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Abstract The health care system in the United States
has a shortage of nurses. A careful planning of nurse
resources is needed to ease the health care system
from the burden of the nurse shortage and standardize
nurse workload. An earlier research study developed
a data-integrated simulation to evaluate nurse-patient
assignments (SIMNA) at the beginning of a shift based
on a real data set provided by a northeast Texas hospi-
tal. In this research, with the aid of the same SIMNA
model, two policies are developed to make nurse-to-
patient assignments when new patients are admitted
during a shift. A heuristic (HEU) policy assigns a
newly-admitted patient to the nurse who has performed
the least assigned direct care among all the nurses.
A partially-optimized (OPT) policy seeks to minimize

D. Sundaramoorthi (B)
Steven L. Craig School of Business,
Missouri Western State University, St. Joseph, MO, USA
e-mail: dsundaramoorthi@missouriwestern.edu

V. C. P. Chen · J. M. Rosenberger
Dept. of Industrial & Manufacturing Systems Engineering,
University of Texas, Arlington, TX, USA

V. C. P. Chen
e-mail: vchen@uta.edu

J. M. Rosenberger
e-mail: jrosenbe@uta.edu

S. B. Kim
Division of Information Management Engineering,
Korea University, Seoul, Korea
e-mail: sbkim1@korea.ac.kr

D. F. Buckley-Behan
School of Nursing,
University of Texas at Arlington, Arlington, TX, USA
e-mail: dbehan@uta.edu

the difference in workload among nurses for the en-
tire shift by estimating the assigned direct care from
SIMNA. Results comparing HEU and OPT policies are
presented.
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1 Introduction

The health care system in the United States is severely
strained because of a shortage of nurses and nurse
burnout [49]. Health care policy makers have re-
sponded to this crisis in many ways. For instance,
significant financial resources were made available to
expand nursing education during last few years [21,
25]. Recently, hospitals have been actively thinking of
strategies to recruit and retain nurses. Such strategies
often call for a state-of-the-art work environment and
easy access to career development. A Wall Street Jour-
nal article reports a projected spending of $200 billion
on construction and renovation of hospitals through
2014 [32]. As part of developing nursing careers, hos-
pitals are launching residency programs and short-term
courses enabling easy access for working nurses [10].
Due to commendable effort in different initiatives,
there are early signs of the easing of the nurse shortage
in selected hospital systems [43].

While significant progress has been made in different
aspects of nursing, few efforts have been made to man-
age nurse-to-patient assignments and balance nurses’
workload for a given shift. In an earlier research,
Sundaramoorthi et al. [47] developed a data-integrated
simulation to evaluate nurse-patient assignments
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(SIMNA) at the beginning of a shift based on a real
data set provided by a northeast Texas hospital.
SIMNA utilized tree-based models and kernel density
estimation to extract important knowledge from the
real data set. In this current research two policies are
developed to make nurse-to-patient assignments for
newly admitted patients during a shift and they are
evaluated with the aid of the SIMNA model.

There are two major contributions made in this
research:

– During a shift when new patients arrive, nurse su-
pervisors often assign the new patient to the nurse
who has the least number of patients. This way
of assignment may not balance the workload of
nurses for the entire shift. This research enhances
SIMNA by adding a feature that assists in assigning
a nurse to a newly admitted patient during a given
shift. The enhanced SIMNA model can aid nurse
supervisors to make better decisions by simulat-
ing different new-patient assignment policies and
quantifying the workload measures from them.

– This research develops and compares a partially-
optimized policy (OPT) with a heuristic policy
(HEU) to make nurse-to-patient assignments when
new patients are admitted during a shift. The HEU
policy assigns a newly-admitted patient to the nurse
who has performed the least assigned direct care
among all the nurses 15 minutes prior to a new
patient admission; while the OPT policy seeks to
minimize the difference in workload among nurses
for the entire shift by estimating the assigned direct
care from SIMNA.

The rest of this paper is organized as follows. In
Section 2, a literature review on nurse resource plan-
ning and simulation-based optimization is provided.
In Section 3, a brief review of the SIMNA model is
provided. In Section 4, the assignment policies OPT
and HEU are developed. Section 5 compares the as-
signment policies (OPT and HEU) using SIMNA. In
Section 6, concluding remarks and future research di-
rections are presented.

2 Literature review

There are two major components in this research− − −
nurse resource planning and simulation-based opti-
mization. This section gives a brief literature review on
these two topics.

