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Abstract Evacuation from a health care facility is consid-
ered last resort, and in the event of a complete evacuation,
a standard planning assumption is that all patients will be
evacuated. A literature review of the suggested prioriti-
zation strategies for evacuation planning—as well as the
transportation priorities used in actual facility evacuations—
shows a lack of consensus about whether critical or non-
critical care patients should be transferred first. In addition,
it is implied that these policies are “greedy” in that one
patient group is given priority, and patients from that group
are chosen to be completely evacuated before any patients
are evacuated from the other group. The purpose of this
paper is to present a dynamic programming model for
emergency patient evacuations and show that a greedy, “all-
or-nothing” policy is not always optimal as well as discuss
insights of the resulting optimal prioritization strategies for
unit- or floor-level evacuations.

Keywords Hospitals - Evacuation - Prioritization -
Policy-making

1 Background and related literature

There is limited literature related to health care facility
evacuations. Most facilities are designed with a variety of
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system redundancies in place to protect against the threat
of evacuation. For example, in the event of a fire, patients
in the most immediate danger would likely be evacuated
“horizontally” through fire doors to a safe area of the facil-
ity while the fire was contained. There are, however, a
variety of potential threats that could require a complete
evacuation such as loss of power, flooding, exposure to haz-
ardous materials, or a bomb threat. Such events either pose
a direct risk to patients or could damage the facility’s abil-
ity to provide services. When holding patients in the facility
greatly reduces the quality of care, facility administrators
are faced with decisions about whether to evacuate or shel-
ter in place. Complete facility evacuations are expensive
and can introduce additional risks to patients, and the ques-
tions associated with patient prioritization are highly ethical.
When planning for such an evacuation, it is often assumed
that all patients will be evacuated.

Evacuations necessitated by internal, facility-specific
emergencies present a variety of complex problems: is an
evacuation necessary? When should the evacuation begin?
Which patients can be discharged early? Which patients
would benefit from evacuation, and which patients should
be sheltered in place? In what order should patients be cho-
sen for evacuation? These same questions relate to external,
regional threats, but during such events, there are additional
questions associated with how to best utilize shared, com-
munity resources or how to handle new, incoming patients.
In the event of a community-wide disaster, a health care
facility is expected to be a resource to the affected popula-
tion, and therefore the facility may see a sudden, increase in
patient demands. There are a variety of papers that address
surge capacity and triage for incoming patients (see, e.g.,
[1-6]), but the literature pertaining to health care facility
evacuations is limited (see, e.g., [7-9]). Recently, however,
Bish et al. [10] presented an integer programming model
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to determine patient allocation strategies for transporting
patients to receiving facilities. Their “hospital evacuation
transportation model” minimizes the risks (a function of
the emergency threat and patient transportation) to deter-
mine the number of patients to be transported to each
receiving hospital based on the availability of transportation
resources. While Bish et al. [10] examine how to allocate
patients for transport with the assumption that there are
patients available to satisfy the resulting transportation plan,
we examine the problem by assuming that the transportation
resources are available to satisfy the patient prioritization
plan.

A review of the suggested patient prioritization strategies
for evacuation planning as well as the transport priorities
used in actual health care facility evacuations shows there
is a lack of consensus about whether critical care or non-
critical care patients should be transferred away from a facil-
ity first in the event of a complete evacuation. In addition,
it is implied that these policies are “greedy” policies in that
one of these groups is chosen to be completely evacuated
before any patients are evacuated from the other group. In
these papers, described later in this section, patients are typ-
ically categorized as critical and non-critical care patients.

The purpose of this paper is to examine a model for
unit- or floor-level patient prioritization during emergency
evacuations and discuss implications for selection guide-
lines when patients can be classified into one of two groups:
critical care and non-critical care. We consider the follow-
ing factors as relevant to evacuation decisions: how quickly
patients can be evacuated (inclusive of preparation and
transport times); how quickly patients die while waiting to
be evacuated either according to the death rates associated
with normal operating conditions or because of how the
actual emergency threatens patients; and the likelihood that
a patient could survive transportation. We assign a reward
for an evacuated patient as well as a penalty for a death.

Once evacuation orders are given, it is highly likely that
the number of patients in the facility would be quickly
reduced by as many early discharges as possible. We also
assume that a complete health care facility evacuation would
be carried out by multiple unit- or department-level evacu-
ations occurring simultaneously and that the clinicians that
typically staff that unit or department would be the ones
actually carrying out the evacuation. Finally, this paper
does not address how to handle incoming patients due to a
regional disaster.

