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Abstract
In Large-Scale Group Decision-Making (LSGDM), effectively implementing 
consensus models is pivotal for managing decision complexity. While trust-based 
LSGDM has garnered attention, there remains a need for deeper insights into the 
dynamics of interexpert trust and the impact of authority effects on the decision-
making process. This study introduces a sophisticated model for large-scale group 
decision-making, incorporating considerations of expert “trustworthiness-authority.” 
Initially, the study assesses the trustworthiness of experts based on social network 
relationships and opinion similarity while using background information and 
consensus levels to establish their authority. Subsequently, experts are categorized 
into four distinct regions based on their trustworthiness and authority assessments. 
Furthermore, tailored consensus adjustment methods are proposed for each region 
based on social contagion theory to facilitate consensus achievement. Additionally, 
a case study is conducted to demonstrate the rationality and effectiveness of the 
proposed LSGDM model, considering expert “trustworthiness-authority.” Finally, 
the necessity and superiority of the proposed model are further verified through 
comparison analysis and sensitivity analysis.

Keywords Expert authority · Expert trustworthiness · Large scale group decision-
making · Social network analysis · Trustworthiness-authority consensus model

1 Introduction

As societal and economic development progresses rapidly, accompanied by the 
escalating complexity of decision-making environments (Liu and Yang 2022; Xing 
et al. 2023), the evolution of group decision-making into the domain of Large-Scale 
Group Decision-Making (LSGDM) has been necessitated (Jin et al. 2023). LSGDM, 
a burgeoning field, leverages the diverse decision inputs of over 20 individuals to 
discern the optimal solution from various courses of action (Hochbaum and Levin 
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2006; Xu et  al. 2023; Zhao et  al. 2023). Nonetheless, the escalating number of 
decision-makers may precipitate heightened contradictions and conflicts (Bai et al. 
2022b; Xu et  al. 2019), potentially diminishing decision efficiency and impeding 
the formulation of cohesive decision outcomes (Yang et al. 2023b). Addressing the 
consensus challenge has emerged as a pivotal focus of research, with the Consensus 
Reaching Process (CRP) gaining prominence in the study of large-scale group 
decision-making (Liu et al. 2022c).

As research advances, the interconnections within social networks among 
individuals are becoming increasingly intertwined with the CRP (Liu et al. 2022a; 
Wu et al. 2017; Xu et al. 2021b). In this context, the role of trust in social networks 
becomes crucial, with a growing body of research incorporating trust relationships 
into the CRP. Establishing trust relationships among decision-makers within social 
networks enhances the reliability of information dissemination. Currently, scholars 
are predominantly focusing their research efforts on trust relationships in several 
key areas: clustering experts based on trust relationships (Liu et al. 2022b), setting 
expert weights based on trust relationships (Zhang et al. 2018; Zhao et al. 2022), and 
designing adjustment rules based on trust relationships to facilitate consensus among 
DMs (Li et al. 2022b). However, in actual group decision-making scenarios, experts 
may lack a comprehensive understanding of each other, making it challenging to 
establish trust with unfamiliar decision-makers. This can lead to missing values in 
the initial trust matrix (Gong et al. 2020; Wu et al. 2017). As the decision-making 
process dynamically evolves, the complexity of the Social Network Group Decision-
Making (SNGDM) process also increases (Li et  al. 2022a; Sun and Zhu 2023). 
On one hand, as experts interact and gain a better understanding of one another, 
trust relationships evolve, thereby completing the trust network. On the other hand, 
changes in trust relationships at one stage can directly impact the decision-making 
process in subsequent stages (Li et al. 2023b). Therefore, it is crucial to consider the 
dynamic evolution of trust relationships among experts.

The traditional CRP involves critical stages, including consensus measurement, 
consensus adjustment, and prioritization of alternative solutions (Li et  al. 2022b). 
In the consensus measurement phase, consensus levels are primarily assessed 
based on the distance between decision-makers and group preferences (Gai et  al. 
2023b). In terms of consensus adjustment, specific guidelines are utilized to offer 
adjustment suggestions to decision-makers. The integration of social network 
theory has invigorated consensus methodologies, with researchers advocating 
for deeper explorations of relationships among DMs (Peng and Chen 2024) and 
utilizing trust relationships among experts to guide the consensus adjustment 
process (Zou et al. 2024). Simultaneously, some scholars focus on establishing trust-
driven bidirectional interaction and feedback mechanisms among DMs to enhance 
the consensus achieved (Gai et  al. 2023a, b). Additionally, considering DMs trust 
relationships, researchers have developed methods to reduce information loss 
and achieve a joint feedback mechanism that minimizes costs while maximizing 
consensus (Lu et al. 2021; Wang et al. 2024; Zhong et al. 2022). The ultimate goal of 
group decision-making is to identify the optimal alternative solutions. Hence, some 
scholars concentrate directly on the ranking of alternative solutions to facilitate 
consensus. For instance, methods such as Ordinal-cardinal consensus (Meng et al. 
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2023), multicriteria group sorting (de Morais Bezerra et  al. 2017; Li and Zhang 
2024), maximum consensus sequences (Ming et  al. 2021) can accurately provide 
solution ranking results without the need for guiding rules during the consensus 
iteration process. Nevertheless, these consensus models overlook the behavioral 
characteristics of individual decision-makers and fail to adequately consider 
psychological traits in experts’ decision-making processes.

The psychological resilience of decision-makers plays a crucial role in facilitating 
consensus attainment during the decision-making process. Experts are influenced 
by their peers, not solely relying on relational trust. (Ureña et al. 2019). Traditional 
theories of group decision-making operate under the assumptions of individual 
rationality and self-interest maximization (Carneiro et  al. 2018). However, the 
applicability of these premises in real-world settings is challenging, resulting in 
decision analyses that are not only irrational but also divorced from reality (Wu 
and Yang 2019). DMs often struggle to access complete information in practical 
decision-making processes (Wu et  al. 2024), and factors such as environmental 
changes and the opinions of other decision-makers can make achieving full 
rationality difficult (Sun et  al. 2024). For instance, under group pressure, when 
DMs fear the consequences of their preferences differing from those of others, they 
are prone to succumbing to the herd effect (Liu and Mao 2022). According to the 
authority effect (Milgram 1963), when experts exhibit low self-confidence and weak 
trust relationships, they are highly susceptible to developing a “safety psychology,” 
wherein they tend to trust the opinions of authoritative experts to mitigate their 
own risk of error. In decision-making environments characterized by uncertainty, 
experts’ authoritative backgrounds and psychological behaviors play a crucial role in 
decision-making. However, traditional decision-making theories overlook experts’ 
psychological states and their authoritative backgrounds’ influence on decisions 
(Blass 1999).

The primary issues identified in the current research are: (1) Inadequate 
consideration of trust networks. Most experts tend to focus solely on static social 
networks, overlooking the dynamic changes in trust relationships among experts 
during decision-making. (2) Limited consideration of consensus adjustment rules. 
Most group decision-making models primarily rely on adjustments based on trust 
relationships among experts, neglecting the individual behavioral and psychological 
characteristics of DMs. (3) Neglect of the authority effect on the decision-making 
process. Many studies assume that identified experts are inherently entirely rational 
without delving into the influence of authority on experts’ decision-making.

To address the aforementioned challenges, this study introduces an innovative 
approach targeting large-scale group decision problems characterized by trust 
relationships. The main innovations of the proposed model can be summarized as 
follows:

(1) Considering the incompleteness and dynamic nature of trust networks, this 
study integrates expert preferences to investigate the impact on expert trust 
relationships. We propose a dynamic trust index to more accurately reflect the 
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evolving trust dynamics among experts throughout the decision-making process, 
thereby providing improved guidance for decision-making.

(2) This study aims to extract data on decision-making experiences and background 
expertise from online sources. By analyzing this data in conjunction with 
the consensus level among experts, an authority metric is developed to 
comprehensively and objectively evaluate the decision-making capabilities and 
influence of experts.

(3) Integrating considerations of expert trust and authority, this study devises a dual-
indicator consensus feedback model to precisely adjust preferences with low 
consensus levels. The model provides more reliable support for the consensus-
reaching process, offering a nuanced perspective on enhancing the reliability of 
consensus formation.

The remainder of this paper is organized as follows. Section  2 offers a 
comprehensive review of the relevant literature. Section 3 outlines the preliminary 
concepts and foundations required for the subsequent discussions. In Sect.  4, the 
design of the trustworthiness and authority operator is elucidated. A framework 
for reaching consensus is proposed and detailed in Sect.  5. Section  6 furnishes 
an exemplary case along with several experimental validations to illustrate the 
practicality of the proposed concepts. The paper culminates with conclusions and a 
discussion of managerial implications in Sect. 7.