2.1 Nurse resource planning

Nurse burnout issue in health care was reported as early
as 1979 [46]. Cullen [12] identified the factors that were
embedded within health care, institutional, societal,
and nursing systems that caused stressful conditions
and burnout for nurses. As a result of burnout, nursing
profession has a chronic problem of high turnover,
absenteeism, and reduced productivity [11]. Staffing
level is one of the key factors that contribute to the
nurse burnout [19]. Staffing levels were also found to
have a positive correlation with the patient outcomes
[22]. In the last couple of decades, several research
works addressed determining staffing levels and sched-
ules. Miller et al. [38] developed a constraint-based,
artificial intelligence nurse scheduling prototype by in-
corporating nurses’ preferences for Rouen University
Hospital. Jaumard et al. [26] presented a 0–1 column
generation method for nurse scheduling by maximizing
the nurse preference and team balance, and minimiz-
ing the total nurse salary for the schedule. Bard and
Purnomo [3] formulated and solved the nurse schedul-
ing problem as a multi-objective problem which consid-
ered individual nurse’s preference. In the past couple
of decades, several patient classification systems and
acuity systems were developed to aid determination of
nursing care, staffing level, and schedule ahead of a
shift [7, 8, 16, 23, 28, 36, 50]. It has to be noted that
four levels of acuity were considered in this research
depending upon the amount of care received by the
patients in the north Texas hospital. The top 25 percent
of patients who needed the most nursing care was given
an acuity level of four while the bottom 25 percent
got an acuity level of one. The other two groups got
acuity levels two and three. None of the patient clas-
sification systems and acuity systems went as far as
assigning patients to nurses for a given shift. To the
best of our knowledge, apart from this research, only
Punnakitikashem et al. [41], Vericourt and Jennings
[48], Mullinax and Lawley [39], and Sundaramoorthi
et al. [47] address the nurse to patient assignment prob-
lem. Punnakitikashem et al. [41] formulated a stochas-
tic programming problem to assign nurses to patients
while balancing the nurse workload and solved it us-
ing Bender’s decomposition approach. Vericourt and
Jennings [48] determined nurse-to-patient assignment
ratios utilizing queuing theory. Sundaramoorthi et al.
[47] developed the SIMNA model to evaluate nurse-
to-patient assignments policies by considering hospital
specific factors. Mullinax and Lawley [39] developed
an acuity system for a neonatal intensive care unit to
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determine nursing care for each patient and assigned
them to nurses by balancing nurse workload using an
integer linear program. Apart from Sundaramoorthi
et al. [47] and this research, none of the other methods
discussed above used real data to reflect the actual
system as extensively and developed a tool to evalu-
ate nurse-to-patient assignments to make decisions in
real time. This research extends the SIMNA model of
Sundaramoorthi et al. [47] by embedding nurse-to-
patient assignments policies for new patient admits
during a shift. A brief review of SIMNA is provided in
Section 3.

2.2 Simulation-optimization models

Studying industrial systems using simulation was preva-
lent as early as the late 1950’s and early 1960’s. Simula-
tion modeling has been used to study a wide range of
problems in health care [13, 15, 29, 35, 45]. In recent
years, Zenios et al. [51], Kreke et al. [31], and Shechter
et al. [44] utilized simulation models even to study
organ allocation systems. A comprehensive review of
health care simulation models can be found in Klein
et al. [30] and Jun et al. [27]. In the literature, most of
the health care simulations modeled patient flow and
analyzed patient scheduling, admissions, routing, and
availability of resources. Very few simulation research
works like Duraiswamy et al. [14], McHugh [37], and
Sundaramoorthi et al. [47] had staffing as the primary
focus. In recent years, combining simulation and op-
timization has been made possible due to powerful
computers. In simulation-optimization, the goal is to
find simulation inputs (decision variables) in the al-
lowable range (constraints) that optimize an objective
function expressed in terms of the simulation outputs.
For a comprehensive review of different simulation-
based optimization methods refer to Fu [17], Fu and
Hu [18], Hurrion [24], Law and Kelton [33], Law and
McComas [34], Olafsson and Kim [40], and Robinson
[42]. Simulation-based optimization is still at its early
stages of development and to the best of our knowledge
this is the first research that utilizes simulation-based
optimization to address nurse-to-patient assignments.

3 SIMNA review

Sundaramoorthi et al. [47] developed SIMNA based on
the data set obtained from a northeast Texas hospital.
At the northeast Texas hospital, each nurse wears a
locating device that transmits data to a repository from

where the data was collected for this research. The
hospital also provided information on admit dates, dis-
charge dates, room numbers, and diagnoses for each pa-
tient. The data set with 570,660 observations contained
information on nurse movements and patient charac-
teristics of a Medical/Surgical care unit. The following
variables were included in the data set:

1. Current location and previous two locations for
each nurse.

2. Time spent in each nurse visit to a location.
3. Nurse types.
4. Shift.
5. Hour.
6. Diagnoses codes of patients in each patient room.
7. Acuity levels of patients in each patient room.
8. Nurse-to-patient assignment.

SIMNA utilized four classification trees to estimate
probability distributions of nurse movements based on
the current state of the system determined from the
above listed variables; while a regression tree with ker-
nel density estimates in each terminal node estimated
the amount of time spent by nurses at different loca-
tions for any given simulation state in SIMNA. The
simulation process, which involves repeated traversing
of the tree structures, was written in C++.

