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Abstract
In the consensus reaching process of group decision making (GDM), consensus 
measures do not require the consensus opinions of all decision makers. Meanwhile, 
unit adjustment cost is one of the important and often uncertain factors that affect 
consensus in GDM. Due to the uncertainty of unit adjustment costs, the moderator 
may not be able to provide each decision maker with an accurate unit adjustment 
cost. To overcome these problems, a novel class of group consensus decision mod-
els is proposed in this paper. First, fuzzy consensus measures are defined to make 
the consensus flexible using the specificity and coverage of the consensus granule. 
Secondly, to describe the uncertainty of the cost of unit adjustment, three uncer-
tainty scenarios are created by the robust optimization approach is introduced. In the 
end, the feasibility and applicability of the method are verified by taking the classi-
cal GDM problem as an example, and sensitivity and comparative analyses are also 
performed.

Keywords  Group decision making · Minimum cost consensus · Robust 
optimization · Flexible consensus · Granule

1  Introduction

GDM is a collective decision-making process aimed at identifying the optimal 
decision solution by aggregating individual opinions of decision-makers (DMs). 
(Herrera-Viedma et al. 2002; Wang et al. 2020; Zhang et al. 2019a). In the early 
days, GDM was mainly applied to the design of voting mechanisms and voting 
paradoxes. But with more and more scholars studying GDM, it is now widely 
used in the fields of failure mode and effects analysis (FMEA), supplier selection, 
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emergency management, and environmental governance. GDM mainly consists 
of a CRP and a selection process. In the CRP, the DMs’ opinions often diverge 
greatly due to subjective factors such as knowledge, information, and preferences 
of DMs. Therefore, DMs need to continuously revise their individual opinions to 
reach consensus. In the feedback adjustment process, a certain cost is generally 
spent by the moderator to negotiate with the DM. In the CRP, we aim to consider 
uncertain unit adjustment costs and a new flexible consensus measure under the 
condition of consensus.

In GDM, there are two main models. One is the group consensus decision model 
based on the identification rule and direction consensus rule (Aguaron et al. 2016; 
Altuzarra et al. 2010; Cabrerizo et al. 2010; Dong et al. 2010; Perez et al. 2014; Wu 
and Xu 2016). The other is the group consensus decision model with optimization-
based rule (Ben-Arieh et al. 2009; Gong et al. 2015a, 2015b; Parreiras et al. 2010; 
Xu et al. 2015; Yu et al. 2021; Zhang et al. 2020, 2012, 2019b). With the increas-
ing research on GDM, the application of consensus models has become more wide-
spread. In the context of multi-criteria GDM, Li et al. (2023a) introduced stochastic 
multi-attribute acceptability analysis to investigate the consensus-building process 
for multi-criteria social network GDM problems with manipulative behavior. Li and 
Zhang (2023) proposed a consensus-building model based on minimum adjustments 
to address multi-criteria group classification problems. Additionally, they introduced 
a novel ordinal-based consensus-building model that takes into account DMs’ indi-
rect and imprecise heterogeneous preference information (Li et al. 2023b). We aim 
to consider uncertainty in the consensus decision model using the robust optimiza-
tion method.

Moderators are required to invest a significant amount of time and resources in 
persuading DMs to amend their viewpoints. Ben-Arieh and Easton (2007) are the 
first to propose the concept of minimum consensus cost and design an algorithm 
to help facilitators reach consensus at minimum cost. Zhang et  al. (2011) expand 
the collective opinion expression by introducing the aggregation operator into the 
model. And they study the minimum cost consensus model (MCCM) under the 
weighted averaging operator and ordered weighted averaging operator. Zhang et al. 
(2021a) propose a minimum consensus cost model with private benefits based on 
consensus granularity and a maximum expert consensus model. However, in the 
MCCM model, it is necessary for all DMs to reach a consensus, which imposes a 
mandatory constraint on the number of DMs who must achieve consensus. In this 
context, consensus granularity can enhance greater flexibility. Consensus granularity 
expresses the degree and complexity of consensus. Consensus granularity is highly 
important in CRP because it not only describes the level of consensus reached, but 
also allows for flexible control over the number of DMs required to achieve consen-
sus. They innovatively introduce the concept of consensus granularity in GDM, and 
define fuzzy consensus measure by maximizing the quality of consensus granularity. 
The use of consensus granularity can enhance flexibility and robustness in GDM 
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(Qin et al. 2023). Cui et al. (2022) developed a comprehensive system approach for 
ranking alternative solutions in multi-criteria GDM environments using consensus 
granularity. Zhang et al. (2017) introduced an adaptive consensus model based on 
fuzzy consensus granularity.

With the development of GDM, many scholars begin to consider the uncer-
tainty in GDM (Li et al. 2021; Zhang et al. 2022). Cheng et al. (2018) propose the 
MCCM with asymmetric unit cost by considering the different unit adjustment 
costs of DMs to raise or lower their opinions. In terms of uncertain opinions, Tan 
et  al. (2018) study consensus models with opportunity constraints. Zhang et  al. 
(2021b) consider robust cost consensus models with interval-valued opinions and 
uncertain costs. Wei et  al. (2022) considered individual opinion uncertainty in 
three different aggregation operators for robust MCCM. Han et al. (2019) incor-
porated unit adjustment costs into three uncertain scenarios, confirming that 
robust optimization enhances the conservatism of the model and, to some extent, 
mitigates the uncertainty associated with unit adjustment costs.

Unfortunately, despite systematic research on consensus models addressing the 
MCCM problem in GDM, there are several unresolved issues:

(1)	 In existing MCCM studies incorporating consensus granularity, DMs’ unit 
adjustment costs are treated as deterministic. However, due to the uncertainty 
in the environment, DMs’ unit adjustment costs are inherently uncertain.

(2)	 In current robust consensus models, consensus is defined to require the agree-
ment of all DMs’ opinions. However, for GDM scenarios where consensus 
from the majority of DMs suffices, mandating consensus from all DMs would 
undoubtedly consume more time and resources.

