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Abstract This research aims at supporting hospital man-
agement in making prompt Operating Room (OR) planning
decisions, when either unpredicted events occur or alterna-
tive scenarios or configurations need to be rapidly evaluated.
We design and test a planning tool enabling managers
to efficiently analyse several alternatives to the current
OR planning and scheduling. To this aim, we propose a
decomposition approach. More specifically, we first focus
on determining the Master Surgical Schedule (MSS) on a
weekly basis, by assigning the different surgical disciplines
to the available sessions. Next, we allocate surgeries to
each session, focusing on elective patients only. Patients are
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selected from the waiting lists according to several param-
eters, including surgery duration, waiting time and priority
class of the operations. We performed computational exper-
iments to compare the performance of our decomposition
approach with an (exact) integrated approach. The case
study selected for our simulations is based on the char-
acteristics of the operating theatre (OT) of a medium-size
public Italian hospital. Scalability of the method is tested
for different OT sizes. A pilot example is also proposed
to highlight the usefulness of our approach for decision
support. The proposed decomposition approach finds sat-
isfactory solutions with significant savings in computation
time.

Keywords Surgical planning · Operating room
scheduling · Master surgical schedule · Surgical sequencing

1 Introduction

The operating theater (OT), consisting of several operat-
ing rooms (ORs), is one of the most critical resources in
a hospital because it has a strong impact on the quality
of health service and represents one of the main sources
of costs (surgical teams, equipment etc.). Given the patient
waiting list and various information on OT characteristics
and status, OT planning problems consist in deciding the
schedule of surgeries in a given time horizon, with the
aim of optimizing several performance measures such as
operating room utilization, throughput, surgeons’ overtime,
lateness etc.

Surgical cases are carried out in OR sessions. An OR ses-
sion is an uninterrupted time block (typically, half day or
a full day). In the management policy usually referred to
as block scheduling [6], each OR session is devoted to a
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specific surgical discipline. This organizational solution is
often preferred, since having the same type of surgeries per-
formed in a given room during a given time span typically
simplifies the physical handling of equipment and/or mate-
rials. A more flexible solution is the open scheduling
policy [4], in which no pre-specified session-to-discipline
assignment exists, and therefore two cases corresponding to
different disciplines can be scheduled in the same OR ses-
sion. This paper focuses on the block scheduling scenario.
Thus, surgical planning in operating theaters can be seen as
involving three distinct decision steps [19]:

(i) deciding the surgical discipline that will be per-
formed in each OR session (e.g., the OR session
“Tuesday morning–Room 2” is assigned to otolaryn-
gology etc.);

(ii) selecting elective surgeries to be performed in each
OR session;

(iii) sequencing surgeries within each OR session.

Problem (i) is often referred to as the Master Surgi-
cal Scheduling Problem (MSSP), and returns the Master
Surgical Schedule (MSS) [3]. Problem (ii) determines the
Surgical Case Assignment (SCA), and is therefore denoted
as Surgical Case Assignment Problem (SCAP). Problem
(iii) outputs the detailed calendar of elective surgeries for
each session.

Literature on all three above decision levels is wide and
growing, and it has thoroughly been reviewed by several
researchers (e.g., [3, 9, 11, 20, 23]). The three above deci-
sion problems have been addressed by a multiplicity of
approaches. Research focused on either all three levels con-
currently [19], two of them [7, 15, 22], or even single
problems [5, 21, 24]. Some approaches have been designed
to fit specific issues that may or may not be present in
various real-life settings. For instance, Roland et al. [17]
propose a model that incorporates requirements related to
personnel availability and preferences, Augusto et al. [2]
take into account bed occupancy in the wards, Guinet and
Chaabane [10] include various hospitalization and overtime
cost figures. Denton et al. [5] deal with uncertain dura-
tions of surgeries while Holte and Mannino [12] account for
uncertainties in patient demand; i.e., the numbers and types
of surgeries that will need to be scheduled.

In this paper we focus on efficiently solving MSSP and
SCAP, i.e., the first two steps of the decision hierarchy. Our
assumptions are similar to those in the papers by Testi et al.
[20], Tanfani and Testi [18] and Agnetis et al. [1], who pro-
pose an ILP model for MSSP and SCAP, on the basis of the
current state of the waiting list. Their approach consists in
concurrently defining the MSS and the list of surgical cases
to be performed during each OR session of the planning
horizon.