The first use of SIMNA was to assess the bal-
ance of nurse workload that results from the nurse-to-
patient assignment policies at the beginning of a shift.
Specifically SIMNA tested four assignment policies:
clustered, heuristic, stochastic program, and random
assignments. In the clustered assignment, patients were
assigned by location; that is, patients in consecutive
rooms were assigned to the same nurse. In the heuristic
assignment, all of the nurses got the same number of
patients when the number of nurses divides into the
number of patients evenly. The patient with the highest
expected direct care time was arbitrarily assigned to
a nurse. The patient with the second highest expected
direct care time was then arbitrarily assigned to a sec-
ond nurse, and so on. After assigning one patient for
each nurse, in the second cycle of assignments, the
patient with the lowest expected direct care time was
assigned to the first nurse. The patient with the second
lowest expected direct care time was assigned to the
second nurse, and so on. This process of assignment
was repeated until all of the patients were assigned. The
stochastic program assignments were obtained from
Punnakitikashem et al. [41]. Finally, the random
assignment assigned equal number of patients to
nurses randomly. The four policies were compared by
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quantifying each nurse′s workload. A test problem in
Sundaramoorthi et al. [47] resulted in a superior perfor-
mance of the clustered assignments among all assign-
ments from the four policies. It should be noted that the
superior performance of the clustered assignments is
confined to the test problem and could differ for other
problems. The purpose of SIMNA in Sundaramoorthi
et al. [47] was to help hospital managements evaluate
different assignment policies prior to a given shift and
aid them decide the policy they would like to adapt
for that shift. Identifying desirable nurse-to-patient
assignment policies at the beginning of the shift for
different circumstances would require designing an ex-
periment with large number of treatments (discussed in
Section 6) and would be an interesting research by
itself. SIMNA utilized structures and pointers to re-
construct tree structures, and efficiently executed the
simulation of an entire shift. It took less than three
minutes on a Dual 2.4-GHz Intel Xeon Workstation
to run 1000 scenarios of the shift when the above four
policies were tested to evaluate the balance in nurse
workload at the beginning of the shift. A prototype
consisting SIMNA was evaluated by two groups of
registered nurses enrolled in a north Texas University.
73% of them liked to utilize such a prototype in their
work place. Based on their feedback SIMNA was en-
hanced by including acuity levels and more diagnoses
codes. Refer to Baker et al. [2] for more information
about the feedback obtained from the evaluation. In
this research, we utilize the same SIMNA model to de-
velop new-patient assignment policies in order to help
the hospital management determine nurse-to-patient
assignments when new patients are admitted during a
shift. Similar to the assignments at the beginning of
the shift, SIMNA produced the new-patient assignment
results of 1000 scenarios, discussed in Section 5, in less
than three minutes. Hence, it is possible to use this
tool in real time to make nurse-to-patient assignment
decisions when new patients are admitted.

4 Simulation-based optimization

4.1 Markov decision problem

Unlike Sundaramoorthi et al. [47], which evaluated
initial assignments at the beginning of a shift, the topic
of the present research is the assignment of new-patient
admissions during the shift. It is assumed in this re-
search, and also common in reality, that the time of
admit, patient diagnosis, and patient acuity are known
to the decision maker at least 15 minutes prior to the

actual admission. A simple decision rule is to simply
assign a newly-admitted patient to the nurse who had
the least TADC among all the nurses 15 minutes prior
to a new patient admission. This is referred to as the
heuristic policy HEU. It has to be noted that the HEU
policy is different from the initial assignment heuristic
policy presented in Sundaramoorthi et al. [47].

More complex to develop is an optimized decision
rule. Recently, formulating and solving Markov deci-
sion problems using a simulator have become common
and successful [6, 20]. A typical Markov decision prob-
lem (MDP) would have the following components:

1. State: The state describes the status of a system
under consideration. For example, specific values
of the shift, the time of day, the nurse type, the
current and previous locations of the nurse, the
nurse-patient assignments, the patient diagnosis,
the patient acuity, and the patient location vari-
ables can be considered as the state that describes
our nurse-patient system.

2. Action: This is the decision that we desire to op-
timize. Our decision is the assignment of a newly
admitted patient to a nurse.

3. Transition Probability: Transition probabilities de-
termine transitions of the system from one state
to another. Assume an action a selected for state
i transfers the system to state j with probability
p(i, a, j), this quantity is an example of a transition
probability. Collection of all such transition proba-
bilities for all possible state transitions is required
to capture the dynamics of the system modeled.

4. Policy: A policy defines what action to take based
on the state of the system. For example, when a new
patient is admitted during a shift, there are different
policies that can be used to make the assignment
based on the state. A policy that maximizes the
sum of TADCs of nurses, shown in Eq. (6), would
increase patient care. Two policies that balance
nurse workload are presented in Section 4.2.

5. Performance Measure: A performance measure
quantifies the performance of a policy. For a
patient care improvement problem, the sum of
TADCs over all nurses could be used to judge the
performance of the policy.

In the late 1950’s, a mathematical technique called
Dynamic Programming (DP) was formulated by
Bellman that could solve MDPs [4]. Since then, DP
has evolved and been applied for various applications
[5, 6, 9]. The theory and solution techniques of DP
have also been studied and improved over the years.
For a computationally tractable solution, most of the
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solution techniques reduce to either approximating or
simplifying the Bellman optimality equation:

J∗ (i) = maxa∈A(i)

[
E (r (i, a))

+
∑‖S‖

j=1
p (i, a, j) J∗ ( j)

]
∀i ∈ S. (1)

where:

1. S is the set of all possible states.
2. A(i) is the set of actions available for state i.
3. J∗ functions store the unknown optimal values as-

sociated with each element in S.
4. E (r (i, a)) is the immediate expected reward in i

when action a is selected.
5. p(i, a, j) is the transition probability for the state

transition from i to j when the action a is selected
for state i.

