6... 10, to test
whether the continuous variable z;, impacts on congestion.
It is possible to conclude that OI'o(z;)/0z,>0 means that
the higher z;,, the lower the congestion levels.
Nonparametric regressions utilize the Nadaraya-Watson

? Multiple optima (solutions) are not problematic in the present case.
Indeed, our results are consistent with those ones obtained through the
approach proposed by Sueyoshi and Sekitani [31]. However, so as to
avoid a too long paper and to keep the analysis as simple as possible,
those results are not displayed but can be provided upon request.

@ Springer

nonparametric regression method, using Gaussian kernels
and the Silverman’s bandwidth.

4 Empirical Results
4.1 Identifying Congestion levels
4.1.1 Global results of technical efficiency

Table 4 provides the main results of both bias- and
environment-corrected efficiency and congestion measures,
divided by categories. While the 3rd column is devoted to
the whole sample, the 4th column onwards shows the
results of congested units only. Regarding the technical
efficiency, we observe that ICUs are generally highly in-
efficient and they could increase their outputs (InpD) into
about 78 % (= 1—[03}" = 1-[4.5694] '~0.78 ), keeping
their resources unchanged, i.e., ignoring the congestion
effect. This high inefficiency level is prominent on
Pediatric, Gynecology, Obstetrics and Neonatology and
Surgical ICUs, all specialties with similar levels of (in)-
efficiency. Although we can observe that these ineffi-
ciency levels have increased over time, those differences
are not statistically significant according to the Kruskal-
Wallis nonparametric test. Besides, there is no apparent
reason to justify these inefficiency levels based on
criteria like the hospital legal status, merging status or
type, at least at the 1 % significance level; still, these
differences remain on the ICUs specialty basis and their
treated inpatients’ inherent complexity. As a matter of fact,
neither the last hospital reforms (merging and legal statuses)
nor the possible existence of scope and scale economies have
contributed to the improvement of technical efficiency in
ICUs on the period 2002-2009. However, if the sample is
divided into congested and non-congested DMUs, we ver-
ify that the inefficiency is significantly lower on congested
ICUs from differentiated hospitals. Furthermore, non-
congested ICUs on average operate on the increasing RTS
region, as shown in Table 7 (Appendix E).

4.1.2 Global results of congestion

The sample exhibits considerable levels of strong con-
gestion, as shown in Table 4 (7th column) and as
proved by the bootstrap-based test over the hypothesis
Hoyqy 1 py = pr) = 0NBy =0, = leAg = 1. Statistics
7 have returned p ~ 0 for all employed aggregating
functions, which means that the null hypothesis can be
rejected at any significance level. As no output slacks,

19 Mutatis mutandis, it can be easily adapted to the other two hypotheses.
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Fig. 1 Nadaraya-Watson regression of Gamma functions, /o(z¢) and I',..x o(ze), against the Service-Mix Index, zg. T is the Kendall’s correlation

coefficient, * indicates significance at 5 %

p:r:*] and 13,‘:1, have been identified, then Ay, Eq. (5),
and Cy(6y,By). Eq. (3), overlap. On average, congested
ICUs could have increased their production (number of dis-
charges) into about 120 % (= Ay'—1 = [0.4539] '-1=1.20 )
by reducing their consumed resources. 45 % of the sample
was identified as congested. From these, 65 % were weakly
congested and the remaining 35 % strongly congested. As

before, we test hypothesis Ho) : Ao = Ayeax, 0 and Hog) : £,

(1—%) = AO-HE; + W by using bootstrap and, once
again, p-values are close to zero, which allows us to conclude
that weak congestion is effectively lower than the strong
congestion and it is statistically significant. Accordingly,
very low weak congestion coefficients were obtained, re-
vealing that weakly congested ICUs show considerable con-
gestion levels and, as consequence, there is a huge room for
inputs management improvement and costs savings. This
fact is consistent with the average DSE value found for
weakly congested ICUs, —3.5178 (Table 7, Appendix E),
i.e., about 7 new discharges could have occurred by an
average decreasing of inputs of 2,000€ (on costs) and/or 2
hospital days.