Hospital management often faces situations requiring
to change the OR plan. This might be due to many rea-
sons, at different decision levels. At the operational level,
unpredicted events such as no-shows or emergencies can
make the current plan inefficient or even infeasible. At
the tactical level, OT management may want to evalu-
ate potential changes in planning policies, assessing the
impact of alternative scenarios on efficiency and qual-
ity of service. The main contribution of this paper is to
meet these management needs through an efficient decom-
position approach that addresses MSSP and SCAP sepa-
rately. This approach is compared with the solution of an
integrated ILP model which concurrently solves the two
problems [1]. Our ILP model is slightly different from
the one in [18], since it reflects the objective of certain
hospital managers [1]. In [18] the objective function con-
siders the costs of performing the surgery on a certain
day and the costs of not performing it at all. Instead,
we assign a score to each surgical case in the waiting
list, which accounts for two issues, namely the time spent
since the decision date and the priority of the surgery,
as in [1]. The objective is to determine MSS and SCA
in order to maximize the score of the cases selected for
the next time horizon. Finding the optimal solution to the
integrated MSSP + SCAP may be time-consuming and
may require significant computational resources. This may
not be always compatible with time requirements, when-
ever unpredicted events occur and a new surgical plan
has to be produced. Also, scenario analysis can bene-
fit from a decomposition approach, for a rapid—though
reliable—assessment of the impact of alternative OT man-
agement policies. We will show that the proposed decom-
position approach produces very good solutions in a lim-
ited computation time. This becomes even more impor-
tant when considering medium-to-large operating theatres,
since computation time of integrated models may grow
very fast.

The plan of the paper is as follows. In Section 2 the
considered model is described in detail. In Section 3 the
mathematical formulations and the algorithms are formally
introduced. Computational experiments are illustrated and
discussed in Section 4. Finally, in Section 5 some conclu-
sions are drawn.

2 Problem description

This study focuses on the problem of allocating elective
surgeries to operating rooms over a given time horizon (e.g.,
one week) covering the problems denoted as MSSP and
SCAP.

All elective surgeries are grouped into surgical disci-
plines (e.g., orthopedics, day surgery). The main input
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to the overall planning problem is the waiting list of
each discipline, containing all the case surgeries that
currently need to be performed. For each case surgery,
the following information is specified in the waiting
list:

– Surgery code—identifies the specific type of surgery.
– Processing time—expected duration of the surgery

(including setup times due to cleaning and OR pre-
paration for the next surgery). We assume all these
times to be deterministic; i.e., they are not affected by
uncertainty.

– Decision time—date when the surgery entered the wait-
ing list (i.e., the general practitioner recommended the
surgical treatment).

– Waiting time—days currently elapsed since the decision
time.

– Priority class—surgeries are classified in three priority
classes A, B or C (A being the most urgent), according
to the national regulations on waiting lists management
[13].

– Due date—nominal time by which the surgery should
be performed. It is set on the basis of the decision time
and the priority class.

Cases are carried out in full-day OR sessions each
assigned to a single surgical discipline and the total process-
ing time of the surgeries allocated to each session must not
exceed the session duration minus a given slack. The slack
is used to absorb possible delays and to reduce the chances
of surgeons overtime.

In general, a MSS may be subject to various types of
restrictions, which must be accounted for when planning:

– discipline-to-OR restrictions. Certain disciplines can
only be performed in a restricted set of ORs, due to size
and/or equipment constraints.

– Limits on discipline parallelism. Typically, no more
than k OR sessions of a certain discipline can take place
at the same time, e.g., because only k surgical teams for
that discipline are available.

– OR sessions-per-discipline restrictions. Lower and
upper limits to the number of OR sessions assigned
to each discipline throughout one week can be spec-
ified; e.g., because of workload balancing or other
management rules.

– OR reservation. The hospital management may reserve
one or more OR sessions to certain disciplines every
day.

Notice that the resulting model is flexible enough to account
for several characteristics of the OT, thus being applicable
to different hospitals.

The objectives of the overall problem are twofold:

– Resource perspective—OR sessions capacity and actual
demand should be matched as much as possible, since
both under- and over-utilization of an operating room
are wasteful;

– Patient perspective—In organizational terms, the qual-
ity of service may be expressed by the due date perfor-
mance of the service, which in turn is related to having
cases done within the respective due dates as much as
possible. Alternatively, other proxies of the perceived
quality of service can be accounted for, e.g. including
the satisfaction of preferences about the surgeon and/or
the day of the week.

In general, these two objectives may be partially conflict-
ing, since tightly filling OR sessions may ignore surgeries’
due dates, and scheduling surgeries based on their due date
only may lead to inefficient utilization of ORs. Hence, we
define an objective function that accounts for both these
aspects. Namely, we define the score of each surgery as
the product of the surgery processing time and a coefficient
which depends on how close is the surgery to its due date.
Other patient preference dimensions (like those mentioned
before) could be easily accounted for in the proposed for-
mulation through a proper definition of the score parameter.
Nevertheless, in this paper, we keep the score related to the
surgery due date, following [1]. The problem is to decide the
MSS and the SCA so that the total score of selected cases is
maximized.