Applying a classical method of solving Eq. (1), for
optimizing the assignment of a newly-admitted patient,
is impossible due to the high dimensional state space
and unavailability of transition probabilities. When
transition probabilities are not available explicitly, a Q-
factors method uses a simulation model to solve the
following equation, which is a mathematical equivalent
of Eq. (1):

J∗ (i) = maxa∈A(i)
[
E (r (i, a)) + E

(
J∗ ( j)

)] ∀i ∈ S. (2)

Equation 2 can be further simplified as

J∗ (i) = maxa∈A(i)E
(
r (i, a) + J∗ ( j)

) ∀i ∈ S. (3)

Unlike the Bellman optimality equation, each ele-
ment of Q-factors are associated to state-action pairs.
For a state-action pair (i, a), the Q-factor is defined as

Q (i, a) =
∑‖S‖

j=1
p (i, a, j)

[
r (i, a) + J∗ ( j)

]
(4)

By combining Eqs. (1), (3), and (4), we get

J∗ (i) = maxa∈A(i) Q (i, a) (5)

Refer to Bertsekas [5] for a comprehensive review
of Q-Factors methods. In the new-admit patient-nurse
assignment optimization problem, if the objective is to
maximize the sum of TADC across the nurses for the
entire shift, the new-admit patient-nurse assignment
optimization can be expressed as

J∗(i) = maxa∈A(i)

[∑N

n=1
TADCn (i, a, i + 1)

]

+ E
(
J∗(i + 1)

) ∀i ∈ S. (6)

In Eq. (6), N is the total number of nurses working in
that shift, the state for the current new-patient-admit is
denoted by i, the action a is taken to assign this new
patient to a nurse, and then the subsequent state when
the next new-patient-admit occurs is denoted by i + 1.
TADCn(i, a, i + 1) denotes the TADC of nurse n over
the period from the current new-patient-admit in state
i to the next new-patient-admit in state i + 1 following
the action of assignment a. Note that in Eq. (6), the
notation i and i + 1 represents high dimensional states
determined by specific values of shift, time of day, nurse
type, current and previous locations of nurses, existing
nurse-patient assignments, patient diagnoses, patient
acuities, and patient location variables. It is assumed
that an action is required only when a new patient is
admitted.

As mentioned earlier, when a simulation model
is available, a computational optimization technique
called Q-Factors is an attractive approach to solve Eq.
(6). The fundamental idea of this approach is to store
quantities Q(i, a), shown in Eqs. (4) and (5), called Q-
Factors for each state-action combination and update
them based on the progress of the simulation. In the
beginning, these Q-Factors are usually initialized to
zero. Then for each action selected, the simulation is
allowed to transition to the next state, and the Q-
Factors are updated based on the performance mea-
sure. For the patient care improvement problem, a
state-action pair yielding a larger sum of TADCs of
all nurses would be rewarded by increasing the corre-
sponding Q-Factor. State-action pairs yielding smaller
sums of TADCs would be punished by reducing the
corresponding Q-Factors. The same policy of reward-
ing and punishing has to be repeated for a sufficiently
large number of state-action visits. At the end, the
action(s) that produces the highest Q-Factor would be
declared as optimum. The key for achieving the true or
near optimum in the Q-Factors method depends on the
choice of the so-called “sufficiently large number” for
state-action pair visits. In the problem of optimizing the
assignment of a newly-admitted patient, the number of
state-action pairs grows exponentially due to random
arrivals of patients (admit times) with the unknown
probability distribution for diagnosis and acuity. Such
a huge number of state-action pairs makes it computa-
tionally impossible to have enough simulation scenarios
to obtain reliable Q-Factors.

4.2 Assignment policies

Even though increasing patient care is an important
objective, in this research it is implicitly assumed that
balancing nurse workload will help improve patient
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care, and hence the max-min TADC ratio was chosen
to be the performance measure. In addition to the
computational issues raised in the previous section, the
max-min TADC ratio is not additive and consequently,
the nurse workload balancing problem cannot be for-
mulated like Eq. (6). For these reasons, methods like
simple enumeration, classical DP, and Q-Factors are
ruled out for this research.

Among the two expected values in Eq. (2), the first
one incorporates the immediate reward i.e., in a sense,
it accounts for the past and the immediate present. The

second expected value, which approximates the future,
for a current decision is impossible to approximate
from simulation due to the huge number of potential
state-action pairs. In the nurse-patient assignment
problem, the difficulty reduces to the estimation
of TADC(i, a, i + 1). While solving for the optimal
assignment for state i, a huge number of simulation
runs will be required to optimize assignments a(i + 1),
a(i + 2), a(i + 3), . . . . For this reason, this research
develops an alternate policy that groups both the
expected values of Eq. (2) together:

J∧(i)=mina∈A(i)E
(
(TADC (0, a(0), i)+TADC (i, a, T))max

(TADC (0, a(0), i)+TADC (i, a, T))min

)
∀i ∈ S. (7)

