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Abstract This research develops a novel data-inte-
grated simulation to evaluate nurse–patient assign-
ments (SIMNA) based on a real data set provided by
a northeast Texas hospital. Tree-based models and ker-
nel density estimation (KDE) were utilized to extract
important knowledge from the data for the simulation.
Classification and Regression Tree models, data mining
tools for prediction and classification, were used to
develop five tree structures: (a) four classification trees
from which transition probabilities for nurse move-
ments are determined, and (b) a regression tree from
which the amount of time a nurse spends in a loca-
tion is predicted based on factors such as the primary
diagnosis of a patient and the type of nurse. Kernel
density estimation is used to estimate the continuous
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distribution for the amount of time a nurse spends in
a location. Results obtained from SIMNA to evaluate
nurse–patient assignments in Medical/Surgical unit I of
the northeast Texas hospital are discussed.
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1 Introduction

The health care system in the United States has a
shortage of nurses. According to the U.S. Department
of Health and Human Services (DHHS), the national
shortage for registered nurses was 110,000 or 6% in
2000. DHHS anticipates that the shortage will grow rel-
atively slowly until it reaches 12% around 2010. From
then, it is expected to worsen at a faster rate and reach
a 20% shortage by 2015. A shortage of 3% or more was
observed in 30 states during 2000, and similar shortages
are predicted to occur in 44 states by 2020 [23]. These
statistics show that the severity of this shortage is wide-
spread. As a consequence of the nurse shortage, it is
natural to expect issues such as job burnout and poor
patient care [2]. In an attempt to ease the health care
system from such issues, California has set a limit on
the number of patients that can be assigned to nurses
at the same time [11]. Such restrictions may reduce
nurses’ workloads, but they will unlikely resolve the
issue because differences in workload among nurses de-
pend upon the amount of care required and the physical
location of the patients to which a nurse is assigned.
Static nurse-to-patient ratios ignore the differences in
patient mix, care unit, hospital layout, and nurse re-
sources across different hospitals. For these reasons,
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professional organizations such as, the American Orga-
nization of Nurse Executives (AONE), the Society for
Health Systems (SHS), and the Healthcare Information
and Management Systems Society (HIMSS) oppose the
mandatory static ratios [3, 22, 43]. All of these organi-
zations, in their position statements, either implicitly or
explicitly call for models that consider hospital specific
factors to address nurse-to-patient assignments. Thus,
instead of statically limiting the number of patients
per nurse, it is important to optimize the nurse–patient
assignments for a balanced workload with a hospital
specific model. In the literature, most of the relevant
research focuses on nurse budgeting, nurse schedul-
ing (rostering), and nurse re-scheduling methodologies
[1, 5–7, 10, 20, 25, 29, 35, 51] and does not address
the nurse-to-patient assignment issue. Apart from the
proposed model in this paper, Vericourt and Jennings
[50] and Punnakitikashem et al. [37] are two other
contemporary research papers that address the nurse-
to-patient assignment issue. However, these research
papers did not use real data as extensively as our
approach in modeling nurse-to-patient assignments at
a care unit level for a given hospital. By contrast, our
research considers hospital and care unit specific factors
and develops a data-integrated simulation to evaluate
nurse–patient assignments (SIMNA) that utilizes pat-
terns in a real data set to balance workload among
nurses. The data set for this research was provided by
the northeast Texas hospital and hence the results are
confined to it. However, the simulation model could
be easily adapted to other hospitals once similar data
analysis is performed. The mechanism for adapting our
simulation model to other hospitals is briefly explained
in Section 7.

In traditional stochastic simulation models, transi-
tion probabilities are obtained either subjectively or by
looking at all possible combinations of the levels of the
simulation state variables. If the system under consid-
eration is complex, such as nurse movement, then a
subjective approach is unlikely to be accurate, and an
approach using all possible combinations of the states
will be impractical. In the past, factorial designs and
screening methods were used to reduce the number of
simulation variables [8, 14, 42]. Even after eliminating
some of the variables, a few remaining variables could
lead to a huge number of combinations for the simu-
lation. For instance, six categorical variables with ten
categories each will lead to a million possible states in
the simulation. Obtaining accurate transition probabil-
ities for such a huge simulation model is still difficult.
In this paper, we present a new methodology to reduce
the number of combinations and find transition proba-
bilities for stochastic simulation models using data from

the northeast Texas Hospital. Tree-based models and
kernel density estimates (KDE) were utilized to extract
important knowledge about the workload of nurses
from an encrypted data set provided by the northeast
Texas hospital for four care units. The four units in-
clude two Medical/Surgical units, one Mom/Baby unit,
and one High-Risk Labor-and-Delivery unit. Classifi-
cation and Regression Trees [9], a data mining tool
for prediction and classification, was applied to the
northeast Texas hospital data to develop five tree struc-
tures: (a) four classification trees from which transition
probabilities for nurse movements are determined, and
(b) a regression tree from which the amount of time a
nurse spends in a location is predicted based on factors
such as the primary diagnosis of a patient and the
type of nurse. Simulation models developed with this
approach will be much more representative of actual
systems and more efficient than those that consider all
possible combinations.

1.1 Contribution

There are two major contributions made in this
research:

• This research introduces a tool to evaluate nurse-
to-patient assignment policies, such as the ones
described in Section 5, to identify good assignment
policies well ahead of a shift. Prior to a shift at the
northeast Texas Hospital, nurse supervisors assess
the expected workload of nurses for the given set
of patients and nurses in the care unit. The SIMNA
model can aid them in their decisions by providing a
tool to evaluate nurse-to-patient assignments from
different preferred assignment policies.

• This research introduces a novel approach to the
simulation community for constructing efficient
simulation models based on data mining. This way
of simulation modeling avoids misrepresentation
of system dynamics and characteristics because it is
entirely based on the pattern learned from a real data
set collected from the system over a long period of
time. Moreover, this approach reduces simulation
states and is consequently more efficient to run.

The rest of this paper is organized as follows: In
Section 2, a literature review on nursing research, data
mining, and simulation is provided. In Section 3, a brief
introduction is given on data and notation. Section 4
describes the data mining tree structures used to build
the simulation model, kernel density estimation, and
the simulation structure. Section 5 presents results from
SIMNA for a set of sample assignments from Medical/
Surgical unit I. In Section 6, the simulation model is
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validated by comparing simulation results with the
actual data. Section 7 presents a discussion on adapt-
ability of the simulation model to a different hospital.
In Section 8, we provide concluding remarks includ-
ing discussions on a possible simulation-optimization
approach to optimize nurse-to-patient assignments and
other opportunities for future work.

2 Literature review

There are three major components in this research—
nurse planning, data mining, and simulation modeling.
This section gives a brief literature review on each of
these topics.