4.1.3 Determinants on congestion levels

Categorical and discrete environment variables The ICU
specialty is clearly a determinant on both technical efficiency

and congestion. As a matter of fact, the splitting of the sample
on those specialties has proven to return different efficiency
and congestion distributions by the Kruskal-Wallis test. In
view of that, we conclude that Cardiology ICUs are the
DMU s presenting the lowest both strong and weak congestion
levels. They are followed by Polyvalent ICUs and Surgical
ICUs, ex aequo.

Time did not show to be a determinant on conges-
tion, either strong or weak, at least at the 1 % signifi-
cance level. That means that congestion distributions do
not significantly change over time and we can expect
that those significant congestion levels may keep it up
in present days.

As the time, the legal status of the hospital where the
ICU(s) is(are) placed has no significant impact on con-
gestion distributions, so it is not a determinant of con-
gestion. Likewise, neither the hospital type nor the hos-
pital merging status is congestion determinant. As in the
efficiency case, these Government reforms have not pro-
duced yet the desired outcomes, in terms of resources
wastefulness reduction and as expected the New Public
Management system, the philosophy under which those
reforms were made.

SMI Figure 1 shows the Nadaraya-Watson nonparametric re-
gression (and the 95 %CIs) of T'y(z6) = Ag(z)/Ao(z\z6) and
Fweak s O(Z6) = AWeak s O(Z)/Aweak s 0(2\16)9 so as to Stlldy the im-
pact of the SMI on both strong and weak congestion measures.

@ Springer
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It is evident (and statistically significant) that the higher the
ICU complexity, the lower the strong congestion, which
means that these services (e.g. transplants and burn units)
seem to present a better resource allocation and management
than other, less complex, ICU services. On the other hand, the
SMI has little (though statistically non-null) impact on weak
congestion.

GSI Appendix E contains the Nadaraya-Watson regres-
sions against the continuous environment variables,
h = 7...10, cf. Figs. 2, 3, 4 and 5. Hospital specialty
degree (GSI) is negatively related to strong conges-
tion, as the higher that degree is, the higher the strong
congestion level (this variables seems to have no
meaningful impact on weak congestion levels). This
means that highly differentiated hospitals are more
prone to strong congestion, as we can state by the
comparison among undifferentiated hospitals and on-
cology centers (Table 4), such that the latter (more
differentiated) present slightly higher congestion levels
than the former, though those differences are not sta-
tistically significant by the Kruskal-Wallis test, which
can be attributed to the fact that undifferentiated hos-
pitals present a considerable range on GSI. For in-
stance, general hospitals deal with the most complex
cases (in terms of illness) and present the highest ser-
vices complexity (given by the SMI), but still they are
quite undifferentiated (low GSI), and then they are
less congested than differentiated hospitals. That is, both
results from SMI and GSI are consistent.

Population density The population density only affects
the weak congestion. The higher that environment vari-
able is, the higher the weak congestion levels. Rural
regions usually present low population density and their
hospitals typically present less complex services (low
SMI). On the other hand, urban regions, like Lisbon and
Oporto, have a set of highly differentiated hospitals (e.g. on-
cology centers), Table 6 (Appendix E), which, by the previous
subsection, are prone to congestion. These results seem to be
consistent with previous findings.

Wealth index Like the SMI, the higher the wealth index,
the lower the congestion levels. The fact that this index
and the population density are positively correlated,
Table 6, could lead to different conclusions. However,
by the Grossman model, [48], we can expect that
wealthier populations have higher education levels, so
their health relies on prevention rather than on treat-
ment. In other words, it is expected that their illness
and probability of unexpected mortality is lower than

@ Springer

those ones on poorer people, and a priori consume less
resources and require lower levels of treatments on dif-
ferentiated care (say higher prevention, less cancers),
which are more prone to congestion.