3 Formulations and decomposition approach

In what follows, we first present notation and a mathemat-
ical programming formulation (Section 3.1), and thereafter
we present the decomposition approach proposed to solve
MSSP + SCAP (Section 3.2).

3.1 Notation and formulation

In what follows, we denote by S the set of surgical disci-
plines (indexed by s), and by Is the set of surgeries (indexed
by i) in the waiting list of the surgical discipline s. The
expected duration of the i-th surgery of discipline s is Pis .
Let NOT be the total number of sessions available for plan-
ning in one week in the operating theater and J the set
of operating rooms, indexed by r . All sessions have length
Omax (time). Weekdays are indexed by w ∈ {1, . . . , 5},
from Monday (w = 1) to Friday (w = 5) and we denote
by Smin

s and Smax
s the minimum and, respectively, maxi-

mum number of OR sessions to be allocated to the surgical
discipline s in one week. The maximum number of parallel
sessions that can be assigned to discipline s is denoted by



52 A. Agnetis et al.

PSs , while NAs is the set of operating rooms not available
for discipline s.

For the i-th surgery of discipline s, we define a score as
Kis = Pis(W − Ris), where W is the maximum allowed
waiting time for low-priority surgeries, and Ris are the days
to due date (this number is negative for late surgeries). The
notation adopted throughout the paper is summarized in
Table 1.

The overall objective is to select a set of surgeries to be
performed that maximizes the overall score. Such a product
form for the score, frequently adopted in the literature [1,
18], suitably expresses the balance between scheduling long
surgeries and accounting for late surgeries. Notice that using
the maximum allowed waiting time for low-priority surg-
eries W guarantees that urgent surgeries have greater impact
on the objective function and thus the model has more
incentives to select them. Moreover, since in general long
surgeries are more difficult to schedule than short surgeries,
assigning them higher scores (through including Pis in the
product form of Kis) helps ensure they are considered for
the schedule.

We next introduce a mathematical programming model
of the above problem. In the model, xisrw = 1 if the i-th
surgery of surgical discipline s is assigned to OR r for the
day w, and ysrw = 1 if the surgical discipline s is assigned
to OR r on day w.

max
∑

s

∑

i

∑

r

∑

w

Kis · xisrw (1)

∑

r

∑

w

xisrw ≤ 1 ∀i, s (2)

Table 1 Problem notation

Symbol Description

S set of surgical disciplines

s index for surgical discipline in S

Is waiting list of surgical discipline s

i index for surgery in Is

J set of operating rooms

r index for operating room in J

Pis expected duration of surgery i of discipline s

Ris days to due-date for surgery i of discipline s

Kis score for surgery i of discipline s

NOT number of available OR sessions in one week

Omax OR session length

w index for day in a week

Smin
s (Smax

s ) minimum (maximum) number of OR sessions

for discipline s

P Ss maximum number of parallel sessions for discipline s

NAs set of ORs not available for discipline s

W maximum waiting time for low-priority surgeries

∑

i

Pis · xisrw ≤ Omax · ysrw ∀s, r, w (3)

∑

s

ysrw ≤ 1 ∀r, w (4)

∑

w

∑

r

ysrw ≥ Smin
s ∀s (5)

∑

w

∑

r

ysrw ≤ Smax
s ∀s (6)

∑

r

ysrw ≤ PSs ∀w, s (7)

∑

w

∑

r∈NAs

ysrw = 0 ∀s (8)

xisrw ∈ {0, 1} ∀i, s, r, w (9)

ysrw ∈ {0, 1} ∀s, r, w (10)

Constraint (2) states that each surgery can be performed
at most once. Constraint (3) establishes an upper limit to
the duration of the surgical cases assigned to the same ses-
sion. Constraints (4) guarantee that there are no two surgical
disciplines assigned to the same OR at the same time. Con-
straints (5–6) bound the number of weekly OR sessions
assigned to each discipline. Constraints (7) limit the number
of parallel sessions assigned to the same surgical disci-
pline. Discipline-to-OR restrictions are taken into account
by constraint (8).

3.2 Decomposition approach

The mathematical program (1–10) is NP -hard, since even
with a single discipline and when constraints (5–8) are not
binding, the problem reduces to the well-known NP -hard
multiprocessor scheduling problem [8]. Hence, the math-
ematical model introduced in the previous section may in
general require large computation times, even to find subop-
timal solutions. In off-line planning this may not be an issue
for the OT management, but many situations demand for
reduced computation times, e.g., to analyse alternative OR
plans. Therefore, in order to quickly reach good solutions
for MSSP + SCAP, we propose an efficient decomposition
approach. The idea is to address MSSP and SCAP sequen-
tially by first producing an MSS and next, given the MSS as
input, determining the SCA.