2.1 Nurse planning

Nurse planning typically has four stages: nurse bud-
geting, nurse scheduling, nurse rescheduling, and nurse
assignment. In the literature, most of the relevant re-
search focuses on the first three stages of planning
[1, 5–7, 10, 20, 25, 29, 35, 51]. The focus of this re-
search is the nurse assignment stage of nurse planning.
Mullinax and Lawley [36] formulated and solved an
integer programming problem using heuristics to assign
nurses to patients by balancing workload for nurses
based on patient acuity in a neonatal intensive care.
Punnakitikashem et al. [37] formulated and solved a
two-stage stochastic integer programming nurse assign-
ment problem to minimize excess workload of nurses.
Vericourt and Jennings [50], using a queuing approach,
showed that the same set of ratios for different sizes of
care units lead to inconsistent amounts of care. Alterna-
tively, they proposed a heuristic-based policy to provide
better care. However, their model did not differentiate
assigned and unassigned patients of nurses, which is
discouraged in practice for maintaining continuity of
care. None of the methods discussed above provides
a tool to evaluate nurse–patient assignments to make
decisions in real time. Also, other methods did not use
real data to reflect the actual system as extensively as
the approach presented in this research.

2.2 Data mining

Data mining can be broadly classified into two groups:
supervised learning and unsupervised learning. In
supervised learning, an outcome variable is present to
guide the learning process. In unsupervised learning
or clustering, one wants to observe only the features
and have no measurements of the outcome. Supervised
learning is the subject of interest in this research as

we deal with predicting the time spent and location
for nurses. Classification and Regression Trees [9]—a
data mining tool for prediction and classification—is
used in this research for its applicability to regression
and classification problems and its readily usable tree
structures in simulation. Application of data mining
tools to health care problems is quite common and
has produced a significant amount of literature. For
instance, recently, Ceglowski and Churilov [12], and
Ceglowski et al. [13] used self organizing maps, a
clustering technique, to determine treatment paths of
emergency room patients and Ramon et al. [38] used
decision trees, first order random forests, naive Bayes,
and tree augmented naive Bayes to predict patients’
length of stay, patient survival, and endangering states.

2.3 Simulation modeling in health care

Studying industrial systems using simulation was preva-
lent as early as the late 1950s and early 1960s. Simu-
lation modeling has been used to study a wide range
of problems in health care [15, 17, 28, 34, 46]. In re-
cent years, Zenios et al. [52], Kreke et al. [31], and
Shechter et al. [41] utilized simulation models to study
organ allocation systems. A comprehensive review of
health care simulation models can be found in Klein
et al. [30] and Jun et al. [27]. In the literature, most
of the health care staffing simulations analyzed the
emergency departments in hospitals. Moreover, the
simulation modeling approaches in the literature, both
deterministic and stochastic, required the knowledge
of experts to estimate parameters and order of events
in the simulation. If the system under consideration is
complex, such as nurse movement in hospitals, then it
is impossible even for the experts to comprehend the
intricacies of the system by observation. By contrast,
the simulation modeling technique introduced in this
research captures the system dynamics from a real data
set collected from the system and requires only minimal
input from the experts.

3 Data description

At the northeast Texas hospital, each nurse wears a
locating device that transmits data to a repository,
where the data automatically expire after 1 month.
The hospital provided data for this research from four
care units: Medical/Surgical unit I, Medical/Surgical
unit II, Mom/Baby unit, and High-Risk Labor unit.
These nurse data contain information on month, day,
shift, time, location, nurse, nurse type, and time spent
for the location visited by the nurse. The hospital also



Health Care Manage Sci (2009) 12:252–268 255

provided patient data, which contain information on
admit date, discharge date, room number and diagnosis
code for each patient. These two data sets were merged
by matching the date and location information and are
referred to as the merged data. The resulting merged
data have all the variables from the nurse and patient
data sets. To preserve the confidentiality of nurses,
patients and the medical center, an encryption code
using the U16807 method [33] was developed and
applied to the data before our analysis. The U16807
method was chosen for encryption because of its effi-
ciency to handle cycling. An example for date and loca-
tion variables in our data before and after encryption is
shown in Table 1.

Two new variables were created to hold information
on the previous two locations visited for each
location entered by nurses to predict patterns in
their movements. In related research, presented in
Sundaramoorthi et al. [48, 49], seven variables were
created to hold information on the previous seven
locations. The simulation models developed with seven
previous locations were found to overfit the pattern
based on movements and, hence, were insensitive
to other practically important variables. For this
reason, the simulation presented here is unlike the
one in Sundaramoorthi et al. [48, 49] because it
includes location variables that specify only two
previous locations and the current location to avoid
overfitting patterns based purely on nurse movements.
Furthermore, a variable was created to indicate the
nurse–patient assignments. To create nurse–patient
assignment variables, it is assumed that the nurse who
spent the most time in a patient’s room during a shift
is the nurse assigned to that patient for that shift.
After processing the data, Medical/Surgical unit I,
Medical/Surgical unit II, Mom/Baby unit, and High-
Risk Labor-and-Delivery unit had 570,660, 418,683,
315,997, and 210,457 observations, respectively.
Following the conclusions in Sundaramoorthi et al.
[47] and further similar analysis presented in
Sundaramoorthi et al. [48], the following types of
variables with their specific levels are considered
significant for the methodology presented here.

1. Location: patient rooms, nurse station, break room,
reception desk, and medical room.

Table 1 Encryption example

Variable Before After

Date 4/5/04 2/15/73622
Room 442 704

2. Nurse Type: registered nurse (RN), licensed voca-
tional nurse (LVN), and nurse aide (NA).

3. Diagnosis Code: 19 categories covering the range
of diagnosis codes, and two dummy categories for
empty patient rooms and non-patient locations. See
INGENIX [24] for more details on diagnosis codes.

4. Shift: three weekday shifts (8 h each) and two
weekend shifts (12 h each).

5. Hour: 24 h ranges covering a complete day.
6. Assignment: An assigned nurse entering a patient

room (1), an unassigned nurse entering a patient
room (0), and a nurse entering any location other
than patient rooms (2).

7. Time Spent: Time Spent is the dependent variable
that denotes the amount of time a nurse spends in
a given location.

Data from different care units were handled sepa-
rately as the number of categorical levels of the con-
sidered variables listed above differed slightly among
different care units. In this research, we maintain the
following notations: XS, XT, XNT, XL, XA, and XD are
the variables representing shift, hour, nurse type, cur-
rent location, assignment, and primary diagnosis of the
patient in a current location, respectively. NS, NT, NNT,
NL, NA, and ND are the number of levels of XS, XT,
XNT, XL, XA, and XD, respectively. XP1L and XP2L are
the variables representing the two previous locations
with XP1L being the later and XP2L being the older
between the two locations visited before any current
location. XP1L and XP2L have the same number of levels
(NL) as of XL. For each nurse, XAL1, . . . , XALR are the
binary variables indicating patients assigned to her/him
in a shift. R is the number of patient rooms in a care
unit. XDL1, . . . , XDLR are the variables representing
primary diagnosis of patients in rooms 1 to R.