2  Literature Review

2.1  Consensus Model for LSGDM

In the context of social networks, researchers have proposed various methods for 
achieving consensus decision-making by integrating different theories. In the 
literature on LSGDM based on social networks, leverage relationships among 
experts to facilitate the feedback mechanism of CRP in LSGDM (Tan et al. 2024). 
Tian et al. (2019) utilize trust propagation to establish social networks and propose 
a CRP based on conflict detection and resolution to achieve consensus. Gai et  al. 
(2023a) introduced bidirectional interaction/feedback mechanisms among DMs by 
constructing trust chains. From the perspective of minimizing costs, Zhao et  al. 
(2023) devised a PSO global feedback model that simultaneously considers the 
adjustment costs of group feedback mechanisms and consensus levels, aiming to 
minimize the overall adjustment cost. Wang et al. (2024) developed an optimization 
model focusing on minimizing individual adjustment costs while maximizing 
group consensus, jointly driving the feedback mechanism. Additionally, scholars 
concentrate on the ranking of alternative solutions. Zhou et  al. (2024) propose a 
novel sequential consensus measurement method that considers both the consistency 
of alternative solutions in rankings and the significance of the position of these 
solutions. Meng et al. (2023) determined the weights of decision-makers and clusters 
through ordinal and cardinal indices to minimize the number of ranking position 
adjustments and total cardinal adjustments. Li and Zhang (2024) implemented 
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a threshold-based sorting approach to ensure that the ranking outcomes for each 
alternative solution remain unaffected by other alternatives. The paper will construct 
an LSGDM model integrating experts’ trustworthiness and authority to facilitate the 
achievement of expert consensus.

2.2  Consensus Model Based on Trust Relationships

Trust relationships, as tangible manifestations of social connectivity among 
decision-makers, embody features such as transitivity, asymmetry, and reciprocal 
interactivity, thereby exerting a profound influence on the consensus attainment 
process (Lu et  al. 2022; Wu et  al. 2021; Yu et  al. 2021). In order to complement 
trust networks and identify optimal transmission paths, some research has 
established consensus decision models by considering trust relationships among 
decision-makers (Bai et  al. 2022a). Wu et  al. (2016) innovatively adopted the 
Uninorm trust transmission and consolidation algorithm, incorporating four key 
dimensions–trust, distrust, hesitation, and inconsistency–to architect a group 
decision-making methodology premised on trust linkages. Gai et  al. (2023a) 
further designed a trust function to express trust and distrust relationships among 
decision-makers, proposing an algorithm to find the shortest trust chain and achieve 
consensus bidirectional interaction/feedback among decision-makers. Sun et  al. 
(2023) employed a dynamic programming algorithm to identify the optimal trust 
propagation path by searching for the path with the highest level of trustworthiness.

During the consensus adjustment phase, some scholars put forth consensus 
feedback models based on trust relationships, offering targeted adjustment 
suggestions based on the degree of trust among decision-makers (Li et al. 2020b). 
Liu et  al. (2017) introduced a trust-induced recommendation mechanism, guiding 
decision-makers to modify their opinions based on the preference information of 
individuals they trust. Gou et al. (2023) introduced a trust reward and punishment 
mechanism, incentivizing high-consensus experts and penalizing low-consensus 
experts to promote consensus among experts. However, few experts have noted 
that trust relationships during expert interactions are influenced by the similarity of 
expert preference opinions, overlooking the dynamic nature of trust relationships 
during the decision-making process. Therefore, this paper will integrate expert 
opinion similarity and social network trust relationships to construct dynamic trust 
relationships among experts, accurately quantifying the dynamic evolution of expert 
trust relationships during the decision-making process.

2.3  Consensus Model Considering Expert Psychological Factors

In the context of uncertain information, individuals engage in mutual communication 
and interaction within a group, and the influence on decision-making processes is 
inevitable. The psychological factors and social relationships of decision-makers 
impact their behavioral choices. With the development of behavioral science, 
numerous scholars have delved into the psychological factors of DMs (Li and Cao 
2019). Wang et  al. (2017) proposed a novel emergency group decision-making 
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method based on prospect theory and expert psychological factors. Osório (2020) 
proposed a practical score aggregation procedure to reduce the impact of subjective 
judgment bias in the decision-making process of DMs. Yang et al. (2023a) utilized 
experts’ confidence levels to measure their willingness to adjust, thereby determining 
the consensus adjustment range of experts. Xu and Xiao (2023), considering 
people’s tendency to accept similar opinions, designed a decision consensus model 
based on trust-similarity analysis. By introducing confidence coefficients and 
retention coefficients, targeted consensus adjustment measures were proposed on the 
basis of expert social network clustering, thereby enhancing group consensus levels.

Traditional group decision-making theories assume individual complete 
rationality, but these assumptions are challenging to fulfill in real decision 
environments, leading to irrational decision outcomes. In the decision-making 
process, experts often succumb to conformity psychology. To address this issue, Li 
et al. (2023b) took into account the conformity psychology of experts and developed 
a model with a two-stage feedback process. Xu et al. (2022), focusing on experts’ 
bounded rationality in the decision-making process, integrated group pressure 
with large-scale emergency decision-making issues. Considering the conformity 
psychology of experts, group pressure was used as a preference coefficient to 
guide experts in preference adjustment, facilitating consensus among experts. 
In  situations where the trust network is incomplete, experts are susceptible to 
“security psychology” and tend to trust experts with higher authority to reduce the 
risk of errors (Blass 1999; Haslam and Reicher 2007). However, current research 
has seldom explored the influence of expert authority levels on the decision-making 
process. This paper aims to incorporate the concept of authority levels into LSGDM, 
comprehensively considering their impact on the decision-making process.

3  Preliminaries

This section provides a concise introduction to the fundamental concepts 
underpinning the structure in LSGDM and Social Network Analysis. These 
conceptual frameworks serve as the theoretical bedrock for the current study.

3.1  The Structure in LSGDM

Let N = {1,… , n},X =
{
x1,… , xn

}
(n ≥ 2) be a finite set of alternatives, where 

xi denotes program i . E = {e1,… , em}(m ≥ 2) denote a set of experts or DMs 
participating in the consensus process. When m ≥ 20 , it is considered as a large-
scale group decision-making. Generally speaking, LSGDM problems usually 
have three stages: expert initial opinion provision, DMs clustering, and consensus 
reaching process (CRP). All the symbols and their meanings involved in this paper 
are summarized in Table 12.
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3.1.1  Fuzzy Preference Relations

Orlovsky (1978) introduced a decision-making methodology designed to address 
the inherent ambiguity and uncertainty inherent in decision-making information 
within DMs. This approach is grounded in fuzzy preference relations, providing 
a systematic means to effectively tackle decision-making quandaries, particularly 
when preference relations within the alternative set exhibit a fuzzy nature.

Definition 1 (Li et al. 2023a). A matrix P = (pij)n×n over a finite set of alternatives X is 
a fuzzy set over X × X.Its affiliation function is �R ∶ X × X → [0,1],�R

(
xi, xj

)
= pij , 

where pij denotes the degree to which option xi is superior to option xj . If ∀i, j ∈ N 
satisfies,

when i = j, pii = pjj = 0.5.Then P = (pij)n×n denotes as the fuzzy preference 
relationships.pij = 0.5 indicates that option xi is as important as option xj (xi ∼ xj)

;0.5 < pij ≤ 1 indicates that option xi is strictly better than option xj(xi ≻ xj) , and 
pij = 1 indicates that option xi is absolutely better than option xj ; 0 < pij ≤ 0.5 
indicates that option xj is strictly better than option xi(xi ≺ xj) , pij = 0 means that 
option xj is absolutely better than option xi.

3.1.2  DMs Clustering

In the context of social networks, the effective management of information 
necessitates the application of classical k-means clustering methodology for the 
classification of DMs contingent upon the similarity of opinions among users. 
Prior to the application of the k-means clustering algorithm, it is imperative 
to address two key challenges: (a) the determination of the optimal number 
of subclusters and (b) the selection of an appropriate similarity measure (Guo 
et al. 2023). To this end, we now define equations for calculating the Euclidean 
distance between any two DMs, as well as equations for updating the cluster 
centers during the clustering process. The specific procedure of the k-means 
algorithm can be found in the literature (Bai et al. 2022b).

Definition 2 Let Pk = (pk
ij
)
n×n

 and Pm = (pm
ij
)
n×n

 be the fuzzy preference matrices of 
any two DMs ek, em , Then the distance between both DMs is

where ‖‖F is the Frobenius paradigm of the matrix.

(1)pij + pji = 1, pij ∈ [0, 1].

(2)d
(
ek, em

)
= ‖‖Pk − Pm

‖‖F =

√√√√ n∑
i=1

n∑
j=1

(
pk
ij
− pm

ij

)2
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Definition 3 Let ck be the opinion center of any class k, then the Equation for updat-
ing the opinion center is as follows:

where Ck denotes the k-th class, ||Ck
|| denotes the number of the k-th cluster. Recall 

that Ps denotes the fuzzy preference matrix of the s-th DM.
Based on the similarity of opinions, the experts are grouped into K 

subgroups,with subgroup weights represented by � = {�1,�2,… ,�K},also 
satisfying 0 ≤ �k ≤ 1 and 

∑
�k = 1.The weight vector of these decision makers is 

denoted by � = {�1, �2,… , �m} , satisfying 0 ≤ �k ≤ 1 and 
∑

�k = 1 . The weighted 
arithmetic averaging (WAA) is one of the most widely used operators in GDM and 
is the basis for many aggregation operators (Lin and Jiang 2014). Using the WAA 
operator, subgroup opinions and group opinions can be expressed as follows:

(a) Subgroup fuzzy preference relations PGk
= (p

Gk

ij
)
n×n

:

where �k denotes the weights of the experts, and it is assumed that the expert 
weights are uniformly distributed.