In real life, there are many uncertain flexible consensus decision problems. For 
instance, in negotiations between government and businesses regarding carbon quo-
tas in a green supply chain, the costs incurred by the government for each business 
are challenging to determine due to varying carbon emission quotas among different 
enterprises. Under conditions of cost uncertainty, in order to facilitate the determina-
tion of carbon emission quotas, the government aims to ensure, to the greatest extent 
possible, that 80% of the enterprises adhere to a uniform carbon emission standard. 
Our work is to combine the two and propose a novel flexible consensus model.

In this paper, a robust flexible minimum cost consensus model with uncertain 
unit adjustment cost is constructed based on fuzzy consensus measure. The main 
contributions of this paper are summarized as follows:

(1)	 This paper proposes a more flexible and versatile fuzzy consensus measure. In 
traditional CRP processes, consensus among all DMs is often required, which 
does not align with real-world decision environments and can lead to certain 
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losses. The fuzzy consensus measure introduced in this paper addresses this 
issue by not mandating consensus from all DMs.

(2)	 An approach employing robust optimization is introduced to address the uncer-
tainty in DMs’ unit adjustment costs. The paper presents the MCFCM based 
on three classical uncertainty sets: box set, ellipsoid set, and polyhedron set, to 
tackle uncertainty issues in three distinct scenarios.

(3)	 Through concrete numerical simulations, the paper validates the effectiveness 
and feasibility of the model, and discusses the impact of various parameters 
on the model. The results indicate that the proposed MCFCM not only meets 
consensus requirements but also reduces the risks associated with uncertainty 
in unit adjustment costs.

The rest of this paper is organized as follows. Section 2 introduces some prelimi-
nary information about MCCM and fuzzy consensus measures. Section 3 is divided 
into three subsections, detailing the construction of a fuzzy consensus measure-
based consensus model with uncertain unit adjustment cost under three uncertainty 
sets. Then, Sect. 4 illustrates the validity of the proposed models by a specific GDM 
example. Section 5 presents and analyzes the results in detail. Finally, Sect. 6 con-
cludes the paper.

2 � Preliminaries

Suppose there are n decision makers D = {d1, d2, ..., dn} in the GDM. Let 
O = (o1, o2, ..., on) represent DMs’ initial opinions, O = (o1, o2, ..., on) refer to their 
adjustment opinions, oc be the collective opinion, and C = (c1, c2, ..., cn) represent 
the set of unit adjustment costs of DMs. The MCCM can be presented as follows 
(Zhang et al. 2011):

where � represent consensus threshold, w = (w1,w2, ...,wn)
T is a n dimensional 

weight vector and 
n∑
i=1

wi = 1,wi ∈ [0, 1].

In MCCM, we found that consensus requires the agreement of all DMs in the first 
constraint. However, this constraint does not adequately meet our needs in the GDM 
when consensus is achieved with the agreement of the majority of DMs. Therefore, 

Min

n∑
i=1

ci|oi − oi|

s.t.||oi − o
c|| ≤ �, i = 1, 2, ..., n

o
c
=

n∑
i=1

wioi
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we introduce the concept of consensus granules to describe fuzzy consensus meas-
ures and establish MCCM around fuzzy consensus measures.

2.1 � MCCM Based on Fuzzy Consensus Measure

2.1.1 � Fuzzy Consensus Measure

Based on the consensus granules proposed by Zhang et al. (2021a), let � represent 
the size of the consensus granules, then the consensus granules A , constructed 
around the collective opinion, are as follows:

To guarantee the consensus granule A ⊆ [0, 1] , we assume that 
� ∈ [0, 2min{o

c
, 1 − o

c
}] . We assume that sp = 1 − � denotes the specificity, 

sp ∈ [1 − 2min{o
c
, 1 − o

c
}, 1] . And cov is the coverage of A , defined as:

xi =

{
1, oi ∈ A

0, else

Specificity reflects the precision achieved by the consensus granule, different 
� can construct different consensus granules. The larger the consensus granule, 
the larger the number of DMs whose opinions are in the consensus granule range. 
Whereas coverage reflects the number of individual opinions contained in the 
consensus granule, it is clear that the specificity and coverage criteria are in con-
flict: the increase in coverage comes at the cost of a decrease in specificity and 
vice versa. Larger specificity and coverage values indicate a higher quality of the 
shared consensus granule A.

Based on the specificity and coverage of the consensus granule, we define the 
fuzzy consensus measure by maximizing the product of the specificity and cover-
age of the consensus granule A.

From the definition of FC , we can obtain the following related properties:

(1)	 FC ≤ 1.
(2)	 The larger the FC , the higher the degree of consensus reached by the GDM.

A = [o
c
− 0.5�, o

c
+ 0.5�]

cov =
1

n

n∑
i=1

xi

(1)FC = max
A

sp ⋅ cov
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2.1.2 � Minimum Cost Fuzzy Consensus Model

Let � be the fuzzy consensus threshold, based on the minimum cost fuzzy con-
sensus model (MCFCM) proposed by Zhang et al. (2021a) as shown below.

Lemma 1:   Let zi = sp ⋅ xi. The constraint 1
n

n∑
i=1

sp ⋅ xi ≥ � in MCFCM can be equiv-

alently transformed to the following condition,

Lemma 2:   The constraint xi =

{
1, ||oi − o

c|| ≤ 0.5(1 − sp)

0, ||oi − o
c|| > 0.5(1 − sp)

, i = 1, 2, ..., n in 

MCFCM can be equivalently translated into the following condition:

Let ai = ||oi − oi
|| and bi = ||oi − o

c|| be two sets of auxiliary variables. By Lemma 
1 and Lemma 2, MCFCM is equivalently transformed into the following mixed 0–1 
linear programming model.

min

n�
i=1

ci
��oi − oi

��

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

n

n�
i=1

sp ⋅ xi ≥ 𝛼

xi =

�
1, ��oi − o

c�� ≤ 0.5(1 − sp)

0, ��oi − o
c�� > 0.5(1 − sp)

, i = 1, 2, ..., n

o
c
=

n�
i=1

wioi

sp ≥ 1 − 2min{o
c
, 1 − o

c
}

sp ∈ [0, 1]

oi ∈ [0, 1], i = 1, 2, ..., n

⎧⎪⎪⎨⎪⎪⎩

1

n

n�
i=1

zi ≥ �

0 ≤ zi ≤ xi, i = 1, 2, ..., n

sp + xi − 1 ≤ zi ≤ sp, i = 1, 2, ..., n

⎧⎪⎨⎪⎩

��oi − o
c�� + 0.5(sp - 1) ≤ 1 − xi, i = 1, 2, ..., n

��oi − o
c�� + 0.5(sp − 1) > −xi, i = 1, 2, ..., n

xi ∈ {0, 1}, i = 1, 2, ..., n
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where oi, xi, ai, bi, zi and sp are decision variables and oc is an intermediate variable. 
In this paper, we consider uncertainty in P1. We construct a novel robust minimal 
consensus model by applying robust optimization methods, which is more closer to 
the real decision making environment.