During an actual emergency evacuation, transportation
decisions would likely depend on more than the num-
ber and classification of the patients in the system. The
availability of resources and beds at receiving facilities
are likely a large determinant of how patients are chosen
for evacuation. Particularly during a regional disaster such
as the threat of a hurricane, it is likely that evacuation
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prioritization decisions will be very highly dependent on
the transportation resources that can be made available.
Since multiple facilities often have contracts with the same
transportation services, they may therefore be competing
for access to ambulances, buses, and other resources dur-
ing a regional disaster. Reducing the prioritization problem
to a decision based on the number of patients in the sys-
tem, as presented in this paper, is a simplified representation
of the system in practice, but it is the first step in under-
standing the problem. During an evacuation, clinicians and
administrators would be required to make a variety of deci-
sions under uncertainty, continually changing conditions,
and incomplete or limited information. Having understood
and practiced the insights from this research during evacua-
tion planning and tabletop simulations may enable decision
makers to be more comfortable with the patient prioritiza-
tion discussion.

For a more detailed discussion of the literature related to
evacuation prioritization, see [11, 12]. An extensive review
of the literature pertaining to evacuation guidelines and
actual patient transfers shows that there is limited atten-
tion to patient prioritization. The papers listed in Table 1
represent the only papers that, to our knowledge, discuss
the order in which patients should be—or actually were—
chosen for evacuation. Please see [12] for a more detailed
description of these papers. It is important to note that there
are no clearly defined recommendations for whether crit-
ical or non-critical care patients should be given priority
and as such, the policies chosen in actual facility evacu-
ations illustrate this lack of consensus. As these policies
are assumed to be greedy policies, in the case of a lim-
ited evacuation window, such decisions would likely only
allow for patient transfers from that patient group without
giving any opportunity for patient transfers from the other
group.

Because there are no consistent prioritization policies,
we aim to address the following questions in this paper: is
the optimal policy in fact greedy? When should a single
patient group be given priority? What is the effect of choos-
ing a non-optimal policy? While there are no papers that
address these problems directly, there are a variety of papers
that clearly indicate that methods for ethically prioritizing
patients for evacuation would be a beneficial contribution:

“Familiarity with and utilization of a framework for
ethical decision-making may facilitate health care pro-
fessionals in maneuvering through disaster-instigated
ethical dilemmas” from ‘“Disaster Ethics, Healthcare
and Nursing: A Model Case Study to Facilitate the
Decision Making Process” in the Online Journal of
Health Ethics [24].

— “The goals of triage in different environments and
contexts can lead to divergent perspectives of what
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Table 1 Summary of prioritization strategies in the literature

Critical care patients first

Evacuation plans and guidelines

Gray and Hebert [15] - summary of Hurricane

Katrina response

Protocol at Lindy Boggs Meddical Center [15]
Memorial Medical Center after Katrina [18]

Actual Facility Evacuations
California earthquake [9]

TexasMedical Center after Tropical Storm Allison [22]
Charity Hospital after Hurricane Katrina [15]

Center for bioterrorism preparedness and planning [13]

Facilities not in immediate danger after the Northridge,
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Non-critical care patients first

AORNSs guidance statement [14]

New York center for terrorism preparedness
and Planning [16]

Johnson simulation of evacuation risks [17]

Moskop and Iserson discussion of triage [19]

Lach et al. geriatric patient evacuation [20]

Texas Medicals policy until 2005 [21]

Facilities in immediate danger after the
Northridge, California earthquake [9]

Lindy Boggs Medical Center after Katrina [15]

Memorial Medical Center after Katrina [23]

Texas Medical during Hurricane Katrina [21]

constitutes ethically sound decision making,” and “a
system that allows real-time classification of risks and
benefits...would be a great advantage in ethical deci-
sion making” from “Lifeboat Ethics: Considerations in
the Discharge of Inpatients for the Creation of Hospi-
tal Surge Capacity” in Disaster Medicine and Public
Health Preparedness [25].

—  “Advance agreement is needed among key parties about
which patients will be evacuated first. Several disputes
developed over priorities in the days after Katrina.
There was disagreement, for example, over whether the
sickest patients or those more likely to survive should be
evacuated first” from “Hospitals in Hurricane Katrina:
Challenges Facing Custodial Institutions in a Disaster”
by The Urban Institute [15].

—  “Medical and social needs must be considered in trig-
ging evacuees. The traditional medical model for triage
in the U.S. is to treat the most critically injured
first; in an overwhelming disaster situations, health
care providers may shift to battlefield triage prac-
tices in which those with the highest probability of
survival are treated first. Little is known about lay clin-
icians’ abilities to shift paradigms during response”
from AHRQ’s “Recommendations for a National Mass
Patient Evacuee Movement, Regulating, and Tracking
System” [26].

— “The ethical decisions inherent in triage decisions
should not be first considered during a real event.
Rather, they should be rehearsed and discussed long
before they are needed” from “Terrorism and the Ethics
of Emergency Medical Care” in the Annals of Emer-
gency Medicine [27].