(b) Group fuzzy preference relations PG = (pG
ij
)
n×n

:

where �k represents the weight assigned to the subgroup Gk , determined by the 
number of experts within the subgroup.

3.1.3  Consensus Reaching Process

Following the clustering process above, consensus has been achieved among the 
DMs within each group. Consequently, the focus shifts exclusively to inter-group 
consensus, denoting the consensus between these distinct groups. Consensus 
measures quantify disparities between individual and group opinions (Cao et al. 
2021; Guo et  al. 2023; Li et  al. 2020a). This concept is elucidated through the 
following definition:

Definition 4 Let Pk = (pk
ij
)
n×n

, k = 1,… ,m be the fuzzy preference relation of the 
k-th DM,PG = (pG

ij
)
n×n

 is the group fuzzy preference relation obtained through 
Eq. (5).

(3)ck� =

∑
s∈Ck

Ps

��Ck
��

=

∑
s∈Ck

�∑n

i=1

∑n

j=1
ps
ij

�

��Ck
��

(4)PGK
= WAA

(
P1,P2,… ,Pk

)
=

∑
ek∈GK

�k ⋅ Pk =
∑
ek∈GK

�k ⋅

(
n∑
i=1

n∑
j=1

pk
ij

)

(5)PG = WAA
(
PG1

,PG2
,… ,PGk

)
=

K∑
k=1

�k ⋅ PGk
=

K∑
k=1

�k ⋅

(
n∑
i=1

n∑
j=1

p
Gk

ij

)
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(a) The consensus level CL(ek) of expert ek is:

where D(Pk,PG) denotes the distance between individual expert preference 
and group preference, calculated using the Manhattan distance Equation. The 
greater the value of the CL(ek) less the conflict of opinion between Pk and PG , 
and the better their level of common sense.

(b) The inter consensus level of the cluster Gk is:

where D(PGk
,PG) represents the distance between a subgroup’s preference 

relationship and the overall group preference, calculated using the Manhattan 
distance Equation.

(c) Further, based on the WAA operator, the group consensus level GCL can be 
obtained as:

where GCL�[0.1] , and the larger the value of GCL , the better the level of 
group consensus, �k is the subgroup weight, which is determined based on the 
number of experts in the cluster.

  Achieving unanimous agreement in real-world group decision-making is 
generally challenging. Consequently, it may be prudent to establish a predefined 
threshold for an acceptable degree of group consensus, denoted as GCL or “soft 
consensus” (Qin et al. 2022; Zhang and Li 2021). Without loss of generality, if 
the Group Consensus Level GCL for a given decision-making instance, GCL , 
exceeds the threshold GCL , it signifies that the group has attained an acceptable 
level of consensus. Subsequently, the decision-selection process can be initiated. 
Conversely, if GCL falls below GCL , indicating insufficient consensus, the 
feedback regulation mechanism is triggered to address the divergence and foster 
a more cohesive decision-making environment. The specific CRP is described 
in Sect. 5.

3.2  Social Network Analysis

3.2.1  Concepts of Social Network Analysis

A social network constitutes a sophisticated framework that intricately connects 
individual members of a society through diverse forms of interaction (Ji et al. 2023). 
In the context of social networks, nodes are conventionally represented by V  . At the 

(6)CL(ek) = 1 − D
(
Pk,PG

)
= 1 −

n∑
i=1

n∑
j=1

|||p
k
ij
− pG

ij

|||

(7)ICL(Gk) = 1 − D
(
PGk

,PG

)
= 1 −

n∑
i=1

n∑
j=1

|||p
Gk

ij
− pG

ij

|||

(8)GCL =

m∑
k=1

�kICL(Gk)
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same time, edges are denoted by E , symbolizing decision-making members and the 
dynamic relationships among them, respectively. To maintain a refined notation, 
let m represent the total number of nodes, reflecting the count of decision-making 
members as {e1, e2,… , em} . Let edges be denoted as d , the edge linking node ei 
and node ej delineates the social network relationship between decision-making 
members ei and ej , denoted as d(ei, ej) (Chen et al. 2020).

Definition 5 (Wasserman and Faust 1994). The degree centrality CB(ei) of node e is 
the number of all adjacent nodes of node ei , defined as follows:

Degree centrality is a pivotal metric employed to assess the significance and 
influence of a node within a network. This metric quantifies the extent of connections 
a node maintains, with a higher degree centrality indicative of a node’s increased 
importance within the overall network. In the context of weighted networks, where 
Aij denotes the weight of the edge connecting nodes ei and ej , the presence of an 
edge is denoted by Aij = 1 , while its absence is represented by Aij = 0.

Definition 6 (Wasserman and Faust 1994). The closeness centrality of node ei , 
denoted as Cc

(
ei
)
 , quantifies its centrality within a network by considering the close-

ness or distance between nodes. A node achieves a higher closeness centrality when 
it is intricately connected to numerous other nodes through relatively shorter paths, 
defined as follows:

where d(ei, ej) denotes the shortest path between nodes ei and ej.

3.2.2  Trust Propagation of SNA

In the realm of social networks, trust relationships among individuals manifest in 
diverse forms, as illustrated in Fig. 1. Direct Trust is characterized by a direct con-
nection between Nodes A and B, indicative of tangible real-life interaction and accu-
rate assessment (refer to Fig. 1a). Alternatively, Indirect Trust denotes the transmis-
sion of trust through intermediaries; if Node A trusts B and B trusts C, it follows 
that A indirectly trusts C (refer to Fig. 1b). Conversely, an Irrelevant Relationship 
is denoted by the absence of direct or indirect connections between Nodes A and 
B, signifying the absence of any trust relationship (refer to Fig. 1c) (Li et al. 2022b; 
Sun et al. 2023).

In practical scenarios, the manifestation of complete trust or distrust is a rarity. 
Social networks exhibit a dynamic interplay of trust levels, influenced by ongoing 
discussions and opinion exchanges. The degree of similarity in opinions among 

(9)CB

(
ei
)
=
∑
j

Aij

(10)Cc

(
ei
)
=

[∑
j

d
(
ei, ej

)]−1
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DMs significantly impacts the nature of trust relationships, giving rise to the concept 
of Interactive Trust. In this context, Nodes A and B may or may not share a direct 
connection, but the presence of shared perspectives facilitates the establishment of 
trust relationships among experts, as depicted in Fig. 1d (Zha et al. 2023).

4  The Determination of Expert Trustworthiness and Authority

In conventional consensus processes, the focus predominantly rests on the trust 
established among experts, often neglecting the inherent limitations within these 
trust relationships as they exist in real-world social networks (Gong et al. 2021). It 
is crucial to acknowledge that experts may be susceptible to the influence wielded 
by authority figures, a phenomenon intricately tied to the development of “security 
psychology.” This phenomenon suggests a proclivity among experts to gravitate 
towards placing trust in those of higher authority, thereby mitigating their own 
susceptibility to errors (Blass 1999). Consequently, there exists a predisposition 
among experts to repose trust in individuals possessing both authoritative standing 
and specialized knowledge. Within this section, our objective is to delineate the 
constructs of expert trustworthiness and the level of authority they command.

4.1  Trustworthiness Degree

In the realm of practical decision-making, trust relationships among experts are 
frequently confronted by uncertainties. Firstly, trust relationships within social 
networks often exhibit incompleteness due to the diverse domains from which 
experts in decision-making arise (Sun et al. 2023). Given their specialized expertise, 
it becomes impractical to establish trust relationships with every individual 

Fig. 1  Different types of trust relationships
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involved. Secondly, the transmission of trust is susceptible to gradual weakening or 
complete dissipation (Wu et al. 2023; Zhou et al. 2024). Furthermore, the nature of 
trust relationships is inherently dynamic. Within the context of discussions and the 
exchange of opinions, individuals initially lacking a pre-existing trust relationship 
may, over time, attenuate their initial mistrust (Zha et al. 2023). This transformation 
occurs through processes of mutual understanding and empathy, culminating in the 
gradual construction of trust. Consequently, trust relationships are shaped by the 
interplay between social network relationships and the convergence of opinions 
among experts.

Definition 7 The quantification of the social trust relationship among experts is 
determined by assessing the interconnection of nodes within the social network 
and evaluating the shortest path length between these nodes. The strength of expert 
social network trust relationship srij is:

where Aij represents the weight of the edge between nodes ei and ej . If there is an 
edge connection between nodes ei and ej , then Aij = 1 , otherwise it is 0; where 
d(ei, ej) denotes the shortest path between nodes ei and ej;

Definition 8 The impact of opinion similarity on trust relationships is explored by 
simultaneously considering the distance and angle between expert preferences to 
define an opinion similarity function (Cao et al. 2019). The opinion similarity sdij 
between two preference matrices Pi and Pj is formulated as follows:

where ‖‖F is the Frobenius paradigm of the matrix, 

‖Pi − Pi‖F =

�∑n

i=1

∑n

j=1

���Pi
ij
− Pi

���
2

 ; and 
Pj =

1

n×n

∑n

i=1

∑n

j=1
Pi
ij
,Pj =

1

n×n

∑n

i=1

∑n

j=1
P
j

ij
.

