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Abstract. Coxian phase-type distributions are a special type of Markov model that describes duration until an event occurs in terms of
a process consisting of a sequence of latent phases. This paper considers the use of Coxian phase-type distributions for modelling patient
duration of stay for the elderly in hospital and investigates the potential for using the resulting distribution as a classifying variable to identify
common characteristics between different groups of patients according to their (anticipated) length of stay in hospital. The identification
of common characteristics for patient length of stay groups would offer hospital managers and clinicians possible insights into the overall
management and bed allocation of the hospital wards.
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1. Introduction

The current focus of many health care providers is the devel-
opment of accurate health care models to assist with resource
allocation. One of the most demanding of all the specialist
areas is the care of the elderly. This is largely due to the
dramatic increase in the proportion of elderly in the popula-
tion which is expected to continue to rise for at least the next
50 years. The population projections for 2050 indicate a pro-
nounced shift in the age distribution toward older age groups
which is largely due to increasing longevity, higher birth rates
following the post World War II baby boom, and the more re-
cent decline in fertility rates [1]. Medical resources through-
out the world are feeling the added strain of this increasing
proportion of elderly in the population as the cost of health
care of the elderly becomes an even more significant part of
overall expenditure [2].

The effective care of elderly patients in hospitals may be
enhanced by accurately modelling the length of stay of the
patients in hospital and the associated costs involved. There
has been substantial research carried out in the past concern-
ing the modelling of the length of stay of patients in hospi-
tal. More recently, Coxian phase-type distributions have been
successfully applied to modelling patient duration of stay in
hospital. Previous research by Sorensen [3] has also high-
lighted the use of models to represent patient resource de-
mands. Sorensen divides the hospital admissions into differ-
ent groups depending on the length of time the patients have
been in hospital. Each group consists of patients who require
similar care levels and similar resource demands.

Neuts [4] described phase-type distributions as the time to
absorption of a finite Markov chain in continuous time, where
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there is a single absorbing state and the stochastic process
starts in a transient state. Phase-type distributions are con-
sidered highly versatile with many advantages. They may be
used to fit a distribution to a series of statistical data according
to the moments of that series or can be generalised to include
almost all continuous distributions [5] such as the exponen-
tial, which will only have one phase, or the Erlang and mixed
exponential distributions. In fact, the phase-type models were
originally introduced as a natural probabilistic generalisation
of Erlang distributions. The key difference is that the move-
ment between all the transient stages and the absorbing phase
can occur in the phase-type distribution whereas in the case
of the Erlang transitions movement can only occur between
sequential phases. In addition, the distributions have the abil-
ity to describe detailed information about the behaviour of
the stochastic models while also allowing the lack of memory
property to exist. Furthermore, in many situations the distrib-
utions replace cumbersome numerical integrations with more
manageable matrix calculations whose numerical implemen-
tation is easy and inexpensive [6].

There are many examples in the literature where phase-
type distributions are being used, not only in the applied prob-
ability domain but also as a tool for data analysis. Applica-
tions are wide ranging from calculating the expected load of
mobile phone networks [7], to analysing the duration of stay
of elderly patients in hospital [8]. Faddy and McClean [9]
used this model to find a suitable distribution for the duration
of stay of a group of male geriatric patients in hospital. They
found that the phase-type distributions were ideal for measur-
ing the lengths of stay of patients in hospital and showed how
it was also possible to consider other variables that may in-
fluence duration. Faddy [5] also provides some other useful
illustrations of phase-type distributions.
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This paper considers the use of Coxian phase-type distrib-
utions within the care of the elderly using a data set different
to that used by Faddy and McClean [9]. The resulting dis-
tribution is further investigated for its potential as a classify-
ing variable to identify common characteristics for groups of
patients according to their (anticipated) length of stay in hos-
pital. Apart from Sorensen’s work, there has been very little
research concerned with the grouping of such patient length
of stay. The identification of common characteristics for pa-
tient length of stay groups would offer hospital managers and
clinicians possible insights into the overall management and
bed allocation of the hospital wards.

2. Coxian phase-type distributions

The generality of the phase-type distributions makes parame-
ter estimation difficult. As a result, Coxian phase-type dis-
tributions were introduced to overcome such a problem by
ensuring that the transient states (or phases) of the model are
ordered. Coxian phase-type distributions [10] are employed
to describe duration until an event occurs in terms of a process
consisting of a sequence of latent phases. The process begins
in the first phase and may either progress through the phases
sequentially or enter into the absorbing state (the terminating
event). Such phases may then be used to describe stages of a
process which terminates at some point. For example, dura-
tion of stay in hospital can be thought of as a series of tran-
sitions through phases such as: acute illness, intervention, re-
covery or discharge. This may capture how a domain expert
conceptualises the process. The phase-type distribution re-
lates directly to survival analysis where the survivor function
is the duration of time until a certain event takes place. The
event could be leaving hospital due to transfer, discharge or
death.