4 Data mining for simulation

From a methodological perspective, this research intro-
duces a novel approach to the simulation community
for constructing efficient simulation models based on
data mining. This section introduces a technique to
obtain transition probabilities for simulation from tree
models that are discussed in Section 4.1. Traditionally,
in stochastic simulations, transition probabilities are
obtained either subjectively or by looking at all the
possible combinations of variable levels. In practice,
simulation modelers combine states by making a va-
riety of assumptions on their models. For instance,
suppose a simulation expert were to model a call center
with one hundred agents using a queuing network.
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There is a potential dependence between service times
of call center agents because of resource sharing and
other human interactions among them. Consequently,
assuming these service times are independent may lead
to an inaccurate simulation model. To model the call
center system with dependent service times, the mod-
eler would need to determine the dependencies of each
pair of service times using statistical tests of indepen-
dence. This would require 10,000 such tests with an
appropriate significance level. If multiple agents’ ser-
vice times were found to be statistically dependent,
then the modeler would have to group the agents into
sets in which the agents are dependent. Then, the mod-
eler would have to develop multivariate distributions
for each group that may have tens of variables. In
practice though, the modeler would likely make poten-
tially inaccurate assumptions about the independence
of these variables to limit the dimensionality of the
multivariate distributions.

If the system under consideration is complex, such
as the care units in the northeast Texas hospital, then
a subjective approach is unlikely to be accurate, and it
will be impractical to implement an approach using all
possible combinations of the levels of the simulation
variables. In the latter approach, the number of possi-
ble combinations (NPC) grows exponentially with the
number of variables. In our problem, there are NS×
NT×NNT combinations, denoted as NPClt, for sam-
pling a location type and NS×NT×NNT×NA×NL

2×
ND

R×2R combinations, denoted as NPCl, for sampling
a location. All locations in the care units under consid-
eration can be visited from any other location of that
care unit. Even though some of these combinations of
locations are unlikely to be visited in succession, it is
not easy to justify ignoring or combining them without
using a data mining tool like trees.

4.1 Classification and regression trees

Classification and Regression Trees (CART) are data
mining tools for prediction and classification [9, 21].
CART utilizes recursive binary splitting to uncover
structure in a high-dimensional space. On an appli-
cation to a data set, CART will partition the input
space into many disjoint sets in which values within a
set have a more similar response measure than values
in different sets. Salford Systems’ CART R© software
(www.salfordsystems.com) was used to obtain our tree
structures. In particular, five tree structures were devel-
oped: (a) four classification trees from which transition
probabilities for nurse movement are determined based
on the levels of XS, XT, XNT, XDL1, . . . , XDLR, XA,
XP1L, and XP2L, and (b) a regression tree to predict

the amount of time a nurse will spend in a location
based on the levels of XS, XT, XNT, XL, XD, and XA.
A hypothetical regression tree is shown in Fig. 1a to
illustrate a prediction of the amount of time a nurse
would spend in a location. A question is asked at each

Fig. 1 Regression and classification tree structures

http://www.salfordsystems.com
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node of the tree. A data point that satisfies the ques-
tion will belong to the left branch, but it will belong
to the right branch if it fails to meet the criterion.
Based on the levels of XS, XT, XNT, XL, XD, and XA,
every data point ends up in one of the terminal nodes
of the tree. Two hypothetical classification trees, one
“location type tree” in Fig. 1b and another “location
tree” in Fig. 1c, are shown to illustrate the estimation
of the probability that a location would be visited by
a nurse. At each node of these trees, similar to the
regression tree, a question is asked; data that satisfy
the question will go left in the branching; and right if
they fail to meet the criterion. The probability of going
to a location type, such as an unassigned patient room
(0), an assigned patient room (1), or a non-patient room
(2), is obtained from the location type classification tree
based on the levels of XS, XT, and XNT.Every data
point in a “location tree” ends up in one of the terminal
nodes of the tree depending on the levels of XS, XT,
XNT, XDL1, . . . , XDLR, XA, XP1L, and XP2L. In the
terminal node, transition probabilities are estimated
as follows:

p̂(l/j) = 1

n( j)

n( j)∑

i=1

I(i ∈ l), (1)

where, j = 1, . . . , J are the terminal nodes of a “location
tree”; n(1), . . . , n(J) are the numbers of observations
in terminal nodes 1, . . . , J, respectively; l = 1, . . . , NL

are the levels of XL (i.e., the different locations in a
given care unit), and I is an indicator function. The
number of terminal nodes (J) differ for each tree. To
be precise, J0, J1, and J2 represent the number of
terminal nodes of “location trees” for location types
0, 1, and 2, respectively. JLT represents the number of
terminal nodes of a “location type tree.” For a “location
type tree”, l = 0, . . . , 2, representing unassigned patient
rooms (0), assigned patient rooms (1), and non-patient
rooms (2), are the levels of XA.

One useful outcome from using tree-based models
is the variable importance scores that provide infor-
mation on the influence of each variable to predict a
response. Variable importance scores for all the trees
are shown in Table 2. Variable importance scores for
the regression trees estimating the amount of time a
nurse will spend in a location are given in the first row.
It can be seen that location is the most important vari-
able. Primary diagnosis and assignment play a relatively
more important role in Medical/Surgical II and High-
Risk Labor units than Mom/Baby and Medical/Surgical
I units, and time (hour) of the day is more important
than shift. Nurse type has about the same magnitude

of importance across all the care units. Variable im-
portance scores for the “location type trees” predicting
a nurse’s next location type are shown in the second
row of Table 2. It can be observed that nurse type
for Mom/Baby and High-Risk Labor units, and time
(hour) of the day for Medical/Surgical I & II units are
the most important factors to predict the location type.
Similar to the regression trees, time (hour) of the day is
more important than shift. Variable importance scores
of selected variables in the “location trees” predicting
a nurse’s next location for different location types are
shown in the last three rows of Table 2. It can be
seen that the previous locations are the most important
variables to predict the next location. Once again, time
(hour) of the day is more important than shift. Variable
importance scores of the variables XAL1, . . . , XALR and
XDL1, . . . , XDLR in the “location trees” are not pre-
sented here to make the table concise. As mentioned
earlier, it is impossible even for a health care expert to
observe all of these intricate and subtle differences in
the system without using a tool like CART.

While growing the trees, ten-fold cross validation
was used for testing; class probability and least squares
splitting rules were used for creating branching de-
cisions of classification trees and regression trees,
respectively.