3 � Model Construction

3.1 � Uncertain Unit Adjustment Costs for Uncertain Set

In this paper, we consider the unit adjustment cost to be uncertain. We use the clas-
sical robust optimization method to construct the uncertainty set U about the unit 
adjustment cost, and let c̃ represent the uncertain parameter of the unit adjustment 
cost.

where c = (c1, c2, ..., cn)
T denotes the unit adjustment cost reference point of the 

DM, Q is the n × m-coefficient matrix and Ω denotes the non-empty convex set.

(2)

min

n�
i=1

ciai

P1 s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

oi − oi ≤ ai, i = 1, 2, ..., n

−oi + oi ≤ ai, i = 1, 2, ..., n

1

n

n�
i=1

zi ≥ 𝛼

0 ≤ zi ≤ xi, i = 1, 2, ..., n

sp + xi − 1 ≤ zi ≤ sp, i = 1, 2, ..., n

bi + 0.5(sp − 1) ≤ 1 − xi, i = 1, 2, ..., n

bi + 0.5(sp − 1) > −xi, i = 1, 2, ..., n

oi − o
c
≤ bi, i = 1, 2, ..., n

−oi + o
c
≤ bi, i = 1, 2, ..., n

o
c
=

n�
i=1

wioi

sp ≥ 1 − 2o
c

sp ≥ 2o
c
− 1

xi ∈ {0, 1}

oi ∈ [0, 1] i = 1, 2, ..., n

sp ∈ [0, 1]

(3)U = {c̃ ∈ Rn
+
|c̃ = c + Q𝜏, 𝜏 ∈ Ω}
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Let a = (a1, a2, ..., an)
T , based on the uncertain set of unit adjustment costs, we 

propose a minimum cost fuzzy consensus model with uncertainty.

we denote the model (4) as robust minimum cost fuzzy consensus model 
(RMCFCM).

The model (4) cannot be applied directly because the objective function con-
tains min-sup operations. The choice of the convex set Ω is directly related to 
the computational cost of the model. Next, we will consider three worst-case 
RMCFCM problems for uncertain sets. The first one we consider to compute 
RMCFCM when the uncertain set is the Box set; the second one considers to 
compute RMCFCM when the uncertain set is the Ellipsoid set; and the third one 
considers computing RMCFCM when the uncertain set is the Polyhedral set. To 
mitigate the risks associated with uncertain unit adjustment costs and make the 
models more realistically effective, we have chosen three uncertainty sets. These 
three uncertainty sets are selected to address the uncertainty in unit adjustment 
costs in different scenarios, and their distinctions are as follows:

(1)	 In the Box Uncertainty Set, parameters are assumed to lie within a given rectan-
gular or hypercubic region, with upper and lower bounds for each dimension. 
This set offers low parameter flexibility, allowing parameters to vary only within 
uniform ranges.

(2)	 The Ellipsoid Uncertainty Set assumes parameter variations within an ellipsoid, 
with the size and shape of the ellipsoid representing the degree of uncertainty. 

(4)

min sup
c̃∈U

c̃Ta

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ōi − oi ≤ ai, i = 1, 2, ..., n

−ōi + oi ≤ ai, i = 1, 2, ..., n

1

n

n∑
i=1

zi ≥ 𝛼

0 ≤ zi ≤ xi, i = 1, 2, ..., n

sp + xi − 1 ≤ zi ≤ sp, i = 1, 2, ..., n

bi + 0.5(sp − 1) ≤ 1 − xi, i = 1, 2, ..., n

bi + 0.5(sp − 1) > −xi, i = 1, 2, ..., n

ōi − ōc ≤ bi, i = 1, 2, ..., n

−ōi + ōc ≤ bi, i = 1, 2, ..., n

ōc =
n∑
i=1

wiōi

sp ≥ 1 − 2ōc

sp ≥ 2ōc − 1

xi ∈ {0, 1}, i = 1, 2, ..., n

ōi ∈ [0, 1] i = 1, 2, ..., n

sp ∈ [0, 1]
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The Ellipsoid Uncertainty Set permits parameter variations in different directions 
and magnitudes within the ellipsoid, providing greater flexibility.

(3)	 The Polyhedron Uncertainty Set allows parameters to fluctuate within a poly-
gon or polyhedron, which can be defined by a finite number of constraints or 
inequalities. This set offers the highest representation flexibility, with the degree 
of uncertainty represented by the shape and size of the polygon or polyhedron.

3.2 � RMCFCM with The Box Set

The uncertainty set with the Box set is expressed as follows,

where c− and c+ are the upper bound and lower bound of c̃ , respectively.

Theorem 1:  Considering uncertain unit adjustment costs with Box sets, the uncer-
tainty in model (4)  is given by the equation, then model (4)  is equivalent to model 
(5), as follows.

The Proof of Theorem 1 is in the Appendix A.

U = {c̃ ≥ 0|c− ≤ c̃ ≤ c+}

(5)

min
n∑
i=1

c+
i
ai

P2 s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ōi − oi ≤ ai, i = 1, 2, ..., n

−ōi + oi ≤ ai, i = 1, 2, ..., n

1

n

n∑
i=1

zi ≥ 𝛼

0 ≤ zi ≤ xi, i = 1, 2, ..., n

sp + xi − 1 ≤ zi ≤ sp, i = 1, 2, ..., n

bi + 0.5(sp − 1) ≤ 1 − xi, i = 1, 2, ..., n

bi + 0.5(sp − 1) > −xi, i = 1, 2, ..., n

ōi − ōc ≤ bi, i = 1, 2, ..., n

−ōi + ōc ≤ bi, i = 1, 2, ..., n

ōc =
n∑
i=1

wiōi

sp ≥ 1 − 2ōc

sp ≥ 2ōc − 1

xi ∈ {0, 1}, i = 1, 2, ..., n

ōi ∈ [0, 1], i = 1, 2, ..., n

sp ∈ [0, 1]
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3.3 � RMCFCM with Ellipsoidal Set

Theorem 2   Let Ω = {� ∈ ℝ
m�‖�‖2 ≤ 1} be a non-empty set. Suppose there exists 

𝜏, such that c + Q𝜏 ≥ 0 and ‖𝜏‖2 ≤ 1, Model (4)  is equivalent to:

where s = a + �, while � denotes the Lagrange multiplier associated with the ine-
quality −c − Q� ≤ 0.