Cox and Miller [11] develop the theory of Markov chains
such as those defined in this section. The Coxian phase-type
distributions describe the probability P(t) that the process is
still active at time t , defined as follows. Let {X(t); t � 0}
be a (latent) Markov chain in continuous time with states
{1, 2, . . . , n, n + 1}, X(0) = 1, and for i = 1, 2, . . . , n − 1,
the probability that a patient will move from one phase to the
next phase in the system, in the time interval δt may be writ-
ten as

prob
{
X(t + δt) = i + 1 | X(t) = i

} = λiδt + o(δt), (1)

and likewise for i = 1, 2, . . . , n, the probability that a patient,
during the time interval δt , will leave the system completely
and enter the absorbing phase may be written as

prob
{
X(t + δt) = n + 1 | X(t) = i

} = µiδt + o(δt) (2)

with µ1, µ2, . . . , µn representing the rates of movement
or transitions of patients from any phase out of phases
Ph1, . . . , Phn to the absorbing phase Phn+1, and, λ1, λ2,

. . . , λn−1 the rates of movement from Ph1 to Ph2, Ph2 to Ph3
and Phn−1 to Phn (figure 1).

Figure 1. An illustration of coxian phase-type distributions.

The distributions can be represented in matrix notation
where the probability density function of T is

f (t) = p exp{Qt}q, (3)

p = (1 0 0 . . .0 0), (4)

q = −Q1 = (µ1µ2 . . . µn)
T, (5)

and Q is the matrix of transition rates between states, as
shown:
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For example, when i = 1

exp{Qt} = [
e−µ1t

]
, and f (t) = µ1e−µ1t , (7)

when i = 2

exp{Qt}
=

[
e−(λ1+µ1)t

(
λ1

λ1+µ1−µ2

)(
e−µ2t − e−(λ1+µ1)t

)
0 e−µ2t

]
, (8)

and

f (t) = (λ1 + µ1)(µ1 − µ2)

λ1 + µ1 − µ2
e−(λ1+µ1)t

+ µ2λ1

λ1 + µ1 − µ2
e−µ2t ,

and so on, with the λi ’s and µi ’s defined in equations (1)
and (2).

The survival probability that X(t) = 1, 2, . . . , n is given
by

S(t) = p exp{Qt}1. (9)

3. Modelling patient duration of stay

The management of the care of elderly patients in hospitals
may be improved if there was a model to represent and predict
the length of stay of the patients in hospital. For instance,
if a hospital manager were able to estimate the duration of
stay of a patient on admission to hospital, the ward could be
more efficiently managed with better allocation of beds and
resources.

The distribution of the duration of stay of elderly patients
in hospital tends to be highly skewed in nature where there
is usually a large peak in the distribution at the start which
then gradually tails off as duration increases. Millard et al.
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Figure 2. Distribution of duration of stay of geriatric patients in St. George’s
Hospital, London (1994–1997).

[12] have shown that a hospital’s expenditure may be greatly
influenced by those patients in the long tail of the distribution
who stay in hospital for a long period of time. Sometimes
this may not be regarded as a serious issue as the longer stay
patients do not require the same amount of resources daily as
those of shorter more acute stay patients and they are fewer in
number. However, over time these elderly patients can con-
sume significant quantities of medical resources. The mod-
elling and prediction of patient destination and duration of
stay in a geriatric department would therefore be beneficial
to hospital managers to help estimate current patient require-
ments and predict future needs.

Past investigations of the elderly patients’ length of stay
led to the discovery that a two-term mixed exponential model
produces a good representation of patient survival. Since then
further research has endeavoured to improve the mixed expo-
nential models with the incorporation of more complex com-
partmental systems, and more sophisticated stochastic models
such as the Coxian phase-type distributions [1]. Alternative
modelling techniques for representing elderly patient length
of stay are fully discussed in [13].