Aging index The aging index, as the SMI and the wealth
index, does impact on both strong and weak congestion
levels. The higher that index is, the lower the conges-
tion in ICUs. As a matter of fact, the aging index and
the population density are negatively correlated, see
Table 6, i.e., aging populations tend to be located in
rural areas, so the hospitals where they are treated do
not have highly complex ICU services such as trans-
plants and burned units, and then are more congested
as predicted by the SMI impact. When these (elderly)
patients need highly complex ICU treatments, they are
transported to urban general hospitals.

4.2 Identifying Congestion main sources

So as to identify the congestion sources, we compute
the MP for each input. As there is only one output,
Eq. (8) reduces to MP(xi,19) = V1oV, i = l...m, a
quantity that is negative when Ell-:l,,,mfzz) < 0, revealing
the existence of congestion. Table 8 (Appendix E) sum-
marizes the MP values (10 % trimmed means) by dif-
ferent categories. Note that under the strong congestion,
all inputs are strong congestion sources, so the results in
Table 8 regard only the weak congestion cases. These
results shall be interpreted as follows: keeping the re-
maining inputs unchanged, the increasing of 1 HospDay
or 1,000€ on a specific cost-related input will raise
(resp. Decrease) the no. discharges by a ratio equal to
MP(x,0, ¥10), if it is a positive (resp. Negative) quantity.
For instance, and taking the global results, an increase
of 1,000€ on medicines and clinical stuff (CGSC) will
increase, on average, the number of discharges by about
18 inpatients. Likewise, the decrease of 2 hospital days
will likely increase discharges by about 3 inpatients.
This shows that the length of stay in ICU is its main
congestion source, being relevant in ICU specialties
such as Cardiology and Surgical ICUs. In these cases,
the decrease of 1 HospDay would increase the number
of discharges by 4-5. This is an expected result as the
input HospDays strongly depends on the beds availabil-
ity and the average delay, which assumes considerable
values in ICUs due to the required level of care.
Accordingly, we recall and confirm our assumption that
HospDays contributes to the services congestion as it
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likely potentiates the appearance of other diseases, like
nosocomial infections.

Costs with staff also exhibit a role on congestion,
although it is weak on average as it would be necessary
an average decrease of about 37,600€ on StaffC to in-
crease only one InpD, which in practice is not likely.
However, its role becomes meaningful on Polyvalent
ICUs and Pediatric, Gynecology, Obstetrics and
Neonatology ICUs, on Oncology centers and on EPE
hospitals, which came into force in 2005. We also ob-
serve that from 2005 onwards, StaffC becomes the most
important congestion source instead of HospDays.
According to Ferreira and Marques [28], the corporati-
zation reform (legal status) “refers to the application of
private management tools to the public sector”, so EPE
hospitals are more autonomous on human resources
contracting. This freedom is perhaps the reason why
StaffC is a congestion source. On the other hand,
HospDays is no longer a major source of congestion
in ICUs of EPE hospitals, which means that the intro-
duction of such private management rules on corporat-
ized hospitals may have imposed the reduction of the
average delay, even in ICUs. So, unnecessary and even
harmful HospDays were reduced to a minimum.

Furthermore, StaffC and HospDays are highly corre-
lated (T = 0.5067), so the higher the inpatients illness,
complexity and severity, the higher the hospitalization
time and the costs with doctors and nurses. But as there
is a surplus on HospDays, the same applies to StaffC.
This also seems to justify why StaffC is a congestion
source in hospital centers, as the (horizontal) merging
reform did not change the staffing quantity; rather some ser-
vices were closed so as to explore potential scope and scale
economies. In ICUs, this appears to show a perverse effect,
exhibiting some staff surplus.

Finally, it is worth to mention that CGSC, SEServ and
CapC are not meaningful sources of congestion in ICUs, re-
vealing a good management of clinical stuff (including med-
icines), outsourcing and capital investments. These three var-
iables may also contribute to the improvement of ICUs pro-
duction, due to their considerable positive MPs.