3.2.1 Solving the MSSP

The algorithm that produces the MSS works as follows:

(i) given the waiting list of each surgical discipline as
input, for each discipline a number of candidate sets
is quickly generated. Each candidate set consists of a
set of surgeries such that the sum of their processing
times does not exceed Omax .
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(ii) a complete surgical case assignment is temporar-
ily produced by filling available sessions during the
week with candidate sets.

(iii) surgical cases are discarded, and only the MSS is
retained.

In step (i), in order to generate the candidate sets,
we consider the problem of filling a number of bins
(corresponding to candidate sets) of given capacity (the OR
session length) with items (the surgical cases), each having
a given size (the expected processing time of the surgi-
cal case) and a given value (the score associated to the
surgery). We consider Smax

s bins of capacity Omax . Next,
for each surgical case we compute the ratio of Kis over
processing time Pis , and we order all the surgical cases of
discipline s by non-increasing values of such ratios. Hence,
we sequentially fill the bins according to the first-fit rule,
i.e., assigning the current item to the first bin that fits. In
this way, we generate Smax

s candidate sets. For the f -th
candidate set of discipline s, call it csf , we compute the
values vsf as the sum of the scores Kis of the surgeries
in csf .

In step (ii), we select a subset of the candidate sets
generated, to produce a feasible plan. This problem can
be formulated as a min-cost flow problem (Fig. 1) on a
suitable network N (V, A), in which the flow in the net-
work represents the assignment of candidate sets to OR

sessions. We next describe the structure of the network in
detail.

The network N (V, A) has one source node Q and one
sink node R that respectively generate and absorb NOT

units of flow. The remaining nodes do not produce or absorb
flow, and are divided into six different layers, namely: dis-
cipline nodes s (s = 1, . . . , |S|), candidate nodes csf
(s = 1, . . . , |S|, f = 1, . . . , Smax

s ), in-day nodes (s, w)

(s = 1, . . . , |S|, w = 1, . . . , 5), out-day nodes (s′, w′)
(s′ = 1, . . . , |S|, w′ = 1, . . . , 5), room-day nodes (r, w)

(r = 1, . . . , |J |, w = 1, . . . , 5) and room nodes r (r =
1, . . . , |J |). An arc from node i to node j will be denoted
by [i, j ].

From the source node Q, there are |S| outgoing arcs
[Q, s], one for each discipline node. These arcs have a lower
bound on the flow equal to Smin

s . There is no upper capac-
ity nor cost for these arcs. The lower bound on the flow of
these arcs guarantees that at least Smin

s sessions are assigned
to discipline s.

From each discipline node s, there are Smax
s outgoing

arcs to candidate nodes csf , each corresponding to a can-
didate set generated for discipline s. All these arcs have no
cost and they all have capacity 1, which guarantees that each
candidate set is assigned at most once.

From each candidate node csf there are 5 outgoing arcs
(one for each weekday), connecting csf to all in-day nodes
(s, w), w = 1, . . . , 5. These arcs have no upper capacity,

Fig. 1 Example of the min-cost flow formulation
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however the flow on arcs [csf , (s, w)] cannot be greater than
1, since at most one unit of flow enters each candidate node
csf . On each of these 5 arcs, the cost associated to the flow
is −vsf , meaning that vsf is actually gained if candidate
session csf is selected.

Next, there is an arc from each in-day node (s, w) to the
respective out-day node (s′, w′) with s′ = s and w′ = w.
The upper capacity of these arcs guarantees that no more
than PSs parallel sessions are assigned to discipline s in one
day.

Each out-day node (s′, w′) has one outgoing arc to each
corresponding room-day node (r, w) (i.e., such that w = w′
and discipline s can be performed in room r). No costs or
capacities are associated to these arcs.

From each room-day node (r, w) there is an arc
[(r, w), r] to a room node r . Hence, each room node r has
5 ingoing arcs. These arcs have no cost and capacity 1, thus
enforcing that at most one discipline is assigned to each
room on each day.

Finally, there is one outgoing arc from each room node r
to the sink node R with no associated cost or capacity.

The objective function of the min-cost flow model corre-
sponds to maximizing the sum of the values vsf of selected
candidate sets, i.e., assigning to the MSS the most profitable
candidate sets.

We next show that the solution to the min-cost flow prob-
lem generates a surgical case assignment that satisfies the
constraints of model (1–10). Compliance with constraints
(2) and (3) is ensured by the generation procedure of step
(i), which assigns each surgery at most once and produces
candidate sets of total duration not exceeding Omax . Con-
straints (4) are enforced by the capacities of arcs [(r, w), r]
from room-day nodes to room nodes. The capacities of
arcs [Q, s] from the source to discipline nodes take care
of the constraint (5) on the minimum number of sessions.
The constraint (6) on the maximum number of sessions
is enforced by the fact that we only generate Smax

s can-
didate sets for each discipline s in the procedure of step
(i). The constraint (7) on the maximum number of paral-
lel sessions for a discipline s is enforced by the capacity of
arcs [(s, w), (s′, w′)] from in-day to out-day nodes. Finally,
discipline-to-OR constraints (8) are taken into account by
not generating forbidden arcs between out-day nodes and
room-day nodes.