We refer to this policy as “OPT” since it is based
on the Bellman optimality equation. In Eq. (7),
TADCn(0, a(0), i) denotes the TADC of nurse n
from the beginning of the shift until the current new
patient arrival in state i when assignment a(0) is made,
and TADC(i, a, T) is TADC from the current arrival
through the end of the shift in state T. TADC(i, a, T)

can be expanded as TADC(i, a(i), i + 1) + TADC(i +
1, a(i + 1), i + 2) + TADC(i + 2, a(i + 2), i + 3). . . ; ide-
ally these future assignments and TADC quanti-
ties would be obtained via a DP type optimization;
however, this is computationally impractical. Instead,
the future assignments required to obtain TADC(i +
1, a(i + 1), i + 2), TADC(i + 2, a(i + 2), i + 3), . . . were
determined by the HEU policy. In simple terms, the
OPT policy considers both the past and the future
workload of nurses for a nurse-to-patient assignment
decision, while the HEU policy considers only the past
workload. The decision maker can use either HEU by
itself or OPT to decide which nurse would get the new
patient.

5 Comparison of policies

5.1 Problem setting

To analyze the performance of OPT and HEU, 50
problems with different initial states were considered.
Admissions of two, three, four, five, and six new-
patients were considered during a shift. The 50 prob-
lems were designed in such a way, shown in Table 1,
to have ten problems for each shift and ten problems

for each number of admissions. The number of prob-
lems for each combination of shift and the number
of new admissions were arbitrarily chosen with rates
of admission, shown in Table 2, in consideration. It
is determined from the north Texas hospital data set
that on average there were nine patient-admits for a
given day with a maximum of six patients admitted
during a shift. While solving an assignment, the future
admits were simulated using a Poisson process with
the arrival rates determined by the average number of
patient admits per day and rates of admit for specific
time period shown in Table 2.

There are 26 patient rooms in the Medical/Surgical
care unit of the north Texas hospital usually staffed
with five nurses. For all the 50 problems considered,
the number of empty patient rooms was chosen to be
the same as the number of new-patient admits. For
a given problem, the empty patient room locations
to accommodate new admits were selected randomly.
The rest of the rooms were occupied by patients from
the beginning of the shift. The diagnosis and acuity of
patients present at the beginning of the shift as well

Table 1 Fifty problem instances

Shift (#) # of New admits

2 3 4 5 6

Week
Day (1) 2 5 3 0 0
Evening (2) 0 0 2 4 4
Night (3) 7 2 1 0 0

Week end
Day (4) 0 0 0 5 5
Night (5) 1 3 4 1 1
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Table 2 Patient admit rate

6am to 2pm 2pm to 6pm 6pm to midnight Midnight to 6am

12% 70% 16% 2%

Table 3 Outcome of OPT, HEU, and RAND evaluations

# Patients, Av. ratio Tukey / bonf

shift, instance OPT HEU RAND OPT HEU RAND

2, 1, 1 3.206 3.146 3.149 C C C
2, 1, 2 2.690 2.945 3.295 B B C
2, 3, 1 3.034 3.267 3.183 C C C
2, 3, 2 4.292 4.362 4.361 C C C
2, 3, 3 3.836 4.141 5.310 B B C
2, 3, 4 4.478 5.730 4.469 B C B
2, 3, 5 4.208 4.496 4.290 C C C
2, 3, 6 3.692 3.907 3.949 C C C
2, 3, 7 5.871 5.172 6.586 B,C B C
2, 5, 1 2.102 2.229 5.511 B B C
3, 1, 1 3.069 3.020 3.709 B B C
3, 1, 2 3.562 3.564 3.863 C C C
3, 1, 3 3.521 3.450 5.412 B B C
3, 1, 4 2.712 2.678 2.988 B B C
3, 1, 5 4.162 3.770 4.706 B,C B C
3, 3, 1 4.007 4.101 4.432 C C C
3, 3, 2 6.792 5.584 6.660 C B C
3, 5, 1 3.201 3.561 3.318 B C B,C
3, 5, 2 2.439 2.250 5.050 B B C
3, 5, 3 2.238 2.225 3.188 B B C
4, 1, 1 3.935 4.250 4.790 B B,C C
4, 1, 2 2.742 3.131 3.867 A B C
4, 1, 3 4.213 4.057 7.123 B B C
4, 2, 1 2.568 3.758 4.186 A B C
4, 2, 2 3.499 3.422 3.320 C C C
4, 3, 1 2.702 3.043 3.411 A B C
4, 5, 1 2.657 2.612 4.391 B B C
4, 5, 2 2.154 2.165 3.474 B B C
4, 5, 3 2.574 2.567 4.402 B B C
4, 5, 4 2.341 2.326 4.382 B B C
5, 2, 1 4.093 4.080 3.936 C C C
5, 2, 2 2.881 2.900 8.267 B B C
5, 2, 3 2.946 3.139 3.216 B B,C C
5, 2, 4 4.000 4.413 6.720 B B C
5, 4, 1 1.972 1.932 4.769 B B C
5, 4, 2 1.844 1.888 3.936 B B C
5, 4, 3 1.924 1.977 3.650 B B C
5, 4, 4 2.084 2.183 5.443 B B C
5, 4, 5 2.034 2.041 5.417 B B C
5, 5, 1 2.601 2.522 5.110 B B C
6, 2, 1 2.635 2.653 3.150 B B C
6, 2, 2 3.183 3.749 4.838 B B C
6, 2, 3 3.864 3.928 5.059 B B C
6, 2, 4 3.309 3.237 3.571 B,C B C
6, 4, 1 1.872 1.929 6.645 B B C
6, 4, 2 3.017 3.159 10.030 B B C
6, 4, 3 1.846 2.388 4.879 A B C
6, 4, 4 2.468 2.381 8.326 B B C
6, 4, 5 2.409 2.743 16.223 B B C
6, 5, 1 2.505 2.523 5.762 B B C