The organization of this paper is as follows. We first
present a dynamic programming model that we use to deter-

mine the optimal selection strategy for two patient groups.
The behavior and properties of this model are explored, and
then policy determination and evaluation are discussed. The
paper concludes with a discussion of one possible model
extension and a summary of the research conclusions and
future work.

2 Single server evacuation model

During an actual emergency evacuation event, transporta-
tion decisions would likely depend on a variety of factors
such as the availability of transportation resources, the
availably of beds at receiving facilities, or whether the emer-
gency is regional or facility-specific. For now, we reduce the
prioritization problem to a decision based on the number of
patients in the system to be evacuated. In this section, a sin-
gle team evacuation model is introduced as a tool for patient
selection decisions when patients are split into two patient
classifications.

2.1 Model description

In the event of a planned evacuation (some advanced notice
of the emergency is given), a facility would likely dis-
charge as many patients as possible to reduce the number
of patient transfers. Of those patients that remain under the
care of the staff, patients will be removed from the sys-
tem if they 1) are successfully transported and transferred
to another facility, 2) die during the evacuation transporta-
tion process, or 3) die while they are waiting to be selected
for evacuation. It is assumed that the input parameters are
stationary. In reality, the rates at which patients can be evac-
uated, the rates at which patients die while waiting to be
evacuated, and the probability of a successful evacuation
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are likely to change over time as the evacuation window
decreases. We use the following parameters to model the
system:

i patient type, i = 1, 2.
N; the number of type i patients at the beginning of the
time horizon to be evacuated,

x;(t) the number of type i patients remaining in the
system at time ¢,

Ai the rate at which type i patients can be evacuated,

Di the probability that a type i patient will survive
transport,

o the rate at which type i patients die while waiting to
be evacuated,

M the reward associated with the completed evacuation
of a type i patient, and

lfi the penalty incurred when a type i patient dies

(either waiting or during transport).

Let policy m represent the sequence of decisions, w =
ap, as, ..., that represents the choice for how the evacuation
team should be allocated based on the current state where
ay is the vector of actions taken at each decision epoch.
Let IT be the set of all such policies where (xll‘ , xlz‘) repre-
sents the state of the system at time ny, and a; denotes the
actions taken at time k under policy 7. The resulting n-stage
expected reward, with initial state, (x?, xg) = (x1,x2), is

given by

n—1

k _k k _k
vn(m,xz):E&{’x;) kZOR<x1,x2,ak<x],x2)) , (D

where R() denotes the reward achieved at stage or time k.
This leads to the optimal n-stage expected reward of

vy (x1, X2) = sup vy, (xg, X2). (2)
well

During an evacuation, the teams would choose from
which patient class to evacuate the next patient. This leads
to the following decision at any epoch:

(A1,0) evacuate type 1 next - Policy 1

k= { (0, Ap) evacuate type 2 next - Policy 2 ° 3)

In order to convert this continuous time problem to a dis-
crete time problem, the transition rates are uniformized by
scaling the maximum rate of transition, y. In this case, the
maximum rate of transition is ¥ = Ay + Ay + Nja1 + Noao.
Therefore, the optimality equation for the single server finite
horizon evacuation decision problem is then shown below
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in Eq. 4, where v(x1, xp) represents the long run average
reward.

v(xp, x2) = xaq [ —1x) — 1] +x00 [V(x1, x2—1) —15]
apr [V =1 x)H{ ] +a (1= py) [V —1, x2) =]
+[(N1 — xp)ag + (N2 — xp)az + A2l v(xy, x2),

Aapa [V(x1, xa—1) +1§] +22(1— p2)[v(x1, x2— 1) —14]
+[(N1 —xp)ag + (N2 — x2)az + Al v(xr, x2)

+ max

“

The first two terms in Eq. 4 represent patient deaths while
waiting for evacuation. Based on the number of patients
remaining in the system, a patient death—unrelated to the
evacuation decision but dependent on the normal opera-
tions of the facility or the emergency type—may occur.
When a patient death occurs, the number of patients wait-
ing in the system is reduced and a penalty is assigned.
The final term represents the choice: either evacuate a Type
1 patient or a Type 2 patient. With both choices, there
is a chance of an unsuccessful evacuation, so the num-
ber of patients in the system will be reduced, and either a
reward or penalty will be assigned based on the probabil-
ity of a successful evacuation. In addition, each decision
is associated with a fictitious transition rate as a result of
uniformization.

Assume that patients are categorized as critical or non-
critical care patients (let Type 1 represent critical care
patients and Type 2 represent non-critical care patients). We
assume

— non-critical patients can be evacuated more quickly than
critical patients (A < Ap),

— non-critical patients have a higher probability of suc-
cessful evacuation (p; < p»), and

— critical patients die while waiting at a quicker rate than
non-critical patients (¢ > o).