Definition 9 Trust relationships among experts evolve during the decision-mak-
ing process. The dynamic trust function, denoted as Ftr , delineates this evolution. 
In accordance with the state transition equation, the trust relationship is defined as 
follows:

where � ∈ [0,1] denotes the weight vector.
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Building upon the dynamic trust relationships elucidated earlier, it is possible to 
devise an individual trust index for experts. This index serves as a metric for gaug-
ing both the intensity of trust associations among experts and the extent of trust 
invested.

Definition 10 The expert ei individual trustworthiness level is:

where �ij denotes the i-th trust relationship weight, which is determined based on the 
magnitude of the Ftr

(
ei, ej

)
 values, the higher the trust between experts, the larger 

�ij , �ij =
Ftr(ei,ej)∑n

j=1
Ftr(ei,ej)

.

To facilitate the comprehension of the calculation process described in Definition 
4.1, we provide an illustrative example below.

Example 1 Given the fuzzy preference matrices for three experts e1, e2, e3 , as pre-
sented below, along with the trust relationships (Table 1) and the shortest distances 
among the experts (Table 2) derived from the social network graph, with � = 0.6.

Based on the information from Tables  1 and 2, the relationship intensities 
between DM1 and DM2 as well as DM3 are computed using Eq.  (11) as follows: 
sr12 = 0 and sr13 = 0.5. Subsequently, leveraging the provided fuzzy preference 
matrices and employing Eq.  (12), the similarity of opinions between Expert e1 
and other experts is determined, yielding sd12 = 0.9447 and sd13 = 0.9287 Hence, 

(14)FTD

�
ei
�
= f

��
j

Ftr

�
ei
��

=

∑m

j
Ftr

�
ei, ej

�
× �ij∑m

j=1
�ij

P1 =

⎡⎢⎢⎢⎣

0.5 0.2 0.2 0.6
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⎤⎥⎥⎥⎦
,P3 =
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0.9 0.5 0.9 0.7

0.9 0.1 0.5 0.2

0.7 0.3 0.8 0.5

⎤⎥⎥⎥⎦

Table 1  Social network trust 
relationships

DM1 DM2 DM3

DM1 0 0 1
DM2 0 0 1
DM3 1 1 0

Table 2  The shortest distance 
between experts

DM1 DM2 DM3

DM1 0 5 5
DM2 5 0 4
DM3 2 4 0
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utilizing Eq.  (13), the trust relationships between Expert e1 and other experts are 
calculated: Ftr

(
e1, e2

)
= 0.3779,Ftr

(
e1, e3

)
= 0.6715 . Then the corresponding 

weights �12 = 0.3601,�13 = 0.6399 are computed. Consequently, according 
to Eq.  (14), the individual trustworthiness level of e1 is ultimately determined as 
FTD

(
e1
)
= 0.6681.

4.2  Authority Degree

When the trust network is incomplete, relying solely on trust relationships to 
guide consensus adjustments is insufficient. In the decision-making process, 
the level of expertise of an expert within a group also significantly influences 
the decision outcomes. Therefore, in our research, we not only consider trust 
relationships among experts but also take into account their background by 
designing an authority index.

To define an expert’s background, we extract two critical pieces of information: 
the expert’s decision-making experience and their level of professional knowledge 
(Xu et al. 2021a). We obtain expert background data through information platforms 
such as CNKI (China National Knowledge Infrastructure), Baidu Baike, Web of 
Science, Google Scholar, IEEE, ELSEVIER, Wiley, Expert Database, etc. The 
expertise background is conceived within the context of evaluating decision-making 
processes through iterative interactions. Expertise background information pertains 
to the delineation of certain characteristics/features defining an expert, such as 
educational attainment, institutional affiliation, and professional rank, among others. 
At the same time, an expert’s decision-making experience and knowledge level are 
quantified by using an expert scoring system to assess the background information 
obtained from the expert.

In the decision-making process, the level of consensus among experts directly 
reflects the proximity of their viewpoints to the group consensus. Thus, experts 
with higher consensus levels have relatively greater authority in discussions. 
Social identity theory (Ashforth and Mael 1989) posits that individuals seek a 
sense of belonging within a group. If an expert aligns with the group consensus, it 
may enhance their sense of belonging and consequently strengthen their authority. 
Conversely, if an expert’s viewpoint diverges from the group consensus, they may 
face rejection or suspicion, leading to a decrease in their authority.

Building upon these considerations, we introduce an expert authority function, 
which is defined based on the aforementioned information.

Definition 11 The authority as a comprehensive manifestation derived from expert 
background (denoted as eb ) and consensus level (denoted as cl ). The authority func-
tion is formulated as follows:

(15)FAD

(
ei
)
= f (eb, cl) = �1

√
de
(
ei
)
+ �2

[
kl
(
ei
)]2

+ �3 sin

[
�

2
⋅ cl

(
ei
)]
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where de, kl, cl represent expert decision-making experience, expert knowledge 
level, and expert consensus level, respectively. And �1 , �2 , �3 represent the weight 
vector, �1 + �2 + �3 = 1.

Remark 2 In the realm of decision-making, the authority of an expert, intricately 
tied to their wealth of decision-making experience, can be likened to the curve of 
y =

√
x . This smoothly increasing dynamic encapsulates the nuanced relation-

ship between an expert’s background and their authoritative stance. Furthermore, 
the connection between the level of expert knowledge and authority follows a trend 
reminiscent of the graph y = x2 , fittingly modeled as a quadratic function. The for-
mulation of expert consensus level ( cl ), as per Eq.  (6), is confined within the [0, 
1] range. Notably, the variable cl demonstrates a positive correlation with authority 
level, approximated by the sinusoidal function sin(x).

Example 2 Assuming the background information obtained from the internet about 
the expert e1 is: “Bai Shizhen, male, Han nationality, born in October 1962, is cur-
rently a professor and doctoral supervisor at Harbin University of Commerce. His 
main research areas include digital logistics, smart supply chain management, digi-
tal agricultural product markets, and e-commerce. As of November 2022, Bai Shiz-
hen has published over 72 high-quality academic papers independently or as the first 
author in domestic and international journals. He has also led 11 national-level pro-
jects and participated in over 25 research projects. With over 30 years of industry 
experience, he often takes on the team leader role, responsible for project planning, 
management, and execution, demonstrating outstanding leadership abilities. Peers 
highly recognize Bai Shizhen’s professional expertise, and he has been rated as 
being at the forefront of the industry and enjoying a good professional reputation.”

As assessed by the expert scoring system, the expert’s decision-making 
experience and level of knowledge are assigned scores: de

(
e1
)
= 1, kl

(
e1
)
= 0.8 

respectively. It is also given that the expert’s consensus level is cl
(
e1
)
= 0.7450 , 

with �1 = 0.3, �2 = 0.3, �3 = 0.4 . The degree of authority of this expert can be 
calculated according to Eq. (15), FAD(e1) = 0.8603.

5  The CRP Model Based on DM Trustworthiness‑Authority Consensus

This section outlines our consensus-reaching process based on the trustworthiness-
authority consensus model. Section  5.1 proposes our novel consensus model, 
integrating decision makers’ trustworthiness and authority dynamics. Additionally, 
Sect. 5.2 presents alternative ranking methods and comprehensively elaborates on 
the decision-making process of the LSGDM model proposed in this paper.
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5.1  A Trustworthiness‑Authority Consensus Model for LSGDM

This section will provide a detailed exploration of the Trustworthiness-Authority 
Consensus Model. In Sect.  5.1.1, experts are methodically categorized according 
to their trust levels and authority. Following this, thresholds are determined in 
Sect. 5.1.2, and exclusive adjustment rules are formulated for experts linked to each 
specified region in Sect. 5.1.3.

5.1.1  Partitioning of Experts Based on Trustworthiness‑Authority Level

By categorizing experts’ trustworthiness and authority levels into two distinct levels 
each (high and low), we can divide the measurement attributes into four quadrants, 
forming a Trustworthiness-authority Analysis Chart (refer to Fig. 2). In this chart, 
the X-axis represents the individual trustworthiness level of experts, while the 
Y-axis represents authority. The trustworthiness-authority function of experts is 
mapped onto a two-dimensional coordinate system, with black dots representing 
their positions. The following is a detailed description of the four quadrants in 
Fig. 2:

Q1: “Optimal Quadrant”.
Experts located in Q1 have high trustworthiness scores and high authority. Such 
experts are highly trusted within the expert community, enjoying a distinguished 
reputation and authoritative status. They are widely respected in the community, 
have a solid foundation of trust, and exhibit consistency in their actions and 
statements in the public domain. The consensus level is high, and their opinions 
are reliable and highly influential in the social network.