The Proof of Theorem 2 is in the Appendix B.

3.4 � RMCFCM with Polyhedral Set

Theorem 3 Let Ω = {� ∈ ℝ
m|Y� = y,K� ≥ k} be a non-empty set and model  (4)  is 

equivalent to

(6)

min cTs + ‖

‖

QTs‖
‖2

P3 s.t.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

a − s ≤ 0
ōi − oi ≤ ai, i = 1, 2, ..., n
−ōi + oi ≤ ai, i = 1, 2, ..., n
1
n

n
∑

i=1
zi ≥ �

0 ≤ zi ≤ xi, i = 1, 2, ..., n
sp + xi − 1 ≤ zi ≤ sp, i = 1, 2, ..., n
bi + 0.5(sp − 1) ≤ 1 − xi, i = 1, 2, ..., n
bi + 0.5(sp − 1) > −xi, i = 1, 2, ..., n
ōi − ōc ≤ bi, i = 1, 2, ..., n
−ōi + ōc ≤ bi, i = 1, 2, ..., n

ōc =
n
∑

i=1
wiōi

sp ≥ 1 − 2ōc
sp ≥ 2ōc − 1
xi ∈ {0, 1}, i = 1, 2, ..., n
ōi ∈ [0, 1] i = 1, 2, ..., n
sp ∈ [0, 1], s ∈+

n
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The Proof of Theorem 3 is in the Appendix C.
Since the Slater condition is true, the pairwise optimality of the original problem 

and the dual problem described above can be achieved (Ben-Tal et al. 2009).

4 � Case Studies

In this section, we verify the feasibility and validity of the model with an appli-
cation. All the code is written on a laptop (Intel i7 CPU and 12 GB RAM) using 
Python calls to the gurobipy library.

We consider a simple GDM problem with five DMs and a moderator, which 
has been used in Labella et  al. (2020). In a procurement negotiation, sup-
pose that there are five teachers (DMs) d1, d2, d3, d4 and d5 from a high school 
and one seller (moderator) from a software company that sells an instruc-
tional software to the high school. Conditions that require some consen-
sus among the five teachers (i.e., � ≥ 0.8 ). In the negotiation, the five teach-
ers are given weights w1 = 0.375,w2 = 0.250,w3 = 0.1875,w4 = 0.0625
w3 = 0.1875,w4 = 0.0625 and w5 = 0.125 . The initial opinions of the five teachers 
are o1 = 0.05, 02 = 0.10, o3 = 0.25, o4 = 0.30,o3 = 0.25, o4 = 0.30, o5 = 0.60 . To 
successfully sell the software, the seller spends some time (cost) to convince the 
five teachers to adjust their opinions, where the unit cost (i.e., the number of hours 
required to convince the teacher to adjust his/her opinion from 0 to 1) is difficult 
for the seller to determine the unit adjustment cost of the five teachers due to the 

(7)

min cTs − yTv − kTm

P4 s.t.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

QTs + YTv + KTm = 0
a − s ≤ 0
ōi − oi ≤ ai, i = 1, 2, ..., n
−ōi + oi ≤ ai, i = 1, 2, ..., n
1
n

n
∑

i=1
zi ≥ �

0 ≤ zi ≤ xi, i = 1, 2, ..., n
sp + xi − 1 ≤ zi ≤ sp, i = 1, 2, ..., n
bi + 0.5(sp − 1) ≤ 1 − xi, i = 1, 2, ..., n
bi + 0.5(sp − 1) > −xi, i = 1, 2, ..., n
ōi − ōc ≤ bi, i = 1, 2, ..., n
−ōi + ōc ≤ bi, i = 1, 2, ..., n

ōc =
n
∑

i=1
wiōi

sp ≥ 1 − 2ōc
sp ≥ 2ōc − 1
xi ∈ {0, 1}, i = 1, 2, ..., n
ōi ∈ [0, 1] i = 1, 2, ..., n
sp ∈ [0, 1]
s ∈+

n , v ∈
p,m ∈q

+
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uncertainty and incompleteness of information collection in the DM’s thinking. 
The decision problem for the seller is how to determine the optimal modification to 
guide the five teachers to a given level of consensus ( FC ≥ �).

Because c̃ = c + Q𝜏 , we assume that c = (c1, c2, c3, c4, c5)
T = (5, 3, 10, 9, 12)T , Q 

obeys a normal distribution Q ∼ N(0, 0.012).

For the sake of generality, assume that all elements of the matrix Y , Z and the 
vector y, z are generated randomly at [−1, 1] , c+ = 1.2 ∗ c.

y = (−0.0838 - 0.2347 − 0.0018 0.83980.4803), k = (0.6617 - 0.4679 − 0.0268 0.7018 − 0.1302) 
Assuming a given consensus threshold � = 0.8 , by solving for P1, P2, P3, and P4, 
we obtain the results shown in Table 1 and 2:

By solving P1,P2,P3, and P4 four models, we get the minimum consensus cost of 
the four models are 4.14, 4.97, 4.25, and 4.21, respectively; the consensus opinions 
of the four models are 0.35, 0.35, 0.28, and 0.2, respectively. Tables 1 and 2 show 
more data details for the four models of P1, P2, P3, and P4. Compared to the results 
for P1, RMCFCM incur higher costs. This reflects the advantages of a robust model. 
When dealing with uncertainties, coordinators can allocate a larger budget, ensur-
ing that DMs can reach consensus even in the worst-case scenario and obtain better 
solutions.