5 Concluding remarks

The main objective of the paper is threefold: firstly, to
achieve the bias- and environment-corrected congestion
of ICUs; secondly, to check whether any of those envi-
ronment variables, either internal or external, are deter-
minants of congestion; and thirdly, to verify which (if

any) of the inputs exhibits signs of congestion source.
Considerable and statistically significant congestion
levels were identified, meaning that ICUs management
shall be careful in resource allocation so as to prevent
the congestion phenomenon and improve the production
(in this case, the number of alive inpatients leaving the
ICU to other hospital services). This resource allocation
shall focus on the dimensions identified as congestion
sources: costs with staff and hospital days. The remain-
ing inputs seem to be well managed in terms of con-
gestion, but still they can exhibit some other signs of
inefficiency. Nevertheless, they do not seem to negative-
ly affect the number of discharges of ICUs. Clearly,
both congestion levels and sources are dependent on
some determinants, including the ICU specialty, the
ICU complexity, the hospital differentiation degree and
the demographic patterns of the population. This means
that these factors shall also be taken into account by the
ICU management on such a resource allocation process.
Despite the relative database seniority, it was shown that
time is not a determinant of congestion levels, meaning
that it is expected that congestion levels remain slightly
unchanged at present and some results can be inferred
regarding the current days. This clearly must be con-
firmed by using a more recent database.

Finally, it shall be mentioned that this study, like any
other, is not absolutely flawless. An important issue that is
left for further research includes the adjustment of inpa-
tients by their probability of death at the ICU entrance.
However, our model is adjusted for environment which,
according to Ferreira and Marques [27], mimics the inpa-
tients complexity and avoids the heterogeneity among
ICUs. Needless to say that for a more recent database this
kind of data shall be included and this hypothesis con-
firmed. Additionally, no quality data has been considered
in this study. Unfortunately such information does not ex-
ist neither for the ICU services nor for the considered time
period (2002-2009). Nevertheless, we believe that quality
assumes a really important role in ICU services (and hos-
pitals, in general) performance; therefore, the inclusion of
quality data (such as in-ICU mortality rates) shall be a hot
topic for further research.
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Identifying Congestion levels, sources and determinants on intensive care units 369

Service-Mix Index

The inefficiency-corrected SMI for the ICU service (DMUj)
defined by the pair (xj,y,9)€R3"" can be computed as
follows:

Use Eq. (19) to obtain the optima {§,, p; ", .. s Pt o
and project (x;0, y,0) in the SDH frontier using the transforma-
tion (x'10,3"19) = (8gxi0—p; s y10 +p{ ) R, This pro-
jection removes the technical inefficiency of units. To obtain
2 we follow the strategy proposed by subsection 3.3, consider-
ing all environment variables but Zs (by obvious reasons).

{93717;*1 ...7[7g*7p?r*}51)1-1

n
Z >\ij +P; = Ooxio
j=1
jed
n
. > A =i
. _ j=1
= min bo—<|pl + > p; 0
(10 NP W A 2 0 < ! ; ! | JEQ .
D=1
j=1
JjeQ
)\j,,PTvP;EO
jesi=1,...,5

(19)

1) Re-run the step 1) for all DMUs and obtain the set
4 . 4 4
V= {(levijayvlj) = <90'leij - ‘;Pi ayvu) ER%H

j=1,...,n}.Vonly contains data from the single output
and the first 4 inputs (monetary resources).
4
2) Compute the ratio for the j-th unit §; = (val-j /¥
i—1
Jj =1,..., > which represents the eﬁ‘icienttunjtary cost of
such DMU,. n . ) )
3) Compute B = 11 (é ! / ") , which represents the unitary
j=1
costs’ national average (baseline).
4) The SMI for the DMUj is then SMI,= £,/ %, where

& = (,ixvi0> /¥ 10

Gini’s Specialization Index
The GSI, for the hospital & is computed as follows, [45, 46]:

1) Let Z&be the number of Disease Related Groups (DRG);
2) Sort DRGs by discharges treated, in ascending order;

3) Let D¥ be the number of the w-th DRG group discharges;
4) Letgti=1,..., %1, be the ratio of total discharges

. Z-1
treated by the first i DRGs, i.e., gk = X'_ Dk/ ¥ Dk
w=1

5) Compute GSI; € [0; 1] using Eq. (20).