Fig. 2  Trustworthiness-authority Analysis plot
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Q2: “Authority Emphasis Quadrant”.
Experts in Q2 have a high reputation in the social network. However, their insights 
may be less reliable due to several factors. These include a limited understanding 
of decision-making issues, a tendency to be driven by self-interest, and an over-
reliance on theoretical frameworks without adequately considering practical, real-
world situations. Consequently, their overall comprehensive trustworthiness is 
relatively low, and the trust relationships they form are comparatively weak.
Q3: “Most Marginal Quadrant”.
Experts in Q3 have low trustworthiness and authority. They lack sufficient 
knowledge and experience when making decisions, leading to biased opinions. At 
the same time, they hold a relatively low position in social networks, with weak 
influence.
Q4: “Trust Emphasis Quadrant”.
Compared to the Authority Emphasis Quadrants in Q2, experts in Q4 exhibit 
higher trustworthiness and a robust foundation of trust. However, they possess 
lower authority. These experts do not enjoy high social status and lack significant 
influence within the expert community.

5.1.2  Determination of Crosshair Placement

Adopting the 80/20 Principle, inspired by economist Vilfredo Pareto (2014), we 
recognize that a crucial minority, constituting approximately 20% of experts, holds 
significant influence, while the majority has a lesser impact. Embracing this mindset, 
we strategically focus on the 20% of experts with lower consensus, aiming to shape 
the overall consensus of the entire population. This targeted approach involves 
segmenting the experts into specific regions, such as the Q3 quadrants, ensuring 
that the number of experts within this region constitutes 20% of the total number of 
experts, thus defining the region’s boundaries, namely the authority threshold and 
trust threshold.

Example 3 Assuming that the number of DMs is 20 and reference to the trustwor-
thiness and authority levels delineated in Table 3, a mapping of this data onto the 
trustworthiness-authority analysis plot (e.g., Fig. 3) is performed. Subsequently, the 
division of experts is executed in accordance with the law of two-eighths, categoriz-
ing the 16 experts into the distinct regions of Q1, Q2, and Q4. The demarcation lines 
defining these regions, denoted as thresholds for trust level ( � ) and authority level 
( � ), can be derived as 0.49 and 0.5, respectively.

5.1.3  Consensus Adjustment Rules

Experts are often influenced by their peers in the decision-making process, exempli-
fying the mechanism highlighted by social contagion theory within social networks 
where information and behaviors propagate rapidly. Social contagion theory (Bar-
sade 2002) posits that individuals learn new behaviors through observing and imi-
tating their peers, with social identity fostering a tendency to align with the group. 
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Within a collective, experts with high authority and trustworthiness exert signifi-
cant influence and often initiate “contagion,” while other experts serve as recipients. 

Table 3  The trustworthiness and 
authority levels

DMs FTD(ei) FAD(ei)

e1 0.4731 0.3615
e2 0.4512 0.4845
e3 0.5206 0.6259
e4 0.4664 0.5577
e5 0.5142 0.3893
e6 0.4447 0.5403
e7 0.4973 0.5300
e8 0.4627 0.5705
e9 0.5171 0.3908
e10 0.4564 0.3995
e11 0.4930 0.3352
e12 0.4516 0.6626
e13 0.4403 0.6256
e14 0.4845 0.3634
e15 0.4401 0.4626
e16 0.4749 0.4665
e17 0.4425 0.5982
e18 0.5048 0.6365
e19 0.4779 0.3302
e20 0.5198 0.4199

Fig. 3  Threshold setting based on the Trustworthiness-authority Analysis plot
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Building upon social contagion theory, we have devised consensus adjustment rules. 
In the Q1 region, expert trustworthiness and authority are high, and they are per-
ceived as initiators of social contagion, obviating the need for adjustment.

(1) R1: Adjustment rules for Q2.

Experts in the Q2 region demonstrate significant authority, yet they encounter 
challenges concerning their trustworthiness. In light of the potential impacts of 
social contagion, it is advisable for these experts to incorporate the perspectives of 
their counterparts within the subgroup who possess higher levels of trust. Given the 
heightened authoritative status of these experts, a prudent approach is necessary 
when modifying their opinions. Careful consideration should be given to adjusting 
their views to conform with the proposed fuzzy preference relation Pk = (p

k

ij
)
n×n

:

where Ph represents the opinions of expert eh , characterized by high trustworthiness 
within the group. The parameter � , determined as � = 1 − FAD

(
ei
)
 with � ∈[0,1], 

serves as the modification/merging coefficient. This coefficient is contingent upon 
the expert’s authority level, with higher authority resulting in lower � values.

(2) R2: Adjustment rules for Q3.

In this particular domain, the diminished trust and authority of experts contribute to 
their relatively attenuated influence, characterizing them as marginal nodes within 
the network. In accordance with social contagion theory, individuals occupying 
nodes of lower connectivity are predisposed to rely upon and emulate behaviors 
exhibited by more salient nodes, thereby enhancing the reliability of their decision-
making. The intermediary role assumed by weakly connected nodes, functioning 
as bridges across disparate social groups, renders them pivotal in the propagation 
of information and behavior, consequently shaping decision-making processes. 
To recalibrate expert opinions within this locale, a stochastic process is employed 
through a random walk algorithm, thereby ensuring a judicious and effective 
adjustment of expert preferences.

In the random walk algorithm, nodes undergo random walks with probabilities 
determined by the trustworthiness and authority of neighboring experts. The 
probability P

(
ei
)
 for node ei to take a random walk is calculated using the formula:

Based on the calculated probabilities, the expert eh with the highest probability is 
selected for expert opinion fusion. The expert opinions are fused using the formula:

(16)Pk =

{
(1 − 𝜉)pk

ij
+ 𝜉ph

ij
, i ≤ j, k = 1,… ,m

1 − p
k

ij
, i > j

(17)P
�
ei
�
=

FTD

�
ei
�
× FAD

�
ei
�

∑
j∈neighbors(ek)

FTD

�
ej
�
× FAD

�
ej
�
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where � is a parameter controlling the adjustment magnitude, adjusted based on the 
disparity in trustworthiness and authority between experts ek and eh,� =

FTD(ek)×FAD(ek)

FTD(eh)×FAD(eh)

.
The detailed algorithm process is as follows:
Algorithm 1  Random Walk Algorithm

(3) R3: Adjustment rules for Q4.

In the Q4 region, experts demonstrate a notably robust foundation of trust, despite 
their relatively lower standing and prestige within the broader social network. In 
accordance with social communication theory, such experts may actively seek to 
cultivate intimate social connections with prominent counterparts, aiming to elevate 
their network standing and fortify their group affiliation. Consequently, it is 
recommended that these experts align their perspectives with those of esteemed 
authorities, engaging in knowledge exchange and communication with experts who 
command both high authority and trust within their respective subgroups. The 
ensuing adjusted fuzzy preference relationships, denoted as Pk = (p

k

ij
)
n×n

 , are 
proposed as follows:

(18)Pk =

{
(1 − 𝜏)pk

ij
+ 𝜏ph

ij
, i ≤ j, k = 1,… ,m

1 − p
k

ij
, i > j

(19)Pk =

{
(1 − 𝜁 )pk

ij
+ 𝜁ph

ij
, i ≤ j, k = 1,… ,m

1 − p
k

ij
, i > j
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where Ph represents the opinions of expert eh , characterized by high trustworthiness 
and authority, within the group, the parameter � falling within the range [0,1] , 
denotes the modification/merging coefficient.

5.2  Alternative Ranking and Consensus Process

5.2.1  Alternative Ranking

Building upon the aforementioned adjustment rules, continual adjustments are 
applied to experts with lower consensus levels. Upon reaching the consensus 
threshold, the alternatives are ranked based on the current PG = (pG

ij
)
n×n

 . The 
optimal solution is then selected from these rankings. The scoring Equation for 
the alternatives is articulated as follows:

The higher the score �
(
xi
)
 for the alternative solution xi , the more optimal the 

solution xi is deemed.

5.2.2  The Procedure of the Proposed LSGDM Method

The LSGDM decision-making method proposed in this paper primarily consists 
of five critical steps. Initially, the method involves acquiring preliminary 
information from experts. The second step entails clustering these experts and 
assigning appropriate weights to each. The third step focuses on measuring 
consensus. In instances where consensus is not achieved, the process advances to 
the fourth step, which introduces the trustworthiness-authority consensus model. 
This model aims to adjust the opinions of experts with low consensus levels until 
a satisfactory consensus is reached. Finally, the fifth step involves selecting the 
optimal solution. For clarity, the illustrative framework of the proposed method is 
depicted in Fig. 4. The detailed procedure is as follows:

Step 1: Collection of Decision Opinions

Experts initiate the process by employing the fuzzy preference relation method 
to articulate their preferences for alternative solutions, thereby generating corre-
sponding preference matrices.

Step 2: Expert Categorization and Cluster Weight Determination

Utilizing the k-means clustering algorithm, experts are systematically 
categorized into distinct clusters, and the weights for individual experts and these 

(20)�
(
xi
)
=

n∑
j=1

pG
ij
i = 1, 2,… , n



860 H. Huo et al.

clusters are determined. Individual expert weights remain uniform, while cluster 
weights are contingent upon the number of experts within each cluster.

Step 3: Consensus Level Calculation

Expert consensus level CL(ek) , clusters consensus level ICL(Gk) , and global 
consensus level GCL are computed using Eqs. (6)–(8). If GCL > GCL , the 
process advances to Step 5; otherwise, it proceeds to the subsequent step.