For the discussion in this paper, it is assumed that the
reward associated with a completed, successful patient evac-
uation is the same for both patient classes, and in addition,
the value is equal in magnitude to the cost of a lost life from
either of the patient classes (either during transportation or
while waiting on evacuation). That is, [{ = [§ = lfl = lg =1.
This assumption follows the utilitarian logic: every patient
counts equally towards the greater good such that no patient
is considered more valuable than another [28, 29].

2.2 Dynamic programming results

The dynamic program was solved using value iteration and
returns the optimal policy for a given set of parameters.
Therefore, the optimal action (which patient type should be
evacuated as a function of the number of each type of patient
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remaining in the system) is returned, and this set of policies
can be classified as one of three types:

— a greedy policy that chooses to evacuate all critical
patients (Type 1) first,

— agreedy policy that chooses to evacuate all non-critical
patients (Type 2) first, or

— a “switching policy” that, at the beginning of the evac-
uation window, gives priority first to non-critical care
patients (Type 2) but switches priority to critical care
patients (Type 1) while there are still non-critical care
patients waiting to be evacuated (see Fig. 1).

Policy diagrams are used to represent which patient
type—Type 1 or Type 2—should be chosen at any com-
bination of (x, x2) patients remaining in the system. The
example shown in Fig. 1 represents a switch from non-
critical care priority (when the number of patients in both
patient groups is high) to critical care priority (when the
number of patients in both groups is low). The initial state
space is represented in the upper right corner of the figure;
for this case, there are 40 patients in the facility awaiting
evacuation. When there are 20 critical care patients and 20
non-critical care patients waiting to be evacuated (x; = 20
and xp = 20), the optimal action is to evacuate a Type 2
(non-critical) patient. The only actions that affect the num-
ber of patients remaining, and therefore position on the
figure, are deaths and evacuations. Above the policy switch-
ing curve (shown as the dashed line between Type 2 to
Type 1 in Fig. 1), evacuations decrease the number of non-
critical care patients remaining (move down in the figure),
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Fig. 1 Sample policy diagram (path depicting a sample set of optimal
actions)
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and deaths can either move the decisions down (when a
non-critical care patient dies) or to the left (when a critical
care patient dies). Below the policy switching curve, evacua-
tions decrease the number of critical care patients remaining
(move left in the figure), and deaths can move the decisions
as previously described.

Let’s assume that there are 20 critical care patients and
20 non-critical care patients in the system to be evacuated.
At this point, the optimal decision is to evacuate a Type
2 or non-critical care patient (represented by the top, right
point on the Fig. 1). The actual policy realization (or “path”
through the diagram) will depend on patient deaths, which
are random events. However, as an example, assume that no
patients die while waiting to be evacuated. The optimal pol-
icy decisions are represented by the continuous arrows on
the diagram. Type 2 patients will be evacuated until there
are only 4 Type 2 patients remaining. At that time, the opti-
mal policy is to switch priority to Type 1 patients. After all
Type 1 patients are evacuated, the final four remaining Type
2 patients will be evacuated.

3 Characterization of the optimal policy

Analytical characterization of the optimal policy was not
possible through functional structures that facilitate prov-
ing that switching curve is optimal (e.g., super-modularity),
but we were able to show concavity and super-modularity
computationally. Based on thousands of trials, we observed
that the optimal policy has at most one switching curve and
that if a switching curve is present the optimal policy is
to begin by assigning priority to non-critical patients and
then switch to critical care patients, and there is at most one
switch from the time the queue of patients is full until the
end of the evacuation period. To implement a switching pol-
icy, the evacuation team or teams select non-critical patients
for evacuation first. At some point, depending on the patient
classification rates, a switch should be made so all remain-
ing critical care patients are selected for evacuation. Once
there are no critical care patients remaining, any remaining
non-critical care patients should be evacuated.

In order to investigate how the input parameters affect
the optimal policy, a sensitivity analysis was performed
to examine which policy was optimal: a greedy policy in
favor of critical care patients, a greedy policy in favor
of non-critical care patients, or a switching policy. In the
test cases where a switching policy was optimal, we were
interested in the “location” of the switching curve that
therefore defines the size of the prioritization region for
each patient group. A full factorial design of experiments
(DOE) was created to study the effects of the input param-
eters. In order to decrease the number of runs, the ratios
of the following input parameters were selected as the
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Table 2 DOE parameters

Type 2 Type 1
High Medium Low
A 4 3.5 3 2
Di 1.0 0.95 0.75 0.5
a; 0.001 0.075 0.050 0.025

adjustable factors: A1 /A2, p1/p2, and oy /aep. The parameters
for the non-critical care patients were held constant while
the parameters for the critical care patients were varied at
a low, medium, and high setting. Varying these six factors
at three levels each resulted in 27 possible scenarios for the
sensitivity analysis. The values chosen to remain constant
for the non-critical care patients and the values chosen to be
varied for the critical care patients are shown in Table 2. In
the context of critical and non-critical care patients, a down-
ward shift in the location of the switching curve results in
a greedy policy in favor of the non-critical care patients. A
shift upwards results in a greedy policy in favor of the criti-
cal care patients. This implies that a switching policy should
begin with the evacuation team—or teams—selecting non-
critical care patients first for evacuation. At some point,
depending on the patient classification rates, a switch should
be made so that all remaining critical care patients are
selected for evacuation. Once all critical care patients have
been removed from the system, all remaining non-critical
care patients should be transported away from the facility.