4.2 Estimation of time spent distribution

For each terminal node of the regression trees, kernel
density estimation is used to estimate the probability
density function for time spent (Y) by a nurse (under
the conditions specified by that terminal node). Assume
we have n( j) independent observations y1, . . . , yn( j)

for the random variable Y( j) in the terminal node j.
Let K(·) be a kernel function. Then the kernel density
estimator f̂ j,h(y) at a point y is defined by Eq. 2 [45]
as follows:

f̂ j,h(y) = 1

h×n( j)

n( j)∑

i=1

K
(

yi − y
h

)
, (2)

where h is the bandwidth, which controls the “window”
of neighboring observations that will highly influence
the estimate at a given y. Sheather and Jones plug-
in (SJPI) bandwidth estimates for h are used because
this method is one of the best for optimizing band-
width [26, 39, 40]. However, it should be noted that
bandwidth selection is not precise and is often an “art.”
Tuning of the bandwidths based on our desired cri-
teria is discussed in Section 4.2.2. Random variables
Y(1), . . . , Y(JR) denote the time spent (Y) in terminal
nodes 1, . . . , JR, respectively. Kernel density estimates
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Table 2 Variable importance
scores for regression and
classification trees

Tree type Med/surg I Med/surg II Mom/baby High-risk labor

Regression tree
XL 100.00 100.00 100.00 100.00
XD 11.20 60.02 7.54 70.42
XNT 17.17 17.70 16.76 14.78
XT 29.76 13.83 24.48 8.64
XS 10.35 6.82 9.82 4.75
XA 13.43 73.03 10.25 65.36

“Location type” tree
XNT 41.92 70.66 100.00 100.00
XT 100.00 100.00 40.60 16.47
XS 33.46 95.07 15.59 4.88

“Location” tree
(XA = 1)

XP1L 100.00 68.36 100.00 100.00
XP2L 67.21 100.00 72.95 76.26
XNT 0.86 3.11 7.63 2.75
XT 4.52 8.16 17.84 14.97
XS 3.03 3.22 11.96 12.08

“Location” tree
(XA = 2)

XP1L 100.00 100.00 100.00 100.00
XP2L 52.56 48.53 66.37 82.15
XNT 3.08 10.68 3.42 34.14
XT 5.79 6.17 4.10 4.57
XS 2.26 3.39 1.39 2.12

“Location” tree
(XA = 0)

XP1L 100.00 96.47 100.00 100.00
XP2L 65.35 100.00 68.35 94.09
XNT 5.50 11.69 6.33 9.54
XT 6.59 16.22 9.57 28.22
XS 2.38 6.67 2.81 10.87

with SJPI bandwidths were obtained for each termi-
nal node of the regression trees. A typical plot with
Gaussian and triangular kernels for each of the four
care units is shown in Fig. 2.

4.2.1 Kernel choice

Kernel functions include uniform, Gaussian, triangu-
lar, Epanechnikov, quadratic, and cosinus. Gaussian
and triangular kernels were chosen for this research
as they are common among modelers. Moreover, it
is relatively easy to draw samples from Gaussian and
triangular distributions, which is required for sampling
the time spent random variable. SJPI bandwidth es-
timates [40] were calculated for each terminal node
of the regression tree using SAS R©. Figure 2 and the
normal probability plots in Sundaramoorthi et al. [47]
show that the time spent data have a long right tail,
and a major portion of the data is concentrated near
the left end of the distribution. Gamma distributions
provided inadequate density estimates, motivating the

use of KDE. To assess how well KDE represents the
time spent distribution, 100,000 realizations of time
spent data were generated from Gaussian and triangu-
lar kernel density estimates. The simulated data were
compared with the actual data in four different ranges,
i.e., (0, M/2], (M/2, M], (M, (M + M/2)], ((M + M/2),
∞), where M is the median of the actual data. Results
from 100,000 simulated realizations of Gaussian and
triangular kernels are shown in Table 3. There were
181, 109, 123, and 49 terminal nodes in the regres-
sion trees of Medical/Surgical I, Medical/Surgical II,
Mom/Baby, and High-Risk Labor units, respectively.
The table shows that the triangular kernel wins more
often than the Gaussian kernel irrespective of the care
units and ranges. Among all of the JR × 4 competitions,
the triangular won 75%, 80%, 82% and 78% of the
competitions in Medical/Surgical I, Medical/Surgical II,
Mom/Baby and High-Risk Labor units, respectively. A
terminal-node-win was considered to be achieved if a
kernel managed to win at least three ranges out of the
four considered. Both kernels were considered to be
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Fig. 2 Kernel density estimates (Solid-Gaussian, and Broken-
Triangular)

Table 3 Performance of Gaussian and triangular kernels

Care unit Gaussian Triangular Tie

Med/surg I
JR=181
Range I wins 26 155
Range II wins 45 136
Range III wins 77 105
Range IV wins 36 145
% wins 25% 75%
Ter. node wins 13 135 33
% Ter. node wins 7% 75% 18%

Med/surg II
JR=109
Range I wins 15 94
Range II wins 24 85
Range III wins 31 78
Range IV wins 18 91
% wins 20% 80%
Ter. node wins 7 92 10
% Ter. node wins 6% 85% 9%

Mom/baby
JR=123
Range I wins 13 110
Range II wins 25 98
Range III wins 31 92
Range IV wins 18 105
% wins 18% 82%
Ter. node wins 9 104 10
% ter. node wins 7% 85% 8%

High-risk
JR=49
Range I wins 9 40
Range II wins 13 36
Range III wins 19 30
Range IV wins 3 46
% wins 22% 78%
Ter. node wins 3 38 8
% ter. node wins 6% 78% 16%

tied if they won two ranges each. The results on termi-
nal node wins shown on the last two rows of Table 3
for each care unit further indicate that the triangular
kernel is a better choice to model the northeast Texas
hospital data.

4.2.2 Bandwidth tuning

The accuracy of estimates depends more on choosing
an appropriate bandwidth than on the choice of ker-
nels [16, 44]. Bandwidth selection methods, including
SJPI bandwidth estimates [40], try to find the opti-
mal bandwidth that compromises a tradeoff between
oversmoothness and undersmoothness of the estimated
density. After obtaining bandwidths, we can decide to
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either decrease or increase the bandwidth size depend-
ing on the knowledge of the system. Data used in this
project were collected over more than a 6-month period
and have hundreds of thousands of observations for
each care unit. With data collected over months, the
different possible characteristics of the northeast Texas
hospital system will be well reflected in the simulation
if the bandwidths are tuned to prefer a less smooth
density estimate that reflects the data more accurately.
In this research, if the fraction of simulated realizations
in the ranges given in the previous section goes beyond
± 0.015 of the actual fraction of data, the bandwidth
was iteratively decreased by one until this criterion was
met. For example, the ninth terminal node of Medical-
Surgical I shown in Table 4 has realizations that vio-
lated the ± 0.015 limit. After forty four iterations of
bandwidth tuning, all four ranges have fractions within
the limit. This leads to a change of bandwidth at this
particular terminal node to 8.46 from 52.46 and thus
yields a less smooth kernel density estimate that is more
representative of realizations of the time spent data.