In Fig. 1 an example of an instance with two disciplines
and two ORs is shown. For the sake of clarity, arc capac-
ities are not shown when they are not binding. The only
nonzero cost arcs are those connecting candidate nodes to
in-day nodes. Note that all arcs outgoing a node csf have the
same negative cost −vsf . Observe that in this example, dis-
cipline 2 cannot be performed in OR 1, hence the arcs from
out-day nodes (s′, w′) to room-day nodes (r, w) are missing
for s′ = 2, r = 1 and w = w′.

Finally, in step (iii), once the min-cost flow problem is
solved, the MSS structure is defined by the nonzero flows in
the arcs connecting out-day and room-day nodes, i.e., arcs
[(s′, w′), (r, w)] with w = w′.

3.2.2 Solving the SCAP

It can be observed that solving the SCAP corresponds
to solving s independent multiple-knapsack problems
[16], one for each surgical discipline s, where surgeries
correspond to items and sessions to knapsacks. Each
multiple-knapsack problem corresponds to the following
model for a given discipline s:

max
∑

h

∑

i

Kis · xish (11)

∑

h

xish ≤ 1 ∀i (12)

∑

i

Pis · xish ≤ Omax ∀h (13)

xish ∈ {0, 1} ∀i, h (14)

The decision variables are xish = 1 if the i-th surgery of
discipline s is assigned to the h-th OR session of discipline
s; otherwise xish = 0.

4 Case study and computational results

In this section we discuss the computational experiments
set up for evaluating the proposed decomposition approach
against an integrated mathematical model. More specifi-
cally, in Section 4.1 we introduce the benchmark instances
based on a realistic setting applied to a medium-size Ital-
ian hospital. In Section 4.2 we discuss the numerical results
obtained for our case study, while Section 4.3 proposes a
number of scenarios to better illustrate how our approach
can effectively support the OT manager.

4.1 Experimental design and setting

In our computational experiments, we generated 6 different
sets of benchmark instances. This is done by considering
3 different OT sizes (5, 10 and 15 ORs) and, for each OT
size, 2 different waiting lists by considering 200 or 300 sur-
gical cases for each OR. More in detail, we refer to these
sets as (|J |,β), where |J | is the OT size and β the mul-
tiplier used to obtain the waiting lists (i.e., (5, 200) refers
to instances with 5 ORs and having 1000 = 5 · 200 sur-
gical cases in the waiting lists). For each set (|J |, β) we
generate 10 realizations of each waiting list. The bench-
mark waiting lists are derived from the waiting lists Is of
the six surgical disciplines of a medium-size Italian hospital
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[1] through nonparametric bootstrapping [14]. This consists
in sampling—with replacement—

∑
ns surgeries from the

set
⋃

Is . Therefore, the size of the waiting list of each dis-
cipline is variable even though the total number of surgical
cases is |J | · β. The maximum allowed waiting time for less
urgent surgeries is W = 90 days.

The following description of the setting adopted in
our case study is based on the OT characteristics of San
Giuseppe Hospital in Empoli, Italy. The operating rooms
are all identically equipped, even though two of them (say,
r = 4, 5) are bigger than the others. The OT composed of
5 ORs reproduces a setting based on the real hospital OT,
actually consisting of 6 ORs. However, the OT manager is
interested in testing the performance of this configuration,
assuming that one OR is reserved to surgical activities that
go beyond the planning under study. Then, to generate the
benchmark sets with 10 and 15 operating rooms starting
from the original hospital OT, we replicate each OR two or
three times respectively. Focusing on elective surgeries only,
the weekly surgery plan spans five days, from Monday to
Friday. Each session lasts 11.5 hours. However, to account
for possible delays and/or uncertainties affecting surgery
duration, we introduce a planned slack time of 60 min-
utes, similarly to [1] and in agreement with the OT manager
of San Giuseppe Hospital. The duration of the session is
divided into time units of 15 minutes each, thus resulting in
Omax = 42.

Six different disciplines have been considered: gynecol-
ogy (s = GYN), general surgery (s = GS), otolaryngology
(s = ENT), urology (s = URO), day surgery (s = DS) and
orthopedic surgery (s = ORTH).