GSI; = {L_I (%“156)/ ,._I G)}

Bootstrapping

Based on Simar and Wilson [47] and Daraio and Simar [38],
the output-oriented bootstrap algorithm is as follows:

1) Compute the n output-oriented DEA efficiency scores,
under the strong or the weak disposability assumption,
Eqgs. (6) and (7), respectively; for the sake of generality,
let’s suppose we obtain the set of efficiency scores,
®=1{0,j=1, ...,n}, with a standard o, deviation
and an interquartile range ;.

2) Reflect ® and obtain the 2n-length set &' = {2 -6,
2=05 ...,2—0,,01,0,, ...,0,}.

3) Consider only those p DMUs such that 8,>1,b=
l,...,p<n; from &, create the 2p-length set o =
2-01,205, ...,2=0,,01,05, ...,0,} ;P "hasa
standard deviation o and an interquartile range 7.

4) Compute a bandwidth d=(1.06-04-min {O'q)", %}

(2p)*°) /(o).
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5) Randomly (with reposition) draw a n-length sample
from @' (step 2)) and obtain the set

P — {ejj - 1n} with a standard deviation &

and an arithmetic mean m *.

9; + x;—m*

)2

@** — 9;* —

1+ (&

+mristx; = dCi(N(p=0,0 = 1);j=1,..,nm 00"

6) Use a perturbation xj=d- G where

¢j~N(pn = 0,0 = 1), to obtain the set

7) Reflect those n units from ®**, as follows:

. {2—6;* if 63" < 1
J

5] . (22)
0 j otherwise

8) Create the set J** = {(x;,y;/) ERT™: xp =y
Nyy; = yrj%,j =1,...,n}, and re-run Egs. (6) and (7)

to project units in the new frontier and to obtain the
bootstrap-based efficiency scores, under the strong or
the weak disposability assumption, resp.

2.00

9) Repeat steps 5)-8) B times, where B is large, say
B ~ 1,000 iterations.

Let mpg; and o, be the arithmetic mean and the standard
deviation of those B bootstrap-based efficiency score for
unit j. Bias is then bias;~ mp;— 0; and the bias-corrected

10)

DEA efficiency score is 9;- = 0;—bias ;~2-0 —mg;. Still,
this bias correction shall not be performed if |bias)| < o5/4.

Some additional graphics and tables

Please check Figs. 2, 3, 4 and 5, as well as Tables 6, 7 and 8.

Tytrong = —0.4116 *

Gamma function(s)
5

1.00 L

[ — " — -

Tywear = 0.0841 *x

0.75
0.50
0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68
Gini's Specialization Index
Expected (strong) = * *95%CI min (strong) = = 95%CI max (strong) Expected (weak)

Fig. 2 Nadaraya-Watson regression of Gamma functions, I(z7) and I3,..x.0(z7), against the Gini’s Specialization Index, z7. T is the Kendall’s
correlation coefzoficient, * (resp. **) indicates significance (resp. Lack of significance) at 5 %
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2.00

- -~
- -~ -
-
f” s\N ”’
,“~\ ’f e
175 -~ ~ o _ -
- - ‘\__4’
1.50
2
s
-
o
3 125
E ' Tstrong = 0.0704 *x
5 Lhl & 1
¢ o —T1 1 | —
Twear = —0.2367 *
0.75
—‘-'--—.—-—‘—°_.-.~.~"'--_
-'—.-.—""'_."—.~
0.50
0 50 100 150 200 250

Population Density (inhabi per km2)

(d

—— Expected (strong) = * *95%CI min (strong) = = 95%CI max (strong) Expected (weak)

Fig. 3 Nadaraya-Watson regression of Gamma functions, I(zg) and I, 0(zs), against the Population Density, zg. T is the Kendall’s correlation
coefficient, * (resp. **) indicates significance (resp. Lack of significance) at 5 %

2.00
-~ TS o -
175 | = - -~
~--~__-_____._..____-”r
> 150
NS
3
=
2
S 125 _
E Tstrong = 0.3706 *
5
S oo
Tyweak = 0.2505 *
0.75
0.50
70 80 90 100 110 120 130 140