Q =

⎛
⎜⎜⎜⎜⎝

−0.467 0.0257 −0.1693 −0.0415 −0.0625

−0.1625 −0.0974 −0.0449 0.1912 −0.1169

−0.1965 −0.1146 −0.0084 −0.0391 0.0393

0.2605 0.0548 −0.1992 0.0409 0.1302

0.0972 0.1565 0.0841 −0.1142 0.0594

⎞
⎟⎟⎟⎟⎠

Y =

⎛
⎜⎜⎜⎜⎝

−0.0497 −0.6863 0.5692 −0.5048 −0.1837

0.0368 0.9996 −0.3949 0.0079 0.2814

0.8620 −0.1840 −0.7509 −0.0529 0.8994

−0.7182 0.7028 −0.2721 0.0382 −0.5219

−0.9393 −0.0291 0.2728 −0.9588 −0.7647

⎞
⎟⎟⎟⎟⎠

K =

⎛
⎜⎜⎜⎜⎝

.1960 −0.2894 −0.4320 0.3057 0.5964

0.6172 −0.5750 −0.8847 0.6564 0.2857

0.2709 0.2119 −0.4294 0.6185 −0.4966

−0.7142 −0.9139 −0.1119 −0.9439 0.4193

−0.5052 0.6159 −0.1539 0.5675 0.6221

⎞⎟⎟⎟⎟⎠

Table 1   Results for P1, P2, P3 
and P4

� = 0.8 Mc cov sp FC o
c

P1 4.14 1 0.8 0.8 0.35
P2 4.97 1 0.8 0.8 0.35
P3 4.25 1 0.8 0.8 0.28
P4 4.21 1 0.8 0.8 0.2
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5 � Model Analysis

In the previous subsection, we applied the developed model to an example to verify 
that the results of the minimum cost fuzzy consensus model based on robust optimi-
zation are more conservative than the minimum cost fuzzy consensus model. How-
ever, the case is only the result obtained for the case of fuzzy consensus threshold 
� = 0.8 . It is necessary to continue the analysis for what the result of fuzzy consen-
sus threshold is in other cases. Moreover, the specificity and coverage of all four 
models in the case are the same, which does not show well the difference of the 
models in this respect. Next, we will perform sensitivity analysis and comparative 
analysis of the models in this subsection to further analyze the characteristics of the 
models.

5.1 � Impact of Fuzzy Consensus Thresholds ̨  on Models

The fuzzy consensus threshold represents the minimum standard of fuzzy consen-
sus measure FC , that is, the fuzzy consensus threshold reflects the quality of the 
degree of consensus reached by GDM. Meanwhile, the fuzzy consensus measure 
is the product of specificity and coverage, while the specificity reflects the preci-
sion achieved by the consensus granule and the coverage reflects the number of indi-
vidual opinions contained in the consensus granule. In other words, the higher the 
fuzzy consensus threshold, the more the number of DMs reaching consensus and 
the closer the adjusted opinion of consensus makers ( oi ) is to the consensus opinion 
( oc ). Therefore, it is necessary to study the effect of the fuzzy consensus threshold 
on the results of the model. First, we let the consensus threshold vary from 0.7 to 
0.95 in steps of 0.05, and solve the model with different models for different values 
of � . Finally, we obtain the minimum consensus cost ( Mc ), coverage ( cov ), specific-
ity ( sp ), fuzzy consensus measure ( FC ) and consensus opinion ( oc ) for each model, 
as shown in Table 3. The adjustment opinions of DMs for each model are shown in 
Table 4.

5.1.1 � Impact of Fuzzy Consensus Thresholds ̨   on Model Results

Table 3 shows the detailed data of different models under different fuzzy consen-
sus thresholds. The variation of the minimum cost under different fuzzy consen-
sus thresholds is shown in Fig. 1, as the fuzzy consensus threshold increases, the 
minimum cost increases with it. This is also in line with the reality that as the 

Table 2   Individual adjustment 
opinions for P1, P2, P3, and P4

� = 0.8 o1 o2 o3 o4 o5

P1 0.31 0.45 0.25 0.3 0.45
P2 0.31 0.45 0.25 0.3 0.45
P3 0.19 0.38 0.25 0.3 0.38
P4 0.1 0.2375 0.25 0.3 0.3
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fuzzy consensus threshold increases, the higher the quality of fuzzy consensus 
is reached and the cost required increases. In Fig. 1, we can easily find that the 
minimum consensus cost of P1 is lower than the values of P2, P3 and P4 regard-
less of the consensus threshold � . Also, the magnitude of the minimum cost of 
P3 and P4 is uncertain under different fuzzy consensus thresholds, i.e., P3 may 
be more conservative or P4 may be more conservative under different fuzzy con-
sensus thresholds. When considering uncertain factors, the box set provides the 
highest improvement in model robustness, followed by the ellipsoid set, while 
the polyhedron set performs the worst. From Fig.  2, it can be observed that as 
the fuzzy consensus threshold changes, both coverage and specificity also vary. 
When the fuzzy consensus threshold is low, the coverage is not equal to 1, indi-
cating that there are DMs who have not reached consensus. In other words, coor-
dinators can adjust the size of the fuzzy consensus threshold to control the num-
ber of DMs reaching consensus within CRP. This also reflects the model’s greater 
adaptability.

Table 3   Impact of fuzzy 
consensus thresholds � on 
model results

� Model Mc cov sp FC o
c

� = 0.7 P1 1.12 0.8 0.875 0.7 0.27
P2 1.34 0.8 0.875 0.7 0.27
P3 1.18 0.8 0.875 0.7 0.27
P4 1.24 0.8 0.875 0.7 0.27

� = 0.75 P1 2.95 0.8 0.9375 0.75 0.28
P2 3.54 0.8 0.9375 0.75 0.28
P3 3.01 0.8 0.9375 0.75 0.28
P4 3.06 0.8 0.9375 0.75 0.28