The results show that increasing the value for any one
of the critical care patient parameters increases the region
of critical care patient priorities until the policy becomes
a greedy policy in favor of the critical care patients. This
result is intuitive: if the rate at which critical care patients
can be evacuated increases so that patients are moved out
of the system more quickly, eventually critical care patients
should get priority. The same applies for the probability
with which they can be successfully evacuated to another
facility. Similarly, as the rate at which critical care patients
die while waiting to be evacuated increases, it seems obvi-
ous that these patients should be the first to be taken out of
harm’s way.

4 Policy determination

In the event that a patient group can be evacuated more
quickly and successfully as well as die more quickly while
waiting to be evacuated, it is obvious that this patient
group should be given priority. Such a scenario could occur
based on the patients’ relative location to the hazard. It
is more likely, however, that patients will be categorized
as critical or non-critical care patients. This assumes that
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Table 3 Model inputs for batch testing

Al A2 aj a D1 )22) r

1.5 2.5 0.05 0.01 0.5 0.85 1.76
2 3 0.06 0.02 0.75 0.9 1.67
2.5 3.5 0.07 0.03 09 0.95 1.58
3 4 0.08 0.04 1 1 1.5

non-critical care patients can be evacuated more quickly,
that non-critical care patients have a higher probability of
a successful evacuation, and that critical care patients die
while waiting to be evacuated more quickly than non-critical
care patients «; > «ap. In these cases, it was determined
that a greedy policy may be predicted by examining a ratio,
r, consisting of the Type 1 and Type 2 parameter values.
Similar to the cu rule [30, 31], which gives priority to jobs
with the largest value of ¢;u; (where ¢; is the reward if a
job is completed and w; is the service rate for jobs i =
1,2, ..., I), the optimal policy for the evacuation systems
can be predicted by considering the following relationship.

. ALp1o]
A2 pacty

&)

In order to further examine this ratio, r, we conducted a
full DOE for 6 different initial evacuation populations with
the parameters shown in Table 3. This resulted in 4,096
unique tests at each of the initial evacuation populations.

There is a value, U(x1 x2), of this ratio—increasing with
an increasing initial population size— beyond which the
optimal policy is always a Type 1 policy. Though we have
not yet been able to mathematically determine this bound,
Table 4 shows the values based on the DOE.

It makes sense that the patient group i with the higher
value of A; pj«; will more quickly contribute to the reward
or incur a penalty; therefore, these patients should be evac-
vated first. It should be noted, however, that none of these
ratios predicts that a switching policy will be optimal. Based
on extensive testing, if the ratio is between 1 and some upper
bound, U(y1,x2), the optimal policy could be either one of
the three possible policies, and the model should be run to

Table 4 Ratio value to predict type 1 policies in evacuations

Initial state Ux1.x2)
(5,5 1.127
(10,10) 1.339
(20,20) 1.587
(40,40) 2.116
(60,60) 2.679
(100,100) 3214
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Greedy /
Type 1 .
Policy !

/ Greedy Type 2 Policy

Apyoty

Fig. 2 Sample of ratio values for predicting the optimal policy

determine which is optimal. In summary, given a particular
state space i, if

— r < 1, aGreedy Type 2 policy is the optimal policy,

— r > landr < Uy, o), a switching policy may occur,
or

— 1 > Ugi,x2), a Greedy Type 1 policy is the optimal
policy.

Figure 2 illustrates an example of the r and U(y1 x2) val-
ues for a sample case of 40 of each patient type in the system
waiting for evacuation. The dark grey and white regions
demonstrate cases where the optimal policy is known by
using these ratios. For smaller initial patient populations, the

Fig. 3 Classification of the 1.0

optimal policy for 4,096 trials -
0.8
0.7
0.6
0.5

0.4

Percentage of Trials

0.3
0.2
0.1

0.0
(5,5)

B Greedy Type 1

M Greedy Type 2
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value of Uy1,y2) is smaller, and therefore the region where
the optimal policy can be determined using these values
increases. As the initial patient population to be evacuated
increases, so does the number of decisions to be made, and
therefore the percentage of cases for which r can be used to
determine the optimal policy decreases.