Step 4: Perform the CRP with a trustworthiness-authority consensus model.

Fig. 4  Flow chart of the proposed decision-making model
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Step 4-1: Obtaining information on experts’ social relationships and 
mapping initial social networks. In turn, the expert trust relationship Ftr

,the expert’s Individual trustworthiness levels FTD and authorities FAD are 
calculated through Eqs. (11)–(15).
Step 4-2: Subsequently, an expert trustworthiness-authority graph is plotted, 
and experts are categorized into four quadrants (Q1, Q2, Q3, Q4).
Step 4-3: Find the expert with the lowest consensus within Q2, Q3, and Q4, 
and adjust these three experts simultaneously according to the adjustment 
rules (R1, R2, and R3).
Step 4-4: Updating the trust relationship Ftr , trustworthiness level FTD , 
authority FAD and preference matrices Pk of the adjusted experts, and the 
social network graph of the experts and the trustworthiness-authority analysis 
graph of the experts are redrawn.
Step 4-5: The process then reverts to Step 3 for recalculating the group 
consensus level.

Step 5: Optimal Alternative Selection

Upon achieving consensus among experts, the optimal alternative is selected 
based on the aggregated preference information, as calculated by Eq. (20).

6  Case Studies

In this section, we present a real-life case study to validate the effectiveness of our 
approach. Comparative and sensitivity analyses also test the validity and robustness 
of the model proposed in this paper. Section 6.1 provides background and outlines 
the methodology for parameter determination, while Sect. 6.2 details the application 
of the consensus feedback model, emphasizing Decision Makers’ trustworthiness 
and authority. Comparative analysis in Sect. 6.3 and sensitivity analysis in Sect. 6.4 
showcases the resilience of our method.

6.1  Example Description

The Qingcheng District Government of Tianjin Municipality is proactively answering 
the global call for environmental stewardship and sustainability, recognizing the 
potential irreversible harm that conventional agricultural practices can cause to land, 
water resources, and ecosystems. The Xiqing District has committed to adopting 
innovative and sustainable agricultural approaches. The primary goal is to find a 
harmonious equilibrium between agricultural productivity and the preservation of 
natural resources. To devise the most suitable sustainable agricultural development 
plan, the Xiqing District has formed an interdisciplinary team for decision-making. 
This team comprises 20 experts (denoted as E = {e1,… , em}(m = 20) who have 
been invited to conduct a comprehensive assessment of four alternatives (denoted as 
X =

{
x1,… , xn

}
, n = 4 ). The alternative proposals are as follows:
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x1 : Precision Agriculture Technologies:

Advantages: Achieving intelligent agricultural management through high-tech 
means enhancing production efficiency and reducing resource wastage. The 
reduction in the use of fertilizers and pesticides contributes to environmental 
sustainability.
Challenges: Substantial investments are required to introduce new 
technologies. Farmers need to adapt to new agricultural management methods, 
potentially creating a technological gap among traditional practitioners.

x2 : Organic Farming Practices:

Advantages: Providing agricultural products free from chemical fertilizers and 
pesticides meets the growing market demand for health and environmental 
sustainability. It contributes to improving soil quality and safeguarding water 
sources.
Challenges: High initial costs and relatively longer production cycles may lead 
to increased agricultural product prices. Comprehensive training is necessary 
to ensure farmers’ technical proficiency.

x3 : Agricultural Diversity:

Advantages: Diversifying agricultural operations reduces dependence on a 
single crop, mitigating the economic impact of natural disasters. Promoting 
diversity in agricultural ecosystems enhances disease resistance.
Challenges: Managing and selling different agricultural products may 
be complex, requiring farmers to possess a broader range of agricultural 
knowledge. Market risks are relatively high.

x4 : Community Engagement and Agricultural Education:

Advantages: Enhancing awareness and support for sustainable agriculture 
through community engagement and agricultural education strengthens 
community foundations and fosters partnerships.
Challenges: Significant time and resources are required for community 
engagement activities and agricultural education. Noticeable economic 
benefits may take an extended period to materialize.

6.2  Resolution by the Proposed Model

To identify the optimal alternative, the proposed LSGDM approach integrates a 
consensus model that incorporates expert trustworthiness and authority. All facets of 
information processing and algorithm implementation will be exclusively conducted 
using MATLAB.

Step 1: Collection of Decision Opinions.
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20 DMs employed fuzzy preference relations to evaluate four alternative 
solutions, providing matrices that represent their individual preferences. (To verify 
the generality and robustness of the proposed method, the data was randomly 
generated using a MATLAB program.)

Step 2: Expert Categorization and Cluster Weight Determination.
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⎡⎢⎢⎢⎣

0.5 0.1 0.1 0.4

0.9 0.5 0.4 0.4

0.9 0.6 0.5 0.1

0.6 0.6 0.9 0.5

⎤⎥⎥⎥⎦
, P12 =

⎡⎢⎢⎢⎣

0.5 0.5 0.6 0.6

0.5 0.5 0.8 0.8

0.4 0.2 0.5 0.3

0.3 0.4 0.7 0.5

⎤⎥⎥⎥⎦
,

P13 =

⎡⎢⎢⎢⎣

0.5 0.3 0.7 0.4

0.7 0.5 0.4 0.5

0.3 0.6 0.5 0.9

0.6 0.5 0.1 0.5

⎤⎥⎥⎥⎦
, P14 =

⎡⎢⎢⎢⎣

0.5 0.3 0.4 0.1

0.7 0.5 0.2 0.3

0.6 0.8 0.5 0.3

0.9 0.7 0.7 0.5

⎤⎥⎥⎥⎦
, P15 =

⎡⎢⎢⎢⎣

0.5 0.7 0.1 0.1

0.3 0.5 0.7 0.2

0.9 0.3 0.5 0.7

0.9 0.8 0.3 0.5

⎤⎥⎥⎥⎦
,

P16 =

⎡⎢⎢⎢⎣

0.5 0.8 0.3 0.8

0.2 0.5 0.5 0.7

0.7 0.5 0.5 0.2

0.2 0.3 0.8 0.5

⎤⎥⎥⎥⎦
, P17 =

⎡⎢⎢⎢⎣

0.5 0.9 0.5 0.9

0.1 0.5 0.8 0.1

0.5 0.2 0.5 0.7

0.1 0.9 0.3 0.5

⎤⎥⎥⎥⎦
, P18 =

⎡⎢⎢⎢⎣

0.5 0.4 0.7 0.7

0.6 0.5 0.4 0.5

0.3 0.6 0.5 0.7

0.3 0.5 0.3 0.5

⎤⎥⎥⎥⎦
,

P19 =

⎡⎢⎢⎢⎣

0.5 0.4 0.2 0.9

0.6 0.5 0.5 0.8

0.8 0.5 0.5 0.5

0.1 0.2 0.5 0.5

⎤⎥⎥⎥⎦
, P20 =

⎡⎢⎢⎢⎣

0.5 0.7 0.7 0.8

0.3 0.5 0.8 0.9

0.3 0.2 0.5 0.6

0.2 0.1 0.4 0.5

⎤⎥⎥⎥⎦
.
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Utilizing the k-means clustering algorithm, set subgroup number k = 4,experts 
are systematically categorized into 4 clusters. Expert information is then aggregated, 
with equal weights assigned to each expert ( �k = 0.05 ). Subgroup weights �k are 
determined by the number of experts within each subgroup. The detailed results are 
presented in Table 4.

Step 3: Consensus Level Calculation.

Expert consensus level CL(ek) , clusters consensus level ICL(Gk) , and global 
consensus level GCL(Gk) are computed using Eqs. (6)–(8). Table  5 presents the 
detailed results.

Since GCL = 0.7555 < GCL = 0.8 , thus, the CPR should be performed.

Table 4  The clustering results 
based on the k-means clustering 
algorithm

Cluster Members Size Weights

G1 e4, e6, e10, e11, e12 5 0.25
G2 e1, e9, e13, e16, e18, e19, e20 7 0.35
G3 e7, e14, e15 3 0.15
G4 e2, e3, e5, e8, e17 5 0.25

Table 5  The consensus levels Cluster Members CL(e
k
) ICL(G

k
) GCL(G

k
)

G1 e4 07450 0.7517 0.7555
e6 0.6883
e10 0.4783
e11 0.4917
e12 0.7217

G2 e1 0.5717 0.7988
e9 0.4317
e13 0.6150
e16 0.5850
e18 0.7417
e19 0.6550
e20 0.5083

G3 e7 0.5950 0.7172
e14 0.5250
e15 0.4117

G4 e2 0.4883 0.7217
e3 0.6217
e5 0.5850
e8 0.7483
e17 0.4583
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Step 4: Perform the CRP with a trustworthiness-authority consensus model.