as newly-admitted patients were chosen randomly. It
was assumed five registered nurses work during all the
shifts. Admission times of the new patients - for whom
assignments have to be determined - were chosen ar-
bitrarily and remained unknown until 15 minutes prior
to the actual admit. For simplicity in modeling, it was
assumed that there are no patient discharges during the
shift. In real life, when discharge occurs, the amount of
work load will go down for the nurse who had that pa-
tient. It will not affect the relative merit of the nurse-to-
patient assignment decisions made by OPT and HEU
as discharges impact both policies identically. Hence, it
was prefered to ignore discharges in this research.

5.2 Average and spread

The 50 problem instances were simulated on SIMNA
with the nurse-to-patient assignments determined by
OPT and HEU for each new-patient admit. One thou-
sand scenarios were generated for each problem in-
stance by changing the random seed. The average
max-min TADC of the entire shift was determined
by averaging max-min TADCs from 1000 scenarios.
Assignments from a random policy, referred as RAND,
were also simulated to judge whether the “smarter”
policies like HEU and OPT yield consistently better
results than random assignments. The average max-min
TADCs from the 1000 simulation scenarios for each of
the 50 assignments are presented in Table 3.

In Table 3, the first column represents the problem
instances presented in Table 1. The second column

Fig. 1 Boxplots of max-min TADC ratios from OPT and HEU
with all 50,000 data points
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Fig. 2 Boxplots of max-min TADC ratios from OPT and HEU
that are less than five

presents the average max-min TADCs from the three
policies evaluated. Ideally, a policy that produces
a max-min TADC ratio of one is desired in that it
achieves perfect balance in workload among nurses.
The policy that yields the smallest average max-min
TADC is preferred as it achieves the best possible
balance among the three policies. It can be observed
that OPT resulted in the least ratio for 30 of the 50
problems, while HEU had 17 smallest ratios. Not sur-
prisingly, RAND managed to be the preferred policy
just three times out of the 50 problems. While consider-

Fig. 3 A boxplot showing OPT win (# New-Patients:4, Shift: 1,
Instance: 2)

Fig. 4 A boxplot showing HEU win (# New-Patients:3, Shift: 5,
Instance: 2)

ing averages to determine the performance of policies,
it is important to account for the variability associated
with each policy. Boxplots are provided in Figs. 1 and 2
to illustrate the spread of data from the OPT and HEU
policies. Because of the outlier scenarios, the scale of
boxplots in Fig. 1 is extended leaving it hard for a reader
to observe the difference between the plots from OPT
and HEU. In Fig. 2, the max-min TADC values higher
than five were removed to facilitate the visualization
of the boxplots. After removal of outliers, the OPT
and HEU policies had, respectively, 45,429 and 45,089

Fig. 5 A boxplot showing tie between OPT and HEU (# New-
Patients:5, Shift: 2, Instance: 2)
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Table 4 Confidence Intervals
for means of HEU-OPT
max-min TADC ratios