We noted before that any switching policy begins with
the evacuation of non-critical care patients (Type 2) and
then switches to the evacuation of critical care patients
(Type 1) as the evacuation continues and the number of
patients in the system decreases. Figure 3 shows the fre-
quency of each of the three possible policy types, and with
larger initial patient populations, there is more opportu-
nity for a switching policy to be optimal. Since switching
policies switch only from non-critical to critical patients,
if the optimal policy is to evacuate the non-critical care
patient when there is only one of each patient type in the
system—the optimal policy is 2 at (1,1)—then the optimal
policy will always be to give priority to the non-critical
care patients. This explains why the percentage of trials in
which the optimal policy is a Greedy Type 2 policy remains
constant in Fig. 3. Based on the input parameters we chose
for the 4,096 trials, 26.2% resulted in a Greedy Type 2
policy. These results lead us to our next discussion.

5 Policy evaluation

Now that we have shown that a greedy policy is not always
optimal, it is important that we consider the benefits of
choosing the best policy with respect to the losses associ-
ated with choosing any other policy. Table 5 examines the
effects of choosing either greedy policy for all evacuations
by examining the difference in the optimal policy value and
value resulting from the chosen policy. As shown in Table 1,
published strategies for evacuation are greedy policies. In

Switching

(10, 10) (20, 20) (40, 40) (60, 60) (100, 100)

Initial State Space (N,, N,)
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addition, it may be difficult for clinicians to implement the
optimal switching policy; thus we compare the optimal pol-
icy to the performance of always choosing the “wrong”
policy. Based on the parameters chosen for the trials, when
the initial patient population is low, a Greedy Type 1 policy
is most often optimal. With an increasing state space, how-
ever, the probability that the optimal policy is a switching
policy increases.

The tables below show the average objective function
loss or objective function solution gap (the value sacrificed
by using a suboptimal policy), coefficient of variation, and
the average objective function loss per patient. The average
objective function loss is calculated by the absolute value
of the difference in the value functions of the optimal and
evaluated policies at the start of the evacuation. The average
objective function loss per patient is the average objective
function loss divided by the total number of patients in the
system to be evacuated (the initial state space). Since the
units are in number of lives, the objective function loss can
be interpreted as the number of lives lost by not selecting
the optimal policy. The loss per patient can be thought of as
the increased chance of death per patient as compared to the
optimal policy.

Based on the values chosen for our tests, a Greedy Type
1 policy is most often the optimal policy, and the aver-
age objective function loss and the average lost value per
patient per patient is less than when a Greedy Type 2 pol-
icy is always chosen. However, note that as the state space
increases, the lost value per patient increases for a Greedy
Type 1 policy and remains relatively stable for a Greedy
Type 2 policy. In addition, the coefficient of variation is
greater for each initial patient population when a Greedy
Type 1 policy is always chosen. Table 6 examines only the
subset of tests in which the optimal policy is a switching pol-
icy. Since optimal switching policies would be difficult for
health care facilities to determine and carry out, we exam-
ine the effects of always choosing either greedy policy when
the optimal policy is actually a switching policy.

Table 5 The effects of always choosing a greedy policy

Initial Patient Population

(5,95 (10, 10)

Always choose a greedy Type 1 policy

Obj function solution gap 0.06 0.22

CV 2.17 2.08

Lost value/patient 0.01 0.01
Always choose a greedy Type 2 policy

Obj function solution gap 0.25 0.78

CvV 0.99 1.03

Value/patient 0.03 0.04
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In these cases, when the optimal policy is a switching
policy, the average objective function loss is less when a
Greedy Type 2 policy is chosen, and in this case, the coeffi-
cient of variation is greater for each initial patient population
when a Greedy Type 2 policy is always chosen. However,
we have determined that we can narrow the need for mathe-
matically determining the optimal policy by considering the
ratio r. The optimal policy is only unknown when 1 < r <
U(x1,x2)- Within this range, the optimal policy may be any
one of the three possibilities. When r is closer to 1, if the
optimal policy is not a switching policy, it will be a Greedy
Type 2 policy, and when r is closer to U1 x2), if the opti-
mal policy is not to switch, it will be to choose all Type
1 patients first. This ratio, that we will call ry, reflects the
highest value within this unknown range at which the opti-
mal policy could be a Greedy Type 2 policy (otherwise it is
a switching policy). Beyond ry, if the optimal policy is not a
switching policy, it is a Greedy Type 1 policy. The exact ry
where these switches occur has not been proven mathemat-
ically but was determined to be 1.0125 for all initial patient
populations for the combination of 4,096 trials we tested. In
summary, when

— r < 1, the optimal policy is a Greedy Type 2 policy,

- 1 < r < 1.0215, the optimal policy is either to switch
or to choose a Greedy Type 2 policy,

— 1.0125 < r < U, x2), the optimal policy is either to
switch or to choose a Greedy Type 1 policy, or

— 1 > Ugi,x2), the optimal policy is a Greedy Type 1
policy.