4.3 Data-driven simulation model

To drive a nurse activity simulation, three essential
questions are asked: (1) Which location type will a
nurse go to next given her nurse type, shift, and time
(hour) of the day? (2) Where will a nurse go next given
her two past locations, next location type, shift, hour,
nurse type, assignments, and diagnoses of all the pa-
tients? (3) How much time will the nurse spend there?
After an initial simulation run in which nurses visit their
assigned patients for an initial assessment, transition
probabilities obtained by Eq. 1 from the location type
and location trees determine the next location a nurse
will visit. Once a location type and in turn a location has

Table 4 Bandwidth tuning for terminal node 9 of Medical/
Surgical unit I

Bandwidth Sim. Actual Diff.
tuning fraction fraction

Before
h = 52.46
Range I 0.070110 0.278986 0.208876
Range II 0.083750 0.244842 0.161092
Range III 0.075310 0.086039 0.010729
Range IV 0.770830 0.390133 −0.380697

After
h = 8.46
Range I 0.266580 0.278986 0.012406
Range II 0.234510 0.244842 0.010332
Range III 0.094890 0.086039 −0.008851
Range IV 0.404020 0.390133 −0.013887

been sampled for a given nurse, the amount of time the
nurse spends there is determined by a random sample
of time spent y from the kernel density estimate at the
appropriate terminal node in the regression tree. Clock
time and the location variables are then updated. The
level of XT is changed if the updated time enters a new
category. The levels of variables XS and XNT associated
with a nurse remain unchanged throughout the shift.
This procedure of sampling location type, location, and
time spent, shown in Algorithm 1, is repeated until the
shift ends.

It has to be noted that dependencies of a nurse’s
visit to a new location with shift (XS), hour of the day
(XT), nurse type (XNT), diagnosis of patients on floor
(XDL1, ... XDLR), and her/his assigned patients (XAL1, ...
XALR) are explicitly captured by “location type trees”
and “location trees.” These trees also implicitly capture
low and high demand circumstances using assignment
variables (XAL1, ... XALR) and their combination with
other variables, for instance, diagnoses (XDL1, ... XDLR)
and time of the day (XT) variables, while determining
a new location for the nurse. Extraction of such struc-
tures by trees from the actual data would send nurses
to locations appropriately based on demand. Once the
nurse is in a new location, it is implicitly assumed that
the task performed at the location, such as patient
care in patient rooms, medical refills at medical-supply
room, and charting at the nurses’ station, and in turn
the amount of time consumed for performing the task
is independent of the demand in other locations. The
amount of time to be spent in the new location is de-
termined by kernel densities that use bandwidths that
assure less than 1.5% deviation from the actual data. In
addition, kernel density estimates in the regression tree
terminal nodes implicitly model the variation of time
spent with the uncaptured demand within the location.
Repeated sampling from kernel density estimates for
time spent data during multiple simulation scenarios
would produce enough representation of different re-
gions of the kernel density estimates, which would
reflect the actual variation found in the real system.
However, there are other potential dependencies, such
as a dependency between time spent by a nurse at
a location and the nurse’s cumulative assigned and
unassigned direct care, walk time, and a dependency
between nurses, not explicitly captured with variables
in this research. Inclusion of such factors explicitly in
the tree models has the potential to improve modeling
of demand factors and interactions.

The more efficient the simulation, the more useful
it will be for making real-time decisions. For example,
a charge nurse will assess the balance of nurse work-
load for a given nurse-to-patient assignment prior to a
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Algorithm 1 Simulation procedure
Step 0:
1. Initialize all the variables specified in Section 3 to
reflect the starting state at a care unit.
2. Start the clock time.
3. Nurse visits her / his patients and spends a constant
amount of time for an initial assessment at the begin-
ning of a shift.
4. Update XP1L, XP2L, clock time and, if necessary,
XT (every time the nurse is about to leave a location).
5. Nurse returns to nurses’ station.
6. Nurse spends a constant amount of time at nurses’
station.
7. Update XP1L, XP2L, clock time and, if necessary,
XT.

Step 1: Sample a location type (1—assigned patient
rooms, 0—unassigned patient rooms, and 2—non-
patient locations) to be visited by the nurse from the
“location type tree.”

Step 2: Sample a specific new location to be visited by
the nurse from an appropriate “location tree” for the
given location type.

Step 3: Determine a deterministic walk time based
on the distance between the current and the new
location to be visited.

Step 4: Update clock time by adding the walk time
and, if necessary, XT.

Step 5: Move the nurse to the new location.

Step 6: Determine a random sample of time spent y
from the kernel density estimate at the terminal node
of the current state in the regression tree.

Step 7: Nurse spends y amount of time at the
location.

Step 8: Update XP1L, XP2L, clock time and, if neces-
sary, XT

Step 9: If clock time is less than shift duration, Go To
Step 1 else Stop.

shift. The simulation model could assist in this process
provided its run time is sufficiently fast. The simulation
model developed using trees, discussed in Section 4.1,
requires only JLT terminal nodes for sampling a loca-

Table 5 Numerical values of levels in different care units and
number of combinations

Variable Care unit

level Med/surg I Med/surg II Mom/baby High-risk

NS 5 5 5 5
NT 24 24 24 24
NNT 4 8 8 7
ND 19 21 10 8
NL 34 32 52 52
R 26 26 32 10
NA 3 3 3 3
NPClt 480 960 960 840
JLT 145 259 322 196
NPCl > 1046 > 1047 > 1047 > 1017

J1 397 440 271 69
J2 1,816 1,554 1,194 96
J0 262 268 118 38

tion type and J0 + J1 + J2 terminal nodes for sampling a
location in simulation based on the patterns extracted
from the data. Differences between NPClt and JLT,
NPCl and J0 + J1 + J2 given in Table 5, demonstrate
that our approach is significantly more efficient. Also,
the simulation procedure developed in this research,
listed in Algorithm 1, shows that once tree models
are built, there is no subjective input needed for the
simulation. This way of simulation modeling avoids
misrepresentation of system dynamics and characteris-
tics because it is entirely based on the pattern learned
from a real data set collected from the actual system
over a long period of time.