A number of constraints included in our setting repro-
duce the OT characteristics of San Giuseppe Hospital,
detailed in what follows. Some disciplines have a set of non-
available ORs. That is, gynecology surgeries should always
be performed in OR r = 1(NAGYN = {2, 3, 4, 5}), and
orthopedic surgeries have to be performed either in room
r = 4 or r = 5. Thus, NAORTH = {1, 2, 3}. Nevertheless,
these ORs are not exclusively assigned to these disciplines.
With |J | = 10 (|J | = 15) the number of unavailable
rooms is duplicated (triplicated). General surgery and ortho-
pedic surgery allow 2 parallel OR sessions (PSGS = 2,
PSORTH = 2), whereas all the other surgical disciplines
do not allow parallel sessions. When considering larger
instances with 10 rooms, the limit is set to 4 for general
surgery and orthopedic and to 2 for all other specialities.
Analogously, when |J | = 15 the limit is set to 6 and
3, respectively. The values of Smin

s and Smax
s are given in

Table 2.
Since the model (1–10) presents symmetries due to the

presence of identical rooms, we add a set of symmetry-
breaking constraints (15) having the only purpose of speed-
ing up computations. Given an arbitrary order among

Table 2 Minimum and maximum number of OR sessions in one week

|J | = 5 |J | = 10 |J | = 15

Smin
s Smax

s Smin
s Smax

s Smin
s Smax

s

GYN 2 6 4 12 6 18

GS 6 10 12 20 18 30

ENT 1 5 2 10 3 15

URO 1 5 2 10 3 15

DS 3 7 6 14 9 21

ORTH 6 10 12 20 18 30

the disciplines s and rooms r , these constraints guaran-
tee that rooms are assigned to disciplines in this order.
For instance, if discipline s has been assigned to the
operating room r , then none of the rooms 1, 2, . . . , r −
1 can be assigned to discipline l in the same day,
if l > s.

ysrw +
r−1∑

k=1

ylkw ≤ 1 ∀s, l ∈ {s + 1, . . . , |S|}, r, w (15)

Notice that in our case study, symmetry-breaking con-
straints are compatible with constraints (8) on discipline-to-
OR restrictions. In general, this may not be true.

Tests have been performed on a 3.2 GHz Intel Core i3
processor with 4 GB of RAM, using OPL Studio 6.1 and the
CPLEX 11.2 MILP solver for the mathematical program-
ming models. We note that the software implementation
of the proposed model is relatively cheap: in fact, it does
not have demanding hardware requirements, and can also
be solved through open-source optimization solvers. This
would certainly promote the adoption of such a tool by
several hospitals. Based on a preliminary experimental cam-
paign, we set the maximum computation time to 60 minutes
for each optimization run of the integrated model, whereas
the decomposition approach is allowed to run for at most 60
seconds to solve MSSP + SCAP. In fact, our preliminary
simulation experiments showed that larger computational
time limits did not provide significant improvements in the
objective function value.

4.2 Numerical results

We now discuss the performance of the proposed decompo-
sition approach on benchmark instances. The main results
are presented in Table 3. Each row of the table reports the
average values over ten realizations belonging to the same
benchmark set. The first column in the table shows the name
of the benchmark set (|J |,β). The next 5 columns report the
performance indices of the integrated mathematical model,
while in the last 5 columns we report the same performance
indices for the decomposition approach. More specifically,
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Table 3 Comparison between integrated and decomposition approaches

(|J |,β) Integrated model Decomposition approach

Objective Gap Empty Scheduled CPU Objective Gap Empty Scheduled CPU

function t.u. surgeries time function t.u. surgeries time

(5,200) 205610.9 0.36 % 1.7 176.7 3600.0 205325.2 0.50 % 1.8 177.8 14.01

(10,200) 411257.3 0.34 % 2.5 364.4 3600.0 411013.8 0.40 % 4.7 364.6 19.29

(15,200) 621655.4 0.38 % 11.7 535.5 3600.0 621803.8 0.35 % 15.5 534.8 29.33

(5,300) 218394.3 0.41 % 2.2 179.7 3600.0 218282.9 0.46 % 1.9 180.2 19.26

(10,300) 437185.2 0.33 % 1.3 354.6 3600.0 436610.3 0.46 % 4.4 355.9 25.28

(15,300) 651406.3 0.45 % 28.7 545.6 3600.0 650779.8 0.54 % 8.6 541.3 30.94

Column 2 shows the value of the incumbent; i.e., the value
zI of the objective function of the current best solution
found by the integrated model at the time when computation
was truncated (after 3600 sec.). Column 3 gives the optimal-
ity gap for the integrated model, i.e., (UB − zI )/zI , where
UB is the upper bound found by the branch and bound algo-
rithm on the integrated model. Column 4 reports the number
of empty time units across the whole week in the incum-
bent solution. An empty time unit is a 15-minute block not
assigned to any surgery. Note that the total number of avail-
able time units is 1050, 2100 and 3150 for instances having
5, 10 and 15 operating rooms, respectively. Column 5 indi-
cates the total number of surgeries scheduled in the week
in the incumbent solution. Column 6 reports the CPU time
required by the integrated model. Column 7 shows the value
zD of the objective function of the solution found by the
decomposition approach. Column 8 indicates the gap with
respect to the upper bound value UB , i.e., (UB − zD)/zD .
Column 9 reports the number of empty time units in the
heuristic solution. Column 10 indicates the total number
of surgeries scheduled in the week in the heuristic solu-
tion. Finally, column 11 indicates the CPU time required
to compute the heuristic solution. A few comments are in
order.