6 Extension: two evacuation teams

There will likely be multiple teams available to evacuate
patients during a unit-, floor-, or department-level evacua-
tions. In this section, a model for assigning two servers—or
evacuation teams—is examined with dynamic programming.

(20, 20) (40, 40) (60, 60) (100, 100)
0.78 2.48 4.44 8.90
1.89 1.69 1.56 1.41
0.02 0.03 0.04 0.05
2.16 4.88 7.32 10.40
1.10 1.19 1.26 1.35
0.05 0.06 0.06 0.05
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Table 6 The effects of always choosing a greedy policy when it is optimal to switch

Initial Patient Population

(5,95 (10, 10)

Always choose a greedy Type 1 policy

Obj Function Solution Gap 0.01 0.07

CV 0.91 0.99

Lost Value/Patient 0.001 0.003
Always choose a greedy Type 2 policy

Obj Function solution gap 0.003 0.018

CV 1.33 1.33

Lost value/patient 0.003 0.009

Assume that that there are two evacuation teams available
to move patients, and that the two teams can be allocated
to patient evacuations according to any one of the follow-
ing three policies: either both teams can evacuate Type 1
patients, the teams can be split so that one team is ded-
icated to moving Type 1 and one team is dedicated to
moving Type 2 patients, or both teams can evacuate Type
2 patients. This leads to the following decision at any
epoch:

(2A1,0) Dboth teams evacuate Type 1 patients - Policy 1
7= 1 (A1, X2) teams split between both patient types - Policy 2 ,
(0,2X,) both teams evacuate Type 2 patients - Policy 3

©)

The state description as well as the n-stage expected
reward remains the same as in the previously discussed
models. The uniformization rate, based on the maximum
rate of transition, used for this model is y = 2A1 + 24, +
Nia; + Noap. The fictitious transition rate in this case is
(N1 — X1Dag + (Ny — X2)az + 24, when Policy 1 is cho-
sen, (N1 — X1)a1 + (N2 — X2)az + A1 + Ao when Policy
2 is chosen, and (N1 — X1)a; + (N2 — X2)as + 2A1 when
Policy 3 is chosen. The optimality equation used to deter-
mine how the two evacuation teams should be allocated and
therefore prioritize the patients for evacuation is shown in
Eq. 7 below.

V(X1 X2) = Xioq [v(X1 = 1, X2) = ] + X002 [v(X1, X2 — 1) — 1]
20 p1 [v(X1—1, X)H{ 420 (1 — pp) [v(Xy — 1, X2)—1¢]
+ (N1 — Xpag + (N2 — X2)az + 2] v(X1, X2),
apr[vXn =1, X2) + 1]+ a1 = py) (X1 — 1, X2) — 19]
+hopa [V(X1, Xo=DHS ] +r2(1 = p2) [v(X1, X2 = 1) = 1]
+ (N1 — XDag + (N2 — Xo)az + A1 + A2]v(X7, X2),

2002 [V(X1, X2 = D+I] +200(1 - p2) [v(X1, X2— D —1{]
+ (N1 — XDag + (N2 — Xo)ap +201]v(X7, X2)

-+ max

(O]
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(20, 20) (40, 40) (60, 60) (100, 100)
0.35 1.34 2.67 5.69

0.97 0.94 0.92 0.89
0.009 0.017 0.022 0.028
0.093 0.41 0.83 1.88

1.39 1.30 1.25 1.21
0.002 0.005 0.006 0.009

As before, the first two terms of the optimality equa-
tion represent patient deaths while waiting for evacuation,
and the final term represents the choice between the three
allocation options, and each includes a fictitious transition
rate.

A number of tests showed that the optimal policy for this
model was either to assign both evacuation teams to work
together on a critical care patient (Policy 1) or to assign
both evacuation teams to work together on the non-critical
care patients (Policy 2). It was never optimal to split the
teams between the two patient groups (Policy 2). Though
the structural properties of the optimality equations are diffi-
cult to prove, it is relatively easy to show that the evacuation
teams should be allocated to the same patient group (see
[32]). In summary, when there are two evacuation teams
available to move patients, the optimal policy is either to
assign both teams to transport Type 1 patients or to assign
both teams to evacuate Type 2 patients; it is never opti-
mal to split the evacuation teams between the two patient
groups. However, a switching policy may still be the opti-
mal choice, and in the case of critical and non-critical care
patients, a switching policy should begin with non-critical
care patient evacuations followed by a switch to critical care
patient evacuations.