� = 0.8 P1 4.14 1 0.8 0.8 0.35
P2 4.97 1 0.8 0.8 0.35
P3 4.25 1 0.8 0.8 0.28
P4 4.21 1 0.8 0.8 0.2

� = 0.85 P1 4.51 1 0.85 0.85 0.325
P2 5.41 1 0.85 0.85 0.325
P3 4.60 1 0.85 0.85 0.29
P4 4.57 1 0.85 0.85 0.225

� = 0.9 P1 4.875 1 0.9 0.9 0.3
P2 5.85 1 0.9 0.9 0.3
P3 4.94 1 0.9 0.9 0.3
P4 4.93 1 0.9 0.9 0.25

� = 0.95 P1 5.24 1 0.95 0.95 0.275
P2 6.29 1 0.95 0.95 0.275
P3 5.296 1 0.95 0.95 0.275
P4 5.301 1 0.95 0.95 0.275
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Table 4   Impact of fuzzy 
consensus thresholds � on 
adjustment opinions

Model � o1 o2 o3 o4 o5

P2 0.7 0.21 0.21 0.25 0.3 0.6
0.75 0.25 0.25 0.25 0.3 0.475
0.8 0.31 0.45 0.25 0.3 0.45
0.85 0.29 0.4 0.25 0.3 0.4
0.9 0.275 0.35 0.25 0.3 0.35
0.95 0.26 0.3 0.25 0.3 0.3

P3 0.7 0.21 0.21 0.25 0.3 0.6
0.75 0.25 0.25 0.25 0.3 0.475
0.8 0.19 0.38 0.25 0.3 0.38
0.85 0.24 0.37 0.25 0.3 0.37
0.9 0.275 0.35 0.25 0.3 0.35
0.95 0.26 0.3 0.25 0.3 0.3

P4 0.7 0.21 0.21 0.25 0.3 0.6
0.75 0.25 0.25 0.25 0.3 0.475
0.8 0.1 0.2375 0.25 0.3 0.3
0.85 0.15 0.2625 0.25 0.3 0.3
0.9 0.2 0.29 0.25 0.3 0.3
0.95 0.26 0.3 0.25 0.3 0.3

Fig. 1   Minimum cost for different fuzzy consensus thresholds
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5.1.2 � Impact of Fuzzy Consensus Thresholds on Adjustment Opinions

With different fuzzy consensus thresholds, the adjustment opinions of DMs change. 
As an example, the uncertainty set is the ellipsoidal uncertainty set of P4. Five 
teachers participated in the evaluation of the instructional software. Figure 3 shows 
the effect of the change of fuzzy consensus threshold on the adjustment opinions. 
We found that when the fuzzy consensus threshold is set to 0.7 and 0.75, there is 
no consensus reached on the adjustment opinions of Teacher 5. When the fuzzy 
consensus threshold is set to 0.8, the adjustment degree of Teacher 1’s opinion is 
relatively small. From Fig. 3, it can be observed that as the fuzzy consensus thresh-
old increases, the adjustment opinions of teachers gradually tend to converge to a 
consensus. In the case of this study, when the fuzzy consensus threshold is rela-
tively low, there is no need to spend a significant amount of time to reach a consen-
sus on Teacher 5’s opinion, thus reducing costs. As the fuzzy consensus threshold 
increases, we can reduce the degree of adjustment for Teacher 1’s opinion while 
increasing the degree of adjustment for Teacher 5’s opinion, thereby satisfying the 
requirements of the fuzzy consensus threshold with lower costs for the coordinator.

5.2 � Impact of Unit Adjustment Cost Reference Point c  on models

The unit adjustment cost reference point c can not only affect the cost required 
to adjust the DM’s opinion, but also have an impact on the value of the DM’s 
adjustment opinion. Therefore, it is essential to study the effect of changes in the 

Fig. 2   cov and sp for different fuzzy consensus thresholds
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unit adjustment cost reference point on the model. Let ci change from -0.4 to + 0.4 
in steps of 0.2 for each occurrence of Δc . Solve for P2, P3 and P4 in � = 0.8 . 
Finally, we obtain the minimum consensus cost ( Mc ), coverage ( cov ), specificity 
( sp ), fuzzy consensus measure ( FC ) and consensus opinion ( oc ) for each model, 
as shown in Table 5. The adjustment opinions of DMs for each model are shown 
in Table 6.

5.2.1 � Impact of Unit Adjustment Cost Reference Point c  on Model Results

The effect of the change in unit adjustment cost reference point on the minimum cost 
is shown in Fig. 4, and we can easily find that as Δc increases, the minimum cost 
increases as well. This is in line with the reality that as the unit adjustment cost ref-
erence point increases, the cost required to adjust the DM’s opinion also increases, 
which leads to an increase in the minimum cost. The results for the box uncertainty 
set are the most conservative of these. As shown in Fig. 5, the change in unit adjust-
ment cost reference points has no change on the consensus opinion of P2, while the 
consensus opinion of P3 shows a decreasing trend, and the consensus opinion of P4 
first decreases and then stabilizes.

5.2.2 � Impact of Unit Adjustment Cost Reference Point c on Adjusted Opinions

As the reference point for unit adjustment cost varies, the DM’s opinion of adjust-
ment changes. As an example, the uncertainty set is the ellipsoidal uncertainty set of 

Fig. 3   Adjustment opinion for different fuzzy consensus thresholds
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P3. Five faculty members participated in the evaluation of the instructional software. 
Figure 6 shows the effect of the change in unit adjustment cost reference points on 
the adjustment opinions. As shown in Fig. 6, Teacher 3 and Teacher 4 were unaf-
fected by the change in c because Teacher 3 and Teacher 4’s opinions were always 
in agreement with the facilitator. In contrast, Teacher 1, Teacher 2, and Teacher 5 
were strongly affected by changes in c . This is because the consensus opinion of P3 
kept changing with c , while the initial opinions of Teacher 1, Teacher 2, and Teacher 

Table 5   Impact of unit 
adjustment cost reference point c 
on model results

Model Δc Mc cov sp FC o
c

P2 −0.4 4.67 1 0.8 0.8 0.35
−0.2 4.82 1 0.8 0.8 0.35
0 4.97 1 0.8 0.8 0.35
 + 0.2 5.12 1 0.8 0.8 0.35
 + 0.4 5.27 1 0.8 0.8 0.35

P3 −0.4 3.95 1 0.8 0.8 0.35
−0.2 4.1 1 0.8 0.8 0.35
0 4.25 1 0.8 0.8 0.28
 + 0.2 4.37 1 0.8 0.8 0.25
 + 0.4 4.48 1 0.8 0.8 0.23