Obtaining information on experts’ social relationships and mapping initial 
social networks (Fig.  5). The Individual trustworthiness levels and authorities 
of experts are calculated through Eqs. (11)–(15), with the parameter values 
� = 0.6 , �1 = 0.3, �2 = 0.3, �3 = 0.4 . Subsequently, a graph depicting expert 
trustworthiness and authority is generated. The trustworthiness threshold ( � ) is 
established at 0.48, while the authority threshold ( � ) is set to 0.45. The experts 
are then systematically classified into four quadrants, as illustrated in Fig.  6. 
Within Quadrants Q2, Q3, and Q4, the expert exhibiting the lowest consensus 

Fig. 5  Initial social network

Fig. 6  Initial trustworthiness-authority analysis plot
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is identified. Simultaneously, adjustments are made to these three experts based 
on adjustment rules (R1, R2, and R3), with � set to 0.8. Updating the trust 
relationship Ftr , trustworthiness level FTD , authority FAD and preference matrices 
Pk of the adjusted experts, Furthermore, the social network graph of the experts 

Fig. 7  Updated social network 1

Fig. 8  Updated trustworthiness-authority analysis plot 1
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(Figs. 7, 9, 11) and the trustworthiness-authority analysis graph (Figs. 8, 10, 12) 
are redrawn. The process then reverts to Step 3 to recalculate the group consensus 
level. The detailed outcomes of this process are presented comprehensively in 
Table 6.

Step 5: Optimal Alternative Selection.

Fig. 9  Updated social network 2

Fig. 10  Updated trustworthiness-authority analysis plot 2
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Upon achieving consensus among experts, the optimal alternative is selected 
based on the aggregated preference information.

Fig. 11  Updated social network 3

Fig. 12  Updated trustworthiness-authority analysis plot 3

Table 6  Consensus process 
reaching

Number of iterations 1 2 3

GCL 0.7858 0.7955 0.8074
Adjusted experts e15, e17, e10 e2, e17, e11 e14, e5, e20
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At this moment,PG =

⎡
⎢⎢⎢⎣

0.5000 0.4938 0.5215 0.6062

0.5062 0.5000 0.4679 0.4873

0.4785 0.5321 0.5000 0.5073

0.3938 0.5127 0.4927 0.5000

⎤
⎥⎥⎥⎦
,

Calculating the scores of alternative solutions based on Eq.  (20) results in 
x1 > x3 > x2 > x4 . Therefore, the most optimal solution is to implement the 
precision agriculture technology, specifically the x1 approach. The execution 
of this strategy not only significantly enhances production efficiency but also 
effectively reduces reliance on fertilizers and pesticides, thereby mitigating adverse 
environmental impacts. Concurrently, the community benefits from introducing this 
new technology, as it not only holds the potential to elevate the technical proficiency 
of agricultural practitioners but also contributes to fostering the sustainable 
development of local agriculture.

Ultimately, the Xiqing District of Tianjin Municipality opted for precision 
agriculture decision-making, focusing on the local specialty, Xiaozhan rice, to 
establish an intelligent agricultural platform and promote standardized production. 
This initiative has significantly propelled the development towards digitization, 
intelligence, and green practices. In the spring of 2021, Xiaozhan rice was cultivated 
alongside rapeseed as green manure, resulting in a 20% reduction in nitrogen 
fertilizer usage for the season. Adopting soil testing-based fertilization led to a 20% 
decrease in potassium fertilizer application. These measures resulted in an increase 
of over 10% in yield per acre and an average income rise of 180  yuan per acre.1 
Moreover, the rice produced at the demonstration farm met the national standards for 
top-quality rice, earning recognition from the Office of the Ministry of Agriculture 
and Rural Affairs as a typical case of national agricultural green development in 
2021. The success of precision agriculture has strongly driven the advancement 
of green farming practices, providing compelling evidence for the validity and 
effectiveness of the decision-making outlined in this article.

6.3  Comparison with Other Consensus Methods

The purpose of this section is to demonstrate the indispensability of the factors of 
expert trustworthiness and authority in the large-scale group decision consensus 
model proposed by this study. Therefore, it systematically examines the significance 
and necessity of the considered variables, namely, expert trustworthiness and 
authority, within the consensus model. To achieve this, the section proceeds to 
selectively exclude the factors of expert trustworthiness and authority in the large 
group decision consensus model, thereby substantiating the rationality and essential 
nature of the variables under consideration.

1 Tianjin Development and Reform Commission. Leveraging the wisdom of the agricultural service 
platform innovation small station rice “five unity” standardized production model[R/OL]. (2022/10/25). 
Published: National Development and Reform Commission. https:// www. ndrc. gov. cn/ fggz/ nyncjj/ zdjs/ 
202210/ t2022 1025_ 13391 01. html.

https://www.ndrc.gov.cn/fggz/nyncjj/zdjs/202210/t20221025_1339101.html
https://www.ndrc.gov.cn/fggz/nyncjj/zdjs/202210/t20221025_1339101.html
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6.3.1  Model 1: A Consensus Model for LSGDM Considering Only Expert Trust 
Relationships

Remove the factors related to authority in the trustworthiness-authority consensus 
model for LSGDM proposed in this article. Specifically, modify step 4 as follows, 
keeping the other steps unchanged. The updated step 4 is as follows:

Step 4-1 A: Obtaining information on experts’ social relationships and mapping 
initial social networks. In turn, the expert trust relationship Ftr is calculated 
through Eqs. (11)–(14).
Step 4-2 A: Identify the expert with the lowest consensus among all experts.
Step 4-3 A: Based on the trust relationship Ftr among experts, find the expert 
with the strongest trust relationship with a particular expert. This expert will then 
engage in opinion fusion with the expert with whom they have the optimal trust 
relationship, using Eq. (19), with � set to 0.8.

Table 7  Detailed information on the CRP of Model 1

Iterations 0 1 2 3 4 5 6

Adjusted experts e15 e9 e11 e14 e2 e17

GCL 0.7555 0.7802 0.7800 0.7942 0.7898 0.7991 0.8177

Table 8  Detailed information on the CRP of Model 2

Iterations 0 1 2 3 4 5 6

Subject of adjustment e15 e9 e17 e2 e11 e10

GCL 0.7555 0.7759 0.7778 0.7850 0.7964 0.7985 0.8032

Table 9  Comparison analysis details

Method 1 Method 2 Method 3

Consideration 
of expert trust 
relationships

YES NO YES

Consider expert 
authority

NO YES YES

Subject of 
adjustment

e15, e9, e11, e14, e2, e17 e15, e9, e17, e2, e11, e10 e15, e17, e10;e2, e17, e11;e14, e5, e20

Number of 
iterations

6 6 3

Ranking of 
alternatives

x1 > x2 > x3 > x4 x1 > x2 > x4 > x3 x1 > x3 > x2 > x4

Final GCL 0.8117 0.8032 0.8074
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Step 4-4 A: Updating the trust relationship Ftr and preference matrices Pk of the 
adjusted experts, and the social network graph is redrawn.
Step 4-5 A: The process then reverts to Step 3 to recalculate the group consensus 
level.

.
After modifying the fourth step of the proposed model in this paper, the model 

now relies solely on trust relationships to achieve consensus. Table  7 provides 
detailed information about the consensus-reaching process.

At this moment,PG =

⎡
⎢⎢⎢⎣

0.5000 0.4790 0.5320 0.6620

0.5210 0.5000 0.5650 0.5310

0.4680 0.4350 0.5000 0.4680

0.3380 0.4690 0.5320 0.5000

⎤
⎥⎥⎥⎦

Calculating the scores of alternative solutions based on Eq.  (20) results in 
x1 > x2 > x3 > x4 , and the optimal alternative is x1.

6.3.2  Model 2: A Consensus Model for LSGDM Considering Only Expert Authority

Remove the factors related to trust relationships in the trustworthiness-authority 
consensus model for LSGDM proposed in this article. Specifically, modify step 4 as 
follows, keeping the other steps unchanged. The updated step 4 is as follows:

Step 4-1 B: Calculate the expert authority level based on Eq. (15).
Step 4-2 B: Identify the expert with the lowest consensus among all experts.
Step 4-3 B: Find the most authoritative expert within the subgroup to which this 
expert belongs and merge opinions with this expert. If this expert is already the 
most authoritative within the subgroup, then look for the expert with the highest 
authority to merge opinions. In the process of opinion merging, use Eq.  (16) 
consistently, and the parameter �=0.8.
Step 4-4 B: Updating the preference matrices Pk of the adjusted experts.
Step 4-5 B: The process then reverts to Step 3 to recalculate the group consensus 
level.

After modifying the fourth step of the proposed model in this paper, the model 
now relies solely on the influence of expert authority to achieve consensus. Detailed 
information about the consensus-reaching process is provided in Table 8.

At this moment, PG =

⎡⎢⎢⎢⎣

0.5000 0.4830 0.5320 0.5940

0.5170 0.5000 0.5250 0.4910

0.4680 0.4750 0.5000 0.4440

0.4060 0.5090 0.5560 0.5000

⎤⎥⎥⎥⎦
.

Calculating the scores of alternative solutions based on Eq.  (20) results in 
x1 > x2 > x4 > x3,and the optimal alternative isx1.
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6.3.3  Comparison Analysis

The comparative analysis of three consensus models, denoted as Model 1, 
emphasizing trust relationships exclusively, Model 2, focused solely on expert 
authority, and the Trustworthiness-Authority Consensus Model (Model 3) 
introduced in this manuscript, is meticulously detailed in Table 9. The findings reveal 
a unanimous selection of solution x1 by all three models, confirming the viability 
of the proposed model in this study. Nevertheless, nuanced distinctions in solution 
rankings among the models arise due to their reliance on distinct adjustment rules. 
This divergence in adjustment rules results in varied configurations of the preference 
matrix PG for the expert group after consensus adjustments, a phenomenon 
comprehensible within the given context.