5 SIMNA experiments

A C++ program was written to rebuild the tree struc-
tures given by CART and to run the simulation proce-
dure explained in Section 4 for Medical/Surgical I with
a thousand different random seeds. A test problem with
four nurses and twenty one patients was considered.
SIMNA tested four assignment policies: a clustered as-
signment and three assignments from Punnakitikashem
et al. [37]—the random assignment, the heuristic as-
signment, and the optimal assignment using Benders’
decomposition on a stochastic programming model. In
the heuristic assignment, all of the nurses get the same
number of patients when the number of nurses divides
into the number of patients evenly. The patient with the
highest expected direct care time is arbitrarily assigned
to a nurse. The patient with the second highest expected
direct care time is then arbitrarily assigned to a second
nurse, and so on. After assigning one patient for each
nurse, in the second cycle of assignments, the patient
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with the lowest expected direct care time is assigned
to the first nurse. The patient with the second lowest
expected direct care time is assigned to the second
nurse, and so on. This process of assignment is repeated
until all of the patients are assigned. In the test problem,
each nurse was assigned to five patients by the heuristic
method and the left over patient was arbitrarily as-
signed to the first nurse. In the clustered assignment,
patients are assigned by location; that is, patients in
consecutive rooms are assigned to the same nurse. In
the test problem, the nurse assigned to the cluster clos-
est to the nurses’ station was assigned six patients, while

the other nurses were assigned to five patients. Finally,
the optimized assignment from Punnakitikashem et al.
[37], which seeks to balance the expected workload
of RNs, by modeling the estimated direct and indirect
care of individual patients, provided assignments for
the fourth policy. In real life, nurses often perform
indirect care, such as charting and medication prepa-
ration for a patient, at non-patient locations. It was
practically impossible to break down the consolidated
indirect care data at locations like the nurses’ station
and the medical-supply room for individual patients
from the real data set. Hence, in the simulation, unlike

Table 6 SIMNA assignment
policy results for
Medical/Surgical unit I

Simulations were performed
in seconds but results are
reported here in minutes.
Due to rounding, minor
discrepancies between sums
and individual components
are present

Assignment Assigned Assigned TADC TUADC TDC TNPL Walk
policy patient patient (min) (min) (min) (min) time

locations diagnoses (min)

Random
Nurse1 (LVN) 4, 6, 10, 1, 6, 16, 92 119 211 158 116

17, and 18 8 and 14
Nurse2 (RN) 3, 13, 15, 9, 16, 13, 152 127 279 118 87

19, and 26 12 and 15
Nurse3 (RN) 1, 7, 14, 14, 10, 3, 220 84 304 94 87

16, and 20 4 and 8
Nurse4 (RN) 2, 5, 8, 13, 8, 3, 185 127 312 83 88

9, 23, and 24 6, 8, and 15
Total 651 459 1,107 455 379
Heuristic

Nurse1 (LVN) 9, 10, 13, 6, 16, 16, 122 74 196 173 115
14, 23, and 26 3, 8, and 15

Nurse2 (RN) 5, 7, 15, 8, 10, 13, 209 95 304 93 87
16, and 20 4 and 8

Nurse3 (RN) 2, 4, 6, 13, 1, 6, 163 149 312 83 89
8, and 19 3 and 12

Nurse4 (RN) 1, 3, 17, 14, 9, 8, 192 126 318 83 84
18, and 24 14 and 15

Total 688 446 1,132 434 376
Cluster

Nurse1 (LVN) 1, 4, 14, 14, 1, 3, 194 16 210 171 102
17, 20, and 24 8, 8, and 15

Nurse2 (RN) 3, 6, 8, 9, 6, 3, 172 139 311 83 90
10, and 13 16 and 16

Nurse3 (RN) 2, 16, 19, 13, 4, 12, 125 158 283 106 94
23, and 26 8 and 15

Nurse4 (RN) 5, 7, 9, 8, 10, 6, 107 195 302 89 94
15 and 18 13 and 14

Total 600 520 1,107 451 381
Stochastic programming

Nurse1 (LVN) 10, 13, 14, 16, 16, 3, 164 45 209 172 104
16 and 17 4 and 8

Nurse2 (RN) 3, 7, 20, 9, 10, 8, 222 85 307 101 75
24 and 26 15 and 15

Nurse3 (RN) 1, 2, 4, 14, 13, 1, 193 120 313 82 89
6, 8, and 23 6, 3, and 8

Nurse4 (RN) 5, 9, 15, 8, 6, 13, 115 187 302 89 94
18 and 19 14 and 12

Total 696 441 1,132 446 363
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in Punnakitikashem et al. [37], indirect care of all the
assigned patients of a nurse is modeled together. It
should be noted that this does not affect the ability to
evaluate the optimized assignment in SIMNA.

The tested assignments and their results are shown in
Table 6. Total assigned direct care (TADC), total unas-
signed direct care (TUADC), total direct care (TDC),
total time spent in non-patient locations (TNPL), and
the walking time (Walk Time) are shown in the last
five columns. TADC is the total duration of time a
nurse spent with her assigned patients in the entire
shift. TUADC is the total duration of time a nurse
spent with unassigned patients. TDC is the sum of
TADC and TUADC. TNPL is the total time spent at
locations other than patient rooms (e.g., the medical
supply rooms, the charting rooms, the nurses’ station,
etc). In order to assess the balance of workload, we
consider the ratios of maximum to minimum values for
TADC, TDC, TDC for RNs, and walking time. Ratios
closer to one indicate better balance. These ratios from
the test problem are given in Table 7. For balancing
TADC, the heuristic assignment performed best and
the random assignment performed worst among the
policies considered. For balancing TDC, the heuristic
assignment performed the worst, and the other three
were similar to each other. For balancing TDC for
RNs, the heuristic and optimal assignments performed
best, and the random assignment performed worst.
Finally, for balancing walking time, the clustered as-
signment performed better than the others. In partic-
ular for the optimal assignment, the sum of all nurses’
TADC and TDC is higher than the other assignments,
while the total walking time of the optimal assignment
is less than that of the other assignments. To quantify
the differences between the four policies, the squared
differences between the individual ratios and the best
ratio are provided in Table 8. The sum of the squared
differences across all four performance measures for
each policy is shown in the last column. Based on
this measure, the clustered assignment is the best, and
the random assignment, not surprisingly, is the least
desirable. It should be noted that the above conclusions
about the performance of policies are confined to the
test problem and could differ for other problems.

Table 7 Maximum-to-minimum ratios for TADC, TDC, TDC of
RNs, and walking time

Assignment policy TADC TDC TDC (RNs) Walk time

Random 2.39 1.48 1.12 1.33
Heuristic 1.71 1.62 1.05 1.37
Cluster 1.81 1.48 1.10 1.13
Stochastic prog. 1.93 1.50 1.04 1.39

Table 8 Squared differences between the individual ratios and
the best ratio

Assignment TADC TDC TDC Walk Sum
policy (RNs) time

Random 0.4624 0.0000 0.0064 0.0400 0.5088
Heuristic 0.0000 0.0196 0.0001 0.0576 0.0773
Cluster 0.0100 0.0000 0.0036 0.0000 0.0136
Stochastic prog. 0.0484 0.0004 0.0000 0.0676 0.1164

Prior to a shift, SIMNA results can aid the charge
nurse in determining appropriate nurse-to-patient as-
signments. In theory, perfect workload balance could
be achieved even with nurses assigned to a signifi-
cantly fewer or higher number of patients than others.
However, at the northeast Texas hospital an effort is
made to assign the same number of patients to each
nurse. Occasionally nurses have one or even two pa-
tients more than other nurses due to patient admissions
and discharges, and divisibility issues. If the balance
in workload is not satisfactory, the nurse supervisor
can reassign patients or hire an agency nurse for that
shift to redistribute and balance the workload while
maintaining the same number of patients for nurses.
Hiring agency nurses would likely cost more in the
short term, but would yield better patient care and
retention of nurses in the longer run. Thus, SIMNA
upon installation in hospitals will aid charge nurses and
management to make decisions about nurse–patient
assignments based on the dynamics learned from the
system itself.