P4 −0.4 4 1 0.8 0.8 0.2625
−0.2 4.12 1 0.8 0.8 0.2
0 4.21 1 0.8 0.8 0.2
 + 0.2 4.31 1 0.8 0.8 0.2
 + 0.4 4.41 1 0.8 0.8 0.2

Table 6   Impact of unit 
adjustment cost reference point c 
on adjustment opinions

Model Δc o1 o2 o3 o4 o5

P2 −0.4 0.31 0.45 0.25 0.3 0.45
−0.2 0.31 0.45 0.25 0.3 0.45
0 0.31 0.45 0.25 0.3 0.45
 + 0.2 0.31 0.45 0.25 0.3 0.45
 + 0.4 0.31 0.45 0.25 0.3 0.45

P3 −0.4 0.308 0.45 0.25 0.3 0.45
−0.2 0.308 0.45 0.25 0.3 0.45
0 0.19 0.38 0.25 0.3 0.38
 + 0.2 0.15 0.34 0.25 0.3 0.35
 + 0.4 0.13 0.30 0.25 0.3 0.33

P4 −0.4 0.16 0.36 0.25 0.3 0.36
−0.2 0.1 0.24 0.25 0.3 0.3
0 0.1 0.24 0.25 0.3 0.3
 + 0.2 0.1 0.24 0.25 0.3 0.3
 + 0.4 0.1 0.24 0.25 0.3 0.3
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5 could not reach a consensus opinion. That is, as c keeps changing, Teacher 1, 
Teacher 2, and Teacher 5 keep adjusting his initial opinion to reach a consensus 
opinion. When the reference point for unit adjustment costs changes, coordinators 

Fig. 4   Minimum cost for different Δc

Fig. 5   Consensus opinion for different Δc
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need to focus on adjusting the opinions of Teachers 1, Teacher 2 and Teacher 5 in 
order to meet consensus requirements with minimal costs.

5.3 � Model Comparison

In this subsection, we will compare the minimum cost fuzzy consensus model with 
the minimum cost consensus model, the minimum cost fuzzy consensus model 
based on robust optimization with the minimum cost consensus model based on 
robust optimization to further illustrate the superiority of the models. We abbreviate 
the minimum cost consensus model, the minimum cost consensus model with box 
set, the minimum cost consensus model with ellipsoidal set, and the minimum cost 
consensus model with polyhedral set as MCCM, BMCCM, EMCCM, and PMCCM. 
since there is a relationship � = 1 − 2� between the fuzzy consensus threshold � and 
the consensus threshold � when the coverage is 1. Therefore, next, we will analyze 
for � equal to 0.8, 0.7, and � equal to 0.1 and 0.15, respectively.

The detailed data for P1, P2, P3, and P4 fuzzy consensus thresholds equal to 0.8 
are shown in Tables 3 and 4. By comparing the results with those in Table 7, it is 
found that. P1, P2, P3, and P4 are the same as the optimal solutions and optimal 
values of MCCM, BMCCM, EMCCM and PMCCM. This is also consistent with 
Zhang et al. (2021a) who propose that the least-cost consensus model is a variant of 
the least-cost fuzzy consensus model when the coverage is equal to 1. On the other 
hand, under certain conditions, the minimum cost consensus model is equivalent to 
the minimum cost fuzzy consensus model.

Fig. 6   Adjustment opinion for different Δc
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The detailed data for P1, P2, P3, and P4 with fuzzy consensus threshold equal 
to 0.8 are shown in Tables 3 and 4. By comparing with the results in Table 8, it is 
found that P1, P2, P3, and P4 are different from the optimal solutions and optimal 
values of MCCM, BMCCM, EMCCM and PMCCM. P1, P2, P3, and P4 have much 
less minimum cost than MCCM, BMCCM, EMCCM and PMCCM. This is because 
in the case of � = 0.7 , P1, P2, P3, and P4 there exists a DM who satisfies the condi-
tion without reaching consensus, while MCCM, BMCCM, EMCCM and PMCCM 
require each DM to reach consensus. Therefore, MCCM, BMCCM, EMCCM, and 
PMCCM are more expensive. When the condition exists that only a majority of 
DMs need to reach consensus, the results of P1, P2, P3, and P4 will be superior to 
MCCM, BMCCM, EMCCM and PMCCM. This also illustrates the superiority and 
flexibility of the model.

6 � Conclusion

In this paper, uncertainty is mainly considered for the minimum cost fuzzy con-
sensus model. Since MCFCM is a decision and choice made under advance access 
to information, which is difficult to achieve in the real world. However, due to the 
uncertainty of information and the complexity of acquiring information, it is diffi-
cult to determine the unit adjustment cost, and the decision made based on MCFCM 
may not achieve the expected results. Therefore, we re-model the MCFCM using 
the theory of robust optimization. Firstly, we construct MCFCM with uncertain unit 
adjustment cost in the Box set. Then, we consider the uncertainty of unit adjustment 
cost in the Ellipsoid set under minimum cost consensus and propose MCFCM in the 
Ellipsoid set. And we consider MCFCM with unit adjustment cost determined in the 
Polyhedral set. Finally, we conduct numerical experiments on the proposed method 
with the classical GDM problem to verify the validity and feasibility of the model. 
Also, we obtain some interesting conclusions.

Table 7   The results of the 
models for � = 0.1

Model Mc o
c

o1 o2 o3 o4 o5

MCCM 4.14 0.35 0.31 0.45 0.25 0.3 0.45
BMCCM 4.97 0.35 0.31 0.45 0.25 0.3 0.45
EMCCM 4.25 0.28 0.19 0.38 0.25 0.3 0.38
PMCCM 4.21 0.2 0.1 0.2375 0.25 0.3 0.3

Table 8   The results of the 
models for � = 0.15

Model Mc o
c

o1 o2 o3 o4 o5

MCCM 3.41 0.4 0.342 0.55 0.25 0.3 0.55
BMCCM 4.09 0.4 0.342 0.55 0.25 0.3 0.55
EMCCM 3.76 0.21 0.06 0.304 0.25 0.3 0.36
PMCCM 3.43 0.2 0.05 0.2875 0.25 0.3 0.35
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(1)	 The change of unit adjustment cost will cause the change of consensus cost, 
resulting in the decision result of the moderator may be invalid. In contrast, the 
minimum cost fuzzy consensus model based on robust optimization considers 
the uncertainty of the unit adjustment cost, and its results are more conservative 
and face less risk.