# Patients, HEU-OPT Winning policy

shift, instance 95% CI 99% CI 95% CI 99% CI

2, 1, 1 −0.305 0.184 −0.382 0.261 Tie Tie
2, 1, 2 0.039 0.470 −0.029 0.538 OPT Tie
2, 3, 1 −0.069 0.536 −0.164 0.631 Tie Tie
2, 3, 2 −0.485 0.625 −0.660 0.799 Tie Tie
2, 3, 3 −0.220 0.830 −0.385 0.995 Tie Tie
2, 3, 4 0.521 1.985 0.291 2.214 OPT OPT
2, 3, 5 −0.170 0.746 −0.314 0.890 Tie Tie
2, 3, 6 −0.164 0.595 −0.283 0.714 Tie Tie
2, 3, 7 −1.385 −0.012 −1.601 0.204 HEU Tie
2, 5, 1 0.066 0.188 0.047 0.208 OPT OPT
3, 1, 1 −0.284 0.186 −0.357 0.259 Tie Tie
3, 1, 2 −0.435 0.438 −0.572 0.575 Tie Tie
3, 1, 3 −0.497 0.355 −0.631 0.489 Tie Tie
3, 1, 4 −0.152 0.084 −0.189 0.121 Tie Tie
3, 1, 5 −0.865 0.080 −1.013 0.228 Tie Tie
3, 3, 1 −0.336 0.525 −0.471 0.660 Tie Tie
3, 3, 2 −1.960 −0.456 −2.197 −0.219 HEU HEU
3, 5, 1 0.151 0.570 0.085 0.635 OPT OPT
3, 5, 2 −0.263 −0.113 −0.286 −0.090 HEU HEU
3, 5, 3 −0.072 0.046 −0.090 0.065 Tie Tie
4, 1, 1 −0.234 0.863 −0.406 1.036 Tie Tie
4, 1, 2 0.253 0.526 0.210 0.569 OPT OPT
4, 1, 3 −0.589 0.278 −0.725 0.415 Tie Tie
4, 2, 1 1.006 1.375 0.948 1.432 OPT OPT
4, 2, 2 −0.288 0.134 −0.354 0.200 Tie Tie
4, 3, 1 0.199 0.484 0.154 0.529 OPT OPT
4, 5, 1 −0.162 0.072 −0.199 0.108 Tie Tie
4, 5, 2 −0.051 0.074 −0.071 0.094 Tie Tie
4, 5, 3 −0.096 0.082 −0.125 0.110 Tie Tie
4, 5, 4 −0.112 0.083 −0.142 0.114 Tie Tie
5, 2, 1 −0.537 0.510 −0.701 0.674 Tie Tie
5, 2, 2 −0.128 0.166 −0.175 0.213 Tie Tie
5, 2, 3 −0.005 0.390 −0.067 0.452 Tie Tie
5, 2, 4 −0.079 0.905 −0.233 1.059 Tie Tie
5, 4, 1 −0.087 0.007 −0.102 0.022 Tie Tie
5, 4, 2 0.003 0.085 −0.010 0.097 OPT Tie
5, 4, 3 0.008 0.098 −0.006 0.113 OPT Tie
5, 4, 4 0.042 0.156 0.024 0.174 OPT OPT
5, 4, 5 −0.046 0.061 −0.063 0.078 Tie Tie
5, 5, 1 −0.165 0.006 −0.192 0.033 Tie Tie
6, 2, 1 −0.095 0.130 −0.130 0.165 Tie Tie
6, 2, 2 0.155 0.977 0.026 1.106 OPT OPT
6, 2, 3 −0.422 0.550 −0.575 0.703 Tie Tie
6, 2, 4 −0.269 0.127 −0.331 0.189 Tie Tie
6, 4, 1 0.012 0.101 −0.002 0.114 OPT Tie
6, 4, 2 0.028 0.256 −0.008 0.292 OPT Tie
6, 4, 3 0.489 0.596 0.472 0.613 OPT OPT
6, 4, 4 −0.158 −0.016 −0.181 0.007 HEU Tie
6, 4, 5 0.202 0.389 0.172 0.419 OPT OPT
6, 5, 1 −0.057 0.093 −0.081 0.117 Tie Tie

max-min TADC ratios, a sufficiently large number of
data points to make a comparison of spread. It could
be observed that the spread of data in both plots are
similar and it would be safe to use average max-min
TADC ratio to judge the performance of the policies.

Similarly, individual boxplots from each of the 50 in-
stances, not presented here, obtained after removal of
five or higher max-min TADC ratios from OPT and
HEU had comparable spread. One could well argue
that, in reality, it is unlikely to have an imbalance of
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a magnitude that would result in a value of five or more
for max-min TADC ratios. It has to be noted that in all
the 50 problems the nurse-to-patient assignments at the
beginning of the shift was not balanced and hence, high
values for max-min TADCs cannot be ruled out.

Boxplots from three problem instances are provided
in Figs. 3, 4, and 5 to illustrate the preferable perfor-
mances of OPT and HEU in terms of average max-
min TADC ratios. In Fig. 3, a typical OPT performance
with a lower max-min TADC ratio than HEU is shown.
In Fig. 4, a better performance of HEU is shown,
while Fig. 5 illustrates an equal performance of OPT
and HEU.

5.3 Statistical comparison

In Section 5.2, performances of OPT, HEU, and
RAND were analyzed by comparing the average and
spread of max-min TADC ratios. In that analysis, it
was found that the OPT policy is the most successful,
while the RAND policy is the least successful among
the 50 problems considered. However, it is necessary to
perform statistical analysis to draw a reliable conclusion
regarding the difference in performances among the
policies. In order to understand the statistical difference
among the policies, Tukey and Bonferroni simultane-
ous pairwise comparison groupings were generated at
0.05 significance level and shown in the last column of
Table 3. The distinct groups are represented by alpha-
bets A, B, and C with A and C being the groups with the
smallest and the highest means for the max-min TADC
ratio, respectively. It has to be noted that if there is only
one group (C), it need not be a high mean group. A
policy would not be desirable if it falls in a higher mean
group while there is at least one other policy in a lower
mean group. Both Tukey and Bonferroni grouped the
policies identically. From Table 3, it can be observed
that 39 times either or both OPT and HEU were in a
lower mean group than RAND. Similarly, it can be ob-
served that HEU was out performed by either or both
OPT and RAND six times (highlighted by bold), while
OPT was outperformed just once by HEU (highlighted
by bold). Clearly, from this analysis RAND is the least
desirable policy and proves that the “smarter” policies
HEU and OPT yield better results. Also, this analysis
showed that OPT results are statistically slightly better
than HEU.