– No overall big differences emerge between the quality
of the solutions provided by the integrated and the pro-
posed decomposition approach. More specifically, in
terms of objective function the two algorithms provide
comparable solutions, with a slightly better perfor-
mance of the integrated approach. The achieved value
of the objective function displays a linear increase as
the number of available ORs increases.

– In both approaches, the optimality gap is very small
(less than 0.5 % on average) and almost independent of
instance size.

– As for the percentage of empty time units, both the
approaches provide an efficient use of the OT. In fact,
the empty time units never exceed 1 % of total available

time units, even in the largest instances. This shows how
both the integrated and the decomposition approaches
are able to effectively exploit the available OT capac-
ity. Also the total number of surgeries is comparable
between the two approaches, showing a linear increase
in |J |.

– Although the quality of the solutions provided by the
two approaches is similar, relevant differences arise
when considering CPU times. In fact, the integrated
approach is always truncated after one hour of com-
putation time, whereas the proposed decomposition
approach only required few seconds to obtain solutions
of comparable quality.

4.3 Illustrative examples

In this section we illustrate two examples in which the mod-
els presented can support the manager in making sound
decisions in very limited time.

The setting is the same of the computational experiments
reported in Section 4.1. More specifically, we consider the
benchmark set (5, 300); so, the current waiting list con-
tains 1500 surgical cases, divided into 6 surgical disciplines.
These are listed in Table 4. When running the proposed
algorithm on these data for a weekly planning horizon, 170
surgeries are scheduled (namely, 34, 50 and 86 cases of

Table 4 Number of surgeries in the waiting lists

Surgical discipline Number of surgical cases

GS 265

URO 128

ENT 110

ORTH 458

GYN 257

DS 282

Total 1500
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Table 5 MSS adopted in the base scenario

Monday Tuesday Wednesday Thursday Friday

r = 1 GS DS URO GS DS

r = 2 DS GS GS GS GS

r = 3 GYN GS DS GYN ENT

r = 4 GS ORTH GS DS ORTH

r = 5 ORTH ORTH ORTH ORTH ORTH

classes A, B and C respectively), and the MSS with NOT =
25 in Table 5 is obtained. We refer to this situation as base
scenario.

4.3.1 Varying the number of OR sessions

A possible situation the OT manager may be facing con-
cerns the opportunity (or, possibly, the need) of varying
the surgical capacity for next week. This can happen for
several reasons. For example, surgical activity may be par-
tially reduced or modified, due to unplanned changes in
personnel availability. This may suggest reducing the total
number of OR sessions. Another possible reason is that the
management may want to evaluate the effects of adding
OR sessions (e.g., on Saturday) to the MSS; to recover
from critical situations or to face an unexpected peak of
demand. In both these cases, the manager is interested
in assessing the impact that one such variation will have
on the number of scheduled surgeries, on due date per-
formance as well as on OR saturation (measured by the
total number of empty time units). All these evaluations
require running the computations for various different set-
tings. The integrated model is definitely suitable whenever
these scenarios can be analyzed well in advance. In practice,
however, similar situations arise at short notice; therefore,
the OT manager is often asked to evaluate such a context
in a short amount of time, providing results within minutes,
not hours.

In Table 6, we denote by S(α) the scenario in which
the number of OR sessions is NOT + α, for α =
{−5,−4, . . .4, 5}. S(0) denotes the base scenario.

– In the face of reduced surgical activity (α < 0), the
managers may accept a given decrease in surgical pro-
duction, e.g., 5 %. This goal is achieved as long as the
reduction of NOT does not exceed 3. One can observe
that the solution obtained for α = −3 plans only 31
surgeries of class A vs. 34 in the base scenario. Actu-
ally, in this respect the solution obtained for α = −1
appears more balanced. From the viewpoint of OR sat-
uration, one observes that in all cases available OR
sessions are fully exploited.

– Suppose now that the OT management wants to
improve specific performance levels, that have been
negatively affected by considerable delays accumu-
lated over previous OR sessions. In particular, accord-
ing to hospital policies, the OT managers want to
schedule 30 more surgeries with respect to the base
scenario. This means that to offset this situation
within one week, according of the data for α >

0, at least α = 4 additional OR sessions (for an
increase of 18.2 % in surgical production) must be
planned in the week. If only half recovery is pur-
sued during this week, the increase in surgical pro-
duction allowed by α = 2 can be deemed already
sufficient.