6 Simulation validation

Among different steps in a simulation modeling pro-
cess, validation is an important step in which accu-
racy of the model is verified by comparing it to the
actual system. Depending on the magnitude of the
discrepancy, if needed, the simulation model would be
calibrated based on the insights gained by the mod-
eler from the simulation output analysis. The following
verification and validation steps were among those,
performed as part of the validation process in this data-
integrated simulation modeling approach.

1. Tree Structure: The tree structures were checked
before the first scenario of simulation run to ensure
accurate building of trees for simulation runs.

2. Shift Duration: TDC, TNPL, and WALK TIME
were added for each nurse to check that the entire
shift duration is within reason.

3. Kernel Density: The kernel and bandwidth vali-
dations, presented in Section 4.2, ensured that the
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regression trees provided a reliable approximation
of the data.

4. Cumulative Density: The cumulative densities of
kernel distributions in each terminal node were
printed to check if they were close to one.

The primary objective of this research is to create
a tool to identify policies that provide balanced nurse–
patient assignments. In this research, the balance of
workload and performance of nurses were judged
based on performance measures TADC, TDC, TNPL,
and WALK TIME that were introduced in Section 5
and shown in Tables 6 and 7. As part of the main
validation, the actual TADC, TDC, TNPL, and WALK
TIME of 15 nurses arbitrarily chosen to represent the
entire data set were compared with that of simulated
data. An effort was made to select the 15 nurses from
different parts of the real data. For instance, three
nurses were chosen from each of the five shifts to
avoid any bias towards a shift. The 15 arbitrarily chosen
nurses with their assigned patients’ and shift informa-
tion were simulated over 1,000 different scenarios. The
comparison between the mean values of the perfor-
mance measures from a thousand simulated scenarios
and the actual data of the 15 nurses, chosen from differ-
ent shifts, are plotted in Fig. 3. It should be noted that
the comparison of the actual and the simulated max–
min ratios of the performance measures of the 15 shifts
would be more appropriate as it measures the balance
in workload directly. While composing max–min ratio
data for individual shifts, it was found that for certain
day and evening shifts, even when a shift started with a
specific set of patients and nurses, the set often changed
because of nurses working half shifts, float units, and
relief time, and patients getting admitted or discharged.
Also, nurse–patient assignments were slightly altered
when nurses or patients changed during the shift. It
was practically impossible to consolidate the data for
the entire shift to calculate max–min ratios, especially
the ‘min’ part, without any bias towards nurses, shifts,
and time of the day. For this reason, it was decided
to compare performance measures of nurses working
full shifts directly instead of ratios of performance mea-
sures. The current validation approach, even with a bias
towards the nurses working the full shift, should be
better than ratios that either include approximations
or totally ignore nurses who worked a fraction of an
entire shift. An alternate way to tackle this issue would
be to incorporate patient admissions and discharges,
floating nurses, break times, and half shifts in the sim-
ulation model to reflect the reality, which would allow
a comparison of max–min ratios from the simulation to
the actual data set. Unfortunately, the present data set

Fig. 3 Comparison of actual data with simulated data

from the northeast Texas hospital does not explicitly
reveal admits, discharges, half shifts, float nurses, break
times, and relief nurses information. Incorporation of
these features and events in subsequent versions of this
simulation would be useful if such data or standards
become available.

Figure 3a specifically shows the comparison of actual
and simulated TADC. In the TADC comparisons, as
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well as the TDC, TNPL, and WALK TIME compar-
isons shown in Fig. 3b, c, and d , dotted curves rep-
resent the mean from the 1,000 simulation scenarios,
while solid curves represent actual data. Ideally, it is
desirable to have the dark solid curve overlapping with
the dotted curve. In the figure, different nurses were
joined by curves, as if nurses were continuous, just
to visualize the overall difference between the actual
performance and the simulated performance. In the
TADC comparisons, the mean of the simulation scenar-
ios estimates the actual data closely by picking up the
pattern as well as the magnitude. Among the different
performance measures used in this research, TADC
is the most important as it measures the amount of
assigned direct care provided by nurses and directly
impacts patient care and continuity of care. Simulated
and actual TDCs, shown in Fig. 3b, compare another
important performance measure in terms of nurse work
load as well as patient care. It can be seen that, the
mean TDC from the simulation estimates the pattern
of actual data closely. However, the plots show that
the TDC from the simulation over-estimates the TDC
of the actual data. If the objective were to predict the
TDC of nurses in isolation without any comparison, it
would be desired to calibrate the simulation to reduce
the magnitude of TDC. However, this research seeks
only the balance, as shown in Table 7, by comparing
the maximum of a performance to the corresponding
minimum. The resultant max–min ratio should not be
altered by the discrepancy in the magnitude, neither by
an over-estimation nor an under-estimation, as long as
the pattern of the performance measure in the simula-
tion matches with the actual data as shown for TDC
in Fig. 3b. Also, if optimization of the system with
respect to TDC, either minimization of nurse-workload
or maximization of patient care, were the final goal, the
discrepancy in the magnitude of the objective should
not alter the optimal decision.

Figure 3c shows the comparison of actual and simu-
lated TNPL. It can be seen from the figure that the sim-
ulation model provides TNPL that matches the pattern
of actual data and, hence, provides reliable max–min ra-
tios for TNPL. However, the plots show that the TNPL
from the simulation under-estimates the TNPL of the
actual data and should not be used to interpret the
magnitude of TNPL of individual nurses in isolation.
Simulated and actual WALK TIME, shown in Fig. 3d,
compare the performance measure that accounts for
the amount of time a nurse walks during the entire
shift. In this research, a deterministic time is added de-
pending on the distance between two locations a nurse
walks in the simulation. In reality, these walk-times are
stochastic, as different nurses at different times would

spend different amounts of time walking between the
same locations. As expected, it can be observed that
simulated WALK TIMEs have less variability across
the nurses. It also shows that the simulation estimates
the magnitude of real walking time reasonably.

The above discussion shows that performance mea-
sures of the simulation model estimate the pattern of
real data, and to a certain extent the magnitude. Hence,
it represents the actual system well enough to arrive at
conclusions about the nurse work load balance in terms
of the ratios introduced in Table 7 without further
calibration of the simulation.