The Clinics data set contains information collected during
1994–1997 to assist in the management of patients in a depart-
ment of geriatric medicine. There are 4722 patient records
comprising variables related to personal information such as
age, gender, marital status, next of kin, lives alone; admission
reasons such as stroke, fall, confusion; Barthel scores and,
outcome details; destination on departure from hospital and
duration of stay in hospital. The mean length of stay in hospi-
tal is 85 days while the median is 17 days indicating a skewed
distribution; the distribution is illustrated in figure 2. This is
confirmed by examining the shape of the distribution of length
of stay which is highly skewed consisting of a large peak at
the start of the distribution that gradually tails off as duration
increases. As such this skewed nature makes management
of patients more difficult. The development of models for the
duration of stay of elderly patients in hospital would therefore

assist hospital managers in the estimation of current patient
requirements and the prediction of future needs. Marshall et
al. [14] provide information on the preliminary analysis of the
Clinics data set.

This paper utilises the Clinics data set to demonstrate how
the patient duration of stay can be modelled using a suit-
able Coxian phase-type distribution. Following this discus-
sion, the paper examines a further use of the model whereby
the patients within the length of stay groups are examined to
identify common characteristics. The identification of such
common characteristics between patient length of stay groups
would assist clinicians understanding of patient duration of
stay in hospital.

4. Methodology

The length of stay of elderly patients in hospital can be mod-
elled using Coxian phase-type distributions. The procedure
adopted is sequential in nature whereby increasing numbers
of n phases are tried, starting with n = 1 (corresponding to
the exponential distribution), until there is very little improve-
ment to the fit from adding an additional phase. The approach
is implemented by using the following likelihood function:

L =
n∑

i=1

log
(
p exp{Qti}q

)
(10)

for the phase-type distribution in a series of likelihood ratio
tests. The Nelder–Mead algorithm [15] is implemented us-
ing MATLAB software [16] to perform the likelihood ratio
tests which determine the most suitable number of phases in
the distribution. The Nelder–Mead algorithm [15] is a non-
gradient approach which uses a simplex formed by a set of
(n + 1) mutually equidistant points in n dimensional space.
The method compares the values of the function at the (n+1)
vertices using the simplex which it then guides towards the
optimum point during the iterative process. The three basic
operations used to direct the simplex are reflection, expan-
sion and contraction. The approach is considered a very ro-
bust, powerful technique provided the number of variables is
not very large.

The following formula is derived in order to represent the
length of stay in terms of k phases. Let πi be the probability
that an individual departs the system from Phi . This can be
calculated by taking the probability density formula for each
phase or state. Then

π1 =
∫ ∞

0
µ1e−(λ1+µ1)t dt = µ1

λ1 + µ1
. (11)

Similarly,

π2 =
∫ ∞

0
µ2e−(λ2+µ2)t dt

∫ ∞

0
λ1e−(λ1+µ1)t dt

=
(

λ1

λ1 + µ1

)(
µ2

λ2 + µ2

)
, (12)

...
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πk =
(

λ1

λ1 + µ1

)(
λ2

λ2 + µ2

)
· · ·

(
λk−1

λk−1 + µk−1

)
. (13)

Patients may then be divided into groups according to their
length of stay where the data is grouped in the ratio π1 : π2 :
· · · : πk . In general the kth length of stay group Sk can be
determined by the following equation:

Sk =
{

x(j): m

k−1∑
i=1

πi < j � m

k∑
i=1

πi

}
, for k = 1, . . . , n,

(14)
where x(1), . . . , x(m) represents the ordered length of stay
data for each patient and m represents the number of patients
in the data set. The patients’ details within each length of stay
group may then be examined to determine if they have any
common characteristics.

5. Results

The following table (table 1) of results was produced by using
the previously described Nelder–Mead algorithm and likeli-
hood ratio tests. It is apparent from inspection of the like-
lihood values, that there is no (significant) improvement in
fit by adding the fourth phase to the distribution. Therefore
a three-phase Coxian distribution is considered to most suit-
ably represent length of stay of geriatric patients in hospital
in the Clinics data set. The estimates for the parameters of
the three phase distribution are µ̂1 = 0.0394, µ̂2 = 0.0011,
µ̂3 = 0.0002, λ̂1 = 0.0011, λ̂2 = 1.56 × 10−5.

The data may then be divided into the ratio π1 : π2 :
· · · : πk where πi are estimated from equation (13) thus pro-
viding the following three patient length of stay groups as in
(14):

S1 = {
x(j): j � mπ1

}
,

S2 = {
x(j): mπ1 < j � m(π1 + π2)

}
,

S3 = {
x(j): j > m(π1 + π2)

}
, (15)

where x(1), . . . , x(m) represents the ordered length of stay
data for each patient and m = 4722, the number of pa-
tients in the data set, and, π1 = 0.9630, π2 = 0.0364 and

Table 1
Results of fitting the coxian phase-type distributions.