Observe that, for each of these scenarios, the total com-
putation time required to solve all cases is less than one
minute, and thus compatible with operational and, possi-
bly, real-time decisions. Further, these simulations can be
quickly run several times; e.g., to perform what-if analyses
during operational meetings, thus quantitatively supporting
management intuition and experience.

4.3.2 Varying the bounds on OR sessions of surgical
disciplines

Another possible situation that the OT manager may be fac-
ing concerns the opportunity to reassign some OR sessions
to another surgical discipline, maintaining NOT = 25, as
in the base scenario. This may happen, for instance, when
surgeons from URO, ENT and GYN individually apply for
a leave next (or even current) week. In order to decide
on its approval, the manager must quickly evaluate how a
decrease in the number of sessions for one of these three dis-
ciplines would affect the surgical plan, with respect to the
base scenario. This situation can be easy modeled by vary-
ing the bounds that limit the number of OR sessions of each
discipline.

Running the algorithm based on our decomposition
approach, the results presented in Table 7 are obtained. Each
row refers to a scenario, denoted by S(s), in which one
OR session is removed for each of the three disciplines,
specified by s. The base scenario is denoted by S(). OR
saturation is the same for all three cases and hence is not
displayed.

We observe that, in all three cases, the algorithm reallo-
cates the OR session to GS. This might be due to the fact that
GS has the longest waiting list. Note that while removing
one session for URO or GYN results in an increased overall
number of surgeries and in a decrease of surgeries in class
A, removing one ENT session allows to maintain 34 surg-
eries performed in class A as for the base scenario, even if
the total number of surgeries decreases.
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Table 6 Results obtained by varying the number of OR sessions

S(α) Scheduled % variation Scheduled Scheduled Scheduled Empty

surgeries over the surgeries surgeries surgeries t.u.

base scenario in class A in class B in class C

S(−5) 145 −14.71 % 31 44 70 0

S(−4) 153 −10.00 % 31 47 75 0

S(−3) 162 −4.71 % 31 50 81 0

S(−2) 169 −0.59 % 31 52 86 0

S(−1) 167 −1.76 % 33 50 84 0

S(0) 170 0.00 % 34 50 86 0

S(1) 179 5.29 % 34 51 94 0

S(2) 187 10.00 % 34 53 100 0

S(3) 195 14.71 % 34 53 108 1

S(4) 201 18.24 % 35 54 112 1

S(5) 208 22.35 % 36 60 112 1

Note that the option of removing one URO session
appears dominated by GYN (which allows performing one
more surgery in class B). On the other hand, there is no clear
winner between GYN and ENT options, since in the GYN

scenario 3 more surgeries can be performed, but 5 less of
class A. The manager can then evaluate the most convenient
between these two tradeoffs.

Also in this case the total computation time required to
solve all cases is less than one minute. This appears fully
compatible with the short time typically required to the OT
manager for making similar decisions.

5 Conclusions and future research

In this paper we proposed a heuristic decomposition
approach to determine the master surgical schedule and a
surgical case assignment (MSS + SCA).

Mathematical programming models for tackling
MSSP + SCAP are able to provide optimal or near-optimal
solutions, but their computation times are high. For this rea-
son, we propose a heuristic decomposition approach able to
provide near-optimal solutions in very small computation

time. The approach is based on a two-phase decomposition
in which first MSSP is solved as a minimum cost flow
problem, and then SCAP is solved as a multiple-knapsack
problem. We tested the decomposition approach on several
realistic instances of various OT and waiting list sizes.
The results show that the decomposition approach is very
effective in practice, reducing the computation time by two
orders of magnitude while maintaining solutions close to
optimality. Hence, the proposed decomposition scheme can
also be embedded in a decision support system, as a tool to
perform what-if analysis, or to recompute feasible plans in
the face of unpredicted events. Moreover, our investigation
points out that this tool effectively supports the OT manager
in rapidly evaluating the impact of alternative scenarios on
operational decisions.

Future research may address possible refinements and
improvements of the models and algorithms presented, such
as:

– assessing the impact of model parameters, like the slack
time, on system performances;

– extending the model to consider detailed surgeons’
timetables and bed occupancy;

Table 7 Results obtained by varying the bounds on OR sessions of surgical disciplines

S(s) GS DS URO ENT GYN ORTH Scheduled Scheduled Scheduled Scheduled Empty

surgeries surgeries surgeries surgeries t.u.

in class A in class B in class C

S() 9 5 1 1 2 7 170 34 50 86 0

S(ENT) 10 5 1 0 2 7 169 34 52 83 0

S(GYN) 10 5 1 1 1 7 172 29 51 92 0

S(URO) 10 5 0 1 2 7 171 29 50 92 0
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– including uncertainties (e.g., in surgical case durations)
in the model;

– evaluating even faster approaches in which SCAP is
solved by means of a fast heuristic.
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