7 Sensitivity and adaptability

Sensitivity analysis would be needed if the simulation
input involves either uncertain parameters or uncertain
functional forms. In the traditional simulation input
modeling, the uncertain parameter(s) or uncertain dis-
tribution(s) would provide realizations to one or more
interrelated simulation “events.” Such a simulation
model is also complex in construction and execution
because of its interdependence of individual “events”
and their outcomes.

There is a subtle difference between this research
and the traditional simulation input modeling. This
research seamlessly integrates the knowledge gained
from the data mining algorithm, and in turn the real
information from the system to the simulation. Once
tree structures are built, simulation is merely an exer-
cise of sampling repeatedly from alternate tree struc-
tures until the end of the shift condition is met. Hence,
this research has identified a technique to represent a
dynamically evolving system using repeated sampling
from static tree structures. Unlike input parameters
and distributions in traditional input modeling, the tree
structures are not uncertain for a given splitting rule.
CART software provides six splitting rules for clas-
sification trees: Gini, Symmetric Gini, Entropy, Class
Probability, Twoing, and Ordered Twoing. As per the
CART manual, depending upon the choice of splitting
rule, the accuracy may differ as much as 10%. The Class
Probability splitting rule was chosen in this research as
it forces CART to build class probability trees instead
of classification trees. In a traditional classification tree
model with two classes, for example, a terminal node
with 51% of Class One data and 49% of Class Two data
will be classified as Class One. For future predictions,
the model will predict Class One for every instance of
that state. In this research, the focus is to obtain transi-
tion probabilities for the simulation from the terminal
node rather than the classification itself. In theory, the
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probability distributions from the tree built with the
Class Probability rule are more accurate than the other
choices. CART software provides two splitting rules
for regression trees: Least Squares and Least Absolute
Deviation (LAD). The default method is Least
Squares. Least Squares penalizes deviations away from
the mean more, proportional to their squares, than the
deviations closer to the mean. This way of penalizing is
preferred in this research over LAD to find states that
would tend to have identical time spent data. It should
be noted that in theory, the Class Probability rule and
the Least Squares rule are the best for this application.
Once the choice of splitting rules is justified, the tree
structures are not uncertain. Hence, sensitivity analysis
on simulation output based on different tree structures
is unnecessary.

To simplify the complexity of the simulation, a deter-
ministic simulation might be preferred in some applica-
tions rather than the stochastic simulation discussed in
this research. If such a deterministic simulation is pre-
ferred, one would build traditional classification trees
and use the classified location types/locations at termi-
nal nodes to determine nurse transitions. Similarly, the
average value of the observations in each terminal node
would be used instead of sampling from kernel density
functions. In that case, quantifying the differences in
modeling assumptions in terms of the accuracy of simu-
lation models developed from different tree structures
would be an interesting direction for research. How-
ever, the comparison of different modeling assumptions
is not necessary for this application because of the
stochastic nature of the actual system.

As mentioned earlier, the simulation model devel-
oped in this research is hospital specific and has to be
adapted accordingly to use in different hospitals. To
adapt this research, the most accurate approach is to
install a data collection system similar to the one used in
this research and build tree models from it. Hill-Rom,
a major hospital equipment supplier is one of several
companies that supply this type of system. The primary
purpose of having such a system in a hospital is for the
unit secretary to locate the closest nurse to a patient
in urgent need, which often leads to unassigned direct
care. Nurses’ current locations can be viewed by the
secretary on her desk top computer. If a patient needs
immediate assistance, the secretary would page the
nearest nurse seeking for assistance. From this system,
the data is transferred and stored in a repository contin-
uously. With recent innovations and the proliferation of
RFID technology, installing such a system in hospitals
has become easier and cheaper and has found to be
useful for different purposes. Section 3 introduced the
variables used in this research. The number of variables

for the data mining and in turn for the simulation would
depend on the availability of data in a given hospital.
Apart from the variables discussed in Section 3, other
variables such as, experience level and education level
of nurses, secondary diagnosis, length of stay, and age
of patients, would be interesting to consider. For some
hospitals, there could be fewer variables than in this
model due to unavailability or disinterest in certain
variables. Even for the same variables, it is likely that
the number of categories will vary at different hospitals.
In any case, CART should be applied on the hospital-
specific data set to fit the five tree structures discussed in
Section 4. The choice of independent variables for each
tree can differ from the ones used in this research. The
selection of independent variables can be made based
on the variable importance scores from CART and
practical significance of the variables to the hospital.
Once data mining is completed, the simulation should
be performed as explained in Section 4.3. The impact of
factors/variables on the simulation can be judged based
on variable importance scores given in Table 2. The
variable that receives a 100 score indicates the most
influential variable for prediction (higher impact on
the simulation), followed by other variables based on
their relative importance to the most important one.
However, care should be taken to avoid overfitting
based on certain artificial variables that could mask
other important variables. Using the concept of struc-
tures and pointers [18, 32], the C++ simulation code
written in this research can read any tree structure
when the same or a subset of variables from this re-
search are used, and then simulate by sampling re-
peatedly from the trees until the entire shift period
ends. This way of coding makes it easy to adapt the
simulation code to different hospitals.

The input data set, which was collected continuously
for a long period in this research, is treated as the
population data. The tree models are used to extract
patterns from the input data for the simulation. When
new data are available and hence new trees are built
in CART, the simulation model can update itself by
reading and simulating from the new tree structures.
As a result, this research introduces a readily adaptable
simulation model to different data sets even though the
simulation developed in this paper is hospital specific. If
it is impossible to install such a data collection method,
the same tree structures developed in this research can
be used if there is a reasonable justification for similar
work dynamics in the new hospital. It is also possible
to append “If . . . Then . . . ” rules to the tree struc-
ture if there are additional restrictions. However, walk
time between different locations should be adjusted to
reflect the new hospital layout.



Health Care Manage Sci (2009) 12:252–268 267

8 Conclusions and future work

A novel approach to construct a nurse activity simula-
tion model from real data was developed using classifi-
cation and regression trees. Classification trees provide
transition probabilities to determine where a nurse
will go next. Regression trees combined with kernel
density estimates determine the amount of time the
nurse will spend at the new location. Simulation mod-
els developed with this approach will be significantly
more efficient than the simulation models that consider
all possible combinations of state variables. Optimal
nurse–patient assignments can be identified by applying
simulation-optimization methods, such as Atlason et al.
[4] and Fu and Hu [19], to our resulting simulation
model. Implementing this methodology as an informa-
tion technology tool in hospitals will help charge nurses
make better decisions on nurse–patient assignments for
a shift. As a result, better care for patients, balanced
work loads for nurses, retention of nurses, and cost
savings for hospitals can be achieved.
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