Wealth Index (Purchasing power)

Expected (strong) = * *95%CI min (strong) = = 95%CI max (strong) Expected (weak)

Fig. 4 Nadaraya-Watson regression of Gamma functions, 1(z9) and I',c. . o(2o), against the Wealth Index, zo. T is the Kendall’s correlation coefficient,
* indicates significance at 5 %
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2.00
_ - - - -
- i -
1.75 | N - -
) \‘——’—‘ ----——-—__v”
1.50
=2
=
-3
]
3
a 125
g Totrong = 02271 *
3
1.00 | St
Twear = 0.1352 =
0.75
- - o == — - - - - = - - - s T TS - - - - .
0.50

80 90 100 10 120 130

Expected (strong)

= * *95%CI min (strong)

140 150

170 180 190
Aging Index (no. elderly per 100 youth)

= == 95%CI max (strong)

200 210 220 230

Expected (weak)

Fig. 5 Nadaraya-Watson regression of Gamma functions, I4(z10) and I,..x 0(z10), against the Aging Index, zj. T is the Kendall’s correlation

coefficient, * indicates significance at 5 %

Table 6  Pearson’s correlation coefficients for the non-categorical environment variables, Z, up to Z;q

ZZ Zé Z7 ZS Z9 ZIO
Z, 1.0000
Zs 0.0490 1.0000
Z; 0.0315 -0.0741 1.0000
Zs 20.0121 -0.0052 0.1547* 1.0000
Zo -0.0079 -0.0055 0.1295% 0.6105* 1.0000
Z1o 0.0092 0.0100 031717 -0.4899° 05157 1.0000

# Statistically non-zero Pearson’s correlation coefficient, 5% level

Table 7 Degree of Scale Economies. Values are presented in the form “average + std. deviation”

Category Not congested DMUs*  Strongly congested DMUs*  Weakly congested DMUs**

ICU Specialty Polyvalent ICUs 2.3527 £2.3984 -1.6245 £ 2.8567 -3.0537 £ 3.0707
Cardiology ICUs 2.2062 +2.8155 -2.2600 + 1.5423 -1.5933 £2.9749
Pediatric, Gynecology, Obstetrics and ~ 3.4541 + 3.1206 -3.5000 + 3.0358 -5.8421 £ 7.4004

Neonatology ICUs

Surgical ICUs 2.5456 +4.3539 -3.8729 + 4.5665 -6.4562 + 23.3604
Kruskal-Wallis p-value 0.0683 0.0721 ~]073 s

Year 2002 2.4536 +2.0036 -0.4400 + 0.0424 -3.6634 £ 5.7779
2003 2.5416 +2.2321 -2.1100 +2.3218 -2.0748 £ 3.1509
2004 2.2580 +1.9033 -0.7550 + 0.8503 -2.8544 £ 5.6561
2005 1.7234 +1.4755 -0.7675 + 0.5864 23,1132 £ 6.2122
2006 2.6471 £3.1901 -3.5222 +£2.8134 -8.4795 £ 25.7100
2007 29541 £4.0797 -3.6225 +3.7837 -3.6577 £ 20.6786
2008 2.6162£3.4313 -3.3150 +2.1626 -3.6737 £5.3991
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Table 7 (continued)
Category Not congested DMUs*  Strongly congested DMUs*  Weakly congested DMUs**
2009 2.5879 +3.0552 -2.5850 + 3.9369 -3.4676 + 8.3689
Kruskal-Wallis p-value 0.4204 0.1534 0.9201

Legal Status SPA hospitals 2.6527 £2.6341 -2.3453 £2.9201 -2.9949 £ 11.0768
SA hospitals 2.5153 £2.1841 -1.6367 £ 1.7198 -3.3890 £ 5.9274
EPE hospitals 2.1520 £ 3.1824 -2.5743 £3.3199 -3.9511 + 14.6341
Kruskal-Wallis p-value 0.027 ] #%#%%* 0.8771 0.9428