Table  9 indicates that the proposed model (Model 3) exhibits an accelerated 
convergence toward consensus. The Trustworthiness-Authority Consensus 
Model (Model 3) manifests more pronounced adjustment effects in each iteration, 
starkly contrasting to the relatively protracted consensus attainment observed 
in Models 1 and 2, which hinge exclusively on a singular critical factor for 
consensus determination. This substantiates the imperative nature of concurrently 
considering both expert trustworthiness and authority. Furthermore, it underscores 
the superior performance of the proposed model in offering a more comprehensive 
representation that aligns closely with the intricacies of real-world expert decision-
making scenarios.

6.4  Sensitivity Analysis

In this section, sensitivity analyses that the parameters � in the trust function 
(Eq. 13) and the �1, �2,�3 in the authority function (Eq. 15) of the CRP, respectively, 
are presented in Sect. 6.4.1 and Sect. 6.4.2.

6.4.1  The Effect of the Parameters ̨

In Sect. 6.2, the parameter � is set to 0.6. In this subsection, a discussion is intro-
duced based on varying values of α to further validate the rationale of the proposed 

Table 10  Decision results with different � values

� Trustworthiness 
thresholds ( �)

Authority 
thresholds ( �)

Number of 
iterations

Final GCL Alternatives ranking

0.55 0.51 0.45 1 0.8078 x1 > x3 > x2 > x4

0.6 0.48 0.45 3 0.8074 x1 > x3 > x2 > x4

0.65 0.45 0.45 2 0.8026 x1 > x3 > x2 > x4

0.7 0.425 0.45 2 0.8161 x1 > x3 > x2 > x4

0.75 0.4 0.45 2 0.8161 x1 > x3 > x2 > x4

0.8 0.375 0.45 2 0.8160 x1 > x3 > x2 > x4
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consensus model. In order to ensure that the trust threshold � and authority thresh-
old � adhere to the Pareto principle, where 80% of the effects come from 20% of 
the causes, both the trust threshold and authority threshold are adjusted with differ-
ent � values. The parameter � , trust threshold � , authority threshold � , final group 
consensus levels, and alternative rankings are recorded in Table 8 for a sensitivity 
analysis with varying � values of {0.5,0.55,0.6,0.65,0.7,0.75,0.8}.

The analysis from Table 10 reveals a notable trend: as the � parameter increases, 
the Trustworthiness thresholds ( � ) consistently decrease. This phenomenon is rooted 
in the decreasing values of Ftr associated with higher � , subsequently influencing 
the decrease of FTD . To align expert partitioning results with the Pareto principle, 
it becomes imperative to continually lower the trust threshold, thereby ensuring the 
precision of the expert partitioning outcomes.

In tandem with variations in � , the consensus adjustment rounds remain 
consistently within the 1–3 round range. Notably, when α surpasses or equals 0.65, 
the consensus rounds stabilize at 2 rounds, reflecting a swift attainment of consensus 
and affirming the efficacy of the proposed methodology in this study.

As � exceeds or equals 0.55, the ranking results for alternative solutions exhibit 
a tendency to stabilize, consistently manifesting as x1 > x3 > x2 > x4 . This not 
only validates the judicious selection of � = 0.6 but also underscores the stability 
inherent in the proposed model. In summary, these findings collectively attest to the 
robustness and effectiveness of the model in achieving reliable and stable consensus 
in the collaborative decision-making process.

6.4.2  The Effect of the Parameters ˇ1,ˇ2,ˇ3

In this subsection, we explore the impact of varying values for the key parameters 
�1, �2 and �3 , crucial in calculating the authority function, as they were set to 0.3, 
0.3, and 0.4, respectively, in Sect. 6.1. This examination aims to further substantiate 
the rationale of the proposed consensus model. Changes in �1, �2 and �3 directly 
influence the authority values assigned to experts. To maintain the stability of 
expert partitioning, adjustments in the trustworthiness thresholds (�) and authority 
threshold (�) are necessary. Detailed information regarding the parameters �1, �2,�3 , 

Table 11  Decision results with different �1, �2, �3 values

�1 �2 �3 Trustworthiness 
thresholds ( �)

Authority 
thresholds 
( �)

Number of 
iterations

Final GCL Alternatives ranking

0.2 0.35 0.45 0.48 0.425 3 0.8098 x1 > x3 > x4 > x2

0.25 0.4 0.35 0.48 0.4 2 0.8024 x1 > x3 > x4 > x2

0.25 0.25 0.5 0.48 0.45 5 0.8094 x1 > x3 > x4 > x2

0.3 0.3 0.4 0.48 0.45 3 0.8074 x1 > x3 > x2 > x4

0.35 0.2 0.45 0.48 0.475 3 0.8102 x1 > x3 > x2 > x4

0.35 0.35 0.3 0.48 0.425 2 0.8003 x1 > x3 > x4 > x2
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trustworthiness thresholds (�) , authority threshold (�) , final group consensus levels, 
and alternative rankings is documented in Table 11.

Table  11 illustrates that alterations in the parameters �1, �2 and �3 result in 
corresponding adjustments in the Authority thresholds ( � ). These adjustments are 
a consequence of tuning �1, �2 and �3 , which in turn influence the Authority Degree 
( FAD ) for each expert. To ensure adherence to the Pareto Principle within the expert 
partition, it is imperative to make corresponding adjustments to the Authority 
thresholds ( �).

Under variations in �1, �2 and �3 , the primary focus of expert adjustments is 
observed within the range of 2 to 5 rounds. Remarkably, consensus levels are 
predominantly attained with a mere 2 or 3 adjustment rounds. This observation 
underscores the practical efficiency of the proposed model in this study.

For distinct values of �1, �2 and �3,the optimal solution consistently identified by 
the consensus model is x1 , while the suboptimal solution remains x3. Although there 
might be slight discrepancies in the ranking of alternative solutions, these variations 
are attributed to changes in expert partition results and subtle alterations in the 
expert preferences matrix during each adjustment round, arising from variations in 
�1, �2 and �3 . Importantly, these nuances do not compromise the model’s precision 
in selecting the optimal solution. In a holistic analysis of the outcomes presented in 
Table 9, it is discerned that the consensus model posited in this study exhibits both 
efficacy and stability in facilitating the attainment of expert consensus across varied 
parameter configurations.

7  Conclusion

This paper introduces a novel consensus model tailored for large-scale group 
decision-making (LSGDM), meticulously incorporating the elements of 
trustworthiness and authority among experts. The proposed model adeptly integrates 
the core principles underpinning trustworthiness and authority functions. The 
primary innovations and theoretical contributions of this study can be summarized 
as follows:

(1) Anchored in the framework of complex network evolution theory, this study 
employs a visual representation to elucidate the dynamic evolution process 
of expert social relationships. It reveals the transformation trajectory from an 
unordered, chaotic state to a relatively ordered and distinctly patterned state 
within the complex social network.

(2) Adopting a holistic approach, this research introduces an innovative 
conceptualization of centrality and authority functions among experts. This 
approach integrates considerations of experts’ social relationships, personal 
traits, and opinion preferences, presenting a quantitatively oriented method that 
significantly reduces subjectivity.

(3) Through meticulous categorization of decision-making experts based on 
trustworthiness and authority thresholds, and the formulation of distinct 
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consensus improvement rules, this study substantially enhances the efficiency of 
consensus development. This stratification concurrently ensures a representative 
range of expert preferences, thereby increasing the scientific rigor and stability 
of decision-making outcomes.

(4) Drawing on social contagion theory, the study integrates a stochastic random 
walk algorithm, accounting for the intricacies of expert social networks and the 
fluctuating nature of opinion attitudes during the decision-making process. By 
simultaneously considering the individual characteristics of decision-making 
experts, the research adeptly simulates the authentic decision-making process, 
thereby propelling the evolution of large-scale group decision-making towards 
intelligent decision-making at scale.

Although this study contributes significantly, there remains room for refinement 
in defining trust and authority functions among experts. Firstly, while certain factors 
have been considered, the computation process for expert trust and authority could 
benefit from further integration of additional indicators to enhance precision. 
Secondly, the study’s reliance solely on the Google and CNKI databases introduces 
limitations in determining expert authority. Future research should consider 
expanding data sources, potentially incorporating diverse databases, or constructing 
specialized repositories to bolster the accuracy of authority determination. Lastly, 
the determination of trust and authority thresholds is inherently subjective. Despite 
grounding this study in existing trust and authority values and applying the Pareto 
principle to establish thresholds, future research should acknowledge the asymmetry 
in expert trust relationships and non-cooperative behaviors during decision-
making. This necessitates the design of more scientifically rigorous algorithms 
to refine expert trust and authority functions, ensuring the scientific and rational 
underpinning of trust and authority thresholds. 

Appendix

See Table 12.
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