To further understand the magnitude of the
difference between HEU and OPT (HEU - OPT), 95%
and 99% confidence intervals (CIs) were constructed in
Table 4. In this table, HEU is declared as the winner
if both the upper and lower limits are negative. The
negative limits indicate a higher max-min TADC ratio

from the OPT policy compared to the HEU policy.
Similarly, OPT is declared as the winner if both the
upper and lower limits are positive. The instances with
zero included in the CIs are declared as a Tie. It can
be observed from these tables that OPT won 15 out
of the 50 instances, while HEU won only four times
with 95% CI. The rest of the 31 instances ended as a
Tie between OPT and HEU. With 99% CIs, OPT won
ten times, while HEU won only twice. The remaining
38 problem instances were declared as tied because CIs
include zero. It can be viewed that OPT performed at
least as good as HEU in 46 and 48 instances with 95%
and 99% CIs, respectively.

Intuitively, assignments obtained from OPT would
perform better than HEU when a reliable estimation of
future was used while solving for the assignments. From
the above analyses, not surprisingly, the OPT policy
performed better than the HEU and RAND policies.

6 Conclusions and future work

This research along with [47] makes a significant
contribution to the scientific management of nurse-
to-patient assignments. It has introduced a tool to
evaluate different new-patient nurse-to-patient assign-
ment policies. When new patients are admitted, nurse
supervisors often assign the new patient to the nurse
who has the least number of patients. This method
need not balance the work load of nurses for the entire
shift. This research added a feature to SIMNA that
helps evaluating nurse-to-patient assignment policies
to identify a nurse assignment for the new patient.
The enhanced SIMNA model can aid nurse supervisors
to make better decisions by simulating different new-
patient assignment policies and quantifying the work-
load measures from them. This research also developed
and compared the OPT policy with the HEU policy to
make nurse-to-patient assignments when new patients
are admitted during a shift. The HEU policy assigned
the newly-admitted patient to the nurse who performed
the least assigned direct care among all the nurses 15
minutes prior to a new patient admission; while the
OPT policy finds the assignment that minimized the
difference in workload among nurses for the entire shift
from SIMNA. Results from the HEU and OPT policies
were compared, and the OPT policy was found to be
the better policy. The following are the other promising
directions that can be incorporated to this research.

1. HEU vs OPT: It was found from this research
that OPT performed better than HEU. Intuitively,
HEU′s solution should get better towards the end
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of a shift as workload imbalance information from
the past is naturally more important and available
at the end of the shift. Similarly, with SIMNA
approximating the future accurately, OPT should
perform relatively much better than HEU at the
beginning of a shift than towards the end. Identi-
fying circumstances suitable for OPT and HEU is
another interesting area of research. While mak-
ing a nurse-to-patient assignment decision for a
new-patient admit, factors like the time left in the
shift, diagnosis, acuity, shift, empty room location,
and existing nurse-to-patient assignments could
influence the performance of OPT and HEU. To
statistically analyze the performance of the assign-
ment policies, an experiment should be designed
with diagnosis, acuity, shift, empty room location,
existing nurse-to-patient assignments, and time left
in the shift as factors and max-min TADC ratio as
the response. With 19 diagnoses codes, four acuity
levels, five possible shifts, at least eight time periods
in a shift, and 26 patient rooms, the experiment will
result in more than 79,040 treatments. To perform
such an analysis efficiently and reporting results
from them would be an interesting research by
itself.

2. “Time Period-Action Q-Factors” method: In this
research, a brief discussion about the potential use
of the Q-Factors methods was provided especially
in circumstances when a simulator is available.
However, the existing algorithms of the Q-Factors
method is not feasible to implement for the nurse-
patient assignment problem because the number
of state-action pairs is huge. It will be interesting
to explore the possibility of having the Q-Factors
for arrival-action pairs instead of state-action pairs.
This approach will reduce the number of Q-Factors
significantly. It should be noted that with stochastic
arrivals, it is still difficult to update all the arrival-
action pairs accurately within a reasonable number
of simulation runs. For example, the first arrival
time in a simulation run is likely to be different
from another first arrival simulated in a different
simulation run. To tackle this issue, the shift can
be divided into smaller time periods to get the Q-
Factors for each period-action pair. The actions
in this research are to assign the newly-admitted
patients to nurses. There is no action required
in a time period if there is no new-patient ad-
mits. Therefore, with the “time period-action Q-
Factors”, the number of Q-Factors would be equal
to the number of time-periods times the number of
nurses. For example, for an eight hour shift broken
into one hour periods with five nurses working,

there would be just forty Q-Factors. As mentioned
earlier, it would take just three minutes to run one
thousand scenarios, and it is possible to update the
Q-Factors for real time decision making using the
proposed “time period-action Q-Factors” method.

3. Optimization: Exploring the applicability of
simulation-optimization methods, such as in [1],
and [18], is also an interesting topic for future
research. The traditional simulation-optimization
methods, in general, use an approximated value
for the gradient of the simulation. The dynamics
of SIMNA in [47] are captured by the static tree
structures from CART. Extracting the gradient
of the simulation from CART and using it for
optimization is potentially feasible and worth
exploring.

4. Patient Discharge: It was assumed that there are
no patient discharges during a shift for simplicity
in modeling. However, it is common to have dis-
charges during a given shift. Incorporating patient
discharges in future will enhance practicality of
SIMNA’s usage in hospitals.
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