(2)	 Comparing the P2, P3 and P4 models, the results obtained by the P2 model are 
too conservative, and the results obtained by the P3 and P4 models are closer 
to the MCFCM. From the moderator’s perspective, the P3 or P4 model can be 
regarded as a better strategy to solve the uncertainty of the unit adjustment cost, 
which can eliminate the adverse effects of the uncertainty of the unit adjustment 
cost to a larger extent and reduce the conservativeness of the model.

(3)	 Compared with the MCCM, the minimum cost fuzzy consensus model based on 
robust optimization not only takes into account the uncertainty of unit adjust-
ment cost but also does not require all DMs to reach a consensus, which is more 
flexible and more realistic.

(4)	 Through the comparison of our proposed model with MCCM models, our model 
demonstrates greater adaptability in situations where consensus among all DMs 
is not required. When consensus among the majority of DMs is sufficient in CRP, 
the coordinator can selectively encourage some DMs to reach consensus, thus 
reducing the cost within CRP.

(5)	 Through the comparison of our proposed model with traditional MCFCM mod-
els, our model incurs higher costs, and the model’s results are more conservative. 
When faced with uncertainty in unit adjustment costs, the coordinator can opt to 
increase costs appropriately to mitigate risks.

In GDM, the relationships among DMs are of utmost importance for the con-
sensus outcome. Future research should focus on studying DMs’ trust relation-
ships (Zha et al. 2023a) and their acceptance levels regarding consensus during 
the group consensus process (Zha et al. 2022). Another interesting direction is to 
further explore the impact of fairness in the CRP on costs, making the consensus 
model more realistic (Gong et al. 2023). Furthermore, with the decision problem 
more complex and comprehensive,exploring how to account for decision-making 
under uncertainty in large-scale GDM and addressing aggregation discrepancies 
in failure mode and effect analysis GDM (Zha et al. 2023b) under uncertain envi-
ronments are intriguing research directions.

Appendix A: Proof of Theorem 1

Proof:  We first consider the maximization problem of the objective function in (4).

max
c̃∈U

n∑
i=1

c̃iai

s.t.c− ≤ c̃ ≤ c+
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Because ai ≥ 0 , to maximize the objective value of the problem in (4), each unit 
of adjustment cost should take the maximum value, so max

c̃∈U

n∑
i=1

c̃iai =
n∑
i=1

c+
i
ai . The 

proof is complete. 

Appendix B: Proof of Theorem 2

Proof: sup
c̃∈U

c̃Ta in (4)  can be written as

Turn (8) into a problem where the minimization and constraint are less than or 
equal to

Let �(� ∈ ℝ
n
+
) and v(v ∈ ℝ+) as Lagrange multipliers, where � is related to 

the inequality −c − Q� ≤ 0 and v is related to the inequality ‖�‖2 − 1 ≤ 0 . So the 
Lagrangian function of (9) is

The Lagrangian dual function formed by the Lagrangian function of (10) is

Let a + � = s and min
�
{−(a + �)TQ� + v‖�‖2} divided by v , (11) can be trans-

formed into

Since the conjugate function of x is

Thus the conjugate of ‖�‖2 can be written as

(8)

max
�∈ℝm

cTa + �
TQTa

s.t.c + Q� ≥ 0

‖�‖2 ≤ 1

(9)

min
�∈ℝm

−cTa − �
TQTa

s.t. − c − Q� ≤ 0

‖�‖2 − 1 ≤ 0

(10)

min
�∈ℝm

−cTa − �
TQTa

s.t. − c − Q� ≤ 0

‖�‖2 − 1 ≤ 0

(11)g(�, v) = −cT (a + �) − v +min
�
{−(a + �)TQ� + v‖�‖2}

(12)g(�, v) = −cTs − v −
1

v
max
�

{
sTQ

v
� − ‖�‖2}

(13)f ∗(y) = max
x∈domf

{yTx − f (x)}
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Since max
�∈ℝm

+

{yT� − ‖�‖2} is equal to

So let y = sTQ

v
 , we can obtain the dual problem of (10) as follows

Since � ∈ ℝ
n
+
 , converting (16) to a minimization problem, it can be written as

By replacing sup
c̃∈U

c̃Ta in (4) with (17), we derive (6). The proof is complete. 

Appendix C: Proof of Theorem 3

Proof: sup
c̃∈U

c̃Ta in (4) can be written as

Turning (18) into a minimization and constraint is a less-than-equal problem.

Let �(� ∈ ℝ
n
+
) , v(v ∈ ℝ

p) and m(m ∈ ℝ
q

+) asb Lagrange multipliers, where � is 
related to the inequality −c − Q� ≤ 0 , v is related to the equation y − Y� = 0 , and 
m is related to the inequality k − K� ≤ 0 . So the Lagrangian function of (19) is

(14)max
�∈ℝm

+

{yT� − ‖�‖2}

(15)max
�∈ℝm

+

{yT� − ‖�‖2} =

�
0, ‖y‖2 ≤ 1

∞, otherwise

(16)

max
�,v

−cTs − v

s.t.
‖‖‖Q

Ts
‖‖‖2 ≤ v

a + � = s

� ∈ ℝ
n
+
, v ∈ ℝ+

(17)

min
s

cTs +
‖‖‖Q

Ts
‖‖‖2

s.t.a − s ≤ 0

s ∈ ℝ
n
+

(18)

max
�∈ℝm

cTa + �
TQTa

s.t.c + Q� ≥ 0

Y� = y

K� ≥ k

(19)

min
�∈ℝm

−cTa − �
TQTa

s.t. − c − Q� ≤ 0

y − Y� = 0

k − K� ≤ 0
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The Lagrangian dual function formed by the Lagrangian function of (20) is

Let a + � = s , (21) can be transformed into

Since min
�∈ℝn

{−(QTs + YTv + KTm)�} is a linear function on � , it follows that

We can obtain the pairwise problem of (20) as follows

Since � ∈ ℝ
n
+
 , converting (24) to a minimization problem, it can be written as

By replacing sup
c̃∈U

c̃Ta in (4)  with (25), we derive (7). The proof is complete. 
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