Log-likelihood Estimation of parameters

n = 1, L = 24260 µ̂1 = 0.0160

n = 1, L = 21100 µ̂1 = 0.0393, µ̂2 = 0.0009,
λ̂1 = 0.0015

n = 3,a L = 21097 µ̂1 = 0.0394, µ̂2 = 0.0011, µ̂3 = 0.0002,
λ̂1 = 0.0011, λ̂2 = 1.56 × 10−5

n = 4, L = 21097 µ̂1 = 0.0394, µ̂2 = 0.0011, µ̂3 = 0.0002,
µ̂4 = 2.51 × 10−6

λ̂1 = 0.0015, λ̂2 = 1.57 × 10−5,
λ̂3 = 8.51 × 10−11

aIndicates the most suitable number of phases for the Clinics data set.

π3 = 0.0005. Upon fitting the Coxian phase-type distrib-
utions, the patients may be regarded as belonging to one of
three ‘length of stay’ groups: 0–130 days, 131–1450 days,
>1450 days. By performing statistical analyses on the pa-
tient details for each group, comparisons can be made and
common characteristics identified.

The first group of patients (length of stay group 1: 0–130
days) consists of the majority of the elderly patients and as a
result includes a diverse range of patient attributes that have
few common characteristics. However, if the second group of
patients (length of stay group 2: 131–1450 days) are consid-
ered and compared with the first, there are distinguishable dif-
ferences between the two patient groups in particular, in asso-
ciation with the admission reasons, admission month, Barthel
(dependency) score, and outcome (destination) on departure
from hospital. Although there are few patients in the third
group of patients (length of stay group 3: >1450 days) close
inspection of the group indicates common characteristics for
instance, all the patients are female, aged between 57 and 64
(where the age range for the full Clinics data set is between
42 and 105). In fact, it would be possible to consider these pa-
tients as outliers who although few in number consume a con-
siderable amount of resources due to the very long lengths of
stay in hospital. More focus can then be directed to the other
two groups of patient length of stay.

The results of the fitted Coxian phase-type distribution re-
late directly to previous work carried out on compartmental
models [17]. The first phase in the length of distribution (0–
130 days) can be considered the shorter stay patients mainly
comprising of those patients who are discharged home or in
such an acute state on arrival to hospital that they die after
a short period of time. The second phase (131–1450 days)
would be considered those patients who have a much longer
duration of stay in hospital and will mainly comprise of the
patients who eventually transfer, e.g., to nursing home care.
The third and final phase (>1450 days) is regarded as the pa-
tients with a very long, extreme length of stay in hospital.
Quite often it is these few cases that will consume a large
proportion of the resources.

The Coxian phases have highlighted a strong relationship
between the patient outcome showing three stages of patient
behaviour reflected by whether the patient transfers to another
ward, is discharged back into the community or dies during
their stay in hospital. This agrees with previous work carried
out using Conditional phase-type distributions [18] and other
review papers which have highlighted the appeal of using the
Coxian phase-type distribution by making comparisons be-
tween standard techniques for modelling length of stay of pa-
tients in hospital and the Coxian phase-type distribution [19].

6. Conclusion and further work

This paper discusses Coxian phase-type distributions and
their use in modelling patient duration of stay in hospital. In
particular the length of stay of elderly patients were analysed
and found to be most suitably represented by a three-phase
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Coxian distribution. The model was used to identify common
characteristics of patients in the same length of stay group.
Such analysis could be expanded to further investigate any po-
tential relationship in patient variables and the length of stay
category to which they belong. It is also hoped that further
work will involve the application of this method on an exten-
sive data set incorporating additional clinical variables. Ad-
ditionally, there is the possibility to expand the current model
to incorporate other information such as the influence that the
doctor’s decision may have on the overall length of stay of
the patients in hospital. However, if the medical information
is accurate and appropriately incorporated in the model, it is
more likely that the most influential variables on patient du-
ration of stay will be the patient’s medical condition.

The modelling technique may be used to represent a group
of patients according to their length of stay and the charac-
teristics that they have in common. Such information could
then be utilised to give an indication to hospital staff the likely
length of stay category and destination of future patients. This
would be most useful, if the model were extended to include
more patient information, to assess the overall activity in the
hospital ward by providing an estimate of the number of bed
days required for the current group of patient and the resulting
availability of beds for new admissions.

Future work may also involve the development a Cox-
ian phase-type model that will take account of the costs at-
tached to the various phases or groups of patient. The result-
ing model would assist hospital managers with bed allocation
whereby various scenarios may be investigated to identify the
most cost effective case-mix.
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