Hospital Type Undifferentiated hospitals 23672 £2.9018 -2.4515 +3.1038 -3.8671 £ 13.1227
Maternities 2.6775 £2.3256 N.A. -1.4938 + 1.0863
Oncology centers 3.7150 £ 1.5699 -0.3400+0 -1.4443 £ 1.8188
Kruskal-Wallis p-value 0.1309 0.2615 0.1248

Merging Status

Global results

Singular Hospitals
Hospital Centers
Local Health Units
Kruskal-Wallis p-value

2.5763 +2.6920
1.9682 +3.1379
2.8890 +4.1808
0.0049%%**

2.3834 +2.8745

-2.0912 +3.0119
-3.4069 + 3.2601
-0.1700 =0
0.1009

-2.4075 £3.0927

-3.3894 + 13.0565
-3.7319 £ 12.0284
N.A.

0.6153

-3.5178 £ 12.6430

*As computed by Egs. (9)-(10); ** As computed by Eq. (12); *** Reject the null hypothesis (equal distributions) at both 5 % and 1 % levels; **** Do not
reject the null hypothesis at the 1 % level

Table 8 Congestion sources (10 % trimmed mean of Marginal Products for each input, given a single output (InpD))

Category MP(CGSC, InpD) MP(SEServ, InpD) MP(StaffC, InpD) MP(CapC, InpD) MP(HospDays, InpD)
Global results 18.1447 91.1657 -0.0266 64.2085 -1.5426
ICU Specialty ~ Polyvalent ICUs 0.0573 58.9931 -4.2376 38.4514 0.4776
Cardiology ICUs 34.0936 129.6380 9.7884 94.7073 -4.1157
Pediatric, Gynecology, 23.4305 15.1942 -3.0018 72.0594 -0.1652
Obstetrics and
Neonatology ICUs
Surgical ICUs 30.0661 272.9375 2.1015 56.5756 -5.1755
Kruskal-Wallis p-value 0.0186%** 0.3342 0.0072* 0.6750 0.4312
Year 2002 6.6223 120.3139 21.6736 116.8436 -7.7294
2003 40.8448 49.6468 3.0453 59.0633 -6.0143
2004 5.5706 39.1087 18.4888 96.4398 -7.5332
2005 23.4032 192.0016 -4.4267 130.2893 -2.1478
2006 10.5027 64.6359 -0.9001 51.7045 -0.3385
2007 19.3308 81.7728 -5.8501 31.5438 1.3036
2008 31.4362 90.1111 -6.5503 16.3908 1.3850
2009 20.3511 127.7868 -13.6509 74.4281 2.5048
Kruskal-Wallis p-value 0.8588 0.6507 0.0076* 0.1684 0.0501
Legal Status SPA hospitals 5.2989 117.6459 6.3082 77.2840 -4.1357
SA hospitals 54.3361 12.1758 0.5617 72.0957 -6.3242
EPE hospitals 24.3196 93.1856 -4.7562 55.6677 0.6684
Kruskal-Wallis p-value 0.2260 0.0370%* 0.0400%* 0.2654 0.0279%%
Hospital Type ~ Undifferentiated hospitals 17.1078 87.9799 0.0380 59.9188 -1.1974
Maternities -0.6160 -1.4894 10.5318 82.7765 -4.1285
Oncology centers 215.6307 328.2780 -52.7463 146.8278 -11.0725
Kruskal-Wallis p-value 0.6507 0.5530 0.0162%* 0.2608 0.7010
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Table 8 (continued)

MP(SEServ, InpD)

MP(StaffC, InpD) MP(CapC, InpD) MP(HospDays, InpD)

Category MP(CGSC, InpD)

Merging Status ~ Singular Hospitals 17.1573 62.4545
Hospital Centers 20.7799 194.5607
Local Health Units N.AF#*
Kruskal-Wallis p-value 0.8428 0.3324

0.3335 79.2229 -2.3999
-0.9292 27.8207 -0.1896
0.9215 0.0055%* 0.7000

Bold entries identify the main source(s) of congestion

* Reject the null hypothesis (equal distributions) at both 5 % and 1 % levels; ** Do not reject the null hypothesis at the 1 % level,
*#%4N.A. — not applicable
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