7 Conclusions

The purpose of this research is to provide insights into the
problem of patient prioritization during complete evacua-
tions from health care facilities. To date, there is limited
research related to this problem, most likely due to the fact
that most facilities have system redundancies in place as
well as the highly ethical nature of the prioritization discus-
sion. In the few cases where patient prioritization strategies
are suggested or explained in the literature, there is a lack
of consensus about (1) which patients should be selected
first and (2) which patients were selected first during actual
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emergency evacuations. These policies are all greedy; either
critical care or non-critical care patients are given priority.
We have shown, however, that a greedy policy is not always
optimal. The optimal policies from the evacuation dynamic
programming model presented in this paper can be charac-
terized as one of three different policy types: either a greedy,
Type 1 policy; a switching policy; or a greedy, Type 2
policy.

Based on certain conditions, the optimal policy can be
determined without the use of the dynamic programming
model. First, certain emergency types could result in a situa-
tion where one patient group can be evacuated more quickly
and more successfully as well as die more quickly while
waiting to be evacuated. Therefore it is obvious that this
patient group should be given priority. Next, if the opti-
mal policy is to choose a non-critical care patient when
there are only two patients in the system (one critical and
one non-critical), then the optimal policy will always be
to give priority to non-critical care patients, no matter how
large the initial evacuation population is. This is because
there is at most one switch in a switching policy, and any
switching policy begins by giving priority to non-critical
care patients and then switching to evacuate all remaining
critical care patients from the facility. Finally, if the ratio
r = A proy/Aaprap < 1, priority should always be given
to non-critical care patients. There is an upper value on this
ratio, U(x1,x2), that is increasing with an increasing initial
evacuation population, for which the optimal policy for any
set of parameters with a ratio above U1 x2) is to give pri-
ority to critical care patients. Therefore, it is only when
1 < r < Ug1,x2) that the optimal policy is unknown and
may be any one of the three possible policies. Within this
window, if r < 1.0125, the optimal policy is either to choose
a switching policy or a Greedy Type 2 policy. If r > 1.0125,
the optimal policy is either to choose a switching policy or
a Greedy Type 1 policy.

By considering the ratio of the patient classification rates,
the ratio r can be used to determine whether priority should
be given to critical care patients, whether priority should be
given to non-critical care patients, or whether the optimal
policy is unknown. This provides some insight on patient
prioritization that was previously unknown as demonstrated
by the lack of consensus on patient prioritization strategies.
These and other insights from this paper could be tested and
discussed in table-top simulation exercises. For example, in
the event that there are 2 evacuation teams, it is never opti-
mal to split two evacuation teams between the two patient
groups so that one team evacuates Type 1 patients and one
team evacuates Type 2 patients. Instead, the optimal pol-
icy is either to assign both teams to evacuate critical care
patients or both teams to evacuate non-critical care patients.
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While the optimal policy may still be a switching policy,
both evacuation teams should focus the same patient group.

There are certainly opportunities for a variety of mod-
eling extensions. Though not discussed in this paper, we
consider the costs associated with choosing to keep a patient
in the facility rather than evacuate (holding costs). Such
costs could include the monetary costs associated with
caring for a particular patient or the opportunity costs asso-
ciated with selecting the “wrong” patient for evacuation.
While it is not as easy to predict the structure of the optimal
policy when holding costs are included, any optimal pol-
icy still has at most one switch when these additional costs
are included. The models are also most sensitive to hold-
ing costs and can even affect the model such that choosing
a particular patient is “not worth it.” In addition, the cur-
rent model looks only at the prioritization decision; a more
realistic model would consider the availability of trans-
portation resources as well as the availability of beds at
receiving facilities. It may be beneficial to extend the num-
ber of patient classifications. Along those same lines, the
rewards for the patient classifications could be expanded
rather than solely than counting the number of saved lives.
For example, the number of life years after the evacuation,
quality-adjusted life years, or some other measure would
allow for further prioritization within the groups. In addi-
tion, the effects of incorrectly classifying a patient as a
critical or non-critical care patient—or incorrectly assign-
ing the input parameters—need consideration. Regardless
of how the models are altered, a better understanding of the
actual values for the input parameters would improve the
modeling efforts. While the rates of evacuation chosen in
the previous discussion were based on observations at mock
evacuations, there are no data available for estimating the
holding costs. Knowing the input values would allow a bet-
ter analysis of the location and movement of the switching
curve. We have also developed a simulation model and in
future work hope to examine the effect of evacuation poli-
cies (number of lives saved and lost, time to complete an
evacuation, frequency that all patients can be evacuated in a
given time window). Once the dynamic program is used to
determine the optimal policy, we can code this policy into
the simulation model. Switching policies, however, cannot
yet be coded quickly and tested on a large scale as we can
do with the dynamic programming trials.

Finally, there needs to be continued discussion among
health care workers about the ethical dilemmas associ-
ated with making evacuation decisions as well as other
scarce resource allocation decisions. The insights from this
research should be used to encourage such a discussion
and could be used in tabletop simulation exercises for
evacuation planning.
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